1
|
Zhang X, Gao YP, Dong WS, Li K, Hu YX, Ye YJ, Hu C. FNDC4 alleviates cardiac ischemia/reperfusion injury through facilitating HIF1α-dependent cardiomyocyte survival and angiogenesis in male mice. Nat Commun 2024; 15:9667. [PMID: 39516487 PMCID: PMC11549404 DOI: 10.1038/s41467-024-53564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Fibronectin type III domain-containing (FNDC) proteins play critical roles in cellular homeostasis and cardiac injury, and our recent findings define FNDC5 as a promising cardioprotectant against doxorubicin- and aging-related cardiac injury. FNDC4 displays a high homology with FNDC5; however, its role and mechanism in cardiac ischemia/reperfusion (I/R) injury remain elusive. Here, we show that cardiac and plasma FNDC4 levels are elevated during I/R injury in a hypoxia-inducible factor 1α (HIF1α)-dependent manner. Cardiac-specific FNDC4 overexpression facilitates, while cardiac-specific FNDC4 knockdown inhibits cardiomyocyte survival and angiogenesis in I/R-stressed hearts of male mice through regulating the proteasomal degradation of HIF1α. Interestingly, FNDC4 does not directly stimulate angiogenesis of endothelial cells, but increases the expression and secretion of fibroblast growth factor 1 from cardiomyocytes to enhance angiogenesis in a paracrine manner. Moreover, therapeutic administration of recombinant FNDC4 protein is sufficient to alleviate cardiac I/R injury in male mice, without resulting in significant side effects. In this work, we reveal that FNDC4 alleviates cardiac I/R injury through facilitating HIF1α-dependent cardiomyocyte survival and angiogenesis, and define FNDC4 as a promising predictive and therapeutic target of cardiac I/R injury.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China.
| | - Yi-Peng Gao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Wen-Sheng Dong
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Kang Li
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yu-Xin Hu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Yun-Jia Ye
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, China
| | - Can Hu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Research Center for Medical Imaging in Hubei Province, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
2
|
Bhatia S, Mehdi MQ, Jain SK. Loop Diuretics in Infants with Heart Failure. Neoreviews 2021; 22:e309-e319. [PMID: 33931476 DOI: 10.1542/neo.22-5-e309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tremendous advances have been made in the last 5 decades in the surgical management of congenital heart disease (CHD). Most infants affected by clinically significant CHD are at risk for developing heart failure (HF). Adult HF management is mostly evidence-based and our knowledge in this field has expanded significantly in the past decade. However, data on management approaches for HF in infants are limited. The indications and implications for various medications and interventions in patients with HF secondary to CHD are an upcoming area of interest. It is critical that we expand our ability to prevent, detect, and manage HF in the pediatric population.
Collapse
Affiliation(s)
| | | | - Sunil K Jain
- Departments of *Pediatrics and.,Neonatology, University of Texas Medical Branch, Galveston, TX
| |
Collapse
|
3
|
Regulatory role of endogenous and exogenous fibroblast growth factor 1 in the cardiovascular system and related diseases. Pharmacol Res 2021; 169:105596. [PMID: 33831565 DOI: 10.1016/j.phrs.2021.105596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/07/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Fibroblast growth factor 1 (FGF1) has a critical regulatory role in the development of the cardiovascular system (CVS) and is strongly associated with the progression or treatment of cardiovascular diseases (CVDs). However, the regulatory mechanisms of FGF1 in CVS and CVDs have not yet been fully elucidated. Therefore, this review article summarized the existing literature reports on the role of FGF1 in CVS under physiological and pathological conditions. First, the expression and physiological functions of endogenous FGF1 is fully demonstrated. Then, we analyzed the role of exogenous FGF1 in normal CVS and related pathological processes. Specifically, the potential signaling pathways might be mediated by FGF1 in CVDs treatment is discussed in detail. In addition, the barriers and feasible solutions for the application of FGF1 are further analyzed. Finally, we highlight therapeutic considerations of FGF1 for CVDs in the future. Thus, this article may be as a reference to provide some ideas for the follow-up research.
Collapse
|
4
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Nishikido T, Oyama JI, Shiraki A, Tsukamoto I, Igarashi J, Node K. COA-Cl (2-Cl-C.OXT-A) can promote coronary collateral development following acute myocardial infarction in mice. Sci Rep 2019; 9:2533. [PMID: 30796271 PMCID: PMC6385273 DOI: 10.1038/s41598-019-39222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023] Open
Abstract
2-Cl-C.OXT-A (COA-Cl) is a novel nucleic acid analogue that promotes tube-forming activity of human umbilical vein endothelial cells (HUVEC) through vascular endothelial growth factor (VEGF). The development of coronary collateral circulation is critical to rescue the ischemic myocardium and to prevent subsequent irreversible ischemic injury. We evaluated whether COA-Cl can promote angiogenesis in ischemic tissue, reduce infarct size and preserve cardiac contractility in vivo. Mice received COA-Cl or placebo daily for three days after myocardial infarction (MI) by coronary ligation. The degree of angiogenesis in ischemic myocardium was assessed by staining endothelial cells and vascular smooth muscle cells, and measuring infarct size/area-at-risk. In mice treated with COA-Cl, enhanced angiogenesis and smaller infarct size were recognized, even given a similar area at risk. We observed increases in the protein expression levels of VEGF and in the protein phosphorylation level of eNOS. In addition, the heart weight to body weight ratio and myocardial fibrosis in COA-Cl mice were decreased on Day 7. Administration of COA-Cl after MI promotes angiogenesis, which is associated with reduced infarct size and attenuated cardiac remodeling. This may help to prevent heart failure due to cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Toshiyuki Nishikido
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| | - Jun-Ichi Oyama
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan.
| | - Aya Shiraki
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Kagawa University, Kagawa, Japan
| | - Junsuke Igarashi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Koichi Node
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| |
Collapse
|
6
|
Tian XQ, Ni XW, Xu HL, Zheng L, ZhuGe DL, Chen B, Lu CT, Yuan JJ, Zhao YZ. Prevention of doxorubicin-induced cardiomyopathy using targeted MaFGF mediated by nanoparticles combined with ultrasound-targeted MB destruction. Int J Nanomedicine 2017; 12:7103-7119. [PMID: 29026304 PMCID: PMC5627735 DOI: 10.2147/ijn.s145799] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The present study seeks to observe the preventive effects of doxorubicin-induced cardiomyopathy (DOX-CM) in rats using targeted non-mitogenic acidic fibroblast growth factor (MaFGF) mediated by nanoparticles (NP) combined with ultrasound-targeted MB destruction (UTMD). DOX-CM rats were induced by intraperitoneally injected doxorubicin. Six weeks after intervention, the indices from the transthoracic echocardiography and velocity vector imaging showed that the left ventricular function in the MaFGF-loaded NP (MaFGF-NP) + UTMD group was significantly improved compared with the DOX-CM group. The increased malondialdehyde and decreased superoxide dismutase were observed in the DOX-CM group, while a significant increase in superoxide dismutase and a decrease in malondialdehyde were detected in the groups treated with MaFGF-NP + UTMD. From the Masson staining, the MaFGF-NP + UTMD group showed a significant difference from the DOX-CM group. The cardiac collagen volume fraction and the ratio of the perivascular collagen area to the luminal area number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling positive cells in the MaFGF-NP + UTMD group decreased to 8.9%, 0.55-fold, compared with the DOX-CM group (26.5%, 1.7-fold). From terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling staining, the results showed the strongest inhibition of apoptosis progress in MaFGF-NP + UTMD group. The immunohistochemical staining of the TGF-β1 in MaFGF-NP + UTMD group reached 3.6%, which was much lower than that of the DOX-CM group (12.6%). These results confirmed that the abnormalities, including left ventricular dysfunction, myocardial fibrosis, cardiomyocytes apoptosis and oxidative stress, could be suppressed by twice weekly MaFGF treatments for 6 consecutive weeks (free MaFGF or MaFGF-NP+/UTMD), with the strongest improvements observed in the MaFGF-NP + UTMD group. Western blot analyses of the heart tissue further revealed the highest pAkt levels, highest anti-apoptosis protein (Bcl-2) levels and strongest reduction in proapoptosis protein (Bax) levels in the MaFGF-NP + UTMD group. This study confirmed the preventive effects of DOX-CM in the rats with MaFGF-NP and UTMD by retarding myocardial fibrosis, inhibiting oxidative stress, and decreasing cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Xin-Qiao Tian
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou.,Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Xian-Wei Ni
- Department of Ultrasonography, The Second Affiliated Hospital of Wenzhou Medical University
| | - He-Lin Xu
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Lei Zheng
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - De-Li ZhuGe
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Bin Chen
- Department of Ultrasonography, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cui-Tao Lu
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| | - Jian-Jun Yuan
- Department of Ultrasonography, Henan Provincial People's Hospital (People's Hospital of Zhengzhou University), Zhengzhou
| | - Ying-Zheng Zhao
- Department of Pharmacology, College of Pharmaceutical Sciences, Wenzhou Medical University
| |
Collapse
|
7
|
Domouzoglou EM, Naka KK, Vlahos AP, Papafaklis MI, Michalis LK, Tsatsoulis A, Maratos-Flier E. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21. Am J Physiol Heart Circ Physiol 2015; 309:H1029-38. [PMID: 26232236 PMCID: PMC4747916 DOI: 10.1152/ajpheart.00527.2015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/22/2015] [Indexed: 01/07/2023]
Abstract
Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease.
Collapse
Affiliation(s)
- Eleni M Domouzoglou
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Antonios P Vlahos
- Department of Pediatrics, Medical School, University of Ioannina, Ioannina, Greece
| | - Michail I Papafaklis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- Second Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Agathoklis Tsatsoulis
- Department of Endocrinology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleftheria Maratos-Flier
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Lopez-Sanchez C, Franco D, Bonet F, Garcia-Lopez V, Aranega A, Garcia-Martinez V. Negative Fgf8-Bmp2 feed-back is regulated by miR-130 during early cardiac specification. Dev Biol 2015; 406:63-73. [PMID: 26165600 DOI: 10.1016/j.ydbio.2015.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/24/2015] [Accepted: 07/08/2015] [Indexed: 10/23/2022]
Abstract
It is known that secreted proteins from the anterior lateral endoderm, FGF8 and BMP2, are involved in mesodermal cardiac differentiation, which determines the first cardiac field, defined by the expression of the earliest specific cardiac markers Nkx-2.5 and Gata4. However, the molecular mechanisms responsible for early cardiac development still remain unclear. At present, microRNAs represent a novel layer of complexity in the regulatory networks controlling gene expression during cardiovascular development. This paper aims to study the role of miR130 during early cardiac specification. Our model is focused on developing chick at gastrula stages. In order to identify those regulatory factors which are involved in cardiac specification, we conducted gain- and loss-of-function experiments in precardiac cells by administration of Fgf8, Bmp2 and miR130, through in vitro electroporation technique and soaked beads application. Embryos were subjected to in situ hybridization, immunohistochemistry and qPCR procedures. Our results reveal that Fgf8 suppresses, while Bmp2 induces, the expression of Nkx-2.5 and Gata4. They also show that Fgf8 suppresses Bmp2, and vice versa. Additionally, we observed that Bmp2 regulates miR-130 -a putative microRNA that targets Erk1/2 (Mapk1) 3'UTR, recognizing its expression in precardiac cells which overlap with Erk1/2 pattern. Finally, we evidence that miR-130 is capable to inhibit Erk1/2 and Fgf8, resulting in an increase of Bmp2, Nkx-2.5 and Gata4. Our data present miR-130 as a necessary linkage in the control of Fgf8 signaling, mediated by Bmp2, establishing a negative feed-back loop responsible to achieve early cardiac specification.
Collapse
Affiliation(s)
- Carmen Lopez-Sanchez
- Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, 23071 Jaén, Spain
| | - Fernando Bonet
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, 23071 Jaén, Spain
| | | | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, CU Las Lagunillas B3-362, 23071 Jaén, Spain
| | - Virginio Garcia-Martinez
- Human Anatomy and Embryology, Faculty of Medicine, University of Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
9
|
Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. FGF1-mediated cardiomyocyte cell cycle reentry depends on the interaction of FGFR-1 and Fn14. FASEB J 2014; 28:2492-503. [PMID: 24571920 DOI: 10.1096/fj.13-243576] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) mediating a broad range of cellular functions during embryonic development, as well as disease and regeneration during adulthood. Thus, it is important to understand the underlying molecular mechanisms that modulate this system. Here, we show that FGFR-1 can interact with the TNF receptor superfamily member fibroblast growth factor-inducible molecule 14 (Fn14) resulting in cardiomyocyte cell cycle reentry. FGF1-induced cell cycle reentry in neonatal cardiomyocytes could be blocked by Fn14 inhibition, while TWEAK-induced cell cycle activation was inhibited by blocking FGFR-1 signaling. In addition, costimulation experiments revealed a synergistic effect of FGF1 and TWEAK in regard to cardiomyocyte cell cycle induction via PI3K/Akt signaling. Overexpression of Fn14 with either FGFR-1 long [FGFR-1(L)] or FGFR-1 short [FGFR-1(S)] isoforms resulted after FGF1/TWEAK stimulation in cell cycle reentry of >40% adult cardiomyocytes. Finally, coimmunoprecipitation and proximity ligation assays indicated that endogenous FGFR-1 and Fn14 interact with each other in cardiomyocytes. This interaction was strongly enhanced in the presence of their corresponding ligands, FGF1 and TWEAK. Taken together, our data suggest that FGFR-1/Fn14 interaction may represent a novel endogenous mechanism to modulate the action of these receptors and their ligands and to control cardiomyocyte cell cycle reentry.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany;
| | - Amna Sajjad
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Government College University Faisalabad, Faisalabad, Pakistan
| | - Denys Pogoryelov
- Membrane Transport Machineries Group, Cluster of Excellence Frankfurt-Macromolecular Complexes, Institute of Biochemistry, Goethe University of Frankfurt, Frankfurt am Main, Germany
| | - Chinmoy Patra
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Department of Pulmonary Pharmacotherapy, Justus Liebig University Giessen, Giessen, Germany; and
| | - Felix B Engel
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
10
|
Zhang C, Zhang L, Chen S, Feng B, Lu X, Bai Y, Liang G, Tan Y, Shao M, Skibba M, Jin L, Li X, Chakrabarti S, Cai L. The prevention of diabetic cardiomyopathy by non-mitogenic acidic fibroblast growth factor is probably mediated by the suppression of oxidative stress and damage. PLoS One 2013; 8:e82287. [PMID: 24349248 PMCID: PMC3857250 DOI: 10.1371/journal.pone.0082287] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 10/31/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Emerging evidence showed the beneficial effect of acidic fibroblast growth factor (aFGF) on heart diseases. The present study investigated whether non-mitogenic aFGF (nm-aFGF) can prevent diabetic cardiomyopathy and the underlying mechanisms, if any. METHODOLOGY/PRINCIPAL FINDINGS Type 1 diabetes was induced in mice by multiple intraperitoneal injections of low-dose streptozotocin. Hyperglycemic and age-matched control mice were treated with or without nm-aFGF at 10 µg/kg daily for 1 and 6 months. Blood pressure and cardiac function were assessed. Cardiac H9c2 cell, human microvascular endothelial cells, and rat cardiomyocytes were exposed to high glucose (25 mM) for mimicking an in vitro diabetic condition for mechanistic studies. Oxidative stress, DNA damage, cardiac hypertrophy and fibrosis were assessed by real-time qPCR, immunofluorescent staining, Western blotting, and pathological examination. Nm-aFGF significantly prevented diabetes-induced hypertension and cardiac dysfunction at 6 months. Mechanistic studies demonstrated that nm-aFGF showed the similar preventive effect as the native aFGF on high glucose-induced oxidative stress (increase generation of reactive oxygen species) and damage (cellular DNA oxidation), cell hypertrophy, and fibrotic response (increased mRNA expression of fibronectin) in three kinds of cells. These in vitro findings were recaptured by examining the heart of the diabetic mice with and without nm-aFGF. CONCLUSIONS These results suggest that nm-aFGF can prevent diabetic cardiomyopathy, probably through attenuation of cardiac oxidative stress, hypertrophy, and fibrosis.
Collapse
Affiliation(s)
- Chi Zhang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linbo Zhang
- Department of Pathology, Western University, London, Ontario, Canada
- Department of Pharmaceutical Engineering, Jilin Agriculture University, Changchun, Jilin, China
| | - Shali Chen
- Department of Pathology, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology, Western University, London, Ontario, Canada
| | - Xuemian Lu
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Bai
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guang Liang
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Tan
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - Minglong Shao
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Ruian Center of the Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Melissa Skibba
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Litai Jin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Cardiac Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | - Lu Cai
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Departments of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
11
|
Kaye DM, Kelly RA, Smith TW. Proceedings of the Symposium ‘Angiotensin AT1 Receptors: From Molecular Physiology to Therapeutics’: CYTOKINES AND CARDIAC HYPERTROPHY: ROLES OF ANGIOTENSIN II AND BASIC FIBROBLAST GROWTH FACTOR. Clin Exp Pharmacol Physiol 2010; 23 Suppl 3:S136-41. [DOI: 10.1111/j.1440-1681.1996.tb03075.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Zhao T, Zhao W, Chen Y, Ahokas RA, Sun Y. Acidic and basic fibroblast growth factors involved in cardiac angiogenesis following infarction. Int J Cardiol 2010; 152:307-13. [PMID: 20674996 DOI: 10.1016/j.ijcard.2010.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 07/04/2010] [Indexed: 12/15/2022]
Abstract
Acidic and basic fibroblast growth factors (FGF-1/FGF-2) promote angiogenesis in cancer. Angiogenesis is integral to cardiac repair following myocardial infarction (MI). The potential regulation of FGF-1/FGF-2 in cardiac angiogenesis postMI remains unexplored. Herein, we examined the temporal and spatial expression of FGF-1/FGF-2 and FGF receptors (FGFR) in the infarcted rat heart at days 1, 3, 7, and 14 postMI. FGF-1/-2 gene and protein expression, cells expressing FGF-1/-2 and FGFR expression were examined by quantitative in situ hybridization, RT-PCR; western blot, immunohistochemistry and quantitative in vitro autoradiography. Compared to the normal heart, we found that in the border zone and infarcted myocardium 1) FGF-1 gene expression was increased in the first week postMI and returned to control levels at week 2; FGF-1 protein levels were, however, largely reduced at day 1, then elevated at day 3 peaked at day 7 and declined at day 14; and cells expressing FGF-1 were primarily inflammatory cells; 2) FGF-2 gene expression was significantly elevated from day 1 to day 14; the increase in FGF-2 protein level was most evident at day 7 and cells expressing FGF-2 were primarily endothelial cells; 3) FGFR expression started to increase at day 3 and remained elevated thereafter; and 4) FGF-1/FGF-2 and FGFR expression remained unchanged in the noninfarcted myocardium. Thus, FGF-1/FGF-2 and FGFR expression are enhanced in the infarcted myocardium in the early stage after MI, which is spatially and temporally coincident with angiogenesis, suggesting that FGF-1/FGF-2 are involved in regulating cardiac angiogenesis and repair.
Collapse
Affiliation(s)
- Tieqiang Zhao
- Division of Cardiovascular Diseases, Department of Medicine, University of Tennessee Health Science Center, 956 Court Ave., Rm B324, Memphis, TN 38163, United States
| | | | | | | | | |
Collapse
|
13
|
Doherty JT, Conlon FL, Mack CP, Taylor JM. Focal adhesion kinase is essential for cardiac looping and multichamber heart formation. Genesis 2010; 48:492-504. [PMID: 20572259 PMCID: PMC3618911 DOI: 10.1002/dvg.20650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Focal adhesion kinase (FAK) is a critical mediator of matrix- and growth factor-induced signaling during development. Myocyte-restricted FAK deletion in mid-gestation mice results in impaired ventricular septation and cardiac compaction. However, whether FAK regulates early cardiogenic steps remains unknown. To explore a role for FAK in multi-chambered heart formation, we utilized anti-sense morpholinos to deplete FAK in Xenopus laevis. Xenopus FAK morphants exhibited impaired cardiogenesis, pronounced pericardial edema, and lethality by tadpole stages. Spatial-temporal assessment of cardiac marker gene expression revealed that FAK was not necessary for midline migration, differentiation, fusion of cardiac precursors, or linear heart tube formation. However, myocyte proliferation was significantly reduced in FAK morphant heart tubes and these tubes failed to undergo proper looping morphogenesis. Collectively our data imply that FAK plays an essential role in chamber outgrowth and looping morphogenesis likely stimulated by fibroblast growth factors (and possibly other) cardiotrophic factors.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Caspase 3/metabolism
- Cell Proliferation/drug effects
- Cells, Cultured
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Fibroblast Growth Factor 2/pharmacology
- Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors
- Focal Adhesion Protein-Tyrosine Kinases/genetics
- Focal Adhesion Protein-Tyrosine Kinases/metabolism
- Gene Expression Regulation, Developmental
- Gene Knockdown Techniques
- Heart/drug effects
- Heart/embryology
- Immunohistochemistry
- In Situ Hybridization
- Microinjections
- Microscopy, Confocal
- Morphogenesis/genetics
- Myocardium/enzymology
- Myocardium/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oligonucleotides, Antisense/administration & dosage
- Oligonucleotides, Antisense/genetics
- Pyrroles/pharmacology
- Reverse Transcriptase Polymerase Chain Reaction
- Tropomyosin/metabolism
- Xenopus laevis/embryology
- Xenopus laevis/genetics
Collapse
Affiliation(s)
- Jason T. Doherty
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Frank L. Conlon
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher P. Mack
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Joan M. Taylor
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Witte DP, Aronow BJ, Harmony JAK. Understanding Cardiac Development Through the Perspective of Gene Regulation and Gene Manipulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/15513819609169282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Proliferation of neonatal cardiomyocytes by connexin43 knockdown via synergistic inactivation of p38 MAPK and increased expression of FGF1. Basic Res Cardiol 2009; 104:631-42. [DOI: 10.1007/s00395-009-0029-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/04/2009] [Accepted: 04/08/2009] [Indexed: 01/17/2023]
|
16
|
Hsu HJ, Wu MS. Fibroblast growth factor 23: a possible cause of left ventricular hypertrophy in hemodialysis patients. Am J Med Sci 2009; 337:116-22. [PMID: 19214027 DOI: 10.1097/maj.0b013e3181815498] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is a common cardiovascular disorder and an independent risk factor for cardiovascular death in dialysis patients. Hyperphosphatemia is associated with LVH. Previous studies have shown that fibroblast growth factor 23 (FGF23), which has an important role in phosphate metabolism, is elevated in chronic hemodialysis patients. OBJECTIVES The aim of this study is to determine the association of FGF23 and LVH and the prognostic value of FGF23 in chronic hemodialysis patients. MATERIALS AND METHODS One hundred twenty-four end-stage renal disease patients were evaluated for LVH by echocardiography. Serum FGF23 levels were measured using a commercial enzyme-linked immunosorbent assay kit. RESULTS Patients with LVH were more likely to have poor urea clearance (Kt/V), higher systolic blood pressure, and comorbidity of diabetes mellitus and coronary artery disease. LVH was also associated with higher levels of FGF23. Multivariate analysis indicated that FGF23 level, systolic blood pressure, and comorbidity of diabetes mellitus and coronary artery disease remained correlated with LVH. This suggested that serum FGF23 level is independently associated with LVH in our hemodialysis patients. Cox analysis indicated no significant difference in risk of death for patients with elevated levels of FGF23. CONCLUSION LVH has a high prevalence in hemodialysis patients, and FGF23 is independently associated with LVH but is not a predictor for short-term prognosis (2-year follow-up).
Collapse
Affiliation(s)
- Heng Jung Hsu
- School of Medicine, Chang Gung University, and Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | |
Collapse
|
17
|
Hoover LL, Burton EG, Brooks BA, Kubalak SW. The expanding role for retinoid signaling in heart development. ScientificWorldJournal 2008; 8:194-211. [PMID: 18661045 PMCID: PMC2559957 DOI: 10.1100/tsw.2008.39] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The importance of retinoid signaling during cardiac development has long been appreciated, but recently has become a rapidly expanding field of research. Experiments performed over 50 years ago showed that too much or too little maternal intake of vitamin A proved detrimental for embryos, resulting in a cadre of predictable cardiac developmental defects. Germline and conditional knockout mice have revealed which molecular players in the vitamin A signaling cascade are potentially responsible for regulating specific developmental events, and many of these molecules have been temporally and spatially characterized. It is evident that intact and controlled retinoid signaling is necessary for each stage of cardiac development to proceed normally, including cardiac lineage determination, heart tube formation, looping, epicardium formation, ventricular maturation, chamber and outflow tract septation, and coronary arteriogenesis. This review summarizes many of the significant milestones in this field and particular attention is given to recently uncovered cross-talk between retinoid signaling and other developmentally significant pathways. It is our hope that this review of the role of retinoid signaling during formation, remodeling, and maturation of the developing heart will serve as a tool for future discoveries.
Collapse
Affiliation(s)
- Loretta L Hoover
- Department of Cell Biology and Anatomy, Cardiovascular Developmental Biology Center, Medical University of South Carolina, Charleston, SC, USA.
| | | | | | | |
Collapse
|
18
|
Seyed M, Dimario JX. Fibroblast growth factor receptor 1 gene expression is required for cardiomyocyte proliferation and is repressed by Sp3. J Mol Cell Cardiol 2008; 44:510-9. [PMID: 18275970 DOI: 10.1016/j.yjmcc.2007.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/18/2007] [Accepted: 12/18/2007] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is the only high-affinity FGFR in the vertebrate myocardium. FGFR1 is a tyrosine kinase receptor and has a non-redundant role in proliferation and differentiation of cardiomyocytes during embryogenesis. Results presented here demonstrate that FGFR1 gene expression declines as neonatal cardiomyocytes develop into adult cardiomyocytes. Furthermore, silencing FGFR1 gene expression reduced neonatal cardiomyocyte proliferation, indicating that FGFR1 gene expression is required for the optimal proliferative capacity of cardiomyocytes. To determine the mechanism that governs FGFR1 gene expression in cardiomyocytes, sequence analysis of the proximal mouse FGFR1 promoter identified a potential binding site for Sp transcription factors. Mutation of this site increased FGFR1 promoter activity compared to the wild-type promoter, indicating the presence of a negative transcriptional regulator of the FGFR1 promoter at this site in cardiomyocytes. Sp3 expression in neonatal cardiomyocytes and Drosophila SL2 cells reduced FGFR1 promoter activity in a dose-dependent manner. Western blots and immunocytochemistry indicated that Sp3 was present in the nuclear and cytoplasmic compartments of neonatal cardiomyocytes. Chromatin-immunoprecipitation studies verified that endogenous Sp3 in cardiomyocytes interacts with the FGFR1 promoter. Transient chromatin-immunoprecipitation studies using wild-type and mutated FGFR1 promoter constructs in SL2 cells identified the specific Sp3 binding site within the FGFR1 promoter. These studies implicate Sp3 as a negative transcriptional regulator of FGFR1 promoter activity in cardiomyocytes and as a suppressor of cardiomyocyte proliferation.
Collapse
Affiliation(s)
- Mahdie Seyed
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
19
|
Al Sabti H. Therapeutic angiogenesis in cardiovascular disease. J Cardiothorac Surg 2007; 2:49. [PMID: 18021404 PMCID: PMC2169246 DOI: 10.1186/1749-8090-2-49] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 11/16/2007] [Indexed: 01/13/2023] Open
Abstract
Atherosclerotic disease of the arteries is a major cause of coronary artery disease, peripheral vascular disease and stroke. Some patients are however not candidate for the standard treatment of angioplasty or bypass surgery. Hence there is tremendous enthusiasm for the utilization of angiogenesis as a therapeutic modality for atherosclerotic arterial disease. This augmentation of physiological neo-vascularization in cardiovascular disease can be achieved through different pathways. In this article we are reviewing the Use of Gene therapy, Protein therapy and cellular therapy.
Collapse
Affiliation(s)
- Hilal Al Sabti
- Department of surgery, Sultan Qaboos University Hospital, Code 123, P.Box 35, Al Khod, Sultanate of Oman.
| |
Collapse
|
20
|
Seyed M, Dimario JX. Sp1 is required for transcriptional activation of the fibroblast growth factor receptor 1 gene in neonatal cardiomyocytes. Gene 2007; 400:150-7. [PMID: 17628354 DOI: 10.1016/j.gene.2007.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/17/2022]
Abstract
Fibroblast growth factor receptor 1 (FGFR1) is the predominant FGFR in cardiac tissue and regulates proliferation, differentiation, and maintenance of normal myocardium. During development of cardiac tissue, FGFR1 gene expression regulates cardiomyocyte proliferation. The focus of this study was to determine the molecular mechanism of transcriptional activation of the FGFR1 gene in proliferating neonatal cardiomyocytes. Analysis of DNA sequence of the FGFR1 gene identified three potential Sp factor binding sites located at 49 bp, 68 bp, and 100 bp upstream from the 3' end of the promoter segment. Mutation of each of these sites resulted in a significant decline in FGFR1 promoter activity compared to wild type promoter activity, and combinatorial mutation of all three sites completely abrogated promoter activity to background levels. In addition, overexpression of Sp1 in neonatal cardiomyocytes resulted in a dose-dependent increase in wild type FGFR1 promoter activity. However, Sp1-mediated up-regulation of promoter activity was abrogated when all three Sp interacting sites were mutated. Chromatin immunoprecipitation (ChIP) assays were used to demonstrate direct interactions of Sp1 with the proximal promoter region of the FGFR1 gene in neonatal cardiomyocytes. ChIP assays using Drosophila Schneider Line 2 (SL2) cells transiently transfected with wild type or mutant FGFR1 promoter constructs verified the direct interaction between Sp1 and the three Sp1 interacting sites of the promoter. Western blot analyses indicated that Sp1 was present in cytoplasmic and nuclear extracts of neonatal myocardium. These results indicate that Sp1 is a necessary positive regulator of FGFR1 gene transcription in neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Mahdie Seyed
- Rosalind Franklin University of Medicine and Science, The Chicago Medical School, Department of Cell Biology and Anatomy, 3333 Green Bay Road, North Chicago, Illinois 60064, USA
| | | |
Collapse
|
21
|
Witzenbichler B, Mahfoudi A, Soubrier F, Le Roux A, Branellec D, Schultheiss HP, Isner JM. Intramuscular gene transfer of fibroblast growth factor-1 using improved pCOR plasmid design stimulates collateral formation in a rabbit ischemic hindlimb model. J Mol Med (Berl) 2005; 84:491-502. [PMID: 16389546 DOI: 10.1007/s00109-005-0031-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Accepted: 11/17/2005] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor 1 (FGF1) is an angiogenic factor known to play a role in the growth of arteries. The purpose of this study was to evaluate the usefulness of direct intramuscular injection of an optimized expression plasmid encoding FGF1 to augment collateral formation and tissue perfusion in a rabbit ischemic hindlimb model. Truncated FGF1 fused to the human fibroblast interferon (FIN) signal peptide was expressed from a newly designed plasmid backbone with an improved safety profile for gene therapy applications. In vitro, optimization of plasmid design yielded in a dramatic increase in expression efficiency for FGF1, independent of the presence of a signal peptide, as analyzed by Western Blotting. In vivo, successful transgene expression could be demonstrated by FGF1 immunostaining after gene application. FGF1 plasmid containing FIN signal peptide (100, 500, and 1,000 mug), when injected into ischemic muscle areas of rabbits 10 days after ligation of the external iliac artery, exhibited a pronounced therapeutic effect on collateral formation to the ischemic hindlimb in a dose-depending manner, as assessed by physiological (blood pressure ratio, maximal intra-arterial Doppler flow) and anatomical (angiographic score, histologic evaluation of capillary density) measurements 30 days after therapy, compared to saline or lacZ control plasmid. FGF1 plasmid without a signal peptide sequence resulted in a comparable therapeutic effect on collateral formation at comparable doses (500 and 1,000 mug). Our results indicate that intramuscular FGF1 gene application could be useful to stimulate collateral formation in a situation of chronic peripheral ischemia. The presence of a signal peptide does not seem to be obligatory to achieve bioactivity of intramuscular transfected FGF1. An optimized vector design improved both biosafety of gene transfer and expression efficiency of the transgene, rendering this vector highly suitable for human gene therapy. Therefore, this new generation vector encoding FGF1 might be useful as an alternative treatment for patients with chronic ischemic disorders not amenable to conventional therapy.
Collapse
Affiliation(s)
- Bernhard Witzenbichler
- Department of Cardiology and Pneumology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Palmen M, Twickler MT, Daemen MJ, Cramer MJ, Doevendans PA. The role of insulin-like growth factor during a postischemic period - new insights into pathophysiologic pathways in cardiac tissue. Future Cardiol 2005; 1:479-88. [PMID: 19804148 DOI: 10.2217/14796678.1.4.479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite an improvement in the therapeutic strategies available for an acute ischemic event, cardiac disease is still the principal cause of morbidity and mortality in Western societies. A shift from acute towards more chronic heart disease due to atherosclerotic disease has been recognized. Modification of adaptive capacities of the cardiac muscle after damage remains a key component in the prevention of chronic cardiac disease, such as overt heart failure. It has recently been demonstrated that local insulin-like growth factor (IGF)-1 homeostasis in the cardiac tissue is closely involved in postischemic adaptation, such as the process of remodeling. Both experimental and clinical data support the theory that IGF-1 plays a key role in the adaptive response of the myocardium during both acute myocardial ischemia and chronic myocardial failure, regulating left ventricular remodeling and thereby restoring left ventricular architecture. This eventually leads to improvement in the function of the failing heart. While most experimental data support the beneficial role of IGF-1 in restoring architecture and function of the failing heart, clinical trials investigating the role of IGF-1 treatment of patients in cardiac failure show conflicting results. In this bench-to-bedside review, the authors aim to highlight recent advances in knowledge of the role of paracrine and autocrine IGF balances during postischemic cardiac adaptation, in order to present possible new initiatives concerning therapeutic strategies in maladaptive cardiac performance, such as the syndrome of heart failure.
Collapse
Affiliation(s)
- Meindert Palmen
- Department of Cardiothoracic Surgery, CARIM, AZM Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, Ornitz DM. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 2005; 8:85-95. [PMID: 15621532 DOI: 10.1016/j.devcel.2004.12.002] [Citation(s) in RCA: 296] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Revised: 11/06/2004] [Accepted: 12/01/2004] [Indexed: 10/26/2022]
Abstract
The epicardium regulates growth and survival of the underlying myocardium. This activity depends on intrinsic retinoic acid (RA) and erythropoietin signals. However, these signals do not act directly on the myocardium and instead are proposed to regulate the production of an unidentified soluble epicardial derived mitogen. Here, we show that Fgf9, Fgf16, and Fgf20 are expressed in the endocardium and epicardium and that RA can induce epicardial expression of Fgf9. Using knockout mice and an embryonic heart organ culture system, we show that endocardial and epicardial derived FGF signals regulate myocardial proliferation during midgestation heart development. We further show that this FGF signal is received by both FGF receptors 1 and 2 acting redundantly in the cardiomyoblast. In the absence of this signal, premature differentiation results in cellular hypertrophy and newborn mice develop a dilated cardiomyopathy. FGFs thus constitute all or part of the epicardial signal regulating myocardial growth and differentiation.
Collapse
Affiliation(s)
- Kory J Lavine
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Pennisi DJ, Mikawa T. Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol 2005; 279:378-90. [PMID: 15733666 DOI: 10.1016/j.ydbio.2004.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Revised: 12/09/2004] [Accepted: 12/21/2004] [Indexed: 01/28/2023]
Abstract
The formation of the coronary vessel system is vital for heart development, an essential step of which is the establishment of a capillary plexus that displays a density gradient across the myocardial wall, being higher on the epicardial than the endocardial side. This gradient in capillary plexus formation develops concurrently with transmural gradients of myocardium-derived growth factors, including FGFs. To test the role of the FGF expression gradient in patterning the nascent capillary plexus, an ectopic FGF-over-expressing site was created in the ventricular myocardial wall in the quail embryo via retroviral infection from E2-2.5, thus abolishing the transmural gradient of FGFs. In FGF virus-infected regions of the ventricular myocardium, the capillary density across the transmural axis shifted away from that in control hearts at E7. This FGF-induced change in vessel patterning was more profound at E12, with the middle zone becoming the most vascularized. An up-regulation of FGFR-1 and VEGFR-2 in epicardial and subepicardial cells adjacent to FGF virus-infected myocardium was also detected, indicating a paracrine effect on induction of vascular signaling components in coronary precursors. These results suggest that correct transmural patterning of coronary vessels requires the correct transmural expression of FGF and, therefore, FGF may act as a template for coronary vessel patterning.
Collapse
Affiliation(s)
- David J Pennisi
- Department of Cell and Developmental Biology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- Borja Fernández
- Dep. Biología Animal, Fac. Ciencias, Univ. Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| |
Collapse
|
26
|
Palmen M, Daemen MJAP, De Windt LJ, Willems J, Dassen WRM, Heeneman S, Zimmermann R, Van Bilsen M, Doevendans PA. Fibroblast growth factor-1 improves cardiac functional recovery and enhances cell survival after ischemia and reperfusion: a fibroblast growth factor receptor, protein kinase C, and tyrosine kinase-dependent mechanism. J Am Coll Cardiol 2004; 44:1113-23. [PMID: 15337227 DOI: 10.1016/j.jacc.2004.05.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Revised: 03/01/2004] [Accepted: 05/04/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES We sought to investigate the role of fibroblast growth factor (FGF)-1 during acute myocardial ischemia and reperfusion. BACKGROUND The FGFs display cardioprotective effects during ischemia and reperfusion. METHODS We investigated FGF-1-induced cardioprotection during ischemia and reperfusion and the intracellular signaling pathways responsible for these effects in an ex vivo murine setup of myocardial ischemia and reperfusion. RESULTS Cardiac-specific human FGF-1 overexpression was associated with enhanced post-ischemic hemodynamic recovery and decreased lactate dehydrogenase release during reperfusion. Inhibition of the FGF receptor, protein kinase C (PKC), and tyrosine kinase (TK) resulted in blockade of FGF-1-induced protective effects on cardiac functional recovery and cell death. CONCLUSIONS The overexpression of FGF-1 induces cardioprotection through a pathway that involves the FGF receptor, PKC, and TK.
Collapse
Affiliation(s)
- Meindert Palmen
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Baschat AA, Gembruch U. Evaluation of the fetal coronary circulation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2002; 20:405-412. [PMID: 12383329 DOI: 10.1046/j.1469-0705.2002.00798.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Prenatal ultrasound today allows the detailed study of small caliber vascular beds including the fetal coronary arteries and the coronary sinus. The coronary circulation is unique because of its critical role in myocardial metabolism and function and its ability to adapt in many fetal conditions. The ultrasound examination techniques for the evaluation of the fetal coronary circulation are presented. Evaluation of the coronary arteries is primarily achieved by color flow imaging and pulsed wave Doppler. Conditions such as fetal growth restriction, anemia, ductus arteriosus constriction and bradycardia are associated with evidence of enhanced coronary blood flow. These findings suggest that short-term autoregulation and long-term alterations in myocardial flow reserve are present in the human fetus. At present, examination of coronary sinus blood flow has limited clinical utility, while increases of the coronary sinus diameter or attenuation of coronary sinus dynamics may provide useful markers of abnormalities of central venous drainage. Abnormal vascular connections between the coronary arteries and the ventricular cavities may be observed in outflow tract obstructive cardiac lesions. In these conditions prenatal detection of coronary fistulae may have a potential impact on outcome and therefore counseling and perinatal management.
Collapse
Affiliation(s)
- A A Baschat
- Center for Advanced Fetal Care, University of Maryland, Baltimore 21201, USA.
| | | |
Collapse
|
28
|
Abstract
The avian heart develops from paired primordia located in the anterior lateral mesoderm of the early embryo. Previous studies have found that the endoderm adjacent to the cardiac primordia plays an important role in heart specification. The current study provides evidence that fibroblast growth factor (Fgf) signaling contributes to the heart-inducing properties of the endoderm. Fgf8 is expressed in the endoderm adjacent to the precardiac mesoderm. Removal of endoderm results in a rapid downregulation of a subset of cardiac markers, including Nkx2.5 and Mef2c. Expression of these markers can be rescued by supplying exogenous Fgf8. In addition, application of ectopic Fgf8 results in ectopic expression of cardiac markers. Expression of cardiac markers is expanded only in regions where bone morphogenetic protein (Bmp) signaling is also present, suggesting that cardiogenesis occurs in regions exposed to both Fgf and Bmp signaling. Finally, evidence is presented that Fgf8 expression is regulated by particular levels of Bmp signaling. Application of low concentrations of Bmp2 results in ectopic expression of Fgf8, while application of higher concentrations of Bmp2 result in repression of Fgf8 expression. Together, these data indicate that Fgf signaling cooperates with Bmp signaling to regulate early cardiogenesis.
Collapse
Affiliation(s)
- Burak H Alsan
- Molecular Medicine Unit, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
29
|
Okamura S, Suzuki A, Johkura K, Ogiwara N, Harigaya M, Yokouchi T, Sasaki K. Formation of the biopulsatile vascular pump by cardiomyocyte transplants circumvallating the abdominal aorta. TISSUE ENGINEERING 2002; 8:201-11. [PMID: 12031110 DOI: 10.1089/107632702753724978] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In spite of the fact that patients with heart diseases requiring heart transplantation are increasing in the world, there are a lack of donors, which makes it hard to offer them these life-saving transplants. As a way to overcome this dilemma, we have researched the addition of the new biopump, which consists of the cultured embryonic cardiomyocytes grafted around the abdominal aorta and contracts spontaneously, which subsequently supports the function of the host heart. Ventricular tissues from ICR 14-day-old embryos were cultured and were injected to BALB/c nude mice (male, 8-week-old) subperitoneally around the abdominal aorta. At 3 and 7 days after implantation, action potential of the grafts was measured. Grafts were prepared for histological study. The grafts survived, showed vigorous angiogenesis, and contracted spontaneously. The cardiomyocytes in the grafts showed irregular arrangement, containing myofibrils with sarcomeres and intercalated disks. It was confirmed by immunohistochemistry that the cardiomyocytes in the grafts matured in accordance with normal development. The grafts were very quickly invaded by small vessels from the surrounding tissues showing the formation of new circulation. Embryonic cardiomyocytes have the ability to remodel the abdominal aorta into a spontaneous pulsating apparatus and to function as a vascular pump.
Collapse
Affiliation(s)
- Shintaro Okamura
- Department of Anatomy and Organ Technology, Shinshu University, School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Jiang ZS, Padua RR, Ju H, Doble BW, Jin Y, Hao J, Cattini PA, Dixon IMC, Kardami E. Acute protection of ischemic heart by FGF-2: involvement of FGF-2 receptors and protein kinase C. Am J Physiol Heart Circ Physiol 2002; 282:H1071-80. [PMID: 11834506 DOI: 10.1152/ajpheart.00290.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of fibroblast growth factor (FGF)-2 on myocardial resistance to injury when administered after the onset of ischemia, in vivo and ex vivo, and the role of FGF-2 receptors and protein kinase C (PKC). FGF-2 was injected into the left ventricle of rats undergoing permanent surgical coronary occlusion leading to myocardial infarction (MI). After 24 h, FGF-2-treated hearts displayed significantly reduced injury, determined by histological staining and troponin T release, and improved developed pressure compared with untreated controls. An FGF-2 mutant with diminished affinity for the tyrosine kinase FGF-2 receptor 1 (FGFR1) was not cardioprotective. FGF-2-treated hearts retained improved function and decreased damage at 6 wk after MI. In the ex vivo heart, FGF-2 administration during reperfusion after 30-min ischemia improved functional recovery and increased relative levels of PKC subtypes alpha, epsilon, and zeta in the particulate fraction, in a chelerythrine-preventable mode; it also decreased loss of energy metabolites. We conclude that intramyocardial FGF-2 administration shortly after the onset of ischemia confers protection from acute and chronic cardiac dysfunction and damage; FGF-2 delivered during reperfusion protects from ischemia-reperfusion injury; and protection by FGF-2 requires intact binding to FGFR1 and is likely mediated by PKC.
Collapse
Affiliation(s)
- Zhi-Sheng Jiang
- Department of Human Anatomy, Faculty of Medicine, University of Manitoba, Winnipeg, Canada R2H 2A6
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reifers F, Walsh EC, Léger S, Stainier DY, Brand M. Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 2000; 127:225-35. [PMID: 10603341 DOI: 10.1242/dev.127.2.225] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vertebrate heart development is initiated from bilateral lateral plate mesoderm that expresses the Nkx2.5 and GATA4 transcription factors, but the extracellular signals specifying heart precursor gene expression are not known. We describe here that the secreted signaling factor Fgf8 is expressed in and required for development of the zebrafish heart precursors, particularly during initiation of cardiac gene expression. fgf8 is mutated in acerebellar (ace) mutants, and homozygous mutant embryos do not establish normal circulation, although vessel formation is only mildly affected. In contrast, heart development, in particular of the ventricle, is severely abnormal in acerebellar mutants. Several findings argue that Fgf8 has a direct function in development of cardiac precursor cells: fgf8 is expressed in cardiac precursors and later in the heart ventricle. Fgf8 is required for the earliest stages of nkx2.5 and gata4, but not gata6, expression in cardiac precursors. Cardiac gene expression is restored in acerebellar mutant embryos by injecting fgf8 RNA, or by implanting a Fgf8-coated bead into the heart primordium. Pharmacological inhibition of Fgf signalling during formation of the heart primordium phenocopies the acerebellar heart phenotype, confirming that Fgf signaling is required independently of earlier functions during gastrulation. These findings show that fgf8/acerebellar is required for induction and patterning of myocardial precursors.
Collapse
Affiliation(s)
- F Reifers
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
32
|
Düsterhöft S, Putman CT, Pette D. Changes in FGF and FGF receptor expression in low-frequency-stimulated rat muscles and rat satellite cell cultures. Differentiation 1999; 65:203-8. [PMID: 10653356 DOI: 10.1046/j.1432-0436.1999.6540203.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study compares effects of chronic electrical stimulation on the expression levels of FGF-1, FGF-2 and their receptors (FGFRI, FGFR4) in rat tibialis anterior (TA) muscle of hypothyroid rat, as well as in satellite cell cultures derived from normal rat TA and soleus (SOL) muscles. In 5-day (5-d)-stimulated hypothyroid TA muscle, FGF-1 and FGF-2 mRNA levels were threefold elevated over control. FGFR1 and FGFR4 mRNAs were twofold and 1.5-fold elevated, respectively. In longer stimulated muscles, FGF-1 and FGFR4 mRNAs returned to basal levels, whereas FGF-2 mRNA remained elevated. FGFR1 mRNA decreased to control levels in 10-d stimulated muscles, but increased again after 20 days of stimulation. SOL- and TA-derived satellite cell cultures were stimulated for 5 days. At this time point, changes in myosin heavy chain isoforms were detectable consisting of increases in MHCI mRNA and decreases in MHCIIb and MHCIId mRNA. The comparison between 5-d-stimulated hypothyroid TA muscle and 5-d-stimulated TA- and SOL-derived satellite cell cultures revealed differences in the expression of FGF-1 and FGF-2, but similar expression levels of FGFR1 and FGFR4. Even though FGF-1 and FGF-2 mRNAs were elevated in the satellite cell cultures, their increases were less pronounced than in the stimulated hypothyroid muscle. Taking into consideration that skeletal muscle contains muscle fibres and various non-muscle tissues, e.g. blood vessels, these results suggest that the latter contribute to the observed increases in FGF-1 and FGF-2 expression in stimulated muscle.
Collapse
Affiliation(s)
- S Düsterhöft
- Faculty of Biology, University of Konstanz, Germany
| | | | | |
Collapse
|
33
|
Schultz JE, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M, Pawlowski SA, Lorenz JN, Kimball TR, Doetschman T. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 1999; 104:709-19. [PMID: 10491406 PMCID: PMC408439 DOI: 10.1172/jci7315] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In vitro, fibroblast growth factor-2 (FGF2) has been implicated in cardiomyocyte growth and reexpression of fetal contractile genes, both markers of hypertrophy. However, its in vivo role in cardiac hypertrophy during pressure overload is not well characterized. Mice with or without FGF2 (Fgf2(+/+) and Fgf2(-/-), respectively) were subjected to transverse aortic coarctation (AC). Left ventricular (LV) mass and wall thickness were assessed by echocardiography preoperatively and once a week postoperatively for 10 weeks. In vivo LV function during dobutamine stimulation, cardiomyocyte cross-sectional area, and recapitulation of fetal cardiac genes were also measured. AC Fgf2(-/-) mice develop significantly less hypertrophy (4-24% increase) compared with AC Fgf2(+/+) mice (41-52% increase). Cardiomyocyte cross-sectional area is significantly reduced in AC Fgf2(-/-) mice. Noncoarcted (NC) and AC Fgf2(-/-) mice have similar beta-adrenergic responses, but those of AC Fgf2(+/+) mice are blunted. A lack of mitotic growth in both AC Fgf2(+/+) and Fgf2(-/-) hearts indicates a hypertrophic response of cardiomyocytes. Consequently, FGF2 plays a major role in cardiac hypertrophy. Comparison of alpha- and beta-cardiac myosin heavy chain mRNA and protein levels in NC and AC Fgf2(+/+) and Fgf2(-/-) mice indicates that myosin heavy chain composition depends on hemodynamic stress rather than on FGF2 or hypertrophy, and that isoform switching is transcriptionally, not posttranscriptionally, regulated.
Collapse
Affiliation(s)
- J E Schultz
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- M I Heron
- Cardiovascular Institute, Loyola University Chicago, Chicago, Illinois 60153, USA
| | | | | |
Collapse
|
35
|
|
36
|
Vascularization of the Heart During Prenatal and Perinatal Growth. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60165-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Therapeutic Coronary Angiogenesis. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s1569-2590(08)60169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Sato S. Ultrastructural study of capillary angiogenesis in rat fetal hearts: Role of fibroblasts and myocardial clefts. ACTA ACUST UNITED AC 1998. [DOI: 10.1007/bf01545700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Abstract
OBJECTIVES The molecular mechanisms that regulate cardiomyocyte cell cycle and terminal differentiation in humans remain largely unknown. To determine which cyclins, cyclin dependent kinases (CDKs) and cyclin kinase inhibitors (CKIs) are important for cardiomyocyte proliferation, we have examined protein levels of cyclins, CDKs and CKIs during normal atrial development in humans. METHODS Atrial tissues were obtained in the fetus from inevitable abortion and in the adult during surgery. Cyclin and CDK proteins were determined by Western blot analysis. CDK activities were determined by phosphorylation amount using specific substrate. RESULTS Most cyclins and CDKs were high during the fetal period and their levels decreased at different rates during the adult period. While the protein levels of cyclin D1, cyclin D3, CDK4, CDK6 and CDK2 were still detectable in adult atria, the protein levels of cyclin E, cyclin A, cyclin B, cdc2 and PCNA were not detectable. Interestingly, p27KIP1 protein increased markedly in the adult period, while p21CIP1 protein in atria was detectable only in the fetal period. While the activities of CDK6, CDK2 and cdc2 decreased markedly, the activity of CDK4 did not change from the fetal period to the adult period. CONCLUSION These findings indicate that marked reduction of protein levels and activities of cyclins and CDKs, and marked induction of p27KIP1 in atria, are associated with the withdrawal of cardiac cell cycle in adult humans.
Collapse
Affiliation(s)
- W H Kim
- Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Chonju, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Ahrendt G, Chickering DE, Ranieri JP. Angiogenic Growth Factors: A Review for Tissue Engineering. ACTA ACUST UNITED AC 1998. [DOI: 10.1089/ten.1998.4.117] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Gretchen Ahrendt
- Division of Biomaterials and Cellular Technologies, Sulzer CarboMedics, Austin, Texas 78752
| | | | - John P. Ranieri
- Division of Biomaterials and Cellular Technologies, Sulzer CarboMedics, Austin, Texas 78752
| |
Collapse
|
41
|
Lopez JJ, Edelman ER, Stamler A, Hibberd MG, Prasad P, Thomas KA, DiSalvo J, Caputo RP, Carrozza JP, Douglas PS, Sellke FW, Simons M. Angiogenic potential of perivascularly delivered aFGF in a porcine model of chronic myocardial ischemia. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H930-6. [PMID: 9530206 DOI: 10.1152/ajpheart.1998.274.3.h930] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A number of heparin-binding growth factors, including basic (bFGF) and acidic (aFGF) fibroblast growth factors have been shown to promote angiogenesis in vivo. In this study, we employed a sustained-release polymer extravascular delivery system to evaluate the angiogenic efficacy of a novel form of genetically modified aFGF in the setting of chronic myocardial ischemia. Fifteen Yorkshire pigs subjected to Ameroid occluder placement on the left circumflex (LCX) artery were treated with perivascularly administered aFGF in ethylene vinyl acetate (EVAc) polymer (10 micrograms, n = 7) or EVAc alone (controls, n = 8). Seven to nine weeks later, after coronary angiography to document Ameroid-induced coronary occlusion, all animals underwent studies of coronary flow and global and regional left ventricular function. Microsphere-determined coronary flow in the Ameroid-compromised territory was significantly increased in aFGF-treated compared with control animals, and this improvement in perfusion was maintained during ventricular pacing. Left ventricular function studies demonstrated improved global and regional function in aFGF-treated animals. We conclude that local perivascular delivery of genetically modified aFGF results in significant improvement in myocardial flow and regional and global left ventricular function.
Collapse
Affiliation(s)
- J J Lopez
- Angiogenesis Research Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hughes SE. Differential expression of the fibroblast growth factor receptor (FGFR) multigene family in normal human adult tissues. J Histochem Cytochem 1997; 45:1005-19. [PMID: 9212826 DOI: 10.1177/002215549704500710] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This report describes a systematic analysis of the expression of the fibroblast growth factor receptor (FGFR) multigene family (FGFR1, FGFR2, FGFR3, and FGFR4) in archival serial sections of normal human adult tissues representing the major organ systems, using immunohistochemical techniques. Polyclonal antisera specific for FGFR1, FGFR2, FGFR3, and FGFR4 and a three-stage immunoperoxidase technique were employed to determine the cellular distribution of these receptors at the protein level. The expression profiles for the tissue-specific cellular localization of the FGFR multigene family demonstrated wide-spread and striking differential patterns of expression of individual receptors in the epithelia and mesenchyme of multiple tissues (stomach, salivary glands, pancreas, thymus, ureter, and cornea) and co-expression of FGFR1-4 in the same cell types of other tissues. The wide-spread expression of FGFR1-4 in multiple organ systems suggests an important functional role in normal tissue homeostasis. Differences in the spatial patterns of FGFR gene expression may generate functional diversity in response to FGF-1 and FGF-2, both of which bind with equally high affinity to more than one receptor subtype. In vivo, this may lead to functional differences that are crucial for the regulation of normal physiological processes and are responsible for the pathological mechanisms that orchestrate various disease processes.
Collapse
Affiliation(s)
- S E Hughes
- Division of Histopathology, United Medical and Dental Schools, London, United Kingdom
| |
Collapse
|
43
|
La Rosa S, Chiaravalli AM, Capella C, Uccella S, Sessa F. Immunohistochemical localization of acidic fibroblast growth factor in normal human enterochromaffin cells and related gastrointestinal tumours. Virchows Arch 1997; 430:117-24. [PMID: 9083514 DOI: 10.1007/bf01008032] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acidic fibroblast growth factor (aFGF) is a member of the structurally related heparin-binding growth factor family. The best studied members of this family are aFGF and basic FGF (bFGF), which are potent mitogens and differentiation factors for mesoderm-derived cells, including fibroblasts. This study was designed to verify the immunohistochemical expression of aFGF in normal human endocrine cells of the gut and in related endocrine tumours. We examined normal gastrointestinal mucosa from seven different subjects and 41 gut endocrine tumours from different sites, including stomach, duodenum, and small and large intestine, using an aFGF polyclonal antibody with no cross-reactivity for bFGF. We localized aFGF in a fraction of serotonin-producing enterochromaffin (EC) cells of the normal gut, while it was absent in gastrin (G), CCK, secretion (S), somatostatin (D) and glicentin (L) cells. aFGF immunoreactivity was also expressed in serotonin producing EC cell tumours, but not in other functional types of gut endocrine neoplasms investigated, including gastric ECL cell, duodenal somatostatin and gastrin cell, and rectal L cell tumours. A positive correlation was found between expression of aFGF and the amount of tumour fibrous stroma, suggesting that aFGF may be involved in proliferation and activity of stromal fibroblasts.
Collapse
Affiliation(s)
- S La Rosa
- Department of Clinical and Biological Sciences, University of Pavia at Varese, Italy
| | | | | | | | | |
Collapse
|
44
|
Coope RC, Browne PJ, Yiangou C, Bansal GS, Walters J, Groome N, Shousha S, Johnston CL, Coombes RC, Gomm JJ. The location of acidic fibroblast growth factor in the breast is dependent on the activity of proteases present in breast cancer tissue. Br J Cancer 1997; 75:1621-30. [PMID: 9184178 PMCID: PMC2223526 DOI: 10.1038/bjc.1997.277] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acidic fibroblast growth factor (FGF1) and two of its receptors, FGFR1 and FGFR4, were localized in cryostat sections of normal, benign and malignant human breast tissue by immunohistochemistry. Without pretreatment, FGF1 staining was mainly seen in normal epithelial cells. However, polymerase chain reaction (PCR) analysis and immunoblotting of isolated normal epithelial and myoepithelial cells showed FGF1 mRNA and protein to be present in both cell types. Following incubation of frozen sections at 37 degrees C in phosphate-buffered saline, FGF1 staining was also revealed in myoepithelial cells and basement membrane adjacent to carcinoma cells. Treatment with protease inhibitors demonstrated that this effect was due to the activity of an endogenous protease. In contrast, FGF1 staining was found to be associated with the stroma adjacent to malignant cells only in the presence of protease inhibitors. FGFR1 and FGFR4 immunostaining was localized to both normal and malignant epithelial cells and to a lesser extent to myoepithelial cells. There was no difference in the staining intensity for the FGF receptors between normal and cancer samples. The change in location of FGF1 between normal and malignant tissues and the sensitivity of stored FGF1 to the action of endogenous proteases raises the possibility of both autocrine and paracrine roles for FGF1 in the normal and malignant human breast.
Collapse
Affiliation(s)
- R C Coope
- CRC Department of Medical Oncology, Charing Cross and Westminster Medical School, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The perspective from which the developing heart is viewed can lead to differing conclusions about the effects of development on cardiac function. The hearts of the embryo, fetus and adult, viewed from a global perspective, sustain the circulation through the same basic mechanisms of developing pressure and ejecting blood. The failure of the embryonic heart to perform these tasks results in growth failure, edema, and embryonic death, just as in the infant and adult such failure results in premature death. Furthermore, from the viewpoint of gross anatomy, following embryonic morphogenesis, the developing and adult hearts appear in general to be structurally similar, differing only in size and mass. However, a closer view shows, in the molecular and structural makeup of the myocardium, richly complex changes that can modulate the basic physiological properties of the cardiac myocyte. This article focuses on how these changes and the effects of birth and development alter ventricular function.
Collapse
Affiliation(s)
- P A Anderson
- Department of Pediatric Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
46
|
Engelmann GL, Campbell SE, Rakusan K. Immediate postnatal rat heart development modified by abdominal aortic banding: analysis of gene expression. Mol Cell Biochem 1996; 163-164:47-56. [PMID: 8974039 DOI: 10.1007/bf00408640] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proliferative growth of the ventricular myocyte (cardiomyocyte) is primarily limited to embryonic, fetal and very early neonatal periods of heart development. In contrast, cardiomyocyte maturation, as evidenced by cellular hypertrophy, is a long-term process that can occupy the bulk of the life-span of the mature organism. As the newborn myocyte undergoes a 'transition' from proliferative to hypertrophic growth, ventricular remodeling of the non-myocyte compartment is characterized by increased extracellular matrix (ECM) formation and coronary capillary angiogenesis. A role for ventricular-derived growth factors (GFs) in these inter-related processes are examined in an animal model of altered heart development produced by neonatal aortic banding. The suprarenal abdominal aorta of five day old rat pups were banded (B), sham operated (S), or untreated (C) and ventricular tissue (left ventricular free wall and septum) obtained at 7-, 14-, and 21-days post-intervention. Using Northern blot RNA hybridizations, expression of growth factors (GFs) and/or GF-receptors (GFR's) temporally associated with heart development were evaluated. Transcript levels for TGF-beta 1, IGF-II, and their associated cell surface receptors were increased in B animals. Concomitant changes in extracellular matrix (ECM) genes (as evaluated by Collagens Type I, III, and IV) were also increased in B animals. In addition, transcript levels for the vascular morphogenesis and remodeling-related protein SPARC (Secreted Protein, Acidic and Rich in Cysteine) was also elevated in the B animals. In several instances, S animals demonstrated changes in steady state transcript levels for genes which may influence myocyte maturation during the postnatal period. This suggests that normal autocrine/paracrine growth regulatory stimuli and responses can be modified (by surgical intervention and/or abdominal aortic banding) and these perturbations in gene expression may be related to previously documented changes in myocyte cell number, vascular composition, and ventricular architecture of the banded, neonatal heart. Future studies using this model will provide an opportunity to evaluate and possibly identify the stimuli and signal transduction machinery that regulate the final phases of myocyte proliferation, stimulate capillary formation and ECM deposition, and orchestrate the transition to hypertrophic growth during heart development.
Collapse
Affiliation(s)
- G L Engelmann
- Department of Medicine and Cell Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | | |
Collapse
|
47
|
Long CS. Autocrine and Paracrine Regulation of Myocardial Cell Growth in Vitro The TGFβ Paradigm. Trends Cardiovasc Med 1996; 6:217-26. [DOI: 10.1016/s1050-1738(96)00090-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Morris DS, Stock SJ, McLachlan JC. Embryonic chick muscle produces an FGF-like activity. EXPERIENTIA 1996; 52:757-61. [PMID: 8774745 DOI: 10.1007/bf01923985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Normal and pathological formation of blood vessels is of considerable interest both in terms of basic scientific processes and clinical applications. Angiogenic events in the adult are likely to represent persistence of developmental mechanisms, and embryos are therefore a suitable experimental model for these processes. Among embryonic tissues, muscle is particularly appropriate for investigation, since it is highly vascularised from early stages. There are a number of competing explanations of how this process is controlled. Bioassays offer advantages over conventional molecular localisation techniques, in that they reveal the presence of active processed forms of the molecules under study, rather than non-processed forms, or non-translated messages. Using these techniques, we report here that embryonic chick muscle, taken from the stages at which blood vessels are forming, produces an angiogenic activity on the chick chorioallantoic membrane (CAM), and transforms NR6 cells in soft agar. Basic fibroblast growth factor (bFGF) is shown to be angiogenic on the CAM in the same way, and also transforms NR6 cells (NR6 cells lack functional epidermal growth factor/transforming growth factor-a receptors, and are believed to respond only to bFGF in this way). Anti-bFGF removes the transforming activity of the embryonic muscle. We conclude that this represents evidence that embryonic chick muscle is producing an FGF-like molecule which is capable of acting as an angiogenic agent at the appropriate times in development.
Collapse
Affiliation(s)
- D S Morris
- School of Biological and Medical Sciences, University of St. Andrews, Scotland United Kingdom
| | | | | |
Collapse
|
49
|
de Iongh RU, Lovicu FJ, Hanneken A, Baird A, McAvoy JW. FGF receptor-1 (flg) expression is correlated with fibre differentiation during rat lens morphogenesis and growth. Dev Dyn 1996; 206:412-26. [PMID: 8853990 DOI: 10.1002/(sici)1097-0177(199608)206:4<412::aid-aja7>3.0.co;2-l] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Our previous studies indicate an important role for fibroblast growth factor (FGF) in lens development. Here we study the expression of the flg variant of FGF receptor 1 (FGFR1) during lens development by immunohistochemistry and in situ hybridisation. FGFR1 was expressed throughout lens development. Prominent FGFR1 immunoreactivity was associated with cell nuclei, particularly in differentiating lens fibres, suggesting internalisation and nuclear translocation of the receptor. FGFR1 immunoreactivity was also associated with basolateral membranes of cells in the equatorial region and at lens sutures. FGFR1 mRNA was only weakly expressed during early lens morphogenesis but expression increased with the onset of lens fibre differentiation. Once the lens acquired its distinct polarity, an anteroposterior gradient in both protein reactivity and mRNA signal was evident. Anteriorly, central epithelial cells showed weak expression for FGFR1, whereas more posteriorly, in the germinative and transitional zones of the lens where cells maximally proliferate and undergo early stages of fibre differentiation, respectively, expression was significantly stronger. The anteroposterior gradient of increased expression of FGFR1 in the lens coincides with the previously documented anteroposterior gradient of FGF stimulation. In lens epithelial explants, FGF stimulation was found to upregulate FGFR1 expression. Such upregulation may be an important mechanism for generating a high level of FGF stimulation and ensuring a fibre differentiation response. In postnatal rat lenses, there was a significant age-related decline in FGFR1 expression; this correlates with the reduced rate of lens fibre differentiation with age. Overall, these studies support the hypothesis that FGF and FGFR1 are important for regulation of lens fibre differentiation throughout lens development.
Collapse
Affiliation(s)
- R U de Iongh
- Department of Anatomy and Histology, University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
50
|
Kaye D, Pimental D, Prasad S, Mäki T, Berger HJ, McNeil PL, Smith TW, Kelly RA. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 1996; 97:281-91. [PMID: 8567946 PMCID: PMC507016 DOI: 10.1172/jci118414] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased mechanical activity could lead to a hypertrophic response in cardiac myocytes.
Collapse
Affiliation(s)
- D Kaye
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|