1
|
Hydrogen Attenuates Thyroid Hormone-Induced Cardiac Hypertrophy in Rats by regulating angiotensin II type 1 receptor and NADPH oxidase 2 mediated oxidative stress. Eur J Pharmacol 2022; 922:174917. [PMID: 35341785 DOI: 10.1016/j.ejphar.2022.174917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy occurs as a result of high levels of thyroid hormone, which may contribute to heart failure and is closely related to oxidative stress. Hydrogen is a good antioxidant. In this study, we found that intragastric levothyroxine administration for two weeks caused obvious cardiac hypertrophy without reduced systolic function. Additionally, hydrogen inhalation ameliorated the levothyroxine-induced metabolic increase and cardiac hypertrophy in rats. Serum brain natriuretic peptide expression was also attenuated by hydrogen treatment. However, hydrogen had no significant effect on levothyroxine -induced serum troponin I and serum thyroid hormone changes. Hydrogen treatment also reduced the levothyroxine-induced increase in cardiac malondialdehyde, 8-hydroxy-2-deoxyguanosine and serum hydrogen peroxide levels and upregulated superoxide dismutase and glutathione peroxidase activity. Additionally, western blotting results showed that hydrogen inhalation inhibited the expression of cardiac nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), angiotensin II type 1 receptor, sarcoplasmic reticulum Ca2+-ATPase (SERCA2), phospho-phospholamban and α-myosin heavy chain proteins. In conclusion, the present study revealed a protective effect of hydrogen on levothyroxine -induced cardiac hypertrophy by regulating angiotensin II type 1 receptors and NOX2-mediated oxidative stress in rats.
Collapse
|
2
|
Nusier M, Shah AK, Dhalla NS. Structure-Function Relationships and Modifications of Cardiac Sarcoplasmic Reticulum Ca2+-Transport. Physiol Res 2022; 70:S443-S470. [DOI: 10.33549/physiolres.934805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcoplasmic reticulum (SR) is a specialized tubular network, which not only maintains the intracellular concentration of Ca2+ at a low level but is also known to release and accumulate Ca2+ for the occurrence of cardiac contraction and relaxation, respectively. This subcellular organelle is composed of several phospholipids and different Ca2+-cycling, Ca2+-binding and regulatory proteins, which work in a coordinated manner to determine its function in cardiomyocytes. Some of the major proteins in the cardiac SR membrane include Ca2+-pump ATPase (SERCA2), Ca2+-release protein (ryanodine receptor), calsequestrin (Ca2+-binding protein) and phospholamban (regulatory protein). The phosphorylation of SR Ca2+-cycling proteins by protein kinase A or Ca2+-calmodulin kinase (directly or indirectly) has been demonstrated to augment SR Ca2+-release and Ca2+-uptake activities and promote cardiac contraction and relaxation functions. The activation of phospholipases and proteases as well as changes in different gene expressions under different pathological conditions have been shown to alter the SR composition and produce Ca2+-handling abnormalities in cardiomyocytes for the development of cardiac dysfunction. The post-translational modifications of SR Ca2+ cycling proteins by processes such as oxidation, nitrosylation, glycosylation, lipidation, acetylation, sumoylation, and O GlcNacylation have also been reported to affect the SR Ca2+ release and uptake activities as well as cardiac contractile activity. The SR function in the heart is also influenced in association with changes in cardiac performance by several hormones including thyroid hormones and adiponectin as well as by exercise-training. On the basis of such observations, it is suggested that both Ca2+-cycling and regulatory proteins in the SR membranes are intimately involved in determining the status of cardiac function and are thus excellent targets for drug development for the treatment of heart disease.
Collapse
Affiliation(s)
| | | | - NS Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen, Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6 Canada.
| |
Collapse
|
3
|
Paredes A, Santos-Clemente R, Ricote M. Untangling the Cooperative Role of Nuclear Receptors in Cardiovascular Physiology and Disease. Int J Mol Sci 2021; 22:ijms22157775. [PMID: 34360540 PMCID: PMC8346021 DOI: 10.3390/ijms22157775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
The heart is the first organ to acquire its physiological function during development, enabling it to supply the organism with oxygen and nutrients. Given this early commitment, cardiomyocytes were traditionally considered transcriptionally stable cells fully committed to contractile function. However, growing evidence suggests that the maintenance of cardiac function in health and disease depends on transcriptional and epigenetic regulation. Several studies have revealed that the complex transcriptional alterations underlying cardiovascular disease (CVD) manifestations such as myocardial infarction and hypertrophy is mediated by cardiac retinoid X receptors (RXR) and their partners. RXRs are members of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and drive essential biological processes such as ion handling, mitochondrial biogenesis, and glucose and lipid metabolism. RXRs are thus attractive molecular targets for the development of effective pharmacological strategies for CVD treatment and prevention. In this review, we summarize current knowledge of RXR partnership biology in cardiac homeostasis and disease, providing an up-to-date view of the molecular mechanisms and cellular pathways that sustain cardiomyocyte physiology.
Collapse
|
4
|
Higa S, Maesato A, Ishigaki S, Suenari K, Chen YJ, Chen SA. Diabetes and Endocrine Disorders (Hyperthyroidism/Hypothyroidism) as Risk Factors for Atrial Fibrillation. Card Electrophysiol Clin 2021; 13:63-75. [PMID: 33516408 DOI: 10.1016/j.ccep.2020.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Risk factors including cardiometabolic and endocrine disorders have a significant impact on atrial remodeling causing atrial fibrillation (AF). Diabetes mellitus and hyperthyroidism are strong independent risk factors for AF and worsen outcomes of rhythm control strategies. An early diagnosis and intervention for these risk factors combined with rhythm control strategies may improve the overall cardiovascular mortality and morbidity. This review summarizes the current state of knowledge about the AF risk factors diabetes mellitus and thyroid disease, and discusses the impact of the modification of these risk factors on primary and secondary prevention of AF.
Collapse
Affiliation(s)
- Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, 1199 Makiminato, Urasoe City, Okinawa 901-2131, Japan.
| | - Akira Maesato
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, 1199 Makiminato, Urasoe City, Okinawa 901-2131, Japan
| | - Sugako Ishigaki
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, 1199 Makiminato, Urasoe City, Okinawa 901-2131, Japan
| | - Kazuyoshi Suenari
- Department of Cardiology, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-ku, Hiroshima City, Hiroshima 703-8518, Japan
| | - Yi-Jen Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, 111 Hsin-Lung Road, Section 3, Taipei 116, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| |
Collapse
|
5
|
Woo JS, Jeong SY, Park JH, Choi JH, Lee EH. Calsequestrin: a well-known but curious protein in skeletal muscle. Exp Mol Med 2020; 52:1908-1925. [PMID: 33288873 PMCID: PMC8080761 DOI: 10.1038/s12276-020-00535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Calsequestrin (CASQ) was discovered in rabbit skeletal muscle tissues in 1971 and has been considered simply a passive Ca2+-buffering protein in the sarcoplasmic reticulum (SR) that provides Ca2+ ions for various Ca2+ signals. For the past three decades, physiologists, biochemists, and structural biologists have examined the roles of the skeletal muscle type of CASQ (CASQ1) in skeletal muscle and revealed that CASQ1 has various important functions as (1) a major Ca2+-buffering protein to maintain the SR with a suitable amount of Ca2+ at each moment, (2) a dynamic Ca2+ sensor in the SR that regulates Ca2+ release from the SR to the cytosol, (3) a structural regulator for the proper formation of terminal cisternae, (4) a reverse-directional regulator of extracellular Ca2+ entries, and (5) a cause of human skeletal muscle diseases. This review is focused on understanding these functions of CASQ1 in the physiological or pathophysiological status of skeletal muscle.
Collapse
Affiliation(s)
- Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 10833, USA
| | - Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Ji Hee Park
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
| |
Collapse
|
6
|
Barreto-Chaves MLM, Senger N, Fevereiro MR, Parletta AC, Takano APC. Impact of hyperthyroidism on cardiac hypertrophy. Endocr Connect 2020; 9:EC-19-0543.R1. [PMID: 32101527 PMCID: PMC7159257 DOI: 10.1530/ec-19-0543] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
The cardiac growth process (hypertrophy) is a crucial phenomenon conserved across a wide array of species and it is critically involved in maintenance of cardiac homeostasis. This process enables organism adaptation to changes of systemic demand and occurs due to a plethora of responses, depending on the type of signal or stimuli received. The growth of cardiac muscle cells in response to environmental conditions depends on the type, strength and duration of stimuli, and results in adaptive physiologic response or non-adaptive pathologic response. Thyroid hormones (TH) have a direct effect on the heart and induce a cardiac hypertrophy phenotype, which may evolve to heart failure. In this review, we summarize the literature on TH function in heart presenting results from experimental studies. We discuss the mechanistic aspects of TH associated with cardiac myocyte hypertrophy, increased cardiac myocyte contractility and electrical remodeling as well as the signaling pathways associated. In addition to classical crosstalk with the Sympathetic Nervous System (SNS), emerging work points to the new endocrine interaction between TH and Renin-Angiotensin System (RAS) is also explored. Given the inflammatory potential of the angiotensin II peptide, this new interaction may open the door for new therapeutic approaches that target key mechanisms responsible for TH-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- M L M Barreto-Chaves
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - N Senger
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M R Fevereiro
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A C Parletta
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - A P C Takano
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gamu D, Juracic ES, Hall KJ, Tupling AR. The sarcoplasmic reticulum and SERCA: a nexus for muscular adaptive thermogenesis. Appl Physiol Nutr Metab 2019; 45:1-10. [PMID: 31116956 DOI: 10.1139/apnm-2019-0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We are currently facing an "obesity epidemic" worldwide. Promoting inefficient metabolism in muscle represents a potential treatment for obesity and its complications. Sarco(endo)plasmic reticulum (SR) Ca2+-ATPase (SERCA) pumps in muscle are responsible for maintaining low cytosolic Ca2+ concentration through the ATP-dependent pumping of Ca2+ from the cytosol into the SR lumen. SERCA activity has the potential to be a critical regulator of body mass and adiposity given that it is estimated to contribute upwards of 20% of daily energy expenditure. More interestingly, this fraction can be modified physiologically in the face of stressors, such as ambient temperature and diet, through its physical interaction with several regulators known to inhibit Ca2+ uptake and muscle function. In this review, we discuss advances in our understanding of Ca2+-cycling thermogenesis within skeletal muscle, focusing on SERCA and its protein regulators, which were thought previously to only modulate muscular contractility. Novelty ATP consumption by SERCA pumps comprises a large proportion of resting energy expenditure in muscle and is dynamically regulated through interactions with small SERCA regulatory proteins. SERCA efficiency correlates significantly with resting metabolism, such that individuals with a higher resting metabolic rate have less energetically efficient SERCA Ca2+ pumping in muscle (i.e., lower coupling ratio). Futile Ca2+ cycling is a versatile heat generating mechanism utilized by both skeletal muscle and beige fat.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Karlee J Hall
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.,Department of Kinesiology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Carmody C, Ogawa-Wong AN, Martin C, Luongo C, Zuidwijk M, Sager B, Petersen T, Roginski Guetter A, Janssen R, Wu EY, Bogaards S, Neumann NM, Hau K, Marsili A, Boelen A, Silva JE, Dentice M, Salvatore D, Wagers AJ, Larsen PR, Simonides WS, Zavacki AM. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019; 160:1205-1222. [PMID: 30951174 PMCID: PMC6482039 DOI: 10.1210/en.2019-00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
The type 2 iodothyronine-deiodinase (D2) enzyme converts T4 to T3, and mice deficient in this enzyme [D2 knockout (D2KO) mice] have decreased T3 derived from T4 in skeletal muscle despite normal circulating T3 levels. Because slow skeletal muscle is particularly susceptible to changes in T3 levels, we expected D2 inactivation to result in more pronounced slow-muscle characteristics in the soleus muscle, mirroring hypothyroidism. However, ex vivo studies of D2KO soleus revealed higher rates of twitch contraction and relaxation and reduced resistance to fatigue. Immunostaining of D2KO soleus showed that these properties were associated with changes in muscle fiber type composition, including a marked increase in the number of fast, glycolytic type IIB fibers. D2KO soleus muscle fibers had a larger cross-sectional area, and this correlated with increased myonuclear accretion in myotubes formed from D2KO skeletal muscle precursor cells differentiated in vitro. Consistent with our functional findings, D2KO soleus gene expression was markedly different from that in hypothyroid wild-type (WT) mice. Comparison of gene expression between euthyroid WT and D2KO mice indicated that PGC-1α, a T3-dependent regulator of slow muscle fiber type, was decreased by ∼50% in D2KO soleus. Disruption of Dio2 in the C2C12 myoblast cell line led to a significant decrease in PGC-1α expression and a faster muscle phenotype upon differentiation. These results indicate that D2 loss leads to significant changes in soleus contractile function and fiber type composition that are inconsistent with local hypothyroidism and suggest that reduced levels of PCG-1α may contribute to the observed phenotypical changes.
Collapse
Affiliation(s)
| | | | | | - Cristina Luongo
- Brigham and Women’s Hospital, Boston, Massachusetts
- University of Naples “Federico II,” Napoli, Italy
| | - Marian Zuidwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Rob Janssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Sylvia Bogaards
- Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | - Kaman Hau
- Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Anita Boelen
- Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - J Enrique Silva
- Baystate Medical Center, Springfield, Massachusetts
- Tufts University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
9
|
Gamu D, Juracic ES, Fajardo VA, Rietze BA, Tran K, Bombardier E, Tupling AR. Phospholamban deficiency does not alter skeletal muscle SERCA pumping efficiency or predispose mice to diet-induced obesity. Am J Physiol Endocrinol Metab 2019; 316:E432-E442. [PMID: 30601702 DOI: 10.1152/ajpendo.00288.2018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pump is a major contributor to skeletal muscle Ca2+ homeostasis and metabolic rate. SERCA activity can become adaptively uncoupled by its regulator sarcolipin (SLN) to increase the energy demand of Ca2+ pumping, preventing excessive obesity and glucose intolerance in mice. Several other SERCA regulators bear structural and functional resemblance to SLN, including phospholamban (PLN). Here, we sought to examine whether endogenous levels of skeletal muscle PLN control SERCA Ca2+ pumping efficiency and whole body metabolism. Using PLN-null mice ( Pln-/-), we found that soleus (SOL) muscle's SERCA pumping efficiency (measured as an apparent coupling ratio: Ca2+ uptake/ATP hydrolysis) was unaffected by PLN. Expression of Ca2+-handling proteins within the SOL, including SLN, were comparable between Pln-/- and wild-type (WT) littermates, as were fiber-type characteristics. Not surprisingly then, Pln-/- mice developed a similar degree of diet-induced obesity and glucose intolerance as WT controls when given a "Western" high-fat diet. Lack of an excessively obesogenic phenotype of Pln-/- could not be explained by compensation from skeletal muscle SLN or brown adipose tissue uncoupling protein-1 content. In agreement with several other reports, our study lends support to the notion that PLN serves a functionally distinct role from that of SLN in skeletal muscle physiology.
Collapse
Affiliation(s)
- Daniel Gamu
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Emma Sara Juracic
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Val A Fajardo
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | | | - Khanh Tran
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - Eric Bombardier
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo , Waterloo, Ontario , Canada
| |
Collapse
|
10
|
Minerath RA, Dewey CM, Hall DD, Grueter CE. Regulation of cardiac transcription by thyroid hormone and Med13. J Mol Cell Cardiol 2019; 129:27-38. [PMID: 30769017 DOI: 10.1016/j.yjmcc.2019.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/19/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is a key regulator of transcriptional homeostasis in the heart. While hypothyroidism is known to result in adverse cardiac effects, the molecular mechanisms that modulate TH signaling are not completely understood. Mediator is a multiprotein complex that coordinates signal-dependent transcription factors with the basal transcriptional machinery to regulate gene expression. Mediator complex protein, Med13, represses numerous thyroid receptor (TR) response genes in the heart. Further, cardiac-specific overexpression of Med13 in mice that were treated with propylthiouracil (PTU), an inhibitor of the biosynthesis of the active TH, triiodothyronine (T3), resulted in resistance to PTU-dependent decreases in cardiac contractility. Therefore, these studies aimed to determine if Med13 is necessary for the cardiac response to hypothyroidism. Here we demonstrate that Med13 expression is induced in the hearts of mice with hypothyroidism. To elucidate the role of Med13 in regulating gene transcription in response to TH signaling in cardiac tissue, we utilized an unbiased RNA sequencing approach to define the TH-dependent alterations in gene expression in wild-type mice or those with a cardiac-specific deletion in Med13 (Med13cKO). Mice were fed a diet of PTU to induce a hypothyroid state or normal chow for either 4 or 16 weeks, and an additional group of mice on a PTU diet were treated acutely with T3 to re-establish a euthyroid state. Echocardiography revealed that wild-type mice had a decreased heart rate in response to PTU with a trend toward a reduced cardiac ejection fraction. Notably, cardiomyocyte-specific deletion of Med13 exacerbated cardiac dysfunction. Collectively, these studies reveal cardiac transcriptional pathways regulated in response to hypothyroidism and re-establishment of a euthyroid state and define molecular pathways that are regulated by Med13 in response to TH signaling.
Collapse
Affiliation(s)
- Rachel A Minerath
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA; Department of Pharmacology, University of Iowa, Iowa City 52242, IA, USA
| | - Colleen M Dewey
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA
| | - Chad E Grueter
- Department of Internal Medicine, Division of Cardiovascular Medicine, Francois M. Abboud Cardiovascular Research Center, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
11
|
Forini F, Nicolini G, Pitto L, Iervasi G. Novel Insight Into the Epigenetic and Post-transcriptional Control of Cardiac Gene Expression by Thyroid Hormone. Front Endocrinol (Lausanne) 2019; 10:601. [PMID: 31555215 PMCID: PMC6727178 DOI: 10.3389/fendo.2019.00601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone (TH) signaling is critically involved in the regulation of cardiovascular physiology. Even mild reductions of myocardial TH levels, as occur in hypothyroidism or low T3 state conditions, are thought to play a role in the progression of cardiac disorders. Due to recent advances in molecular mechanisms underlying TH action, it is now accepted that TH-dependent modulation of gene expression is achieved at multiple transcriptional and post-transcriptional levels and involves the cooperation of many processes. Among them, the epigenetic remodeling of chromatin structure and the interplay with non-coding RNA have emerged as novel TH-dependent pathways that add further degrees of complexity and broaden the network of genes controlled by TH signaling. Increasing experimental and clinical findings indicate that aberrant function of these regulatory mechanisms promotes the evolution of cardiac disorders such as post-ischemic injury, pathological hypertrophy, and heart failure, which may be reversed by the correction of the underlying TH dyshomeostasis. To encourage the clinical implementation of a TH replacement strategy in cardiac disease, here we discuss the crucial effect of epigenetic modifications and control of non-coding RNA in TH-dependent regulation of biological processes relevant for cardiac disease evolution.
Collapse
|
12
|
Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism. Cell Calcium 2018; 72:26-38. [DOI: 10.1016/j.ceca.2018.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/18/2018] [Accepted: 01/31/2018] [Indexed: 11/20/2022]
|
13
|
Lozano-Velasco E, Wangensteen R, Quesada A, Garcia-Padilla C, Osorio JA, Ruiz-Torres MD, Aranega A, Franco D. Hyperthyroidism, but not hypertension, impairs PITX2 expression leading to Wnt-microRNA-ion channel remodeling. PLoS One 2017; 12:e0188473. [PMID: 29194452 PMCID: PMC5711019 DOI: 10.1371/journal.pone.0188473] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023] Open
Abstract
PITX2 is a homeobox transcription factor involved in embryonic left/right signaling and more recently has been associated to cardiac arrhythmias. Genome wide association studies have pinpointed PITX2 as a major player underlying atrial fibrillation (AF). We have previously described that PITX2 expression is impaired in AF patients. Furthermore, distinct studies demonstrate that Pitx2 insufficiency leads to complex gene regulatory network remodeling, i.e. Wnt>microRNAs, leading to ion channel impairment and thus to arrhythmogenic events in mice. Whereas large body of evidences has been provided in recent years on PITX2 downstream signaling pathways, scarce information is available on upstream pathways influencing PITX2 in the context of AF. Multiple risk factors are associated to the onset of AF, such as e.g. hypertension (HTN), hyperthyroidism (HTD) and redox homeostasis impairment. In this study we have analyzed whether HTN, HTD and/or redox homeostasis impact on PITX2 and its downstream signaling pathways. Using rat models for spontaneous HTN (SHR) and experimentally-induced HTD we have observed that both cardiovascular risk factors lead to severe Pitx2 downregulation. Interesting HTD, but not SHR, leads to up-regulation of Wnt signaling as well as deregulation of multiple microRNAs and ion channels as previously described in Pitx2 insufficiency models. In addition, redox signaling is impaired in HTD but not SHR, in line with similar findings in atrial-specific Pitx2 deficient mice. In vitro cell culture analyses using gain- and loss-of-function strategies demonstrate that Pitx2, Zfhx3 and Wnt signaling influence redox homeostasis in cardiomyocytes. Thus, redox homeostasis seems to play a pivotal role in this setting, providing a regulatory feedback loop. Overall these data demonstrate that HTD, but not HTN, can impair Pitx2>>Wnt pathway providing thus a molecular link to AF.
Collapse
Affiliation(s)
- Estefanía Lozano-Velasco
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | | | - Andrés Quesada
- Department of Health Sciences, University of Jaen, Jaen, Spain
| | - Carlos Garcia-Padilla
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Julia A. Osorio
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - María Dolores Ruiz-Torres
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Amelia Aranega
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiac and Skeletal Muscle Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
14
|
Xing T, Zhao X, Wang P, Chen H, Xu X, Zhou G. Different oxidative status and expression of calcium channel components in stress-induced dysfunctional chicken muscle. J Anim Sci 2017; 95:1565-1573. [PMID: 28464077 DOI: 10.2527/jas.2016.0868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to assess the effects of transport stress at high ambient temperatures on the oxidation status and the expression of essential elements responsible for the Ca transport (sarco- (endo-) plasmic reticulum Ca-ATPase (SERCA1) and the ryanodine receptor (RyR) in (PM) muscles of broilers. Briefly, Arbor Acres broiler chickens ( = 112) were randomly categorized into 2 treatments: unstressed control (C) and 0.5 h transport (T). Each treatment consisted of 8 replicates of 7 birds each. Birds were transported according to a designed protocol. PM muscle samples in T group were collected and classified as normal (T-NOR) or pale, soft, and exudative-like (T-PSE) using meat quality parameters. The results indicated that production of corticosterone (CORT) and reactive oxygen species (ROS) increased significantly after transportation ( < 0.05). Thiobarbituric acid reactive substance values and carbonyl contents increased significantly in the T group ( < 0.05). Moreover, the extent of lipid peroxidation and protein oxidation was more severe in the T-PSE group compared to the T-NOR group ( < 0.05). The mRNA and protein expression of SERCA1 and αRyR increased in the T-NOR group but decreased significantly in the T-PSE group compared to the CON group ( < 0.05). The mRNA expression of βRyR was found to be enhanced in the T-NOR group compared to the CON group, whereas there was no difference in the T-PSE group ( < 0.05). The results indicate that short-distance transport of broilers affects their physiological responses and biochemical changes which may lead to different oxidative states and, importantly, to different expressions of SERCA and RyR. These induced changes in abnormal sarcoplasmic Ca homeostasis have significant implications for the development of PSE-like meat.
Collapse
|
15
|
de Alba-Aguayo DR, Pavón N, Mercado-Morales M, Miranda-Saturnino M, López-Casamichana M, Guerrero-Hernández A, Rueda A. Increased calcium leak associated with reduced calsequestrin expression in hyperthyroid cardiomyocytes. Cell Calcium 2017; 62:29-40. [DOI: 10.1016/j.ceca.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/21/2016] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
|
16
|
|
17
|
Diniz GP, Lino CA, Guedes EC, Moreira LDN, Barreto-Chaves MLM. Cardiac microRNA-133 is down-regulated in thyroid hormone-mediated cardiac hypertrophy partially via Type 1 Angiotensin II receptor. Basic Res Cardiol 2015. [PMID: 26202011 DOI: 10.1007/s00395-015-0504-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated thyroid hormone (TH) levels induce cardiac hypertrophy partially via type 1 Angiotensin II receptor (AT1R). MicroRNAs (miRNAs) are key regulators of cardiac homeostasis, and miR-133 has been shown to be involved in cardiac hypertrophy. However, the potential role of miR-133 in cardiac growth induced by TH is unknown. Thus, we aimed to investigate the miR-133 expression, as well as its potential role in cardiac hypertrophy in response to TH. Wistar rats were subjected to hyperthyroidism combined or not with the AT1R blocker. T3 serum levels were assessed to confirm the hyperthyroid status. TH induced cardiac hypertrophy, as evidenced by higher cardiac weight/tibia length ratio and α-actin mRNA levels, which was prevented by AT1R blocker. miR-133 expression was decreased in TH-induced cardiac hypertrophy in part through the AT1R. Additionally, the cardiac mRNA levels of miR-133 targets, SERCA2a and calcineurin were increased in hyperthyroidism partially via AT1R, as evaluated by real-time RT-PCR. Interestingly, miR-133 levels were unchanged in T3-induced cardiomyocyte hypertrophy in vitro. However, a gain-of-function study revealed that miR-133 mimic blunted the T3-induced cardiomyocyte hypertrophy in vitro. Together, our data indicate that miR-133 expression is reduced in TH-induced cardiac hypertrophy partially by the AT1R and that miR-133 mimic prevents the cardiomyocyte hypertrophy in response to T3 in vitro. These findings provide new insights regarding the mechanisms involved in the cardiac growth mediated by TH, suggesting that miR-133 plays a key role in TH-induced cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil.
| | - Caroline Antunes Lino
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Elaine Castilho Guedes
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Luana do Nascimento Moreira
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP, 05508-900, Brazil
| |
Collapse
|
18
|
SERCA2 Haploinsufficiency in a Mouse Model of Darier Disease Causes a Selective Predisposition to Heart Failure. BIOMED RESEARCH INTERNATIONAL 2015; 2015:251598. [PMID: 26064889 PMCID: PMC4433638 DOI: 10.1155/2015/251598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 12/28/2022]
Abstract
Null mutations in one copy of ATP2A2, the gene encoding sarco/endoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2), cause Darier disease in humans, a skin condition involving keratinocytes. Cardiac function appears to be unimpaired in Darier disease patients, with no evidence that SERCA2 haploinsufficiency itself causes heart disease. However, SERCA2 deficiency is widely considered a contributing factor in heart failure. We therefore analyzed Atp2a2 heterozygous mice to determine whether SERCA2 haploinsufficiency can exacerbate specific heart disease conditions. Despite reduced SERCA2a levels in heart, Atp2a2 heterozygous mice resembled humans in exhibiting normal cardiac physiology. When subjected to hypothyroidism or crossed with a transgenic model of reduced myofibrillar Ca(2+)-sensitivity, SERCA2 deficiency caused no enhancement of the disease state. However, when combined with a transgenic model of increased myofibrillar Ca(2+)-sensitivity, SERCA2 haploinsufficiency caused rapid onset of hypertrophy, decompensation, and death. These effects were associated with reduced expression of the antiapoptotic Hax1, increased levels of the proapoptotic genes Chop and Casp12, and evidence of perturbations in energy metabolism. These data reveal myofibrillar Ca(2+)-sensitivity to be an important determinant of the cardiac effects of SERCA2 haploinsufficiency and raise the possibility that Darier disease patients are more susceptible to heart failure under certain conditions.
Collapse
|
19
|
Baghcheghi Y, Shahneh AZ, Ganjkhanlou M, Motlagh MK, Yousefi AR. Effect of hypothyroidism on growth performance, carcass composition and meat quality of fat-tailed Lori-Bakhtiari lambs. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an14516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to investigate the effects of induction hypothyroidism by propylthiouracil (PTU) on the growth performance and meat quality of fat-tailed Lori-Bakhtiari lambs. Eighteen Lori-Bakhtiari male lambs were randomly assigned to one of three groups (n = 6) and received daily treatments (gavage) consisting of 0 (Control: C), 10 (Low: L) or 20 (High: H) mg PTU/kg bodyweight/day for 60 days. PTU decreased plasma triiodothyronine and thyroxine concentration in both L and H (P < 0.0001). Lambs treated with PTU (L and H) had lower feed intake (P < 0.004), feed conversion efficiency (P < 0.003), and greater intramuscular fat than C lambs (P < 0.035). Meat from the L and H lambs had lower cooking loss and shear force, and also higher L* (lightness) than C lambs (P < 0.004, P < 0.015 and P < 0.025, respectively). The meat of H and L lambs was more tender than C lambs (P < 0.032). However, the meat of H lambs required fewer chews before swallowing than C lambs (P < 0.041). Generally, induction of mild hypothyroidism appeared to improve feed conversion efficiency and meat quality of lambs.
Collapse
|
20
|
Effect of altered innervation and thyroid hormones on myosin heavy chain expression and fiber type transitions: a mini-review. Histochem Cell Biol 2014; 143:123-30. [DOI: 10.1007/s00418-014-1276-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 01/19/2023]
|
21
|
SOUKUP T, SULIMENKO V, MARKOVÁ V, KOPECKÁ K, ZACHAŘOVÁ G, PALEČEK J. Expression of the Skeletal Calsequestrin Isoform in Normal and Regenerated Skeletal Muscles and in the Hearts of Rats With Altered Thyroid Status. Physiol Res 2012; 61:575-86. [DOI: 10.33549/physiolres.932416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have investigated expression of skeletal calsequestrin (CSQ1) and fiber type composition in normal and regenerated fast and slow skeletal muscles and in the left heart ventricles of euthyroid (EU), hypothyroid (HY) and hyperthyroid (TH) adult inbred Lewis strain rats. The CSQ1 level was determined by SDS-PAGE followed by Western blot analysis. CSQ1 gene expression was assessed using reverse transcription and subsequent real time polymerase chain reaction. Muscle regeneration was achieved by intramuscular grafting of either soleus or extensor digitorum longus (EDL) from 3- to 4-week-old rats to either EDL or soleus muscle of 2-month-old rats. The fiber type composition was assessed by a stereological method applied to stained muscle cross sections. We found that the protein and mRNA levels for CSQ1 were highest in the EDL muscle, the relative CSQ1 protein levels in the soleus muscle were two times lower and the transcript levels more than 5 times lower compared to the EDL. In the left heart ventricle, protein isoform and CSQ1 transcript were also present, although at protein level, CSQ1 was hardly detectable. TH status increased and HY status decreased the expression of CSQ1 in the EDL, but its relative levels in the soleus and in the heart did not change. The regenerated soleus transplanted into EDL, as well as EDL transplanted into soleus exhibited protein and mRNA levels of CSQ1 corresponding to the host muscle and not to the graft source. TH status increased the percentages of the fastest 2X/D and 2B fibers at the expense of slow type 1 and fast 2A fibers in the EDL and that of fast 2A fibers in the soleus at the expense of slow type 1 fibers. HY status led to converse fiber type changes. We suggest that the observed changes in CSQ1 levels in TH and HY compared to EU rats can be related to fiber type changes caused by alteration of the thyroid status rather than to the direct effect of thyroid hormones on CSQ1 gene expression.
Collapse
Affiliation(s)
- T. SOUKUP
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
22
|
Zarain-Herzberg A, Estrada-Avilés R, Fragoso-Medina J. Regulation of sarco(endo)plasmic reticulum Ca2+-ATPase and calsequestrin gene expression in the heart. Can J Physiol Pharmacol 2012; 90:1017-28. [DOI: 10.1139/y2012-057] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The precise control of Ca2+levels during the contraction–relaxation cycle in cardiac myocytes is extremely important for normal beat-to-beat contractile activity. The sarcoplasmic reticulum (SR) plays a key role controlling calcium concentration in the cytosol. The SR Ca2+-ATPase (SERCA2) transports Ca2+inside the SR lumen during relaxation of the cardiac myocyte. Calsequestrin (Casq2) is the main protein in the SR lumen, functioning as a Ca2+buffer and participating in Ca2+release by interacting with the ryanodine receptor 2 (RyR2) Ca2+-release channel. Alterations in normal Ca2+handling significantly contribute to the contractile dysfunction observed in cardiac hypertrophy and in heart failure. Transcriptional regulation of the SERCA2 gene has been extensively studied and some of the mechanisms regulating its expression have been elucidated. Overexpression of Sp1 factor in cardiac hypertrophy downregulates SERCA2 gene expression and increased levels of thyroid hormone up-regulates its transcription. Other hormones such norepinephrine, angiotensin II, endothelin-1, parathyroid hormone, prostaglandin-F2α, as well the cytokines tumor necrosis factor-α and interleukin-6 also downregulate SERCA2 expression. Calcium acting through the calcineurin–NFAT (nuclear factor of activated T cells) pathway has been suggested to regulate SERCA2 and CASQ2 gene expression. This review focuses on the current knowledge regarding transcriptional regulation of SERCA2 and CASQ2 genes in the normal and pathologic heart.
Collapse
Affiliation(s)
- Angel Zarain-Herzberg
- Department of Biochemistry, School of Medicine, National Autonomous University of México, D.F. 04510, Mexico
| | - Rafael Estrada-Avilés
- Department of Biochemistry, School of Medicine, National Autonomous University of México, D.F. 04510, Mexico
| | - Jorge Fragoso-Medina
- Department of Biochemistry, School of Medicine, National Autonomous University of México, D.F. 04510, Mexico
| |
Collapse
|
23
|
Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid States. ScientificWorldJournal 2012; 2012:741861. [PMID: 22649319 PMCID: PMC3354657 DOI: 10.1100/2012/741861] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/25/2011] [Indexed: 02/07/2023] Open
Abstract
Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism). The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.
Collapse
Affiliation(s)
- Pallavi Mishra
- Department of Zoology, Utkal University, Odisha, Bhubaneswar 751004, India
| | | |
Collapse
|
24
|
The redox imbalance and the reduction of contractile protein content in rat hearts administered with L-thyroxine and Doxorubicin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:681367. [PMID: 22530076 PMCID: PMC3317061 DOI: 10.1155/2012/681367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Revised: 10/15/2011] [Accepted: 11/15/2011] [Indexed: 01/12/2023]
Abstract
Oxidative stress and disorders in calcium balance play a crucial role in the doxorubicin-induced cardiotoxicity. Moreover, many cardiotoxic targets of doxorubicin are regulated by iodothyronine hormones. The aim of the study was to evaluate effects of tetraiodothyronine (0.2, 2 mg/L) on oxidative stress in the cardiac muscle as well as contractility and cardiomyocyte damage markers in rats receiving doxorubicin (1.5 mg/kg) once a week for ten weeks. Doxorubicin was administered alone (DOX) or together with a lower (0.2T4 + DOX) and higher dose of tetraiodothyronine (2T4 + DOX). Two groups received only tetraiodothyronine (0.2T4, 2T4). Coadministration of tetraiodothyronine and doxorubicin increased the level of lipid peroxidation products and reduced RyR2 level when compared to untreated control and group exposed exclusively to doxorubicin. Insignificant differences in SERCA2 and occasional histological changes were observed. In conclusion, an increase of tetraiodothyronine level may be an additional risk factor of redox imbalance and RyR2 reduction in anthracycline cardiotoxicity.
Collapse
|
25
|
Infante C, Ponce M, Manchado M. Duplication of calsequestrin genes in teleosts: Molecular characterization in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol B Biochem Mol Biol 2011; 158:304-14. [PMID: 21256971 DOI: 10.1016/j.cbpb.2011.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/16/2011] [Accepted: 01/17/2011] [Indexed: 01/20/2023]
|
26
|
Novák P, Soukup T. Calsequestrin distribution, structure and function, its role in normal and pathological situations and the effect of thyroid hormones. Physiol Res 2011; 60:439-52. [PMID: 21401301 DOI: 10.33549/physiolres.931989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Calsequestrin is the main calcium binding protein of the sarcoplasmic reticulum, serving as an important regulator of Ca(2+). In mammalian muscles, it exists as a skeletal isoform found in fast- and slow-twitch skeletal muscles and a cardiac isoform expressed in the heart and slow-twitch muscles. Recently, many excellent reviews that summarised in great detail various aspects of the calsequestrin structure, localisation or function both in skeletal and cardiac muscle have appeared. The present review focuses on skeletal muscle: information on cardiac tissue is given, where differences between both tissues are functionally important. The article reviews the known multiple roles of calsequestrin including pathology in order to introduce this topic to the broader scientific community and to stimulate an interest in this protein. Newly we describe our results on the effect of thyroid hormones on skeletal and cardiac calsequestrin expression and discuss them in the context of available literary data on this topic.
Collapse
Affiliation(s)
- P Novák
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
27
|
Vetter R, Rehfeld U, Reissfelder C, Fechner H, Seppet E, Kreutz R. Decreased cardiac SERCA2 expression, SR Ca uptake, and contractile function in hypothyroidism are attenuated in SERCA2 overexpressing transgenic rats. Am J Physiol Heart Circ Physiol 2011; 300:H943-50. [PMID: 21217071 DOI: 10.1152/ajpheart.00490.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P < 0.05). In parallel, a 1.4-fold higher V(max) value of homogenate SR Ca(2+) uptake was observed in hypothyroid TG (P < 0.05 vs. hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P < 0.05). A linear relationship was observed between the SERCA2a/PLB mRNA ratio values and the V(max) values of SR Ca(2+) uptake when the respective data of all experimental groups were plotted together (r = 0.90). The data show that expression of the TH-insensitive SERCA2a minigene compensates for loss of expressional activity of the TH-responsive native SERCA2a gene in the female hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.
Collapse
Affiliation(s)
- Roland Vetter
- Institute of Clinical Pharmacology and Toxicology, Charité–Universitätsmedizin Berlin, Berlin.
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Chen Y, Somji A, Yu X, Stelzer JE. Altered in vivo left ventricular torsion and principal strains in hypothyroid rats. Am J Physiol Heart Circ Physiol 2010; 299:H1577-87. [PMID: 20729398 DOI: 10.1152/ajpheart.00406.2010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting and untwisting motions of the left ventricle (LV) lead to efficient ejection of blood during systole and filling of the ventricle during diastole. Global LV mechanical performance is dependent on the contractile properties of cardiac myocytes; however, it is not known how changes in contractile protein expression affect the pattern and timing of LV rotation. At the myofilament level, contractile performance is largely dependent on the isoforms of myosin heavy chain (MHC) that are expressed. Therefore, in this study, we used MRI to examine the in vivo mechanical consequences of altered MHC isoform expression by comparing the contractile properties of hypothyroid rats, which expressed only the slow β-MHC isoform, and euthyroid rats, which predominantly expressed the fast α-MHC isoform. Unloaded shortening velocity (V(o)) and apparent rate constants of force development (k(tr)) were measured in the skinned ventricular myocardium isolated from euthyroid and hypothyroid hearts. Increased expression of β-MHC reduced LV torsion and fiber strain and delayed the development of peak torsion and strain during systole. Depressed in vivo mechanical performance in hypothyroid rats was related to slowed cross-bridge performance, as indicated by significantly slower V(o) and k(tr), compared with euthyroid rats. Dobutamine infusion in hypothyroid hearts produced smaller increases in torsion and strain and aberrant transmural torsion patterns, suggesting that the myocardial response to β-adrenergic stress is compromised. Thus, increased expression of β-MHC alters the pattern and decreases the magnitude of LV rotation, contributing to reduced mechanical performance during systole, especially in conditions of increased workload.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
30
|
Belakavadi M, Saunders J, Weisleder N, Raghava PS, Fondell JD. Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 2010; 151:2946-56. [PMID: 20392835 PMCID: PMC2875831 DOI: 10.1210/en.2009-1241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phospholamban (PLB) is a critical regulator of Ca(2+) cycling in heart muscle cells, and its gene expression is markedly down-regulated by T(3). Nonetheless, little is known about the molecular mechanisms of T(3)-dependent gene silencing in cardiac muscle, and it remains unclear whether thyroid hormone receptors (TRs) directly bind at the PLB gene in vivo and facilitate transcriptional repression. To investigate the regulatory role of TRs in PLB transcription, we used a physiological murine heart muscle cell line (HL-1) that retains cardiac electrophysiological properties, expresses both TRalpha1 and TRbeta1 subtypes, and exhibits T(3)-dependent silencing of PLB expression. By performing RNA interference assays with HL-1 cells, we found that TRalpha1, but not TRbeta1, is essential for T(3)-dependent PLB gene repression. Interestingly, a PLB reporter gene containing only the core promoter sequences -156 to +64 displayed robust T(3)-dependent silencing in HL-1 cells, thus suggesting that transcriptional repression is facilitated by TRalpha1 via the PLB core promoter, a regulatory region highly conserved in mammals. Consistent with this notion, chromatin immunoprecipitation and in vitro binding assays show that TRalpha1 directly binds at the PLB core promoter region. Furthermore, addition of T(3) triggered alterations in covalent histone modifications at the PLB promoter that are associated with gene silencing, namely a pronounced decrease in both histone H3 acetylation and histone H3 lysine 4 methylation. Taken together, our data reveal that T(3)-dependent repression of PLB in cardiac myocytes is directly facilitated by TRalpha1 and involves the hormone-dependent recruitment of histone-modifying enzymes associated with transcriptional silencing.
Collapse
Affiliation(s)
- Madesh Belakavadi
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
31
|
Qin J, Valle G, Nani A, Chen H, Ramos-Franco J, Nori A, Volpe P, Fill M. Ryanodine receptor luminal Ca2+ regulation: swapping calsequestrin and channel isoforms. Biophys J 2009; 97:1961-70. [PMID: 19804727 DOI: 10.1016/j.bpj.2009.07.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 07/10/2009] [Accepted: 07/21/2009] [Indexed: 11/20/2022] Open
Abstract
Sarcoplasmic reticulum (SR) Ca(2+) release in striated muscle is mediated by a multiprotein complex that includes the ryanodine receptor (RyR) Ca(2+) channel and the intra-SR Ca(2+) buffering protein calsequestrin (CSQ). Besides its buffering role, CSQ is thought to regulate RyR channel function. Here, CSQ-dependent luminal Ca(2+) regulation of skeletal (RyR1) and cardiac (RyR2) channels is explored. Skeletal (CSQ1) or cardiac (CSQ2) calsequestrin were systematically added to the luminal side of single RyR1 or RyR2 channels. The luminal Ca(2+) dependence of open probability (Po) over the physiologically relevant range (0.05-1 mM Ca(2+)) was defined for each of the four RyR/CSQ isoform pairings. We found that the luminal Ca(2+) sensitivity of single RyR2 channels was substantial when either CSQ isoform was present. In contrast, no significant luminal Ca(2+) sensitivity of single RyR1 channels was detected in the presence of either CSQ isoform. We conclude that CSQ-dependent luminal Ca(2+) regulation of single RyR2 channels lacks CSQ isoform specificity, and that CSQ-dependent luminal Ca(2+) regulation in skeletal muscle likely plays a relatively minor (if any) role in regulating the RyR1 channel activity, indicating that the chief role of CSQ1 in this tissue is as an intra-SR Ca(2+) buffer.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ketzer LA, Arruda AP, Carvalho DP, de Meis L. Cardiac sarcoplasmic reticulum Ca2+-ATPase: heat production and phospholamban alterations promoted by cold exposure and thyroid hormone. Am J Physiol Heart Circ Physiol 2009; 297:H556-63. [DOI: 10.1152/ajpheart.00302.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Short-term response to cold promotes a small but significant rise in serum T3 in euthyroid rabbits, where the heart is an important target of T3 action. In this work, we measured changes in sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2a) and phospholamban (PLB) in hearts of hypo- and hyperthyroid rabbits and compared them with modifications induced by short- and long-term cold exposure. Short-term cold exposure promotes a small increase in T3 and, similar to hyperthyroidism, induces an increase of heart SERCA2a expression. The total PLB content does not change in hyperthyroidism, but short-term cold exposure promotes a significant decrease in total PLB and an increase in the ratio between phosphorylated and total PLB. The temperature of a given tissue depends on the balance between the heat provided by blood circulation and the rate of heat production by the tissue. In an attempt to evaluate the heat contribution of cardiac tissue, we measured mitochondrial respiration in permeabilized cardiac muscle and heat produced by cardiac sarcoplasmic reticulum (SR) during Ca2+ transport. We observed that there was an increase in oxygen consumption and heat production during Ca2+ transport by cardiac SR in both hyperthyroidism and short-term cold exposure. In contrast, both the mitochondrial respiration rate and heat derived from Ca2+ transport were decreased in hypothyroid rabbits. The heart changes in oxygen consumption, SERCA2a-PLB ratio, and Ca2+-ATPase activity detected during short-term cold exposure were abolished after cold adaptation. We hypothesize that the transient rise in serum T3 contributes to the short-term response to cold exposure.
Collapse
|
33
|
Arruda AP, Oliveira GM, Carvalho DP, De Meis L. Thyroid hormones differentially regulate the distribution of rabbit skeletal muscle Ca2 + -ATPase (SERCA) isoforms in light and heavy sarcoplasmic reticulum. Mol Membr Biol 2009; 22:529-37. [PMID: 16373324 DOI: 10.1080/09687860500412257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The sarcoplasmic reticulum (SR) is composed of two fractions, the heavy fraction that contains proteins involved in Ca2+ release, and the light fraction enriched in Ca(2+)-ATPase (SERCA), an enzyme responsible for Ca2+ transport from the cytosol to the lumen of SR. It is known that in red muscle thyroid hormones regulate the expression of SERCA 1 and SERCA 2 isoforms. Here we show the effects of thyroid hormone on SERCA expression and distribution in light and heavy SR fractions from rabbit white and red muscles. In hyperthyroid red muscle there is an increase of SERCA 1 and a decrease of SERCA 2 expression. This is far more pronounced in the heavy than in the light SR fraction. As a result, the rates of Ca(2+)- ATPase activity and Ca(2+)-uptake by the heavy vesicles are increased. In hypothyroidism we observed a decrease in SERCA 1 and no changes in the amount of SERCA 2 expressed. This promoted a decrease of both Ca(2+)-uptake and Ca(2+)-ATPase activity. While the major differences in hyperthyroidism were found in the heavy SR fraction, the effects of hypothyroidism were restricted to light SR fraction. In white muscle we did not observe any significant changes in either hypo- or hyperthyroidism in both SR fractions. Thus, the regulation of SERCA isoforms by thyroid hormones is not only muscle specific but also varies depending on the subcellular compartment analyzed. These changes might correspond to the molecular basis of the altered contraction and relaxation rates detected in thyroid dysfunction.
Collapse
|
34
|
Strasburg G, Chiang W. Pale, soft, exudative turkey—The role of ryanodine receptor variation in meat quality. Poult Sci 2009; 88:1497-505. [DOI: 10.3382/ps.2009-00181] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
De Tomasi LC, Bruno A, Sugizaki MM, Lima-Leopoldo AP, Nascimento AF, Júnior SADO, Pinotti MF, Padovani CR, Leopoldo AS, Cicogna AC. Food restriction promotes downregulation of myocardial L-type Ca2+ channels. Can J Physiol Pharmacol 2009; 87:426-31. [DOI: 10.1139/y09-025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food restriction (FR) has been shown to impair myocardial performance. However, the mechanisms behind these changes in myocardial function due to FR remain unknown. Since myocardial L-type Ca2+ channels may contribute to the cardiac dysfunction, we examined the influence of FR on L-type Ca2+ channels. Male 60-day-old Wistar rats were fed a control or a restricted diet (daily intake reduced to 50% of the amount of food consumed by the control group) for 90 days. Myocardial performance was evaluated in isolated left ventricular papillary muscles. The function of myocardial L-type Ca2+ channels was determined by using a pharmacological Ca2+ channel blocker, and changes in the number of channels were evaluated by mRNA and protein expression. FR decreased final body weights, as well as weights of the left and right ventricles. The Ca2+ channel blocker diltiazem promoted a higher blockade on developed tension in FR groups than in controls. The protein content of L-type Ca2+ channels was significantly diminished in FR rats, whereas the mRNA expression was similar between groups. These results suggest that the myocardial dysfunction observed in previous studies with FR animals could be caused by downregulation of L-type Ca2+ channels.
Collapse
Affiliation(s)
- Loreta Casquel De Tomasi
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Alessandro Bruno
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Mário Mateus Sugizaki
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Ana Paula Lima-Leopoldo
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - André Ferreira Nascimento
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Silvio Assis de Oliveira Júnior
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Matheus Fécchio Pinotti
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Carlos Roberto Padovani
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - André Soares Leopoldo
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| | - Antonio Carlos Cicogna
- Department of Clinical Cardiology, School of Medicine, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
- Department of Biostatistics, Institute of Biological Sciences, UNESP – State University Júlio Mesquita Filho, Rubião Júnior, S/N, Cep. 18.618-000 Botucatu, São Paulo, Brazil
| |
Collapse
|
36
|
Qin J, Zima AV, Porta M, Blatter LA, Fill M. Trifluoperazine: a rynodine receptor agonist. Pflugers Arch 2009; 458:643-51. [PMID: 19277699 DOI: 10.1007/s00424-009-0658-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/24/2009] [Indexed: 11/28/2022]
Abstract
Trifluoperazine (TFP), a phenothiazine, is a commonly used antipsychotic drug whose therapeutic effects are attributed to its central anti-adrenergic and anti-dopaminergic actions. However, TFP is also a calmodulin (CaM) antagonist and alters the Ca(2+) binding properties of calsequestrin (CSQ). The CaM and CSQ proteins are known modulators of sarcoplasmic reticulum (SR) Ca(2+) release in ventricular myocytes. We explored TFP actions on cardiac SR Ca(2+) release in cells and single type-2 ryanodine receptor (RyR2) channel activity in bilayers. In intact and permeabilized ventricular myocytes, TFP produced an initial activation of RyR2-mediated SR Ca(2+) release and over time depleted SR Ca(2+) content. At the single channel level, TFP or nortryptiline (NRT; a tricyclic antidepressant also known to modify CSQ Ca(2+) binding) increased the open probability (Po) of CSQ-free channels with an EC(50) of 5.2 microM or 8.9 microM (respectively). This Po increase was due to elevated open event frequency at low drug concentrations while longer mean open events sustained Po at higher drug concentrations. Activation of RyR2 by TFP occurred in the presence or absence of CaM. TFP may also inhibit SR Ca uptake as well as increase RyR2 opening. Our results suggest TFP and NRT can alter RyR2 function by interacting with the channel protein directly, independent of its actions on CSQ or CaM. This direct action may contribute to the clinical adverse cardiac side effects associated with these drugs.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1750 W. Harrison Ave, Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Thyroid hormone exerts a large number of influences on the cardiovascular system. Increased thyroid hormone action increases the force and speed of systolic contraction and the speed of diastolic relaxation and these are largely beneficial effects. Furthermore, thyroid hormone has marked electrophysiological effects increasing heart rate and the propensity for atrial fibrillation and these effects are largely mal-adaptive. In addition, thyroid hormone markedly increases cardiac angiogenesis and decreases vascular tone. These multiple thyroid hormone effects are largely mediated by the action of nuclear based thyroid hormone receptors (TR) the thyroid hormone receptor alpha and beta. TRα is the predominant isoform in the heart. Rapid nongenomic thyroid hormone effects also occur, which can be clearly demonstrated in ex-vivo experiments. Some of the most marked thyroid hormone effects in cardiac myocytes involve influences on calcium flux, with thyroid hormone promoting expression of the gene encoding the calcium pump of the sarcoplasmic reticulum (SERCa2). In contrast, in hypothyroid animals phospholamban levels, which inhibit the SERCa2 pump, are increased. In addition, marked effects are exerted on the calcium channel of the sarcoplasmic reticulum the ryanodine channel. Related to myofibrillar proteins, myosin heavy chain alpha is increased by T3 and MHC beta is decreased. Complex and interesting interactions occur between cardiac hypertrophy induced by excess thyroid hormone action and cardiac hypertrophy occurring with heart failure. The thyroid hormone mediated cardiac hypertrophy in its initial phases presents a physiological hypertrophy with increases in SERCa2 levels and decreased expression of MHC beta. In contrast, pressure overload induced heart failure leads to a “pathological” cardiac hypertrophy which is largely mediated by activation of the calcineurin system and the MAPkinases signaling system. Recent evidence indicates that heart failure can lead to a downregulation of the thyroid hormone signaling system in the heart. In the failing heart, decreases of thyroid hormone receptor levels occur. In addition, serum levels of T4 and T3 are decreased with heart failure in the frame of the non-thyroidal illness syndrome. The decrease in T3 serves as an indicator for a bad prognosis in the heart failure patient being linked to increased mortality. In animal models, it can be shown that in pressure overload-induced cardiac hypertrophy a decrease of thyroid hormone receptor levels occurs. Cardiac function can be improved by increasing expression of thyroid hormone receptors mediated by adeno-associated virus based gene transfer. The failing heart may develop a “hypothyroid” status contributing to diminished cardiac contractile function.
Collapse
|
38
|
Rouf R, Greytak S, Wooten EC, Wu J, Boltax J, Picard M, Svensson EC, Dillmann WH, Patten RD, Huggins GS. Increased FOG-2 in failing myocardium disrupts thyroid hormone-dependent SERCA2 gene transcription. Circ Res 2008; 103:493-501. [PMID: 18658259 DOI: 10.1161/circresaha.108.181487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reduced expression of sarcoplasmic reticulum calcium ATPase (SERCA)2 and other genes in the adult cardiac gene program has raised consideration of an impaired responsiveness to thyroid hormone (T3) that develops in the advanced failing heart. Here, we show that human and murine cardiomyopathy hearts have increased expression of friend of GATA (FOG)-2, a cardiac nuclear hormone receptor corepressor protein. Cardiac-specific overexpression of FOG-2 in transgenic mice led to depressed cardiac function, activation of the fetal gene program, congestive heart failure, and early death. SERCA2 transcript and protein levels were reduced in FOG-2 transgenic hearts, and FOG-2 overexpression impaired T3-mediated SERCA2 expression in cultured cardiomyocytes. FOG-2 physically interacts with thyroid hormone receptor-alpha1 and abrogated even high levels of T3-mediated SERCA2 promoter activity. These results demonstrate that SERCA2 is an important target of FOG-2 and that increased FOG-2 expression may contribute to a decline in cardiac function in end-stage heart failure by impaired T3 signaling.
Collapse
Affiliation(s)
- Rosanne Rouf
- MCRI Center for Translational Genomics, Molecular Cardiology Research Institute, Tufts University School of Medicine, 750 Washington St, Box 8486, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
40
|
Abstract
Diastolic dysfunction is characterized by prolonged relaxation, increased filling pressure, decreased contraction velocity, and reduced cardiac output. Phenotypical features of diastolic dysfunction can be observed at the level of the isolated myocyte. This article reviews the cellular mechanisms that control relaxation at the level of the myocyte in the healthy situation and discusses the alterations that can affect physiologic function during disease. It focuses specifically on the mechanisms that regulate intracellular calcium handling, and the response of the myofilaments to calcium, including the changes in these components that can contribute to diastolic dysfunction.
Collapse
Affiliation(s)
- Muthu Periasamy
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus OH, USA.
| | | |
Collapse
|
41
|
Qin J, Valle G, Nani A, Nori A, Rizzi N, Priori SG, Volpe P, Fill M. Luminal Ca2+ regulation of single cardiac ryanodine receptors: insights provided by calsequestrin and its mutants. ACTA ACUST UNITED AC 2008; 131:325-34. [PMID: 18347081 PMCID: PMC2279168 DOI: 10.1085/jgp.200709907] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that is CSQ2 independent and does not distinguish between luminal Ca2+ and Mg2+. This mechanism modulates the maximal efficacy of cytosolic Ca2+ activation. The second luminal Ca2+ regulatory mechanism is CSQ2 dependent and distinguishes between luminal Ca2+ and Mg2+. It does not depend on CSQ2 oligomerization or CSQ2 monomer Ca2+ binding affinity. The key Ca2+-sensitive step in this mechanism may be the Ca2+-dependent CSQ2 interaction with triadin. The CSQ2-dependent mechanism alters the cytosolic Ca2+ sensitivity of the channel. The R33Q CSQ2 mutant can participate in luminal RyR2 Ca2+ regulation but less effectively than wild-type (WT) CSQ2. CSQ2-L167H does not participate in luminal RyR2 Ca2+ regulation. The disparate actions of these two catecholaminergic polymorphic ventricular tachycardia (CPVT)–linked mutants implies that either alteration or elimination of CSQ2-dependent luminal RyR2 regulation can generate the CPVT phenotype. We propose that the RyR2-resident, CSQ2-independent luminal Ca2+ mechanism may assure that all channels respond robustly to large (>5 μM) local cytosolic Ca2+ stimuli, whereas the CSQ2-dependent mechanism may help close RyR2 channels after luminal Ca2+ falls below ∼0.5 mM.
Collapse
Affiliation(s)
- Jia Qin
- Department of Molecular Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chiang W, Booren A, Strasburg G. The effect of heat stress on thyroid hormone response and meat quality in turkeys of two genetic lines. Meat Sci 2008; 80:615-22. [PMID: 22063573 DOI: 10.1016/j.meatsci.2008.02.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Revised: 02/13/2008] [Accepted: 02/13/2008] [Indexed: 11/29/2022]
Abstract
The current study evaluated the effect of heat stress on thyroid hormone (T(3) and T(4)) response and meat quality traits in two turkey lines: a growth-selected commercial line and a genetically unimproved control line. Birds were subjected to heat stress for different durations before harvest. Commercial line had higher pH(15min), and lightness values, but lower cook loss and marinade uptake than control line during the heat stress. There was no difference in drip loss between the two lines. The T(3) concentration was positively correlated with cook loss and was negatively correlated with marinade uptake. The thyroid hormone response during heat stress was less stable in the commercial line than in the control line and the unstable thyroid hormone response in commercial turkeys caused by heat exposure might influence the consistency of meat quality. Results of this study may provide an application in selecting turkeys which yield consistent meat quality.
Collapse
Affiliation(s)
- W Chiang
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States
| | | | | |
Collapse
|
43
|
Simonides WS, van Hardeveld C. Thyroid hormone as a determinant of metabolic and contractile phenotype of skeletal muscle. Thyroid 2008; 18:205-16. [PMID: 18279021 DOI: 10.1089/thy.2007.0256] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal muscles are composed of several types of fibers with different contractile and metabolic properties. Genetic background and type of innervation of the fibers primarily determine these properties, but thyroid hormone (TH) is a powerful modulator of the fiber phenotype. The rates of contraction and relaxation are stimulated by TH, as are the energy consumption and heat production associated with activity. Quantitative and qualitative changes in substrate metabolism accommodate the increase in ATP turnover. Because of the total mass of skeletal muscle, these changes affect whole-body physiology. Although apparently straightforward, the phenotypic shifts induced by TH are highly complex and fiber specific. This review addresses the mechanisms by which TH may modulate fiber gene expression and discusses some of the implications of the TH-regulated changes in metabolic and contractile phenotype of skeletal muscle.
Collapse
Affiliation(s)
- Warner S Simonides
- Laboratory for Physiology, Institute for Cardiovascular Research VU University Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
44
|
Janssen PML, Periasamy M. Determinants of frequency-dependent contraction and relaxation of mammalian myocardium. J Mol Cell Cardiol 2007; 43:523-31. [PMID: 17919652 PMCID: PMC2093987 DOI: 10.1016/j.yjmcc.2007.08.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 08/13/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
An increase in heart rate is the primary mechanism that up-regulates cardiac output during conditions such as exercise and stress. When the heart rate increases, cardiac output increases due to (1) an increased number of beats per time period, and (2) the fact that myocardium generates a higher level of force. In this review, we focus on the underlying mechanisms that are at the basis of frequency-dependent activation of the heart. In addition to increased force development, the kinetics of both cardiac activation and relaxation are faster. This is crucial, as in between successive beats there is less time, and cardiac output can only be maintained if the ventricle can fill adequately. We will discuss the cellular mechanisms that are involved in the regulation of rate-dependent changes in kinetics, with a focus on changes that occur in regulation of the intracellular calcium transient, and the changes in the myofilament responsiveness that occur when the heart rate changes.
Collapse
Affiliation(s)
- Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210-1218, USA.
| | | |
Collapse
|
45
|
Vittorini S, Storti S, Parri MS, Cerillo AG, Clerico A. SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med 2007; 13:105-11. [PMID: 17515962 PMCID: PMC1869624 DOI: 10.2119/2006-00054.vittorini] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 11/16/2006] [Indexed: 12/21/2022] Open
Abstract
In animal models of conotruncal heart defects, an abnormal calcium sensitivity of the contractile apparatus and a depressed L-type calcium current have been described. Sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA) is a membrane protein that catalyzes the ATP-dependent transport of Ca(2+) from the cytosol to the SR. The activity of SERCA is inhibited by phospholamban (PLN) and sarcolipin (SLN), and all these proteins participate in maintaining the normal intracellular calcium handling. Ryanodine receptors (RyRs) are the major SR calcium-release channels required for excitation-contraction coupling in skeletal and cardiac muscle. Our objective was to evaluate SERCA2a (i.e., the SERCA cardiac isoform), PLN, SLN, and RyR2 (i.e., the RyR isoform enriched in the heart) gene expression in myocardial tissue of patients affected by tetralogy of Fallot (TOF), a conotruncal heart defect. The gene expression of target genes was assessed semiquantitatively by RT-PCR using the calsequestrin (CASQ, a housekeeping gene) RNA as internal standard in the atrial myocardium of 23 pediatric patients undergoing surgical correction of TOF, in 10 age-matched patients with ventricular septal defect (VSD) and in 13 age-matched children with atrial septal defect (ASD). We observed a significantly lower expression of PLN and SLN in TOF patients, while there was no difference between the expression of SERCA2a and RyR2 in TOF and VSD. These data suggest a complex mechanism aimed to enhance the intracellular Ca(2+) reserve in children affected by tetralogy of Fallot.
Collapse
Affiliation(s)
- Simona Vittorini
- Molecular Cardiology and Genetics Laboratory, Institute of Clinical Physiology, National Research Council, G. Pasquinucci Hospital, Massa, Italy
| | - Simona Storti
- Molecular Cardiology and Genetics Laboratory, Institute of Clinical Physiology, National Research Council, G. Pasquinucci Hospital, Massa, Italy
- Address correspondence and reprint requests to Simona Vittorini, Molecular Cardiology and Genetics Lab, Institute of Clinical Physiology, National Research Council, “Pasquinucci” Hospital, V Aurelia Sud, Massa, Italy. Phone: + 39 0585 493621; Fax: + 39 0585 493601; E-mail:
| | - Maria Serena Parri
- Molecular Cardiology and Genetics Laboratory, Institute of Clinical Physiology, National Research Council, G. Pasquinucci Hospital, Massa, Italy
| | - Alfredo Giuseppe Cerillo
- Operative Unit of Cardiac Surgery, Institute of Clinical Physiology, National Research Council, G. Pasquinucci Hospital, Massa, Italy
| | - Aldo Clerico
- Scuola Superiore di Studi Universitari e di Perfezionamento S. Anna, Pisa, Italy
| |
Collapse
|
46
|
Cohen O, Kanana H, Zoizner R, Gross C, Meiri U, Stern MD, Gerstenblith G, Horowitz M. Altered Ca2+ handling and myofilament desensitization underlie cardiomyocyte performance in normothermic and hyperthermic heat-acclimated rat hearts. J Appl Physiol (1985) 2007; 103:266-75. [PMID: 17395755 DOI: 10.1152/japplphysiol.01351.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat acclimation (AC) improves cardiac mechanical and metabolic performance. Using cardiomyocytes and isolated hearts from 30-day and 2-day acclimated rats (AC and AC-2d, 34°C), we characterized cellular contractile mechanisms under normothermic (37°C) and hyperthermic (39–42°C) conditions. To determine contractile responses, Ca2+ transients (Ca2+ T), sarcoplasmic reticulum (SR) Ca2+ pool size (fura-2/indo-1 fluorescence), force generation [amplitude systolic motion (ASM)], L-type Ca2+ channels [dihydropyridine receptor (DHPR)], ryanodine receptors (RyRs), and total (PLBt) and phosphorylated phospholamban [serine phosphorylated (PLBs) and theonine phosphorylated (PLBtr)] proteins and transcripts were measured (Western blot, RT-PCR). Cardiac mechanical performance was measured using a Langendorff system. We demonstrated that AC and AC-2d increased Ca2+ T amplitude (148% and 147%, respectively) and twitch force (180% and 130%, respectively) and desensitized myofilaments, as indicated by a rightward shift in the ASM-Ca2+ relationships, despite no change in SR Ca2+ pool size. Hence, generation of higher Ca2+ T underlies greater force development in AC and AC-2d myocytes. In isolated hearts, ryanodine administration eliminated differences between AC and control (C) hearts, implying an important role for RyRs in that acclimation phase. Increased expression of DHPR and RyRs, and decreased PLBs/PLBt in AC hearts only, suggest that different pathways increase force generation in the AC-2d vs. AC myocytes. At basal beating rates, hyperthermia (39–41°C) enhanced pressure generation in AC hearts. C hearts failed to restitute pressure beyond 39°C. Increased beating frequency produced negative inotropic response. In C cardiomyocytes, hyperthermia elevated basal cytosolic Ca2+ and tension, Ca2+ T, and ASM. AC myocytes enhanced Ca2+ T but showed myofilament desensitization, suggesting its involvement in cardiac protection against hyperthermia. Collectively, both Ca2+ turnover and myofilament responsiveness are important adaptive acclimatory targets during normothermic and hyperthermic conditions.
Collapse
Affiliation(s)
- Omer Cohen
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, Hadassah Medical Center, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bhupathy P, Babu GJ, Periasamy M. Sarcolipin and phospholamban as regulators of cardiac sarcoplasmic reticulum Ca2+ ATPase. J Mol Cell Cardiol 2007; 42:903-11. [PMID: 17442337 PMCID: PMC2743185 DOI: 10.1016/j.yjmcc.2007.03.738] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/15/2007] [Accepted: 03/02/2007] [Indexed: 01/26/2023]
Abstract
The cardiac sarcoplasmic reticulum calcium ATPase (SERCA2a) plays a critical role in maintaining the intracellular calcium homeostasis during cardiac contraction and relaxation. It has been well documented over the years that altered expression and activity of SERCA2a can lead to systolic and diastolic dysfunction. The activity of SERCA2a is regulated by two structurally similar proteins, phospholamban (PLB) and sarcolipin (SLN). Although, the relevance of PLB has been extensively studied over the years, the role SLN in cardiac physiology is an emerging field of study. This review focuses on the advances in the understanding of the regulation of SERCA2a by SLN and PLB. In particular, it highlights the similarities and differences between the two proteins and their roles in cardiac patho-physiology.
Collapse
Affiliation(s)
| | | | - Muthu Periasamy
- Corresponding Author: Address- 304 Hamilton Hall, 1645 Neil Avenue, Columbus OH, 43210, USA, Phone # 614-292-2310, Fax # 614-292-4888,
| |
Collapse
|
48
|
Periasamy M, Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve 2007; 35:430-42. [PMID: 17286271 DOI: 10.1002/mus.20745] [Citation(s) in RCA: 387] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sarcoendoplasmic reticulum (SR) calcium transport ATPase (SERCA) is a pump that transports calcium ions from the cytoplasm into the SR. It is present in both animal and plant cells, although knowledge of SERCA in the latter is scant. The pump shares the catalytic properties of ion-motive ATPases of the P-type family, but has distinctive regulation properties. The SERCA pump is encoded by a family of three genes, SERCA1, 2, and 3, that are highly conserved but localized on different chromosomes. The SERCA isoform diversity is dramatically enhanced by alternative splicing of the transcripts, occurring mainly at the COOH-terminal. At present, more than 10 different SERCA isoforms have been detected at the protein level. These isoforms exhibit both tissue and developmental specificity, suggesting that they contribute to unique physiological properties of the tissue in which they are expressed. The function of the SERCA pump is modulated by the endogenous molecules phospholamban (PLB) and sarcolipin (SLN), expressed in cardiac and skeletal muscles. The mechanism of action of PLB on SERCA is well characterized, whereas that of SLN is only beginning to be understood. Because the SERCA pump plays a major role in muscle contraction, a number of investigations have focused on understanding its role in cardiac and skeletal muscle disease. These studies document that SERCA pump expression and activity are decreased in aging and in a variety of pathophysiological conditions including heart failure. Recently, SERCA pump gene transfer was shown to be effective in restoring contractile function in failing heart muscle, thus emphasizing its importance in muscle physiology and its potential use as a therapeutic agent.
Collapse
Affiliation(s)
- Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, Ohio State University, 304 Hamilton Hall, 1645 Neil Avenue, Columbus, Ohio 43210, USA
| | | |
Collapse
|
49
|
Jiang M, Xu A, Narayanan N. Thyroid hormone downregulates the expression and function of sarcoplasmic reticulum-associated CaM kinase II in the rabbit heart. Am J Physiol Heart Circ Physiol 2006; 291:H1384-94. [PMID: 16617128 DOI: 10.1152/ajpheart.00875.2005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of sarcoplasmic reticulum (SR) Ca2+-cycling proteins by a membrane-associated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) is a well-documented physiological mechanism for regulation of transmembrane Ca2+fluxes and the cardiomyocyte contraction-relaxation cycle. The present study investigated the effects of l-thyroxine-induced hyperthyroidism on protein expression of SR CaM kinase II and its substrates, endogenous CaM kinase II-mediated SR protein phosphorylation, and SR Ca2+pump function in the rabbit heart. Membrane vesicles enriched in junctional SR (JSR) or longitudinal SR (LSR) isolated from euthyroid and hyperthyroid rabbit hearts were utilized. Endogenous CaM kinase II-mediated phosphorylation of ryanodine receptor-Ca2+release channel (RyR-CRC), Ca2+-ATPase, and phospholamban (PLN) was significantly lower (30–70%) in JSR and LSR vesicles from hyperthyroid than from euthyroid rabbit heart. Western immunoblotting analysis revealed significantly higher (∼40%) levels of sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) in JSR, but not in LSR, from hyperthyroid than from euthyroid rabbit heart. Maximal velocity of Ca2+uptake was significantly increased in JSR (130%) and LSR (50%) from hyperthyroid compared with euthyroid rabbit hearts. Apparent affinity of the Ca2+-ATPase for Ca2+did not differ between the two groups. Protein levels of PLN and CaM kinase II were significantly lower (30–40%) in JSR, LSR, and ventricular tissue homogenates from hyperthyroid rabbit heart. These findings demonstrate selective downregulation of expression and function of CaM kinase II in hyperthyroid rabbit heart in the face of upregulated expression and function of SERCA2 predominantly in the JSR compartment.
Collapse
Affiliation(s)
- Mao Jiang
- Department of Physiology and Pharmacology, Health Science Center, The University of Western Ontario, London, ON, Canada N6A 5C1
| | | | | |
Collapse
|
50
|
de Meis L, Arruda AP, Carvalho DP. Role of sarco/endoplasmic reticulum Ca(2+)-ATPase in thermogenesis. Biosci Rep 2006; 25:181-90. [PMID: 16283552 DOI: 10.1007/s10540-005-2884-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Enzymes are able to handle the energy derived from the hydrolysis of phosphate compounds in such a way as to determine the parcel that is used for work and the fraction that is converted into heat. The sarco/endoplasmic reticulum Ca(2+)-ATPases (SERCA) is a family of membrane-bound ATPases that are able to transport Ca(2+) ion across the membrane using the chemical energy derived from ATP hydrolysis. The heat released during ATP hydrolysis by SERCA may vary from 10 up to 30 kcal/mol depending on the SERCA isoform used and on whether or not a Ca(2+) gradient is formed across the membrane. Drugs such as heparin, dimethyl sulfoxide and the platelet-activating factor (PAF) are able to modify the fraction of the chemical energy released during ATP hydrolysis that is used for Ca(2+) transport and the fraction that is dissipated in the surrounding medium as heat. The thyroid hormone 3,5,3'-triiodo L: -thyronine (T(3)) regulates the expression and function of the thermogenic SERCA isoforms. Modulation of heat production by SERCA might be one of the mechanisms involved in the increased thermogenesis found in hyperthyroidism.
Collapse
Affiliation(s)
- Leopoldo de Meis
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Cidade Universitária, 21941-590 RJ, Brasil.
| | | | | |
Collapse
|