1
|
Moon DO. Exploring the Role of Surface and Mitochondrial ATP-Sensitive Potassium Channels in Cancer: From Cellular Functions to Therapeutic Potentials. Int J Mol Sci 2024; 25:2129. [PMID: 38396807 PMCID: PMC10888650 DOI: 10.3390/ijms25042129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
ATP-sensitive potassium (KATP) channels are found in plasma membranes and mitochondria. These channels are a type of ion channel that is regulated by the intracellular concentration of adenosine triphosphate (ATP) and other nucleotides. In cell membranes, they play a crucial role in linking metabolic activity to electrical activity, especially in tissues like the heart and pancreas. In mitochondria, KATP channels are involved in protecting cells against ischemic damage and regulating mitochondrial function. This review delves into the role of KATP channels in cancer biology, underscoring their critical function. Notably responsive to changes in cellular metabolism, KATP channels link metabolic states to electrical activity, a feature that becomes particularly significant in cancer cells. These cells, characterized by uncontrolled growth, necessitate unique metabolic and signaling pathways, differing fundamentally from normal cells. Our review explores the intricate roles of KATP channels in influencing the metabolic and ionic balance within cancerous cells, detailing their structural and operational mechanisms. We highlight the channels' impact on cancer cell survival, proliferation, and the potential of KATP channels as therapeutic targets in oncology. This includes the challenges in targeting these channels due to their widespread presence in various tissues and the need for personalized treatment strategies. By integrating molecular biology, physiology, and pharmacology perspectives, the review aims to enhance the understanding of cancer as a complex metabolic disease and to open new research and treatment avenues by focusing on KATP channels. This comprehensive approach provides valuable insights into the potential of KATP channels in developing innovative cancer treatments.
Collapse
Affiliation(s)
- Dong-Oh Moon
- Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
2
|
Abstract
ATP-sensitive K+ channels (KATP) are inwardly-rectifying potassium channels, broadly expressed throughout the body. KATP is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels thus playing an important physiological role by coupling cellular metabolism with membrane excitability. The hetero-octameric channel complex is formed of 4 pore-forming inward rectifier Kir6.x subunits (Kir6.1 or Kir6.2) and 4 regulatory sulfonylurea receptor subunits (SUR1, SUR2A, or SUR2B). These subunits can associate in various tissue-specific combinations to form functional KATP channels with distinct electrophysiological and pharmacological properties. KATP channels play many important physiological roles and mutations in channel subunits can result in diseases such as disorders of insulin handling, cardiac arrhythmia, cardiomyopathy, and neurological abnormalities. The tissue-specific expression of KATP channel subunits coupled with their rich and diverse pharmacology makes KATP channels attractive therapeutic targets in the treatment of endocrine and cardiovascular diseases.
Collapse
|
3
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Suleimani HF, Eshraghi A, Daloee MH, Hoseini S, Nakhaee N. Effect of nicorandil on QT dispersion in patients with stable angina pectoris undergoing elective angioplasty: A triple-blind, randomized, placebo-controlled study. Electron Physician 2017; 9:4934-4941. [PMID: 28979725 PMCID: PMC5614275 DOI: 10.19082/4934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/12/2017] [Indexed: 11/25/2022] Open
Abstract
Background Nicorandil leads to the relaxation of fine vascular smooth muscle, and thus causes vasodilatation of major epicardial. Also, it has anti-arrhythmic and cardio-protective effects by improving reperfusion, and ultimately leads to a reduction in microvascular damage caused by percutaneous coronary intervention (PCI). Objective The aim of this study was to determine the effect of nicorandil on QT interval dispersion (QTd) in patients with stable angina pectoris during elective angioplasty. Methods This triple-blind and randomized clinical trial was performed on patients with stable angina pectoris, candidates for elective angiography referred to Imam Reza and Ghaem hospitals in Mashhad, Iran, between January and October 2016. The patients were randomly assigned to one of two groups receiving nicorandil (60 mg as 20 mg before and 40 mg after PCI) and placebo. All the patients underwent electrocardiography 12 hours before and 12 hours after PCI. The values of maximal corrected QT interval (QTc max) and QTd in these intervals, and the levels of changes in the QTd (QTd difference before angiography and after PCI) were compared between the two groups. Data were analyzed statistically using SPSS version 18 software via Chi-square and Independent-samples t-test. Results This study was performed on 90 patients (55 males and 35 females) with a mean age of 58.6±10.8 years, on two groups of 45 people. The two groups were matched for age, body mass index, cardiovascular risk factors and baseline testing. The QTd before angiography had no statistically significant difference between the patients of both groups (control: 77.7±17.1 vs. nicorandil: 80.7±14.2 ms; p=0.371). The QTd after PCI in the nicorandil group was lower than the control group (48.1±14.2 vs. 59.2±15.6 ms; p=0.000). The decrease rate in QTd had a statistically significant difference between the two groups (control: 18.9±11.0 vs. nicorandil: 33.5±9.5 ms; p=0.000). Conclusions The results of this study showed that oral administration of nicorandil around the PCI could further reduce QTd following PCI, compared to the control group. Trial registration The trial was registered at the Iranian Registry of Clinical Trials (http://www.irct.ir) with the Irct ID: IRCT2016120631159N1 Funding The authors received no financial support for the research, authorship, and/or publication of this article.
Collapse
Affiliation(s)
- Homa Fal Suleimani
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Eshraghi
- M.D., Assistant Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Hasanzadeh Daloee
- M.D., Professor, Department of Cardiology, Atherosclerosis Prevention Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hoseini
- M.D., Resident of Cardiology, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Nakhaee
- M.D., Resident of Cardiology, Department of Cardiology, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Oxygen plays a key role in cellular metabolism and function. Oxygen delivery to cells is crucial, and a lack of oxygen such as that which occurs during myocardial infarction can be lethal. Cells should, therefore, be able to respond to changes in oxygen tension. RECENT ADVANCES Since the first studies examining the acute cellular effect of hypoxia on activation of transmitter release from glomus or type I chemoreceptor cells, it is now known that virtually all cells are able to respond to changes in oxygen tension. CRITICAL ISSUES Despite advances made in characterizing hypoxic responses, the identity of the "oxygen sensor" remains debated. Recently, more evidence has evolved as to how cardiac myocytes sense acute changes in oxygen. This review will examine the available evidence in support of acute oxygen-sensing mechanisms providing a brief historical perspective and then more detailed insights into the heart and the role of cardiac ion channels in hypoxic responses. FUTURE DIRECTIONS A further understanding of these cellular processes should result in interventions that assist in preventing the deleterious effects of acute changes in oxygen tension such as alterations in contractile function and cardiac arrhythmia.
Collapse
Affiliation(s)
- Livia C Hool
- School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley, Australia
| |
Collapse
|
6
|
Xie L, Liang T, Kang Y, Lin X, Sobbi R, Xie H, Chao C, Backx P, Feng ZP, Shyng SL, Gaisano HY. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels. J Mol Cell Cardiol 2014; 75:100-10. [DOI: 10.1016/j.yjmcc.2014.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/15/2022]
|
7
|
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol 2014; 171:12-23. [PMID: 24102106 DOI: 10.1111/bph.12407] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/30/2013] [Accepted: 08/26/2013] [Indexed: 12/14/2022] Open
Abstract
ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.
Collapse
Affiliation(s)
- Andrew Tinker
- William Harvey Heart Centre, Barts and The London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|
8
|
Zhou W, Ko Y, Benharash P, Yamakawa K, Patel S, Ajijola OA, Mahajan A. Cardioprotection of electroacupuncture against myocardial ischemia-reperfusion injury by modulation of cardiac norepinephrine release. Am J Physiol Heart Circ Physiol 2012; 302:H1818-25. [PMID: 22367505 DOI: 10.1152/ajpheart.00030.2012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Augmentation of cardiac sympathetic tone during myocardial ischemia has been shown to increase myocardial O(2) demand and infarct size as well as induce arrhythmias. We have previously demonstrated that electroacupuncture (EA) inhibits the visceral sympathoexcitatory cardiovascular reflex. The purpose of this study was to determine the effects of EA on left ventricular (LV) function, O(2) demand, infarct size, arrhythmogenesis, and in vivo cardiac norepinephrine (NE) release in a myocardial ischemia-reperfusion model. Anesthetized rabbits (n = 36) underwent 30 min of left anterior descending coronary artery occlusion followed by 90 min of reperfusion. We evaluated myocardial O(2) demand, infarct size, ventricular arrhythmias, and myocardial NE release using microdialysis under the following experimental conditions: 1) untreated, 2) EA at P5-6 acupoints, 3) sham acupuncture, 4) EA with pretreatment with naloxone (a nonselective opioid receptor antagonist), 5) EA with pretreatment with chelerythrine (a nonselective PKC inhibitor), and 6) EA with pretreatment with both naloxone and chelerythrine. Compared with the untreated and sham acupuncture groups, EA resulted in decreased O(2) demand, myocardial NE concentration, and infarct size. Furthermore, the degree of ST segment elevation and severity of LV dysfunction and ventricular arrhythmias were all significantly decreased (P < 0.05). The cardioprotective effects of EA were partially blocked by pretreatment with naloxone or chelerythrine alone and completely blocked by pretreatment with both naloxone and chelerythrine. These results suggest that the cardioprotective effects of EA against myocardial ischemia-reperfusion are mediated through inhibition of the cardiac sympathetic nervous system as well as opioid and PKC-dependent pathways.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, David Geffen School Medicine, University of California, Los Angeles, California 90095, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Aziz Q, Thomas AM, Khambra T, Tinker A. Regulation of the ATP-sensitive potassium channel subunit, Kir6.2, by a Ca2+-dependent protein kinase C. J Biol Chem 2011; 287:6196-207. [PMID: 22207763 DOI: 10.1074/jbc.m111.243923] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of ATP-sensitive potassium (K(ATP)) channels is governed by the concentration of intracellular ATP and ADP and is thus responsive to the metabolic status of the cell. Phosphorylation of K(ATP) channels by protein kinase A (PKA) or protein kinase C (PKC) results in the modulation of channel activity and is particularly important in regulating smooth muscle tone. At the molecular level the smooth muscle channel is composed of a sulfonylurea subunit (SUR2B) and a pore-forming subunit Kir6.1 and/or Kir6.2. Previously, Kir6.1/SUR2B channels have been shown to be inhibited by PKC, and Kir6.2/SUR2B channels have been shown to be activated or have no response to PKC. In this study we have examined the modulation of channel complexes formed of the inward rectifier subunit, Kir6.2, and the sulfonylurea subunit, SUR2B. Using a combination of biochemical and electrophysiological techniques we show that this complex can be inhibited by protein kinase C in a Ca(2+)-dependent manner and that this inhibition is likely to be as a result of internalization. We identify a residue in the distal C terminus of Kir6.2 (Ser-372) whose phosphorylation leads to down-regulation of the channel complex. This inhibitory effect is distinct from activation which is seen with low levels of channel activity.
Collapse
Affiliation(s)
- Qadeer Aziz
- William Harvey Heart Centre, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | |
Collapse
|
10
|
Lang V, Youssef N, Light PE. The molecular genetics of sulfonylurea receptors in the pathogenesis and treatment of insulin secretory disorders and type 2 diabetes. Curr Diab Rep 2011; 11:543-51. [PMID: 21968738 DOI: 10.1007/s11892-011-0233-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfonylurea receptors (SURs) form an integral part of the ATP-sensitive potassium (K(ATP)) channel complex that is present in most excitable cell types. K(ATP) channels couple cellular metabolism to electrical activity and provide a wide range of cellular functions including stimulus secretion coupling in pancreatic β cells. K(ATP) channels are composed of SURs and inward rectifier potassium channel (Kir6.x) subunits encoded by the ABCC8/9 and KCNJ8/11 genes, respectively. Recent advances in the genetics, molecular biology, and pharmacology of SURs have led to an increased understanding of these channels in the etiology and treatment of rare genetic insulin secretory disorders. Furthermore, common genetic variants in these genes are associated with an increased risk for type 2 diabetes. In this review we summarize the molecular biology, pharmacology, and physiology of SURs and K(ATP) channels, highlighting recent advances in their genetics and understanding of rare insulin secretory disorders and susceptibility to type 2 diabetes.
Collapse
Affiliation(s)
- Veronica Lang
- Department of Pharmacology, Alberta Diabetes Institute and Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | | |
Collapse
|
11
|
Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol 2011; 51:370-80. [PMID: 21740910 DOI: 10.1016/j.yjmcc.2011.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 11/23/2022]
Abstract
Preconditioning of hearts with the α(1)-adrenoceptor agonist phenylephrine decreases infarct size and increases the functional recovery of the heart following ischaemia-reperfusion. However, the cellular mechanisms responsible for this protection are not known. We investigated the role of protein kinase C ε and δ (PKCε and PKCδ), AMP-activated protein kinase (AMPK), p38 MAPK (p38) and sarcolemmal ATP-sensitive potassium (sarcK(ATP)) channels in phenylephrine preconditioning using isolated rat ventricular myocytes. Preconditioning of ventricular myocytes with phenylephrine increased the recovery of contractile activity following metabolic inhibition and re-energisation from 30.1±1.9% to 66.5±5.2% (P<0.01) and increased the peak sarcK(ATP) current activated during metabolic inhibition from 32.1±1.8 pA/pF to 46.0±5.0 pA/pF (P<0.05), which was required for protection. Phenylephrine preconditioning resulted in a sustained activation of PKCε and PKCδ, and transient activation of AMPK, which was dependent upon activation of PKCδ but not PKCε. P38 was also activated by phenylephrine preconditioning and this was blocked by inhibitors of PKCε, PKCδ or AMPK. Inhibition of PKCδ, AMPK or p38 was sufficient to prevent the increase in current, suggesting that these kinases are involved in modulation of sarcK(ATP) channel current by phenylephrine preconditioning. However, whilst inhibition of AMPK and p38 prevented the protection from phenylephrine preconditioning, PKCδ inhibition paradoxically had no effect. The increase in sarcK(ATP) current induced by phenylephrine preconditioning requires PKCδ, AMPK and p38 and may contribute to the observed improvement in contractile recovery.
Collapse
|
12
|
Quan Y, Barszczyk A, Feng ZP, Sun HS. Current understanding of K ATP channels in neonatal diseases: focus on insulin secretion disorders. Acta Pharmacol Sin 2011; 32:765-80. [PMID: 21602835 PMCID: PMC4009965 DOI: 10.1038/aps.2011.57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/13/2011] [Indexed: 12/25/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are cell metabolic sensors that couple cell metabolic status to electric activity, thus regulating many cellular functions. In pancreatic beta cells, K(ATP) channels modulate insulin secretion in response to fluctuations in plasma glucose level, and play an important role in glucose homeostasis. Recent studies show that gain-of-function and loss-of-function mutations in K(ATP) channel subunits cause neonatal diabetes mellitus and congenital hyperinsulinism respectively. These findings lead to significant changes in the diagnosis and treatment for neonatal insulin secretion disorders. This review describes the physiological and pathophysiological functions of K(ATP) channels in glucose homeostasis, their specific roles in neonatal diabetes mellitus and congenital hyperinsulinism, as well as future perspectives of K(ATP) channels in neonatal diseases.
Collapse
Affiliation(s)
- Yi Quan
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Andrew Barszczyk
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Zhong-ping Feng
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| | - Hong-shuo Sun
- Departments of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Surgery, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Departments of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
- Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada, M5S 1A8
| |
Collapse
|
13
|
Pan SJ, Li LR. Adenosine A2 receptors are involved in the activation of ATP-sensitive K+ currents during metabolic inhibition in guinea pig ventricular myocytes. Can J Physiol Pharmacol 2011; 89:187-96. [DOI: 10.1139/y11-010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been hypothesized that an interaction among adenosine A1 receptors, protein kinase C (PKC) activation, and ATP-sensitive potassium channels (KATP) mediates ischemic preconditioning in experiments on different animal species. The purpose of this study was to determine if activation of KATP is functionally coupled to A1 receptors and (or) PKC activation during metabolic inhibition (MI) in guinea pig ventricular myocytes. Perforated-patch using nystatin and conventional whole-cell recording methods were used to observe the effects of adenosine and adenosine-receptor antagonists on the activation of KATP currents during MI induced by application of 2,4-dinitrophenol (DNP) and 2-deoxyglucose (2DG) without glucose, in the presence or absence of a PKC activator, phorbol 12-myristate 13-acetate (PMA). Adenosine accelerated the time course activation of KATP currents during MI under the intact intracellular condition or dialyzed condition with l mmol/L ATP in the pipette solution. The accelerated effect of adenosine activation of KATP under MI was not reversed by a nonselective Al adenosine receptor antagonist, 8-(p-sulfophenyl)theophylline (SPT), or a specific Al adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). However, the adenosine A2 receptor antagonist alloxazine reversed the time course activation of the KATP current under MI. An adenylate cyclase activator, forskolin, did not further abbreviate the time course activation of KATP with or without adenosine. Application of a PKC blocker, chelerythrine, reversed the time course activation of KATP by adenosine under MI. In addition, pretreatment with a PKC activator, PMA, had similar effects to adenosine, while adenosine did not further shorten the time required for activation of KATP currents during MI with PMA pretreatment. There is no direct evidence of activation of KATP currents by adenosine A1 receptor during metabolic inhibition under our experimental condition. However, adenosine A2 receptor activation is involved in the KATP channel activation in the guinea pig ventricular myocytes, of which effect is not mediated through the increase in intracellular cAMP. Adenosine seems to interact with PKC activation to open KATP during MI, but a possible link between the adenosine A2 receptor and PKC activation in this process needs further elucidation.
Collapse
Affiliation(s)
- Sheng-Jun Pan
- Huanghuai University Department of Nursing, Zhumadian, Henan 463000, China
| | - Li-Rong Li
- Huanghuai University Department of Nursing, Zhumadian, Henan 463000, China
| |
Collapse
|
14
|
Flagg TP, Enkvetchakul D, Koster JC, Nichols CG. Muscle KATP channels: recent insights to energy sensing and myoprotection. Physiol Rev 2010; 90:799-829. [PMID: 20664073 DOI: 10.1152/physrev.00027.2009] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium overload and fiber damage, but the cost of this protection may be enhanced arrhythmic activity. Generated as complexes of Kir6.1 or Kir6.2 pore-forming subunits with regulatory sulfonylurea receptor subunits, SUR1 or SUR2, the differential assembly of K(ATP) channels in different tissues gives rise to tissue-specific physiological and pharmacological regulation, and hence to the tissue-specific pharmacological control of contractility. The last 10 years have provided insights into the regulation and role of muscle K(ATP) channels, in large part driven by studies of mice in which the protein determinants of channel activity have been deleted or modified. As yet, few human diseases have been correlated with altered muscle K(ATP) activity, but genetically modified animals give important insights to likely pathological roles of aberrant channel activity in different muscle types.
Collapse
Affiliation(s)
- Thomas P Flagg
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | |
Collapse
|
15
|
Li DP, Chen SR, Pan HL. Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels. J Neurochem 2010; 113:530-42. [PMID: 20096091 DOI: 10.1111/j.1471-4159.2010.06618.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine produces cardiovascular depressor effects in various brain regions. However, the cellular mechanisms underlying these effects remain unclear. The pre-sympathetic neurons in the hypothalamic paraventricular nucleus (PVN) play an important role in regulating arterial blood pressure and sympathetic outflow through projections to the spinal cord and brainstem. In this study, we performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the intermediolateral cell column of the spinal cord in rats. Adenosine (10-100 microM) decreased the firing activity in a concentration-dependent manner, with a marked hyperpolarization in 12 of 26 neurons tested. Blockade of A(1) receptors with the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine or intracellular dialysis of guanosine 5'-O-(2-thodiphosphate) eliminated the inhibitory effect of adenosine on labeled PVN neurons. Immunocytochemical labeling revealed that A(1) receptors were expressed on spinally projecting PVN neurons. Also, blocking ATP-dependent K(+) (K(ATP)) channels with 100 microM glibenclamide or 200 microM tolbutamide, but not the G protein-coupled inwardly rectifying K(+) channels blocker tertiapin-Q, abolished the inhibitory effect of adenosine on the firing activity of PVN neurons. Furthermore, glibenclamide or tolbutamide significantly decreased the adenosine-induced outward currents in labeled neurons. The reversal potential of adenosine-induced currents was close to the K(+) equilibrium potential. In addition, adenosine decreased the frequency of both spontaneous and miniature glutamatergic excitatory post-synaptic currents and GABAergic inhibitory post-synaptic currents in labeled neurons, and these effects were also blocked by 8-cyclopentyl-1,3-dipropylxanthine. Collectively, our findings suggest that adenosine inhibits the excitability of PVN pre-sympathetic neurons through A(1) receptor-mediated opening of K(ATP) channels.
Collapse
Affiliation(s)
- De-Pei Li
- Department of Critical Care, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
16
|
Li GR, Dong MQ. Pharmacology of Cardiac Potassium Channels. CARDIOVASCULAR PHARMACOLOGY - HEART AND CIRCULATION 2010; 59:93-134. [DOI: 10.1016/s1054-3589(10)59004-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Yan XS, Ma JH, Zhang PH. Modulation of K(ATP) currents in rat ventricular myocytes by hypoxia and a redox reaction. Acta Pharmacol Sin 2009; 30:1399-414. [PMID: 19801996 DOI: 10.1038/aps.2009.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM The present study investigated the possible regulatory mechanisms of redox agents and hypoxia on the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. METHODS Single-channel and whole-cell patch-clamp techniques were used to record the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. RESULTS Oxidized glutathione (GSSG, 1 mmol/L) increased the I(KATP), while reduced glutathione (GSH, 1 mmol/L) could reverse the increased I(KATP) during normoxia. To further corroborate the effect of the redox agent on the K(ATP) channel, we employed the redox couple DTT (1 mmol/L)/H2O2 (0.3, 0.6, and 1 mmol/L) and repeated the previous processes, which produced results similar to the previous redox couple GSH/GSSG during normoxia. H2O2 increased the I(KATP) in a concentration dependent manner, which was reversed by DTT (1 mmol/L). In addition, our results have shown that 15 min of hypoxia increased the I(KATP), while GSH (1 mmol/L) could reverse the increased I(KATP). Furthermore, in order to study the signaling pathways of the I(KATP) augmented by hypoxia and the redox agent, we applied a protein kinase C(PKC) inhibitor bisindolylmaleimide VI (BIM), a protein kinase G(PKG) inhibitor KT5823, a protein kinase A (PKA) inhibitor H-89, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-62 and KN-93. The results indicated that BIM, KT5823, KN-62, and KN-93, but not H-89, inhibited the I(KATP) augmented by hypoxia and GSSG; in addition, these results suggest that the effects of both GSSG and hypoxia on K(ATP) channels involve the activation of the PKC, PKG, and CaMK II pathways, but not the PKA pathway. CONCLUSION The present study provides electrophysiological evidence that hypoxia and the oxidizing reaction are closely related to the modulation of I(KATP).
Collapse
|
18
|
Orie NN, Thomas AM, Perrino BA, Tinker A, Clapp LH. Ca2+/calcineurin regulation of cloned vascular K ATP channels: crosstalk with the protein kinase A pathway. Br J Pharmacol 2009; 157:554-64. [PMID: 19422382 DOI: 10.1111/j.1476-5381.2009.00221.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Vascular ATP-sensitive potassium (K(ATP)) channels are activated by cyclic AMP elevating vasodilators through protein kinase A (PKA). Direct channel phosphorylation is a critical mechanism, though the phosphatase opposing these effects is unknown. Previously, we reported that calcineurin, a Ca(2+)-dependent phosphatase, inhibits K(ATP) channels, though neither the site nor the calcineurin isoform involved is established. Given that the type-2 regulatory (RII) subunit of PKA is a substrate for calcineurin we considered whether calcineurin regulates channel activity through interacting with PKA. EXPERIMENTAL APPROACH Whole-cell recordings were made in HEK-293 cells stably expressing the vascular K(ATP) channel (K(IR)6.1/SUR2B). The effect of intracellular Ca(2+) and modulators of the calcineurin and PKA pathway on glibenclamide-sensitive currents were examined. KEY RESULTS Constitutively active calcineurin A alpha but not A beta significantly attenuated K(ATP) currents activated by low intracellular Ca(2+), whereas calcineurin inhibitors had the opposite effect. PKA inhibitors reduced basal K(ATP) currents and responses to calcineurin inhibitors, consistent with the notion that some calcineurin action involves inhibition of PKA. However, raising intracellular Ca(2+) (equivalent to increasing calcineurin activity), almost completely inhibited K(ATP) channel activation induced by the catalytic subunit of PKA, whose enzymatic activity is independent of the RII subunit. In vitro phosphorylation experiments showed calcineurin could directly dephosphorylate a site in Kir6.1 that was previously phosphorylated by PKA. CONCLUSIONS AND IMPLICATIONS Calcineurin A alpha regulates K(IR)6.1/SUR2B by inhibiting PKA-dependent phosphorylation of the channel as well as PKA itself. Such a mechanism is likely to directly oppose the action of vasodilators on the K(ATP) channel.
Collapse
Affiliation(s)
- N N Orie
- BHF Laboratories, Department of Medicine, University College, London, UK
| | | | | | | | | |
Collapse
|
19
|
Ke Y, Lei M, Solaro RJ. Regulation of cardiac excitation and contraction by p21 activated kinase-1. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 98:238-50. [PMID: 19351515 DOI: 10.1016/j.pbiomolbio.2009.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac excitation and contraction are regulated by a variety of signaling molecules. Central to the regulatory scheme are protein kinases and phosphatases that carry out reversible phosphorylation of different effectors. The process of beta-adrenergic stimulation mediated by cAMP dependent protein kinase (PKA) forms a well-known pathway considered as the most significant control mechanism in excitation and contraction as well as many other regulatory mechanisms in cardiac function. However, although dephosphorylation pathways are critical to these regulatory processes, signaling to phosphatases is relatively poorly understood. Emerging evidence indicates that regulation of phosphatases, which dampen the effect of beta-adrenergic stimulation, is also important. We review here functional studies of p21 activated kinase-1 (Pak1) and its potential role as an upstream signal for protein phosphatase PP2A in the heart. Pak1 is a serine/threonine protein kinase directly activated by the small GTPases Cdc42 and Rac1. Pak1 is highly expressed in different regions of the heart and modulates the activities of ion channels, sarcomeric proteins, and other phosphoproteins through up-regulation of PP2A activity. Coordination of Pak1 and PP2A activities is not only potentially involved in regulation of normal cardiac function, but is likely to be important in patho-physiological conditions.
Collapse
Affiliation(s)
- Yunbo Ke
- The Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, College of Medicine, Room 202, COMRB, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
20
|
Teramoto N, Zhu HL, Shibata A, Aishima M, Walsh EJ, Nagao M, Cole WC. ATP-sensitive K+ channels in pig urethral smooth muscle cells are heteromultimers of Kir6.1 and Kir6.2. Am J Physiol Renal Physiol 2008; 296:F107-17. [PMID: 18945825 DOI: 10.1152/ajprenal.90440.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The inwardly rectifying properties and molecular basis of ATP-sensitive K(+) channels (K(ATP) channels) have now been established for several cell types. However, these aspects of nonvascular smooth muscle K(ATP) channels still remain to be defined. In this study, we investigated the molecular basis of the pore of K(ATP) channels of pig urethral smooth muscle cells through a comparative study of the inwardly rectifying properties, conductance, and regulation by PKC of native and homo- and heteroconcatemeric recombinant Kir6.x channels coexpressed with sulfonylurea receptor subunit SUR2B in human embryonic kidney (HEK) 293 cells by the patch-clamp technique (conventional whole-cell and cell-attached modes). In conventional whole-cell clamp recordings, levcromakalim (> or = 1 microM) caused a concentration-dependent increase in current that demonstrated strong inward rectification at positive membrane potentials. In cell-attached mode, the unitary amplitude of levcromakalim-induced native and recombinant heteroconcatemeric Kir6.1-Kir6.2 K(ATP) channels also showed strong inward rectification at positive membrane potentials. Phorbol 12,13-dibutyrate, but not the inactive phorbol ester, 4alpha-phorbol 12,13-didecanoate, enhanced the activity of native and heteroconcatemeric K(ATP) channels at -50 mV. The conductance of the native channels at approximately 43 pS was consistent with that of heteroconcatemeric channels with a pore-forming subunit composition of (Kir6.1)(3)-(Kir6.2). RT-PCR analysis revealed the expression of Kir6.1 and Kir6.2 transcripts in pig urethral myocytes. Our findings provide the first evidence that the predominant K(ATP) channel expressed in pig urethral smooth muscle possesses a unique, heteromeric pore structure that differs from the homomeric Kir6.1 channels of vascular myocytes and is responsible for the differences in inward rectification, conductance, and PKC regulation exhibited by the channels in these smooth muscle cell types.
Collapse
Affiliation(s)
- Noriyoshi Teramoto
- Dept. of Pharmacology, Graduate School of Medical Sciences, Kyushu Univ., 3-1-1 Maidashi, Higashi Ward, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ. Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol 2008; 103:472-84. [PMID: 18600365 DOI: 10.1007/s00395-008-0731-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 05/02/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED This study tested the hypothesis that inhibition of myocardial injury and modulation of mitochondrial dysfunction by postconditioning (Postcon) after 24 h of reperfusion is associated with activation of K(ATP) channels. Thirty dogs undergoing 60 min of ischemia and 24 h of reperfusion (R) were randomly divided into four groups: CONTROL no intervention at R; Postcon: three cycles of 30 s R alternating with 30 s re-occlusion were applied at R; 5-hydroxydecanoate (5-HD): the mitochondrial K(ATP) channel blocker was infused 5 min before Postcon; HMR1098: the sarcolemmal K(ATP) channel blocker was administered 5 min before Postcon. After 24 h of R, infarct size was smaller in Postcon relative to CONTROL (27 +/- 4%* Vs. 39 +/- 2% of area at risk), consistent with a reduction in CK activity (66 +/- 7* Vs. 105 +/- 7 IU/g). The infarct-sparing effect of Postcon was blocked by 5-HD (48 +/- 5%(dagger)), but was not altered by HMR1098 (29 +/- 3%*), consistent with the change in CK activity (102 +/- 8(dagger) in 5-HD and 71 +/- 6* IU/g in HMR1098). In H9c2 cells exposed to 8 h hypoxia and 3 h of reoxygenation, Postcon up-regulated expression of mito-K(ATP) channel Kir6.1 protein, maintained mitochondrial membrane potential and inhibited mitochondrial permeability transition pore (mPTP) opening evidenced by preserved fluorescent TMRE and calcein staining. The protective effects were blocked by 5-HD, but not by HMR1098. These data suggest that in a clinically relevant model of ischemia-reperfusion (1) Postcon reduces infarct size and decreases CK activity after prolonged reperfusion; (2) protection by Postcon is achieved by opening mitochondrial K(ATP) channels and inhibiting mPTP opening. *P < 0.05 Vs. CONTROL; P < 0.05 Vs. Postcon.
Collapse
Affiliation(s)
- James Mykytenko
- Carlyle Fraser Heart Center, Emory Crawford Long Hospital, Emory University, Atlanta, GA 30308-2225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yu Q, Nguyen T, Ogbi M, Caldwell RW, Johnson JA. Differential loss of cytochrome-c oxidase subunits in ischemia-reperfusion injury: exacerbation of COI subunit loss by PKC-epsilon inhibition. Am J Physiol Heart Circ Physiol 2008; 294:H2637-45. [PMID: 18408135 DOI: 10.1152/ajpheart.91476.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously described a PKC-epsilon interaction with cytochrome oxidase subunit IV (COIV) that correlates with enhanced CO activity and cardiac ischemic preconditioning (PC). We therefore investigated the effects of PC and ischemia-reperfusion (I/R) injury on CO subunit levels in an anesthetized rat coronary ligation model. Homogenates prepared from the left ventricular regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. In RAR tissue, PC (2 cycles of 5-min ischemia and 5-min reperfusion) decreased the COI in the P fraction ( approximately 29% of total cellular COI), suggesting changes in interfibrillar mitochondria. After 30 min of ischemia and 120 min of reperfusion, total COI levels decreased in the RAR by 72%. Subunit Va was also downregulated by 42% following prolonged I/R in the RAR. PC administered before I/R reduced the loss of COI in the M and P fractions approximately 30% and prevented COVa losses completely. We observed no losses in subunits Vb and VIIa following I/R alone; however, significant losses occurred when PC was administered before prolonged I/R. Delivery of a cell-permeable PKC-epsilon translocation inhibitor (epsilonV1-2) to isolated rat hearts before prolonged I/R dramatically increased COI loss, suggesting that PKC-epsilon protects COI levels. We propose that additional measures to protect CO subunits when coadministered with PC may improve its cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Qilin Yu
- Department of Pharmacology and Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia, USA
| | | | | | | | | |
Collapse
|
23
|
Shimokawa J, Yokoshiki H, Tsutsui H. Impaired activation of ATP-sensitive K+ channels in endocardial myocytes from left ventricular hypertrophy. Am J Physiol Heart Circ Physiol 2007; 293:H3643-9. [PMID: 17921319 DOI: 10.1152/ajpheart.01357.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-sensitive K(+) (K(ATP)) channels are essential for maintaining the cellular homeostasis against metabolic stress. Myocardial remodeling in various pathologies may alter this adaptive response to such stress. It was reported that transmural electrophysiological heterogeneity exists in ventricular myocardium. Therefore, we hypothesized that the K(ATP) channel properties might be altered in hypertrophied myocytes from endocardium. To test this hypothesis, we determined the K(ATP) channel currents using the perforated patch-clamp technique, open cell-attached patches, and excised inside-out patches in both endocardial and epicardial myocytes isolated from hypertrophied [spontaneous hypertensive rats (SHR)] vs. normal [Wistar-Kyoto rats (WKY)] left ventricle. In endocardial cells, K(ATP) channel currents (I(K,ATP)), produced by 2 mM CN(-) and no glucose at 0 mV, were significantly smaller (P < 0.01), and time required to reach peak currents after onset of K(ATP) channel opening (Time(onset to peak)) was significantly longer (319 +/- 46 vs. 177 +/- 37 s, P = 0.01) in the SHR group (n = 9) than the WKY group (n = 13). However, in epicardial cells, there were no differences in I(K,ATP) and Time(onset to peak) between the groups (SHR, n = 12; WKY, n = 12). The concentration-open probability-response curves obtained during the exposure of open cells and excised patches to exogenous ATP revealed the impaired K(ATP) channel activation in endocardial myocytes from SHR. In conclusion, K(ATP) channel activation under metabolic stress was impaired in endocardial cells from rat hypertrophied left ventricle. The deficit of endocardial K(ATP) channels to decreased intracellular ATP might contribute to the maladaptive response of hypertrophied hearts to ischemia.
Collapse
Affiliation(s)
- Junichi Shimokawa
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
24
|
Guo D, Nguyen T, Ogbi M, Tawfik H, Ma G, Yu Q, Caldwell RW, Johnson JA. Protein kinase C-epsilon coimmunoprecipitates with cytochrome oxidase subunit IV and is associated with improved cytochrome-c oxidase activity and cardioprotection. Am J Physiol Heart Circ Physiol 2007; 293:H2219-30. [PMID: 17660387 DOI: 10.1152/ajpheart.01306.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have utilized an in situ rat coronary ligation model to establish a PKC-epsilon cytochrome oxidase subunit IV (COIV) coimmunoprecipitation in myocardium exposed to ischemic preconditioning (PC). Ischemia-reperfusion (I/R) damage and PC protection were confirmed using tetrazolium-based staining methods and serum levels of cardiac troponin I. Homogenates prepared from the regions at risk (RAR) and not at risk (RNAR) for I/R injury were fractionated into cell-soluble (S), 600 g low-speed centrifugation (L), Percoll/Optiprep density gradient-purified mitochondrial (M), and 100,000 g particulate (P) fractions. COIV immunoreactivity and cytochrome-c oxidase activity measurements estimated the percentages of cellular mitochondria in S, L, M, and P fractions to be 0, 55, 29, and 16%, respectively. We observed 18, 3, and 3% of PKC-delta, -epsilon, and -zeta isozymes in the M fraction under basal conditions. Following PC, we observed a 61% increase in PKC-epsilon levels in the RAR M fraction compared with the RNAR M fraction. In RAR mitochondria, we also observed a 2.8-fold increase in PKC-epsilon serine 729 phosphoimmunoreactivity (autophosphorylation), indicating the presence of activated PKC-epsilon in mitochondria following PC. PC administered before prolonged I/R induced a 1.9-fold increase in the coimmunoprecipitation of COIV, with anti-PKC-epsilon antisera and a twofold enhancement of cytochrome-c oxidase activity. Our results suggest that PKC-epsilon may interact with COIV as a component of the cardioprotection in PC. Induction of this interaction may provide a novel therapeutic target for protecting the heart from I/R damage.
Collapse
Affiliation(s)
- Dehuang Guo
- Department of Pharmacology & Toxicology, School of Medicine, Medical College of Georgia, Augusta, Georgia 30912-2300, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Ishii H, Ichimiya S, Kanashiro M, Amano T, Ogawa Y, Mitsuhashi H, Sakai S, Uetani T, Murakami R, Naruse K, Murohara T, Matsubara T. Effect of intravenous nicorandil and preexisting angina pectoris on short- and long-term outcomes in patients with a first ST-segment elevation acute myocardial infarction. Am J Cardiol 2007; 99:1203-7. [PMID: 17478142 DOI: 10.1016/j.amjcard.2006.12.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/13/2006] [Accepted: 12/13/2006] [Indexed: 10/23/2022]
Abstract
Published reports have indicated that prodromal angina before acute myocardial infarction (AMI) is associated with better outcomes and that nicorandil has cardioprotective effects on ischemic hearts. We compared cardioprotective effects of intravenous nicorandil with preconditioning effects by prodromal angina in patients with AMI who underwent percutaneous coronary intervention (PCI). In total, 368 patients with first ST-elevation AMI who underwent PCI were randomly assigned to receive nicorandil 12 mg or a placebo intravenously just before PCI. Subjects were assigned to 1 of 4 groups: 52 patients with prodromal angina were given placebo, 129 patients without prodromal angina were given nicorandil, 56 patients with prodromal angina were given nicorandil, and 131 patients without prodromal angina were given placebo. Coronary microvascular impairment after PCI was prevented at similar frequencies in groups with prodromal angina and groups on nicorandil. Five-year rates for freedom from major cardiac events were similar across groups with prodromal angina given placebo, without prodromal angina given nicorandil, and with prodromal angina given nicorandil (92.3%, 93.8%, and 92.9%, respectively) but were significantly lower in the group without prodromal angina given placebo (80.2%, p = 0.0019, 0.044, and 0.042, respectively). In conclusion, intravenous administration of nicorandil before PCI exerts pharmacologic cardioprotective effects similar to ischemic preconditioning in patients with AMI.
Collapse
Affiliation(s)
- Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mosca SM. Cardioprotective effects of stretch are mediated by activation of sarcolemmal, not mitochondrial, ATP-sensitive potassium channels. Am J Physiol Heart Circ Physiol 2007; 293:H1007-12. [PMID: 17400714 DOI: 10.1152/ajpheart.00051.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether sarcolemmal and/or mitochondrial ATP-sensitive potassium (K(ATP)) channels (sarcK(ATP), mitoK(ATP)) are involved in stretch-induced protection, isolated isovolumic rat hearts were assigned to the following protocols: nonstretched hearts were subjected to 20 min of global ischemia (Is) and 30 min of reperfusion, and before Is stretched hearts received 5 min of stretch + 10 min of no intervention. Stretch was induced by a transient increase in left ventricular end-diastolic pressure (LVEDP) from 10 to 40 mmHg. Other hearts received 5-hydroxydecanoate (5-HD; 100 microM), a selective inhibitor of mitoK(ATP), or HMR-1098 (20 microM), a selective inhibitor of sarcK(ATP), before the stretch protocol. Systolic function was assessed through left ventricular developed pressure (LVDP) and maximal rise in velocity of left ventricular pressure (+dP/dt(max)) and diastolic function through maximal decrease in velocity of left ventricular pressure (-dP/dt(max)) and LVEDP. Lactate dehydrogenase (LDH) release and ATP content were also measured. Stretch resulted in a significant increase of postischemic recovery and attenuation of diastolic stiffness. At 30 min of reperfusion LVDP and +dP/dt(max) were 87 +/- 4% and 92 +/- 6% and -dP/dt(max) and LVEDP were 95 +/- 9% and 10 +/- 4 mmHg vs. 57 +/- 6%, 53 +/- 6%, 57 +/- 10%, and 28 +/- 5 mmHg, respectively, in nonstretched hearts. Stretch increased ATP content and did not produce LDH release. 5-HD did not modify and HMR-1098 prevented the protection achieved by stretch. Our results show that the beneficial effects of stretch on postischemic myocardial dysfunction, cellular damage, and energetic state involve the participation of sarcK(ATP) but not mitoK(ATP).
Collapse
Affiliation(s)
- Susana M Mosca
- Centro de Investigaciones Cardiovasculares, Universidad Nacional de La Plata, 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
28
|
Andoh T, Ishiwa D, Kamiya Y, Echigo N, Goto T, Yamada Y. A1 adenosine receptor-mediated modulation of neuronal ATP-sensitive K channels in rat substantia nigra. Brain Res 2006; 1124:55-61. [PMID: 17084818 DOI: 10.1016/j.brainres.2006.09.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 09/09/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
ATP-sensitive K (K(ATP)) channels, widely expressed in cytoplasmic membranes of neurons, couple cell metabolism to excitability. They are considered to play important roles in controlling seizure activity during hypoxia and in neuroprotection against cell damage during hypoxia, ischemia and excitotoxicity. It is known that adenosine augments the opening of cardiac surface K(ATP) channels by reducing the sensitivity of these channels to ATP blockade. We investigated whether a similar modulation occurs in neuronal channels. Whole cell voltage-clamp recordings were made using rat midbrain slices to record the membrane current and conductance in principal neurons of the substantia nigra pars compacta (SNc). When the pipette solution contained 1 mM ATP, the membrane current at -60 mV and cellular conductance remained stable for at least 15 min. When slices were treated with (-)-N(6)-2-phenylisopropyl adenosine (R-PIA), a selective agonist for A(1) adenosine receptors, in the same condition, the outward current developed slowly to the amplitude of 109.9+/-26.6 pA, and conductance increased to 229+/-50% of the baseline. These changes were strongly inhibited by 200 microM tolbutamide, a K(ATP) channel blocker, suggesting that opening of K(ATP) channels mediated these changes. Pretreatment with 8-cyclopentyltheophylline (CPT), a selective A(1) adenosine receptor antagonist, abolished the outward current and conductance increases. Treatment of adenosine resulted in the similar changes sensitive to tolbutamide. These changes were abolished by CPT. These results suggest that activation of A(1) adenosine receptors promotes the opening of K(ATP) channels in principal neurons of the SNc by removing the blockade by ATP.
Collapse
Affiliation(s)
- Tomio Andoh
- Department of Anesthesiology and Critical Care Medicine, Yokohama City University Graduate School of Medicine, Kanazawa-ku, Yokohama 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Fang X, Tang W, Sun S, Huang L, Huang Z, Weil MH. Mechanism by which activation of delta-opioid receptor reduces the severity of postresuscitation myocardial dysfunction. Crit Care Med 2006; 34:2607-12. [PMID: 16775573 DOI: 10.1097/01.ccm.0000228916.81470.e1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postresuscitation myocardial dysfunction has been recognized as a leading cause of early death after initially successful cardiopulmonary resuscitation. We have previously demonstrated that opening adenosine triphosphate (ATP)-sensitive K (KATP) channels or activation of delta-opioid receptors minimized the severity of postresuscitation myocardial dysfunction and increased the duration of postresuscitation survival. In the present study, we investigated the potential mechanism of myocardial protection following delta-opioid receptor activation in a rat model of cardiac arrest and cardiopulmonary resuscitation. DESIGN Randomized prospective animal study. SETTING Animal research laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS Ventricular fibrillation was induced in 24 Sprague-Dawley rats. Mechanical ventilation and precordial compression were initiated after 8 mins of untreated ventricular fibrillation. Defibrillation was attempted after 6 mins of cardiopulmonary resuscitation. The animals were randomized to four groups: a) pentazocine (0.3 mg/kg), a delta-opioid receptor agonist; b) pentazocine pretreated with KATP channel blocker, glibenclamide (0.3 mg/kg), administered 45 mins before induction of ventricular fibrillation; c) glibenclamide pretreated alone 45 mins before induction of ventricular fibrillation; and d) placebo. Pentazocine or saline placebo was injected into the right atrium after 5 mins of untreated ventricular fibrillation. MEASUREMENTS AND MAIN RESULTS Postresuscitation myocardial function, as measured by the rate of left ventricular pressure increase at 40 mm Hg, left ventricular end-diastolic pressure, and cardiac index, was significantly improved in pentazocine-treated animals. This was associated with significantly prolonged duration of survival. Except for ease of defibrillation, the beneficial effects of pentazocine were abolished by pretreatment with the KATP channel blocker glibenclamide. CONCLUSIONS The postresuscitation myocardial protective effects provided by activation of delta-opioid receptor may be mediated via opening KATP channels.
Collapse
Affiliation(s)
- Xiangshao Fang
- Weil Institute of Critical Care Medicine, Rancho Mirage, CA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Das B, Sarkar C. Similarities between ischemic preconditioning and 17beta-estradiol mediated cardiomyocyte KATP channel activation leading to cardioprotective and antiarrhythmic effects during ischemia/reperfusion in the intact rabbit heart. J Cardiovasc Pharmacol 2006; 47:277-86. [PMID: 16495767 DOI: 10.1097/01.fjc.0000202563.54043.d6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aims of our present work were to assess whether treatment with either ischemic preconditioning (IPC) or 17beta-estradiol or both combined produce proarrhythmic or antiarrhythmic effects, and whether opening of the sarcolemmal or mitochondrial KATP channels is relatable to this effect; to assess biochemically the effects of IPC and/or 17beta-estradiol on oxidant stress and antioxidant defenses in the myocardium; to examine the effects of nitric oxide (NO) synthase inhibitor, Nomega-nitro-L-arginine methyl ester (L-NAME) pretreatment in rabbits treated with either IPC or 17beta-estradiol (because 17beta-estradiol evoked NO release has been implicated in KATP activation and IPC); and examine the effects of ischemic preconditioning and 17beta-estradiol on myocardial energy metabolism during ischemia and reperfusion in a well-standardized model of reperfusion arrhythmias in anesthetized adult male New Zealand White rabbits (n = 124) subjected to 30 minutes occlusion of the left coronary artery followed by 120 minutes of reperfusion. Pretreatment with either 17beta-estradiol (10 microg/kg, i.v.) or one cycle of ischemic preconditioning prior to the period of coronary occlusion offers significant infarct size reduction (18.6 +/- 2.2% and 19.4 +/- 1.9%, respectively versus 40.1 +/- 3.9% in saline control and 39.2 +/- 3.2% in vehicle control groups; P < 0.01) and antiarrhythmic effects. Both 17beta-estradiol and ischemic preconditioning treatment significantly attenuated the incidence of life-threatening arrhythmias like sustained VT (13% and 13%, respectively versus 100% in saline control and 100% in vehicle control groups; P < 0.001) and other arrhythmias (25% and 25%, respectively versus 100% in saline control and 100% in vehicle control groups; P < 0.001), and were quite effective in increasing the number of animals that survived without developing any arrhythmia during ischemia and reperfusion. 5-hydroxydecanoate(5-HD; 5 mg/kg, i.v.) alone offered no cardioprotective and antiarrhythmic activities. Pretreatment with 5-HD but not HMR 1883 (3 mg/kg, i.v.) abolished the beneficial effects of 17beta-estradiol and ischemia preconditioning on reperfusion-induced arrhythmias and cardioprotection suggesting that such effects have been achieved via the selective activation of cardiomyocyte mitochondrial KATP channels rather than sarcolemmal KATP channels. The reduced reperfusion arrhythmic incidence and durations induced by estrogen was not significantly altered by ICI 182 720 (2.5 mg/kg, i.v.). The lack of effect of ICI 182 720 on antiarrhythmic and infarct-limiting effects of 17beta-estradiol and ischemic preconditioning suggest that these favorable effects are rapid, direct, and non-genomic effects. This study demonstrates similarities between 17beta-estradiol and ischemic preconditioning of the rabbit myocardium in terms of cardioprotection, antiarrhythmic, and metabolic activities. Ischemic preconditioning and 17beta-estradiol appear to share a final common effector; the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Biswadeep Das
- Department of Pharmacology, Kasturba Medical College, Manipal, Karnataka, India.
| | | |
Collapse
|
31
|
Ogbi M, Johnson J. Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem J 2006; 393:191-9. [PMID: 16336199 PMCID: PMC1383677 DOI: 10.1042/bj20050757] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously identified a phorbol ester-induced PKCepsilon (protein kinase Cepsilon) interaction with the ( approximately 18 kDa) COIV [CO (cytochrome c oxidase) subunit IV] in NCMs (neonatal cardiac myocytes). Since PKCepsilon has been implicated as a key mediator of cardiac PC (preconditioning), we examined whether hypoxic PC could induce PKCepsilon-COIV interactions. Similar to our recent study with phorbol esters [Ogbi, Chew, Pohl, Stuchlik, Ogbi and Johnson (2004) Biochem. J. 382, 923-932], we observed a time-dependent increase in the in vitro phosphorylation of an approx. 18 kDa protein in particulate cell fractions isolated from NCMs subjected to 1-60 min of hypoxia. Introduction of a PKCepsilon-selective translocation inhibitor into cells attenuated this in vitro phosphorylation. Furthermore, when mitochondria isolated from NCMs exposed to 30 min of hypoxia were subjected to immunoprecipitation analyses using PKCepsilon-selective antisera, we observed an 11.1-fold increase in PKCepsilon-COIV co-precipitation. In addition, we observed up to 4-fold increases in CO activity after brief NCM hypoxia exposures that were also attenuated by introducing a PKCepsilon-selective translocation inhibitor into the cells. Finally, in Western-blot analyses, we observed a >2-fold PC-induced protection of COIV levels after 9 h index hypoxia. Our studies suggest that a PKCepsilon-COIV interaction and an enhancement of CO activity occur in NCM hypoxic PC. We therefore propose novel mechanisms of PKCepsilon-mediated PC involving enhanced energetics, decreased mitochondrial reactive oxygen species production and the preservation of COIV levels.
Collapse
Affiliation(s)
- Mourad Ogbi
- Department of Pharmacology and Toxicology, School of Medicine and the Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, U.S.A
| | - John A. Johnson
- Department of Pharmacology and Toxicology, School of Medicine and the Program in Regenerative Medicine, Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-2300, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
32
|
Crisostomo PR, Wairiuko GM, Wang M, Tsai BM, Morrell ED, Meldrum DR. Preconditioning versus postconditioning: mechanisms and therapeutic potentials. J Am Coll Surg 2006; 202:797-812. [PMID: 16648020 DOI: 10.1016/j.jamcollsurg.2005.12.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 11/28/2005] [Accepted: 12/02/2005] [Indexed: 01/11/2023]
Affiliation(s)
- Paul R Crisostomo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sun HS, Feng ZP, Miki T, Seino S, French RJ. Enhanced neuronal damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+ channels. J Neurophysiol 2005; 95:2590-601. [PMID: 16354731 DOI: 10.1152/jn.00970.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenosine triphosphate (ATP)-sensitive potassium (KATP) channels, incorporating Kir6.x and sulfonylurea receptor subunits, are weak inward rectifiers that are thought to play a role in neuronal protection from ischemic insults. However, the involvement of Kir6.2-containing KATP channel in hippocampus and neocortex has not been tested directly. To delineate the physiological roles of Kir6.2 channels in the CNS, we used knockout (KO) mice that do not express Kir6.2. Immunocytochemical staining demonstrated that Kir6.2 protein was expressed robustly in hippocampal neurons of the wild-type (WT) mice and absent in the KO. To examine neuronal sensitivity to metabolic stress in vitro, and to ischemia in vivo, we 1) exposed hippocampal slices to transient oxygen and glucose deprivation (OGD) and 2) produced focal cerebral ischemia by middle cerebral artery occlusion (MCAO). Both slice and whole animal studies showed that neurons from the KO mice were severely damaged after anoxia or ischemia, whereas few injured neurons were observed in the WT, suggesting that Kir6.2 channels are necessary to protect neurons from ischemic insults. Membrane potential recordings from the WT CA1 pyramidal neurons showed a biphasic response to OGD; a brief hyperpolarization was followed by a small depolarization during OGD, with complete recovery within 30 min after returning to normoxic conditions. By contrast, CA1 pyramidal neurons from the KO mice were irreversibly depolarized by OGD exposure, without any preceding hyperpolarization. These data suggest that expression of Kir6.2 channels prevents prolonged depolarization of neurons resulting from acute hypoxic or ischemic insults, and thus protects these central neurons from the injury.
Collapse
Affiliation(s)
- Hong-Shuo Sun
- Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
34
|
Tao J, Li S. Effects of urocortin via ion mechanisms or CRF receptors? Biochem Biophys Res Commun 2005; 336:731-6. [PMID: 16061206 DOI: 10.1016/j.bbrc.2005.07.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Accepted: 07/11/2005] [Indexed: 12/18/2022]
Abstract
Urocortin (UCN), a newly isolated peptide related to hypothalamic corticotrophin releasing factor (CRF) family, had been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, and inflammatory responses, etc. It was thought previously to be an endogenous agonist, producing the several actions previously attributed to CRF. But, recently, it was shown to directly reduce L-type calcium currents of acute isolated cardiac myocytes and T-type calcium currents in mouse spermatogenic cells via inhibiting calcium channel instead of binding first to its CRF-R2 receptors. UCN could also reduce the intracellular calcium in vascular smooth muscle cells via inhibiting calcium channel directly. Furthermore, UCN could increase the gene expression of ATP-sensitive potassium channels (K(ATP)) and activate sarcolemmal ATP-sensitive potassium current during normal or hypoxia, which could be inhibited by glibenclamide, a specific K(ATP) blocker. This review will highlight the current novel findings on the ionic mechanisms by which UCN may exert its several actions.
Collapse
Affiliation(s)
- Jin Tao
- Key Laboratory of Reproductive Medicine, Center of Human Functional Genomics, Nanjing 210029, PR China
| | | |
Collapse
|
35
|
Sperelakis N, Sunagawa M, Yokoshiki H, Seki T, Nakamura M. Regulation of ion channels in myocardial cells and protection of ischemic myocardium. Heart Fail Rev 2005; 5:139-66. [PMID: 16228141 DOI: 10.1023/a:1009832804103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- N Sperelakis
- Department of Molecular and Cellular Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | |
Collapse
|
36
|
Weber NC, Schlack W. The concept of anaesthetic-induced cardioprotection: mechanisms of action. Best Pract Res Clin Anaesthesiol 2005; 19:429-43. [PMID: 16013692 DOI: 10.1016/j.bpa.2005.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mechanisms by which ischaemia reperfusion injury can be influenced have been the subject of extensive research in the last decades. Early restoration of arterial blood flow and surgical measures to improve the ischaemic tolerance of the tissue are the main therapeutic options currently in clinical use. In experimental settings ischaemic preconditioning has been described as protecting the heart, but the practical relevance of interventions by ischaemic preconditioning is strongly limited to these experimental situations. However, ischaemia reperfusion of the heart routinely occurs in a variety of clinical situations, such as during transplantations, coronary artery bypass grafting or vascular surgery. Moreover, ischaemia reperfusion injury occurs without any surgical intervention as a transient myocardial ischaemia during a stressful anaesthetic induction. Besides ischaemic preconditioning, another form of preconditioning was discovered over 10 years ago: the anaesthetic-induced preconditioning. There is increasing evidence that anaesthetic agents can interact with the underlying pathomechanisms of ischaemia reperfusion injury and protect the myocardium by a preconditioning mechanism. Hence, the anaesthetist himself can substantially influence the critical situation of ischaemia reperfusion during the operation by choosing the right anaesthetic. A better understanding of the underlying mechanisms of anaesthetic-induced cardioprotection not only reflects an important increase in scientific knowledge but may also offer the new perspective of using different anaesthetics for targeted intraoperative myocardial protection. There are three time windows when a substance may interact with the ischaemia reperfusion injury process: (1) during ischaemia, (2) after ischaemia (i.e. during reperfusion), and (3) before ischaemia (preconditioning).
Collapse
Affiliation(s)
- Nina C Weber
- Department of Anaesthesiology, University of Düsseldorf, Moorenstrasse 5, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
37
|
Weber NC, Preckel B, Schlack W. The effect of anaesthetics on the myocardium - new insights into myocardial protection. Eur J Anaesthesiol 2005; 22:647-57. [PMID: 16163910 DOI: 10.1017/s0265021505001080] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of laboratory and clinical studies clearly indicate that exposure to anaesthetic agents can lead to a pronounced protection of the myocardium against ischaemia-reperfusion injury. Several changes in the protein structure of the myocardium that may mediate this cardioprotection have been identified. Ischaemia-reperfusion of the heart occurs in a variety of clinical situations including transplantations, coronary artery bypass grafting or vascular surgery. Ischaemia may also occur during a stressful anaesthetic induction. Early restoration of arterial blood flow and measures to improve the ischaemic tolerance of the tissue are the main therapeutic options (i.e. cardioplegia and betablockers). There exists increasing evidence that anaesthetic agents interact with the mechanisms of ischaemia-reperfusion injury and protect the myocardium by a 'preconditioning' and a 'postconditioning' mechanism. Hence, the anaesthesiologist may substantially influence the critical situation of ischaemia-reperfusion during surgery by choosing the appropriate anaesthetic agent. This review summarizes the current understanding of the mechanisms of anaesthetic-induced myocardial protection. In this context, three time windows of anaesthetic-induced cardioprotection are discussed: administration (1) during ischaemia, (2) after ischaemia-during reperfusion (postconditioning) and (3) before ischaemia (preconditioning). Possible clinical implications of these interventions will be reviewed.
Collapse
Affiliation(s)
- N C Weber
- University Hospital Düsseldorf, Department of Anaesthesiology, Düsseldorf, Germany
| | | | | |
Collapse
|
38
|
Tao J, Li S. Urocortin: a cardiac protective peptide? Biochem Biophys Res Commun 2005; 332:923-6. [PMID: 15949465 DOI: 10.1016/j.bbrc.2005.04.076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 04/13/2005] [Indexed: 11/21/2022]
Abstract
Urocortin (UCN), a member of the corticotropin-releasing hormone (CRH)-related peptides, has been reported to play biologically diverse roles in several systems such as cardiovascular, reproductive, appetite, stress, inflammatory responses, etc. In heart, it was reported to have protective effects. On the other hand, it was also reported to have cardiac inotropic and hypertrophic effects and hence to cause cardiac remodeling. This paper will review the effects of UCN in cardiac system.
Collapse
Affiliation(s)
- Jin Tao
- Department of Cardiovascular Pharmacology, Nanjing Medical University, Nanjing 210029, PR China
| | | |
Collapse
|
39
|
Ueda H, Hayashi T, Tsumura K, Yoshimaru K, Nakayama Y, Yoshikawa J. Intravenous nicorandil can reduce QT dispersion and prevent bradyarrhythmia during percutaneous transluminal coronary angioplasty of the right coronary artery. J Cardiovasc Pharmacol Ther 2005; 9:179-84. [PMID: 15378138 DOI: 10.1177/107424840400900305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nicorandil, a potassium channel opener, is used for the treatment of angina pectoris and has a pharmacologic preconditioning effect. This study evaluated whether intravenous nicorandil reduces QT dispersion and prevents bradyarrhythmia during percutaneous transluminal coronary angioplasty (PTCA) of the right coronary artery. METHODS A historical cohort study on the effect of nicorandil on QT dispersion and bradyarrhythmia was conducted. Fifty patients who underwent PTCA of the right coronary artery were enrolled. The patients were divided into a nicorandil (n = 25) group and control group (n = 25). Nicorandil was injected at 4 mg/h continuously 1 hour before PTCA in the nicorandil group. QT dispersion was measured at 1 hour before PTCA (baseline), immediately before PTCA, and 1 minute after the initiation of the first balloon inflation. RESULTS QT dispersion at 1 minute after the initiation of the first balloon inflation in the control group increased significantly (QT dispersion: 37.1 +/- 17.8 msec and 21.7 +/- 12.2 msec, respectively, P < .001 vs baseline in the control group), and this was larger than at 1 minute after the initiation of the first balloon inflation in the nicorandil group (QT dispersion: 37.1 +/- 17.8 msec and 20.8 +/- 9.4 msec, respectively, P < .001). By two-way repeated measures analysis of variance, there were significant interactions between the time factor and the grouping factor in QT dispersion (P < .001). Bradyarrhythmia was observed in 6 patients in the control group, but none was observed in the nicorandil group. CONCLUSIONS Intravenous nicorandil reduces QT dispersion and prevents bradyarrhythmia during PTCA of the right coronary artery.
Collapse
Affiliation(s)
- Hiroyasu Ueda
- Department of Cardiology, Ishikiriseiki Hospital, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Kher A, Wang M, Tsai BM, Pitcher JM, Greenbaum ES, Nagy RD, Patel KM, Wairiuko GM, Markel TA, Meldrum DR. SEX DIFFERENCES IN THE MYOCARDIAL INFLAMMATORY RESPONSE TO ACUTE INJURY. Shock 2005; 23:1-10. [PMID: 15614124 DOI: 10.1097/01.shk.0000148055.12387.15] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hemorrhage, trauma, ischemia/reperfusion, burn, and sepsis each lead to cardiac dysfunction. These insults lead to an inflammatory cascade, which plays an important role in this process. Gender has been shown to influence the inflammatory response, as well as outcomes after acute injury. The mechanisms by which gender affects the inflammatory response to and the outcome of acute injury are being actively investigated. We searched PubMed for articles in the English language by using the search words sex, gender, estrogen, testosterone, inflammation, acute injury, ischemia reperfusion, sepsis, trauma, and burns. These were used in various combinations. We read the abstracts of the relevant titles to confirm their relevance, and the full articles were then extracted. References from extracted articles were checked for any additional relevant articles. This review will examine evidence for gender differences in the outcome to acute injury, explain the myocardial inflammatory response to acute injury, and elucidate the various mechanisms by which gender affects the myocardial response to acute injury.
Collapse
Affiliation(s)
- Ajay Kher
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 42602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simpson D, Wellington K. Nicorandil: a review of its use in the management of stable angina pectoris, including high-risk patients. Drugs 2004; 64:1941-55. [PMID: 15329045 DOI: 10.2165/00003495-200464170-00012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Nicorandil (Adancor, Angicor, Dancor, Nikoril [Europe], Ikorel [Europe and Oceania], Sigmart [Japan, Korea and Taiwan]) is an adenosine triphosphate (ATP)-sensitive potassium (KATP) channel agonist with nitrate-like properties used in the management of stable angina pectoris. With well established monotherapeutic antianginal activity and a beneficial effect (when added to optimal antianginal therapy) on clinical outcomes in high-risk patients with stable angina, twice-daily oral nicorandil is a useful alternative or addition to other antianginal therapy.
Collapse
Affiliation(s)
- Dene Simpson
- Adis International Limited, Auckland, New Zealand.
| | | |
Collapse
|
42
|
Tsai BM, Wang M, March KL, Turrentine MW, Brown JW, Meldrum DR. Preconditioning: evolution of basic mechanisms to potential therapeutic strategies. Shock 2004; 21:195-209. [PMID: 14770032 DOI: 10.1097/01.shk.0000114828.98480.e0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preconditioning describes the phenomenon by which a traumatic or stressful stimulus confers protection against subsequent injury. Originally recognized in dog heart subjected to ischemic challenges, preconditioning has been demonstrated in multiple species, can be induced by various stimuli, and is applicable in different organ systems. Tremendous progress has been made elucidating the signal transduction cascade of preconditioning. Preconditioning represents a potent tissue-protective condition, and mechanistic understanding may allow safe clinical application. This review recalls the history of preconditioning and how it relates to the history of the investigation of endogenous adaptation; summarizes the current mechanistic understanding of acute preconditioning; outlines the signal transduction cascade leading to the development of delayed preconditioning; discusses preconditioning in noncardiac tissue; and explores the potential of using preconditioning clinically.
Collapse
Affiliation(s)
- Ben M Tsai
- Section of Cardiothoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ooie T, Takahashi N, Nawata T, Arikawa M, Yamanaka K, Kajimoto M, Shinohara T, Shigematsu S, Hara M, Yoshimatsu H, Saikawa T. Ischemia-induced translocation of protein kinase C-epsilon mediates cardioprotection in the streptozotocin-induced diabetic rat. Circ J 2004; 67:955-61. [PMID: 14578604 DOI: 10.1253/circj.67.955] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The present study investigated the role of translocation of protein kinase C (PKC) during ischemia/reperfusion in cardioprotection in the streptozotocin (STZ)-induced diabetic rat. Twelve weeks after injection of STZ or vehicle, male Wister-King rat hearts were isolated and perfused in the presence or absence of 50 nmol/L staurosporine or 2 mumol/L chelerythrine using a Langendorff apparatus. Thirty minutes of global ischemia was followed by the same period of reperfusion. The time to onset of contracture was determined during ischemia. The recovery of left ventricular function, incidence of ventricular tachycardia/fibrillation (VT/VF), and amount of released creatine kinase (CK) were determined during the reperfusion period. Translocation of the PKC-alpha, -beta, -delta and -epsilon isoforms was determined by immunoblotting. Development of contracture was delayed, the recovery of left ventricular function was greater, and the incidence of VT/VF and amount of released CK were lower in diabetic than in control hearts. Ischemia caused an increase in the particulate/cytosolic fraction ratio of the PKC- epsilon isoform in the diabetic and control hearts. However, this translocation of PKC-epsilon during ischemia was transient in the control heart, but was persistent in the diabetic heart. The ischemia-induced translocation of PKC-epsilon was abolished by chelerythrine perfusion. These results suggest that persistent translocation of PKC-epsilon during ischemia plays a major role in cardioprotection against ischemia/reperfusion injury in STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Tatsuhiko Ooie
- Department of Laboratory Medicine, Oita Medical University, Hasama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lorenzi B, McMurray G, Jarvis G, Brading AF. Preconditioning protects the guinea-pig urinary bladder against ischaemic conditions in vitro. Neurourol Urodyn 2003; 22:687-92. [PMID: 14595616 DOI: 10.1002/nau.10155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AIMS To investigate the ability of ischaemic preconditioning (IPC) to protect guinea-pig detrusor from damage caused by a subsequent more prolonged exposure to ischaemic conditions. MATERIALS AND METHODS Smooth muscle strips were mounted for tension recording in small organ baths continuously superfused with Krebs' solution at 37 degrees C. Ischaemia was mimicked by removing oxygen and glucose from the superfusing solution. Contractile responses to electrical field stimulation (EFS) and carbachol were monitored. Three regimes of preconditioning were examined: 15, 10, and 5 min of ischaemic conditions followed by 15, 10, and 5 min of normal conditions, respectively. RESULTS Without preconditioning, nerve-mediated responses were significantly and proportionally reduced by periods of ischaemic conditions lasting for 45, 60, and 90 min, but recovered fully after exposure to ischaemic conditions for 30 min. The recovery of the responses to EFS was significantly improved in preconditioned strips when the period of ischaemic conditions was 45 or 60 min. However, no significant differences were seen with preconditioning when the period of ischaemic conditions was 90 min. The recovery of responses to carbachol was much greater than for the responses to EFS, and no significant differences were found between control and preconditioned strips. CONCLUSIONS It is suggested that in vivo short periods of transient ischaemia may be able to protect the guinea-pig bladder from the impairment associated with longer periods of ischaemia and reperfusion, which might happen in obstructed micturition. Our results also indicate that the phenomenon affects mainly the intrinsic nerves, which are more susceptible to ischaemic damage than the smooth muscle.
Collapse
Affiliation(s)
- Bruno Lorenzi
- University Department of Pharmacology, Oxford, United Kingdom
| | | | | | | |
Collapse
|
45
|
Hu K, Huang CS, Jan YN, Jan LY. ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C. Neuron 2003; 38:417-32. [PMID: 12741989 DOI: 10.1016/s0896-6273(03)00256-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
ATP-sensitive potassium (K(ATP)) channels activate under metabolic stress to protect neurons and cardiac myocytes. However, excessive channel activation may cause arrhythmia in the heart and silence neurons in the brain. Here, we report that PKC-mediated downregulation of K(ATP) channel number, via dynamin-dependent channel internalization, can act as a brake mechanism to control K(ATP) activation. A dileucine motif in the pore-lining Kir6.2 subunit of K(ATP), but not the site of PKC phosphorylation for channel activation, is essential for PKC downregulation. Whereas K(ATP) activation results in a rapid shortening of the action potential duration (APD) in metabolically inhibited ventricular myocytes, adenosine receptor stimulation and consequent PKC-mediated K(ATP) channel internalization can act as a brake to lessen this APD shortening. Likewise, in hippocampal CA1 neurons under metabolic stress, PKC-mediated, dynamin-dependent K(ATP) channel internalization can also act as a brake to dampen the rapid decline of excitability due to K(ATP) activation.
Collapse
Affiliation(s)
- Keli Hu
- Howard Hughes Medical Institute, Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
46
|
Tsuchida A, Miura T, Tanno M, Sakamoto J, Miki T, Kuno A, Matsumoto T, Ohnuma Y, Ichikawa Y, Shimamoto K. Infarct size limitation by nicorandil: roles of mitochondrial K(ATP) channels, sarcolemmal K(ATP) channels, and protein kinase C. J Am Coll Cardiol 2002; 40:1523-30. [PMID: 12392845 DOI: 10.1016/s0735-1097(02)02268-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study aimed to examine:1) whether nicorandil protects the ischemic myocardium by activating sarcolemmal adenosine triphosphate (ATP)-sensitive K(+) (sarcK(ATP)) channels or the mitochondrial K(ATP) (mitoK(ATP)) channels, and 2) whether protein kinase C (PKC) activity is necessary for cardioprotection afforded by nicorandil. BACKGROUND Nicorandil is a hybrid of nitrate and a K(ATP) channel opener that activates the sarcK(ATP) and mitoK(ATP) channels. Both of these K(ATP) channels are regulated by PKC, and this kinase may be activated by nitric oxide and also by oxygen free radicals (OFR) generated after mitoK(ATP) channel opening. METHODS In isolated rabbit hearts, infarction was induced by 30-min global ischemia/2-h reperfusion with monitoring of the activation recovery interval (ARI), an index of action potential duration. Protein kinase C translocation was assessed by Western blotting. RESULTS Nicorandil did not change ARI before ischemia, but it accelerated ARI shortening after the onset of ischemia and reduced infarct size by 90%. A sarcK(ATP) channel selective blocker, HMR1098, abolished acceleration of ischemia-induced ARI-shortening by nicorandil and eliminated 40% of nicorandil-induced infarct size limitation. A mitoK(ATP) channel selective blocker, 5-hydroxydecanoate, abolished the protection afforded by nicorandil without affecting ARI. Cardioprotection by nicorandil was inhibited neither by an OFR scavenger, N-2-mercaptopropionylglycine nor by a PKC inhibitor, calphostin C, at a dose that was capable of inhibiting PKC- epsilon translocation after preconditioning. CONCLUSIONS Both the sarcK(ATP) and mitoK(ATP) channels are involved in anti-infarct tolerance afforded by nicorandil, but PKC activation induced by nitric oxide or OFR generation, if any, does not play a crucial role.
Collapse
Affiliation(s)
- Akihito Tsuchida
- Second Department of Internal Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Han J, Kim N, Joo H, Kim E, Earm YE. ATP-sensitive K(+) channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol Heart Circ Physiol 2002; 283:H1545-54. [PMID: 12234808 DOI: 10.1152/ajpheart.01052.2001] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present investigation tested the hypothesis that nitric oxide (NO) potentiates ATP-sensitive K(+) (K(ATP)) channels by protein kinase G (PKG)-dependent phosphorylation in rabbit ventricular myocytes with the use of patch-clamp techniques. Sodium nitroprusside (SNP; 1 mM) potentiated K(ATP) channel activity in cell-attached patches but failed to enhance the channel activity in either inside-out or outside-out patches. The 8-(4-chlorophenylthio)-cGMP Rp isomer (Rp-CPT-cGMP, 100 microM) suppressed the potentiating effect of SNP. 8-(4-Chlorophenylthio)-cGMP (8-pCPT-cGMP, 100 microM) increased K(ATP) channel activity in cell-attached patches. PKG (5 U/microl) added together with ATP and cGMP (100 microM each) directly to the intracellular surface increased the channel activity. Activation of K(ATP) channels was abolished by the replacement of ATP with ATPgammaS. Rp-pCPT-cGMP (100 microM) inhibited the effect of PKG. The heat-inactivated PKG had little effect on the K(ATP) channels. Protein phosphatase 2A (PP2A, 1 U/ml) reversed the PKG-mediated K(ATP) channel activation. With the use of 5 nM okadaic acid (a PP2A inhibitor), PP2A had no effect on the channel activity. These results suggest that the NO-cGMP-PKG pathway contributes to phosphorylation of K(ATP) channels in rabbit ventricular myocytes.
Collapse
Affiliation(s)
- Jin Han
- Department of Physiology and Biophysics, College of Medicine, Inje University, Busan 614-735, Korea.
| | | | | | | | | |
Collapse
|
48
|
Thorneloe KS, Maruyama Y, Malcolm AT, Light PE, Walsh MP, Cole WC. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B. J Physiol 2002; 541:65-80. [PMID: 12015420 PMCID: PMC2290299 DOI: 10.1113/jphysiol.2002.018101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The molecular identity of smooth muscle ATP-sensitive K(+) channels (K(ATP)) is not established with certainty. Patch clamp methods were employed to determine if recombinant K(ATP) channels composed of Kir6.1 and SUR2B subunits expressed by human embryonic kidney (HEK293) cells share an identical modulation by protein kinase C (PKC) with the vascular K(NDP) subtype of K(ATP) channel. The open probability of Kir6.1/SUR2B channels was determined before and after sequential exposure to pinacidil (50 microM) and the combination of pinacidil and phorbol 12,13-dibutyrate (PdBu; 50 nM). Treatment with PdBu caused a decline in channel activity, but this was not seen with an inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate (PdDe; 50 nM). Angiotensin II (0.1 microM) induced a similar inhibition of Kir6.1/SUR2B channels in cells expressing angiotensin AT(1) receptors. The effects of PdBu and angiotensin II were blocked by the PKC inhibitor, chelerythrine (3 microM). Purified PKC inhibited Kir6.1/SUR2B activity (in 0.5 mM ATP/ 0.5 mM ADP), and the inhibition was blocked by a specific peptide inhibitor of PKC, PKC(19-31). In contrast, PdBu increased the activity of recombinant K(ATP) channels composed of Kir6.2 and SUR2B, or the combination of Kir6.1, Kir6.2 and SUR2B subunits. The results indicate that the modulation by PKC of Kir6.1/SUR2B, but not Kir6.2/SUR2B or Kir6.1-Kir6.2/SUR2B channel gating mimics that of native vascular K(NDP) channels. Physiological inhibition of vascular K(ATP) current by vasoconstrictors which utilize intracellular signalling cascades involving PKC is concluded to involve the modulation of K(NDP) channel complexes composed of four Kir6.1 and their associated SUR2B subunits.
Collapse
Affiliation(s)
- Kevin S Thorneloe
- Smooth Muscle Research Group and Canadian Institutes of Health Research Group in Regulation of Vascular Contractility, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
49
|
Jew KN, Moore RL. Exercise training alters an anoxia-induced, glibenclamide-sensitive current in rat ventricular cardiocytes. J Appl Physiol (1985) 2002; 92:1473-9. [PMID: 11896012 DOI: 10.1152/japplphysiol.00513.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of training on properties of a sarcolemmal ATP-sensitive K+ current (I(K(ATP))) was examined in left ventricular cardiocytes isolated from sedentary (Sed) and trained (Tr) female Sprague-Dawley rats. Whole cell patch-clamp techniques were used to characterize I(K(ATP)), an anoxia-inducible, glibencamide-sensitive current. An anoxic condition was induced by superfusing cells with a buffer that was equilibrated with 100% N(2), maintained under a layer of argon, and that contained 2-deoxy-D-glucose. Over a 1-h period of anoxia, 59% of Tr cells and 85% Sed cells expressed I(K(ATP)). In those cells that did express I(K(ATP)), the time to expression of the current during the anoxic period occurred significantly later in cells from the Tr group compared with the Sed. Peak I(K(ATP)) density was significantly lower in the Tr cells compared with the Sed cells. These results indicate that the onset and magnitude of I(K(ATP)) were altered by training. These alterations in I(K(ATP)) may be reflective of processes that contribute to training-induced cardioprotection against ischemia-reperfusion damage.
Collapse
Affiliation(s)
- Korinne N Jew
- Department of Kinesiology and Applied Physiology, University of Colorado Cardiovascular Institute, University of Colorado, Boulder, Colorado 80309-0354, USA
| | | |
Collapse
|
50
|
Gomma AH, Purcell HJ, Fox KM. Potassium channel openers in myocardial ischaemia: therapeutic potential of nicorandil. Drugs 2002; 61:1705-10. [PMID: 11693460 DOI: 10.2165/00003495-200161120-00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Potassium channel openers or agonists represent a novel new class of compounds in the treatment of a range of cardiovascular disorders, particularly angina pectoris and hypertension. Nicorandil is the only clinically available potassium channel opener with antianginal effects, and with comparable efficacy and tolerability to existing antianginal therapy. It confers benefits through a dual action: opening the mitochondrial KATP channels leading to preconditioning of the myocardium and a nitrate-like effect. Myocardial preconditioning is important in reducing infarct size, severity of stunning and cardiac arrhythmias. These effects make nicorandil a unique antianginal compound that reduces both pre- and after-load and improves coronary blood flow. Comparative and noncomparative studies support the use of nicorandil as monotherapy or in combination with other antianginal therapy for stable angina pectoris. However, large studies are required to confirm its role in the treatment of acute coronary syndromes despite the favourable results from small studies.
Collapse
Affiliation(s)
- A H Gomma
- Royal Brompton Hospital, London, England.
| | | | | |
Collapse
|