1
|
Guo X, Zhong J, Zhao Y, Fu Y, Sun LY, Yuan A, Liu J, Chen AF, Pu J. LXRα Promotes Abdominal Aortic Aneurysm Formation Through UHRF1 Epigenetic Modification of miR-26b-3p. Circulation 2024; 150:30-46. [PMID: 38557060 PMCID: PMC11219073 DOI: 10.1161/circulationaha.123.065202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a severe aortic disease without effective pharmacological approaches. The nuclear hormone receptor LXRα (liver X receptor α), encoded by the NR1H3 gene, serves as a critical transcriptional mediator linked to several vascular pathologies, but its role in AAA remains elusive. METHODS Through integrated analyses of human and murine AAA gene expression microarray data sets, we identified NR1H3 as a candidate gene regulating AAA formation. To investigate the role of LXRα in AAA formation, we used global Nr1h3-knockout and vascular smooth muscle cell-specific Nr1h3-knockout mice in 2 AAA mouse models induced with angiotensin II (1000 ng·kg·min; 28 days) or calcium chloride (CaCl2; 0.5 mol/L; 42 days). RESULTS Upregulated LXRα was observed in the aortas of patients with AAA and in angiotensin II- or CaCl2-treated mice. Global or vascular smooth muscle cell-specific Nr1h3 knockout inhibited AAA formation in 2 mouse models. Loss of LXRα function prevented extracellular matrix degeneration, inflammation, and vascular smooth muscle cell phenotypic switching. Uhrf1, an epigenetic master regulator, was identified as a direct target gene of LXRα by integrated analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing. Susceptibility to AAA development was consistently enhanced by UHRF1 (ubiquitin-like containing PHD and RING finger domains 1) in both angiotensin II- and CaCl2-induced mouse models. We then determined the CpG methylation status and promoter accessibility of UHRF1-mediated genes using CUT&Tag (cleavage under targets and tagmentation), RRBS (reduced representation bisulfite sequencing), and ATAC-seq (assay for transposase-accessible chromatin with sequencing) in vascular smooth muscle cells, which revealed that the recruitment of UHRF1 to the promoter of miR-26b led to DNA hypermethylation accompanied by relatively closed chromatin states, and caused downregulation of miR-26b expression in AAA. Regarding clinical significance, we found that underexpression of miR-26b-3p correlated with high risk in patients with AAA. Maintaining miR-26b-3p expression prevented AAA progression and alleviated the overall pathological process. CONCLUSIONS Our study reveals a pivotal role of the LXRα/UHRF1/miR-26b-3p axis in AAA and provides potential biomarkers and therapeutic targets for AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Animals
- Liver X Receptors/metabolism
- Liver X Receptors/genetics
- Epigenesis, Genetic
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Humans
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Mice
- Mice, Knockout
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Male
- Disease Models, Animal
- Mice, Inbred C57BL
- DNA Methylation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Angiotensin II/pharmacology
Collapse
Affiliation(s)
- Xiao Guo
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Zhong
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Fu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-yue Sun
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ancai Yuan
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education (J.L.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alex F. Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital (A.F.C.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital (X.G., J.Z., Y.Z., Y.F., L.-y.S., A.Y., J.L., J.P.), Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
3
|
He Y, Qin C, Sun Z, Liu Z, Chen Y, Meng K. Atomic force microscopy application to study of the biomechanical properties of the aortic intima in the context of early atherosclerosis. Microsc Res Tech 2022; 85:3411-3417. [PMID: 35804436 DOI: 10.1002/jemt.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022]
Abstract
Atherosclerosis is characterized by the infiltration of macrophages, accumulation of lipids, activation of endothelial cells and synthesis of extracellular matrix by vascular smooth muscle cells. However, there have been few atomic force microscopy (AFM) studies of the aortic intima in situ in the context of atherosclerosis. By employing a customized liquid cell for AFM, we investigated the aortic intima obtained from male C57BL/6 ApoE-deficient mice (ApoE-/- ) aged 14 weeks and male C57BL/6 ApoE-sufficient mice (ApoE+/+ ) aged between 18 and 26 weeks that were fed a high-fat and high-cholesterol diet for 4 weeks and performed force spectroscopy mapping of the biomechanical properties of the intima. In the aortas of ApoE-deficient mice, the intima became stiffer than that of ApoE-sufficient mice. In addition, the cytoskeleton of endothelial cells was enlarged, and extracellular matrix accumulated. The biomechanical properties of the aortic intima are altered in early atherogenesis, which may be induced by the enlargement of the endothelial cell cytoskeleton and the increased synthesis of extracellular matrix by activated smooth muscle cells.
Collapse
Affiliation(s)
- Yin He
- Emergency Department, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Chuanyu Qin
- Department of Cardiology of Second Affiliated Hospital of Qiqihaer Medical Collage, Qiqihar, Heilongjiang, People's Republic of China
| | - Zhifu Sun
- Otolaryngology Head and Neck Surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Zesen Liu
- Department of Cardiology of Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Kang Meng
- Department of Cardiology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| |
Collapse
|
4
|
Hua Y, Zhang J, Liu Q, Su J, Zhao Y, Zheng G, Yang Z, Zhuo D, Ma C, Fan G. The Induction of Endothelial Autophagy and Its Role in the Development of Atherosclerosis. Front Cardiovasc Med 2022; 9:831847. [PMID: 35402552 PMCID: PMC8983858 DOI: 10.3389/fcvm.2022.831847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/29/2022] Open
Abstract
Increasing attention is now being paid to the important role played by autophagic flux in maintaining normal blood vessel walls. Endothelial cell dysfunction initiates the development of atherosclerosis. In the endothelium, a variety of critical triggers ranging from shear stress to circulating blood lipids promote autophagy. Furthermore, emerging evidence links autophagy to a range of important physiological functions such as redox homeostasis, lipid metabolism, and the secretion of vasomodulatory substances that determine the life and death of endothelial cells. Thus, the promotion of autophagy in endothelial cells may have the potential for treating atherosclerosis. This paper reviews the role of endothelial cells in the pathogenesis of atherosclerosis and explores the molecular mechanisms involved in atherosclerosis development.
Collapse
Affiliation(s)
- Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhang
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Liu
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Su
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guobin Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhihui Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Danping Zhuo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Roy A, Saqib U, Baig MS. NOS1-mediated macrophage and endothelial cell interaction in the progression of atherosclerosis. Cell Biol Int 2021; 45:1191-1201. [PMID: 33501735 DOI: 10.1002/cbin.11558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/03/2020] [Accepted: 01/24/2021] [Indexed: 01/06/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease arising due to an imbalance in lipid metabolism and maladaptive immune response driven by the accumulation of cholesterol-laden macrophages in the artery wall. Interactions between monocytes/macrophages and endothelial cells play an essential role in the pathogenesis of atherosclerosis. In our current study, nitric oxide synthase 1 (NOS1)-derived nitric oxide (NO) has been identified as a regulator of macrophage and endothelial cell interaction. Oxidized LDL (OxLDL) activates NOS1, which results in the expression of CD40 ligand in macrophages. OxLDL-stimulated macrophages produce some soluble factors which increase the CD40 receptor expression in endothelial cells. This increases the interaction between the macrophages and endothelial cells, which leads to an increase in the inflammatory response. Inhibition of NOS1-derived NO might serve as an effective strategy to reduce foam cell formation and limit the extent of atherosclerotic plaque expansion.
Collapse
Affiliation(s)
- Anjali Roy
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Uzma Saqib
- Discipline of Chemistry, Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| | - Mirza S Baig
- Discipline of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, Madhya Pradesh, India
| |
Collapse
|
6
|
Le Master E, Ahn SJ, Levitan I. Mechanisms of endothelial stiffening in dyslipidemia and aging: Oxidized lipids and shear stress. CURRENT TOPICS IN MEMBRANES 2020; 86:185-215. [PMID: 33837693 PMCID: PMC8168803 DOI: 10.1016/bs.ctm.2020.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vascular stiffening of the arterial walls is well-known as a key factor in aging and the development of cardiovascular disease; however, the role of endothelial stiffness in vascular dysfunction is still an emerging topic. In this review, the authors discuss the impact of dyslipidemia, oxidized lipids, substrate stiffness, age and pro-atherogenic disturbed flow have on endothelial stiffness. Furthermore, we investigate several mechanistic pathways that are key contributors in endothelial stiffness and discuss their physiological effects in the onset of atherogenesis in the disturbed flow regions of the aortic vasculature. The findings in this chapter describe a novel paradigm of synergistic interaction of plasma dyslipidemia/oxidized lipids and pro-atherogenic disturbed shear stress, as well as aging has on endothelial stiffness and vascular dysfunction.
Collapse
Affiliation(s)
- Elizabeth Le Master
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Sang Joon Ahn
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Irena Levitan
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
7
|
'Statins in retinal disease'. Eye (Lond) 2018; 32:981-991. [PMID: 29556012 DOI: 10.1038/s41433-018-0066-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/05/2018] [Accepted: 02/12/2018] [Indexed: 01/14/2023] Open
Abstract
Statins are known for their blood cholesterol-lowering effect and are widely used in patients with cardiovascular and metabolic diseases. Research over the past three decades shows that statins have diverse effects on different pathophysiological pathways involved in angiogenesis, inflammation, apoptosis, and anti-oxidation, leading to new therapeutic options. Recently, statins have attracted considerable attention for their immunomodulatory effect. Since immune reactivity has been implicated in a number of retinal diseases, such as uveitis, age-related macular degeneration (AMD) and diabetic retinopathy, there is now a growing body of evidence supporting the beneficial effects of statins in these retinopathies. This review evaluates the relationship between statins and the pathophysiological basis of these diseases, focusing on their potential role in treatment. A PubMed database search and literature review was conducted. Among AMD patients, there is inconsistent evidence regarding protection against development of early AMD or delaying disease progression; though they have been found to reduce the risk of developing choroidal neovascular membranes (CNV). In patients with retinal vein occlusion, there was no evidence to support a therapeutic benefit or a protective role with statins. In patients with diabetic retinopathy, statins demonstrate a reduction in disease progression and improved resolution of diabetic macular oedema (DMO). Among patients with uveitis, statins have a protective effect by reducing the likelihood of uveitis development.
Collapse
|
8
|
Srinivasan S, Dehghani C, Pritchard N, Edwards K, Russell AW, Malik RA, Efron N. Ophthalmic and clinical factors that predict four-year development and worsening of diabetic retinopathy in type 1 diabetes. J Diabetes Complications 2018; 32:67-74. [PMID: 29097055 DOI: 10.1016/j.jdiacomp.2017.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
AIMS To investigate the role of ophthalmic imaging markers - namely retinal thickness measures and corneal nerve morphology - in predicting four-year development and worsening of diabetic retinopathy (DR) in type 1 diabetes (T1DM). METHODS 126 eyes of 126 participants with T1DM were examined at baseline and after four years. Diabetic retinopathy (DR) was graded using the Early Treatment Diabetic Retinopathy Study scale. HbA1c, nephropathy, neuropathy, cardiovascular factors, and retinal thickness using optical coherence tomography (OCT) and corneal nerve fiber length (CNFL) using corneal confocal microscopy at baseline were assessed by univariate and step-wise multiple logistic regression, and their diagnostic capabilities for single and combined measures. RESULTS Four-year development of DR was 19% (13 of 68 without DR at baseline). Worsening of DR was seen in 43% (25 of 58 with DR at baseline). When adjusted for potential confounders, a lower CNFL (AUC=0.637, p=0.040, 64% sensitivity and 64% specificity at 14.9mm/mm2 cut-off), higher triglycerides (AUC=0.669, p=0.012, 64% sensitivity, 62% specificity at 0.85mmol/L) and an elevated vibration threshold (AUC=0.708, p=0.002, 96% sensitivity, 40% specificity at 3.55Hz) were significant predictors for four-year worsening of DR. CONCLUSIONS Reduced CNFL, elevated vibration perception threshold and higher triglycerides can predict future worsening of DR.
Collapse
Affiliation(s)
- Sangeetha Srinivasan
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia.
| | - Cirous Dehghani
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Nicola Pritchard
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Katie Edwards
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - Anthony W Russell
- Princess Alexandra Hospital, Woolloongabba, Queensland, Australia; School of Medicine, University of Queensland, Woolloongabba, Queensland, Australia
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Education City, Doha, Qatar; Central Manchester University Hospitals Foundation Trust, Manchester, UK
| | - Nathan Efron
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
9
|
Constantinescu A, Spaan J, Arkenbout EK, Vink H, VanTeeffelen J. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb Haemost 2017; 105:790-801. [DOI: 10.1160/th10-08-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/09/2010] [Indexed: 11/05/2022]
Abstract
SummaryA thick endothelial glycocalyx contributes to the barrier function of vascular endothelium in macro- and microcirculation. We hypothesised in the current study that diet-induced hyperlipidaemia perturbs the glycocalyx, resulting in decreased dimensions of this layer and increased transendothelial lipoprotein leakage in capillaries. Glycocalyx thickness was measured in mouse cremaster muscle capillaries by intravital microscopy from the distance between flowing red blood cells and the endothelial surface. In control C57BL/6 mice on standard chow, glycocalyx thickness measured 0.58 ± 0.01 (mean ± SEM) μm, and no lipo-proteins were observed in the tissue. After three months administration of an either mild or severe high-fat / high-cholesterol diet (HFC) to C57BL/6 and ApoE3-Leiden mice, circulating large lipoproteins appeared into the subendothelial space in an increasing proportion of cre-master capillaries, and these capillaries displayed reduced glycocalyx dimensions of 0.40 ± 0.02 and 0.30 ± 0.01 μm (C57BL/6 mice), and 0.37 ± 0.01 and 0.28 ± 0.01 μm (ApoE3-Leiden mice), after the mild and severe HFC diet, respectively. The chylomicron nature of the accumulated lipoproteins was confirmed by observations of subendothelial deposition of DiI-labeled chylomicrons in capillaries after inducing acute glycocalyx degradation by heparitinase in normolipidaemic C57BL/6 mice. It is concluded that while under control conditions the endothelial glycocalyx contributes to the vascular barrier against transvascular lipoprotein leakage in the microcirculation, diet-induced hyperlipidaemia reduces the thickness of the glycocalyx, thereby facilitating leakage of chylomicrons across the capillary wall.
Collapse
|
10
|
Tongxinluo Regulates Expression of Tight Junction Proteins and Alleviates Endothelial Cell Monolayer Hyperpermeability via ERK-1/2 Signaling Pathway in Oxidized Low-Density Lipoprotein-Induced Human Umbilical Vein Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4198486. [PMID: 28400842 PMCID: PMC5376437 DOI: 10.1155/2017/4198486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/13/2017] [Accepted: 03/02/2017] [Indexed: 12/26/2022]
Abstract
Vascular hyperpermeability resulting from distortion of endothelial junctions is associated with a number of cardiovascular diseases. Endothelial tight junction regulates the paracellular permeability of macromolecules, a function of Human Umbilical Vein Endothelial Cells (HUVEC) monolayers that can be regulated by oxidized Low-density Lipoprotein (ox-LDL). However, the understanding of drug regulation of vascular hyperpermeability is so far limited. This study thus aimed to investigate the role of Tongxinluo (TXL) in the maintenance of the vascular endothelial paracellular permeability. Here, changes in permeability were determined by measuring the paracellular flux of FITC-dextran 40000 (FD40), while protein expression and intercellular distribution were examined by western blot and immunofluorescence assay, respectively. We found that TXL alleviated the ox-LDL-induced increase in flux of FD40 and then reduced the hyperpermeability. Moreover, ox-LDL-induced disruptions of ZO-1, occludin, and claudin1 were also restored. This is via the activation of ERK1/2 in the vascular endothelial cells. Our results provide insights into the molecular mechanism by which TXL alleviates ox-LDL-induced hyperpermeability and provide the basis for further investigations of TXL as regulators of vascular barrier function.
Collapse
|
11
|
Mehta JL, Dayuan Li. Facilitative interaction between angiotensin II and oxidised LDL in cultured human coronary artery endothelial cells. J Renin Angiotensin Aldosterone Syst 2017; 2:S70-S76. [PMID: 28095226 DOI: 10.1177/14703203010020011201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Several studies have shown that angiotensin II (Ang II) and oxidised low-density lipoprotein (ox-LDL) are critical factors in atherosclerosis. In this study, we examined the molecular basis of mutually facilitative interactions between Ang II and ox-LDL in human coronary artery endothelial cells (HCAECs). Methods and results We observed that incubation of cultured HCAECs with Ang II (10-12 to 10-6 M) for 24 hours caused a concentration-dependent increase in the expression of mRNA and protein of a specialised receptor for ox-LDL (LOX-1). These effects of Ang II were completely blocked by pretreatment of HCAECs with candesartan (10-6 M), a specific AT1-receptor blocker, but not by PD 123319 (10-6 M), a specific AT2-receptor blocker. On the other hand, incubation of HCAECs with ox-LDL (10 and 40 µg/ml) for 24 hours progressively upregulated AT1-, but not AT 2-, receptor mRNA and protein. Pretreatment of cells with the anti-oxidant alpha-tocopherol (1-5 x 10-6 M) inhibited the upregulation of AT1-receptor expression induced by ox-LDL (p<0.05). To determine the significance of expression of AT1-receptors and LOX-1, we measured cell injury in response to Ang II and ox-LDL. Incubation of cells with both ox-LDL and Ang II synergistically increased cell injury, measured as cell viability and LDH release, compared with either ox-LDL or Ang II alone (both p<0.05). Alpha-tocopherol, as well as candesartan, attenuated cell injury in response to Ang II and ox-LDL (both p<0.05). Conclusions These observations show that Ang II upregulates a novel endothelial receptor for ox-LDL (LOX-1) gene expression and ox-LDL in turn upregulates Ang II AT 1receptor gene expression. This interaction between Ang II and ox-LDL further augments cell injury in HCAECs. These findings provide basis for the use of AT1-receptor blockers and anti-oxidants in designing therapy for atherosclerosis and myocardial ischaemia.
Collapse
Affiliation(s)
- Jawahar L Mehta
- Departments of Medicine and Physiology and Biophysics, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA, mehtajl@ uams.edu
| | - Dayuan Li
- Departments of Medicine and Physiology and Biophysics, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| |
Collapse
|
12
|
LDL-Cholesterol Increases the Transcytosis of Molecules through Endothelial Monolayers. PLoS One 2016; 11:e0163988. [PMID: 27695052 PMCID: PMC5047627 DOI: 10.1371/journal.pone.0163988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/16/2016] [Indexed: 11/19/2022] Open
Abstract
Cholesterol has been identified as a causative factor in numerous pathologies including atherosclerosis and cancer. One of the frequent effects of elevated cholesterol levels in humans is the compromise of endothelial function due to activation of pro-inflammatory signalling pathways. While the mechanisms involved in endothelial activation by cholesterol during an inflammatory response are well established, less is known about the mechanisms by which cholesterol may affect endothelial barrier function, which were the subject of the present study. Here we show that low density lipoprotein (LDL) increases the permeability of endothelial monolayers to high molecular weight dextrans in an LDL receptor and cholesterol-dependent manner. The increased permeability seen upon LDL treatment was not caused by disruption of cell-to-cell junctions as determined by a normal localization of VE-Cadherin and ZO-1 proteins, and no major alterations in transendothelial electrical resistance or permeability to fluorescein. We show instead that LDL increases the level of high molecular weight transcytosis and that this occurs in an LDL receptor, cholesterol and caveolae-dependent way. Our findings contribute to our understanding of the systemic pathological effects of elevated cholesterol and the transport of cargo through endothelial monolayers.
Collapse
|
13
|
Mollace V, Gliozzi M, Musolino V, Carresi C, Muscoli S, Mollace R, Tavernese A, Gratteri S, Palma E, Morabito C, Vitale C, Muscoli C, Fini M, Romeo F. Oxidized LDL attenuates protective autophagy and induces apoptotic cell death of endothelial cells: Role of oxidative stress and LOX-1 receptor expression. Int J Cardiol 2015; 184:152-158. [PMID: 25703423 DOI: 10.1016/j.ijcard.2015.02.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Overproduction of oxidized-low density lipoproteins (oxyLDLs) has been found to contribute in endothelial cell (EC) dysfunction thereby leading to atherosclerosis development and progression. In particular, oxyLDLs lead to apoptotic cell death of EC via oxidative stress production, mostly subsequent to the overexpression of the scavenger receptor LOX-1. Here, we hypothesize that LOX-1 expression in EC represents a crucial event which attenuates protective autophagic response, thereby enhancing programmed endothelial cell death. METHODS AND RESULTS Bovine aortic endothelial cells (BAECs) in culture were exposed to oxyLDL (1-100 μM). After 48 h incubation, oxyLDL produced pronounced malondialdehyde (MDA) elevation and apoptotic cell death of BAEC as detected by FACS analysis, an effect counteracted by antioxidant N-acetyl-cysteine (NAC) as well as by the NO-donor SNAP. OxyLDL-induced apoptotic cell death was also accompanied by reduced VEGF-dependent phosphorylation of constitutive NO synthase (cNOS) in BAEC and consistent attenuation of autophagic response as detected by the expression of Beclin-1 and LC3, two reliable biomarkers of autophagy. Moreover, silencing LOX-1 receptor significantly restored LC3 expression in oxyLDL-treated BAEC, thus suggesting a key role of LOX-1 overproduction in oxyLDL-induced endothelial dysfunction. CONCLUSIONS OxyLDL leads to impaired NO generation and apoptotic cell death in BAECs. This effect occurs via the overexpression of LOX-1 and subsequent attenuation of protective autophagic response thereby contributing to the pathophysiology of oxyLDL-induced endothelial dysfunction which characterizes early stages of atherosclerotic process.
Collapse
Affiliation(s)
- Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy; IRCCS San Raffaele, Rome, Italy.
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Saverio Muscoli
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Santo Gratteri
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | - Chiara Morabito
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy
| | | | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University "Magna Græcia" of Catanzaro, Italy; IRCCS San Raffaele, Rome, Italy
| | | | - Francesco Romeo
- Department of Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
14
|
She ZG, Chen HZ, Yan Y, Li H, Liu DP. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid Redox Signal 2012; 16:597-632. [PMID: 21867409 PMCID: PMC3270057 DOI: 10.1089/ars.2010.3774] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Zhang H, Ma G, Yao Y, Qian H, Li W, Chen X, Jiang W, Zheng R. Olmesartan attenuates the impairment of endothelial cells induced by oxidized low density lipoprotein through downregulating expression of LOX-1. Int J Mol Sci 2012; 13:1512-1523. [PMID: 22408405 PMCID: PMC3291974 DOI: 10.3390/ijms13021512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/27/2011] [Accepted: 12/27/2011] [Indexed: 11/16/2022] Open
Abstract
Oxidized low density lipoprotein (ox-LDL) and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1), play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exerting its effects on LOX-1 both in vitro and in vivo. Incubation of cultured endothelial cells of neonatal rats with ox-LDL for 24 h or infusion of ox-LDL in mice for 3 weeks led to the remarkable impairment of endothelial cells, including increased lactate dehydrogenase synthesis, phosphorylation of p38 mitogen-activated protein kinases (p38 MAPK) and expression of apoptotic genes such as B-cell leukemia/lymphoma 2 (Bcl-2)-associated X protein (Bax) and caspase-3. Simultaneously, the cell vitality and expression of Bcl-2 gene were greatly reduced. All these effects, however, were significantly suppressed by the treatment with olmesartan. Furthermore, ox-LDL promoted up-regulation of LOX-1 expression either in cultured endothelial cells or in the aortas of mice, which was reversed with the administration of olmesartan. Our data indicated that olmesartan may attenuate the impairment of endothelial cell via down-regulation of the increased LOX-1 expression induced by ox-LDL.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital of Southeast University, 87 Dingjiqiao Hunan Road, Nanjing, Jiangsu, 210009, China; E-Mails: (G.M.); zheifrek @163.com (Y.Y.)
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital of Southeast University, 87 Dingjiqiao Hunan Road, Nanjing, Jiangsu, 210009, China; E-Mails: (G.M.); zheifrek @163.com (Y.Y.)
| | - Huidong Qian
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
| | - Weizhang Li
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
| | - Xinjun Chen
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
| | - Wenlong Jiang
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
| | - Ruolong Zheng
- Department of Cardiology, Jiangsu Jiangyin People’s Hospital, 163 Shoushan Road, Jiangyin, Jiangsu, 214400, China; E-Mails: (H.Z.); jaisdfj @yeah.net (H.Q.); (W.L.); (X.C.); (W.J.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-510-86879623; Fax: +86-510-86871307
| |
Collapse
|
16
|
Wang W, Hein TW, Zhang C, Zawieja DC, Liao JC, Kuo L. Oxidized low-density lipoprotein inhibits nitric oxide-mediated coronary arteriolar dilation by up-regulating endothelial arginase I. Microcirculation 2011; 18:36-45. [PMID: 21166924 DOI: 10.1111/j.1549-8719.2010.00066.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oxidized low-density lipoprotein (OxLDL) causes impairment of endothelium-dependent, nitric oxide (NO)-mediated vasodilation involving l-arginine deficiency. However, the underlying mechanism remains elusive. Since arginase and endothelial NO synthase (eNOS) share the substrate l-arginine, we hypothesized that OxLDL may reduce l-arginine availability to eNOS for NO production, and thus vasodilation, by up-regulating arginase. To test this hypothesis, porcine subepicardial arterioles (70-130 μm) were isolated for vasomotor study and for immunohistochemical detection of arginase and eNOS expressions. The coronary arterioles dilated dose-dependently to the endothelium-dependent NO-mediated vasodilator serotonin. This vasodilation was inhibited in the same manner by NOS inhibitor N(G)-nitro-l-arginine methyl ester and by lumenal OxLDL (0.5 mg protein/mL). The inhibitory effect of OxLDL was reversed after treating the vessels with either l-arginine (3 mM) or arginase inhibitor difluoromethylornithine (DFMO; 0.4 mM). Consistent with vasomotor alterations, OxLDL inhibited serotonin-induced NO release from coronary arterioles and this inhibition was reversed by DFMO. Vascular arginase activity was significantly elevated by OxLDL. Immunohistochemical analysis indicated that OxLDL increased arginase I expression in the vascular wall without altering eNOS expression. Taken together, these results suggest that OxLDL up-regulates arginase I, which contributes to endothelial dysfunction by reducing l-arginine availability to eNOS for NO production and thus vasodilation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, Temple, Texas 76504, USA
| | | | | | | | | | | |
Collapse
|
17
|
May JM, Qu ZC. Ascorbic acid prevents increased endothelial permeability caused by oxidized low density lipoprotein. Free Radic Res 2011; 44:1359-68. [PMID: 20815791 DOI: 10.3109/10715762.2010.508496] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Mildly oxidized low density lipoprotein (mLDL) acutely increases the permeability of the vascular endothelium to molecules that would not otherwise cross the barrier. This study has shown that ascorbic acid tightens the permeability barrier in the endothelial barrier in cells, so this work tested whether it might prevent the increase in endothelial permeability due to mLDL. Treatment of EA.hy926 endothelial cells with mLDL decreased intracellular GSH and activated the cells to further oxidize the mLDL. mLDL also increased endothelial permeability over 2 h to both inulin and ascorbate in cells cultured on semi-permeable filters. This effect was blocked by microtubule and microfilament inhibitors, but not by chelation of intracellular calcium. Intracellular ascorbate both prevented and reversed the mLDL-induced increase in endothelial permeability, an effect mimicked by other cell-penetrant antioxidants. These results suggest a role for endothelial cell ascorbate in ameliorating an important facet of endothelial dysfunction caused by mLDL.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-0475, USA.
| | | |
Collapse
|
18
|
Concentration Polarization of Oxidative Modification of Low-Density Lipoproteins: Its Effect on Oxidative Modification of Low-Density Lipoprotein Uptake and Apoptosis of the Endothelial Cells. ASAIO J 2010; 56:468-74. [DOI: 10.1097/mat.0b013e3181e7be08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
VanTeeffelen JWGE, Brands J, Vink H. Agonist-induced impairment of glycocalyx exclusion properties: contribution to coronary effects of adenosine. Cardiovasc Res 2010; 87:311-9. [DOI: 10.1093/cvr/cvq114] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
20
|
Ding Z, Fan Y, Deng X, Zhan F, Kang H. Effect of swirling flow on the uptakes of native and oxidized LDLs in a straight segment of the rabbit thoracic aorta. Exp Biol Med (Maywood) 2010; 235:506-13. [DOI: 10.1258/ebm.2009.009245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To elucidate the physiological significance of the spiral flow in the arterial system from the viewpoint of atherogenic lipid transport, an ex vivo experimental comparative study was designed to investigate the effect of swirling flow on the distribution of native 3,3′-dioctadecylindocarbocyanine-low-density lipoprotiens (DiI-LDL) and DiI-ox-LDL uptakes by segments of the rabbit thoracic aorta. The experimental results showed that when compared with the normal flow, the swirling flow generated in the test arteries significantly reduced the DiI-LDL and DiI-ox-LDL uptakes by the arterial walls. The results also showed that the values of DiI-ox-LDL uptake were higher than those of DiI-LDL uptake at the same sample position in both the normal flow group and the swirling flow group. Most interestingly, the experimental results found that the percentage increase in DiI-ox-LDL uptake was much larger than that in DiI-LDL uptake when the perfusion duration increased from 3 to 24 h. In conclusion, the present study substantiated the hypothesis that the spiral flow in the arterial system plays a beneficial role in protecting the arterial wall from atherogenesis. Meanwhile, it supported the concept that the receptor-mediated bindings of LDL uptake, the barrier function of the arterial endothelial linings and the mass transport phenomenon of LDL concentration polarization are all involved in the infiltration/accumulation of atherogenic lipids within the arterial wall.
Collapse
Affiliation(s)
- Zufeng Ding
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Yubo Fan
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Xiaoyan Deng
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Fan Zhan
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| | - Hongyan Kang
- School of Biological Science and Medical Engineering, Beihang University, 37 Xue Yuan Road, Beijing 100191, China
| |
Collapse
|
21
|
Ozer PA, Unlu N, Demir MN, Hazirolan DO, Acar MA, Duman S. Serum lipid profile in diabetic macular edema. J Diabetes Complications 2009; 23:244-8. [PMID: 18413202 DOI: 10.1016/j.jdiacomp.2007.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 11/17/2007] [Accepted: 12/07/2007] [Indexed: 11/24/2022]
Abstract
PURPOSE To evaluate the correlation of lipid profile and clinical presentation of macular edema in Type 2 diabetes mellitus (DM) patients. MATERIALS AND METHODS The study included 20 patients with chronic diabetic macular edema and plaque-like hard exudates (Group 1), 20 patients with diabetic macular edema (Group 2), and 20 DM patients but without retinopathy (Group 3). Diabetic retinopathy was classified according to the Early Treatment Diabetic Retinopathy Study grading system. Sample t test was used to evaluate the association between the fasting serum lipid [total cholesterol, triglyceride, low-density lipoprotein (LDL), high-density lipoprotein (HDL)], glycosylated hemoglobin (HbA1c), fasting blood glucose, creatinine levels, and the clinical findings. P values <.05 were considered statistically significant. RESULTS There was no difference between fasting serum lipids and HbA1c levels. Duration of diabetes was shorter in Group 3 than in Groups 1 and 2. Patients in Group 1 had longer duration of diabetes than others (P<.05). Creatinine levels in Group 1 were higher than in other groups (P<.05). Although there was no correlation between fasting blood glucose and HbA1c levels, HbA1c was higher in all three groups from the baseline-normal limits (P<.05). CONCLUSION No correlation was found between serum lipid levels and macular edema severity, but the duration of diabetes was demonstrated as a significant factor in the progression of macular edema. High HbA1c levels in all patients highlight the importance of intense glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Pinar Altiaylik Ozer
- Ophthalmology Department, Ankara Education and Research Hospital, Ankara, Turkey.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Inflammation is a stereotypical physiological response to infections and tissue injury; it initiates pathogen killing as well as tissue repair processes and helps to restore homeostasis at infected or damaged sites. Acute inflammatory reactions are usually self-limiting and resolve rapidly, due to the involvement of negative feedback mechanisms. Thus, regulated inflammatory responses are essential to remain healthy and maintain homeostasis. However, inflammatory responses that fail to regulate themselves can become chronic and contribute to the perpetuation and progression of disease. Characteristics typical of chronic inflammatory responses underlying the pathophysiology of several disorders include loss of barrier function, responsiveness to a normally benign stimulus, infiltration of inflammatory cells into compartments where they are not normally found in such high numbers, and overproduction of oxidants, cytokines, chemokines, eicosanoids and matrix metalloproteinases. The levels of these mediators amplify the inflammatory response, are destructive and contribute to the clinical symptoms. Various dietary components including long chain ω-3 fatty acids, antioxidant vitamins, plant flavonoids, prebiotics and probiotics have the potential to modulate predisposition to chronic inflammatory conditions and may have a role in their therapy. These components act through a variety of mechanisms including decreasing inflammatory mediator production through effects on cell signaling and gene expression (ω-3 fatty acids, vitamin E, plant flavonoids), reducing the production of damaging oxidants (vitamin E and other antioxidants), and promoting gut barrier function and anti-inflammatory responses (prebiotics and probiotics). However, in general really strong evidence of benefit to human health through anti-inflammatory actions is lacking for most of these dietary components. Thus, further studies addressing efficacy in humans linked to studies providing greater understanding of the mechanisms of action involved are required.
Collapse
|
23
|
Brinkley TE, Nicklas BJ, Kanaya AM, Satterfield S, Lakatta EG, Simonsick EM, Sutton-Tyrrell K, Kritchevsky SB. Plasma oxidized low-density lipoprotein levels and arterial stiffness in older adults: the health, aging, and body composition study. Hypertension 2009; 53:846-52. [PMID: 19332658 DOI: 10.1161/hypertensionaha.108.127043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial stiffness is a prominent feature of vascular aging and is strongly related to cardiovascular disease. Oxidized low-density lipoprotein (ox-LDL), a key player in the pathogenesis of atherosclerosis, may also play a role in arterial stiffening, but this relationship has not been well studied. Thus, we examined the cross-sectional association between ox-LDL and aortic pulse wave velocity (aPWV), a marker of arterial stiffness, in community-dwelling older adults. Plasma ox-LDL levels and aPWV were measured in 2295 participants (mean age: 74 years; 52% female; 40% black) from the Health, Aging, and Body Composition Study. Mean aPWV significantly increased across tertiles of ox-LDL (tertile 1: 869+/-376 cm/s; tertile 2: 901+/-394 cm/s; tertile 3: 938+/-415 cm/s; P=0.002). In multivariate analyses, ox-LDL remained associated with aPWV after adjustment for demographics and traditional cardiovascular disease risk factors (P=0.008). After further adjustment for hemoglobin A1c, abdominal visceral fat, antihypertensive and antilipemic medications, and C-reactive protein, the association with ox-LDL was attenuated but remained significant (P=0.01). Results were similar when ox-LDL was expressed in absolute (milligrams per deciliter) or relative amounts (percentage of low-density lipoprotein). Moreover, individuals in the highest ox-LDL tertile were 30% to 55% more likely to have high arterial stiffness, defined as aPWV >75th percentile (P<or=0.02). In conclusion, we found that, among elderly persons, elevated plasma ox-LDL levels were associated with higher arterial stiffness, independent of cardiovascular disease risk factors. These data suggest that ox-LDL may be related to the pathogenesis of arterial stiffness.
Collapse
Affiliation(s)
- Tina E Brinkley
- Sticht Center on Aging, Department of Internal Medicine, Wake Forest University School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Ward JR, Wilson HL, Francis SE, Crossman DC, Sabroe I. Translational mini-review series on immunology of vascular disease: inflammation, infections and Toll-like receptors in cardiovascular disease. Clin Exp Immunol 2009; 156:386-94. [PMID: 19309349 DOI: 10.1111/j.1365-2249.2009.03886.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cardiovascular disease, in which atherosclerosis is the major underlying cause, is currently the largest cause of death in the world. Atherosclerosis is an inflammatory disease characterized by the formation of arterial lesions over a period of several decades at sites of endothelial cell dysfunction. These lesions are composed of endothelial cells, vascular smooth muscle cells, monocytes/macrophages and T lymphocytes (CD4(+)). As the lesions progress some can become unstable and prone to disruption, resulting in thrombus formation and possibly a myocardial infarction or stroke depending upon the location. Although the exact triggers for plaque disruption remain unknown, much recent evidence has shown a link between the incidence of myocardial infarction and stroke and a recent respiratory tract infection. Interestingly, many reports have also shown a link between a family of pattern recognition receptors, the Toll-like receptors, and the progression of atherosclerosis, suggesting that infections may play a role in both the progression of atherosclerosis and in inducing the more severe complications associated with the disease.
Collapse
Affiliation(s)
- J R Ward
- Cardiovascular Research Unit, The University of Sheffield, Sheffield, UK
| | | | | | | | | |
Collapse
|
25
|
Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H. Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 2008; 36:6372-85. [PMID: 18838394 PMCID: PMC2582599 DOI: 10.1093/nar/gkn620] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sterol regulatory element binding protein-1c (SREBP-1c) is a basic helix–loop–helix (bHLH) homodimeric transactivator, which induces itself and several lipogenic enzymes, notably fatty acid synthase (FAS). We demonstrated that hypoxia-inducible factor (HIF) represses the SREBP-1c gene by inducing Stimulated with retinoic acid (Stra)13/Differentiated embryo chondrocyte 1(DEC1) and its isoform, DEC2. Stra13/DEC1 and DEC2 are bHLH homodimeric transcription repressors. We found that both Stra13 and DEC2 inhibit SREBP-1c-induced transcription by competing with SREBP-1c for binding to the E-box in the SREBP-1c promoter and/or by interacting with SREBP-1c protein. DEC2 is instantly and temporarily induced in acute hypoxia, while Stra13 is induced in prolonged hypoxia. This expression profile reflects the finding that Stra13 represses DEC2, thus maintains low level of DEC2 in prolonged hypoxia. DEC2-siRNA restores the hypoxic repression but Stra13-siRNA fails to do so, suggesting that DEC2 is the major initiator of hypoxic repression of SREBP-1c, whereas Stra13 substitutes for DEC2 in prolonged hypoxia. Our findings imply that Stra13 and DEC2 are the mediators to repress SREBP-1c gene in response to hypoxia. By doing so, HIF and its targets, Stra13 and DEC2 reduce the ATP consuming anabolic lipogenesis prior to the actual decrease of ATP acting as a feed-forward mechanism.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Chouinard JA, Grenier G, Khalil A, Vermette P. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells. Exp Cell Res 2008; 314:3007-16. [DOI: 10.1016/j.yexcr.2008.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/03/2008] [Accepted: 07/22/2008] [Indexed: 10/21/2022]
|
27
|
Di Santo S, Diehm N, Ortmann J, Völzmann J, Yang Z, Keo HH, Baumgartner I, Kalka C. Oxidized low density lipoprotein impairs endothelial progenitor cell function by downregulation of E-selectin and integrin alpha(v)beta5. Biochem Biophys Res Commun 2008; 373:528-32. [PMID: 18590706 DOI: 10.1016/j.bbrc.2008.06.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oxidized low density lipoprotein (oxLDL) has been shown to induce apoptosis and senescence of endothelial progenitor cells (EPC). In the present study, we hypothesized that even sub-apoptotic concentrations of oxLDL impair the angiogenic potential of EPC and investigated if this effect is mediated by affecting adhesion and incorporation. METHODS A co-culture system of human microvascular endothelial cells and EPC was used to study the effect of sub-apoptotic concentrations of native (nLDL) and oxLDL on cell-cell interaction. The expression and the functional role of angiogenic adhesion molecules and integrins was monitored by FACS and neutralizing assay, respectively. RESULTS We observed an inhibition of tube formation and impairment of EPC integration into the vascular network of mature endothelial cells by oxLDL. In contrast, nLDL did not affect angiogenic properties of EPC. Incubation of EPC with sub-apoptotic oxLDL concentrations significantly decreased E-selectin and integrin alpha(v)beta(5) expression (37.6% positive events vs. 71.5% and 24.3% vs. 49.9% compared to control culture media without oxLDL). Interestingly, expression of alpha(v)beta(3), VE-cadherin and CD31 remained unchanged. Blocking of E-selectin and integrin alpha(v)beta(5) by neutralizing antibody effectively inhibited adhesion of EPC to differentiated endothelial cells (56.5% and 41.9% of control; p<0.001). CONCLUSION In conclusion, oxidative alteration of LDL impairs angiogenic properties of EPC at sub-apoptotic levels by downregulation of E-selectin and integrin alpha(v)beta(5), both substantial mediators of EPC-endothelial cell interaction.
Collapse
Affiliation(s)
- Stefano Di Santo
- Department of Vascular Medicine, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Marso SP, Mehta SK, Frutkin A, House JA, McCrary JR, Kulkarni KR. Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care 2008; 31:989-94. [PMID: 18252902 DOI: 10.2337/dc07-2024] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to determine whether an association exists between adiponectin and plaque composition in human coronary arteries. RESEARCH DESIGN AND METHODS Adiponectin is an adipocyte-derived protein with antiatherogenic and insulin-sensitizing properties. To date, the relationship between adiponectin and plaque composition is unknown. Fasting blood samples were collected from 185 patients undergoing coronary angiography and intravascular ultrasound (IVUS). Plaque composition was categorized as fibrous, fibrofatty, necrotic core, or dense calcium and further classified as IVUS-derived adaptive or pathological intimal thickening, fibroatheroma, fibrocalcific, or thin cap fibroatheroma. RESULTS Adiponectin correlated with normalized plaque volume (r = -0.16, P = 0.025) and atheroma lipid content as measured by normalized fibrofatty volume (r = -0.19, P = 0.009). Low adiponectin levels were associated with IVUS-derived pathological intimal thickening (r = -0.18, P = 0.01). With increasing quartiles (Q) of adiponectin, the normalized volume of fibrofatty plaque decreased (P = 0.03), which was driven by reductions in the nondiabetic cohort (Q1 44.2 mm(3); Q2 28.2 mm(3); Q3 24.7 mm(3); and Q4 23.4 mm(3); P = 0.01). No similar association was present in diabetic patients. Low adiponectin levels were also associated with IVUS-derived pathological intimal thickening in nondiabetic (r = -0.20, P = 0.03) but not diabetic patients. CONCLUSIONS Low adiponectin levels are associated with atherogenic lipoproteins (elevated triglycerides, small dense LDL cholesterol, and low HDL cholesterol), increased plaque volume, lipid-rich plaque, and IVUS-derived pathological intimal thickening in the total cohort that was driven by the nondiabetic population, suggesting an antiatherogenic role in the early stages of lesion development.
Collapse
Affiliation(s)
- Steven P Marso
- Mid America Heart Institute, University of Missouri Kansas City, Kansas City, Missouri 64111, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Holtzman JL. The Role of Glutathione Pathways in the Prevention of Atherosclerosis. ATHEROSCLEROSIS AND OXIDANT STRESS 2008:211-239. [DOI: 10.1007/978-0-387-72347-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Chiumiento A, Lamponi S, Barbucci R, Domínguez A, Pérez Y, Villalonga R. Immobilizing Cu,Zn-superoxide dismutase in hydrogels of carboxymethylcellulose improves its stability and wound healing properties. BIOCHEMISTRY (MOSCOW) 2007; 71:1324-8. [PMID: 17223784 DOI: 10.1134/s0006297906120066] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrogels of carboxymethylcellulose (CMC) with 50 and 90% cross-linking degree (CMC50% and CMC90%, respectively) were prepared and loaded with bovine erythrocyte Cu,Zn-superoxide dismutase (SOD) to obtain two drug delivery systems: SOD-CMC50% and SOD-CMC90%. Resistance of native SOD to inactivation by H2O2 and the effect of applying SOD-CMC hydrogels to open wounds of rats' back skin were examined and compared to that of SOD trapped into CMC50% and CMC90% hydrogels. Also, the effect of CMC50% and SOD-CMC90% on human fibroblasts proliferation was evaluated at different times. It was found that SOD in the hydrogel was more resistant to H2O2 inactivation than the native enzyme and at the same time it reduced the time necessary for wound healing. Furthermore, the highest cell proliferation value was found for the CMC50% hydrogels, which had a three-dimensional structure suitable for gas and nutrient exchanges and improving cell life conditions.
Collapse
Affiliation(s)
- A Chiumiento
- CRISMA Department of Chemical and Biosystem Sciences and Technologies, University of Siena, Siena, 53100, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Generalized capillary dysfunction is a morbid element in the metabolic syndrome, and it is likely involved in its complications. We tested the hypothesis that vast amounts of serum albumin previously observed in kidneys of rats with the metabolic syndrome were caused, in part, by leakage from renal peritubular capillaries. We report herein large scale leaks of plasma fluid in peritubular capillaries of rats with the metabolic syndrome. This finding was directly demonstrated in vivo, and the presence of leftover albumin residue confirmed the leak in postmortem kidney specimens. Moreover, renal interstitial fibrosis and tubular atrophy were found in a distribution similar to the leaked renal albumin in obese rats. We suggest that there is an important link between peritubular capillary damage and interstitial fibrosis, represented as tubulointerstitial disease in the metabolic syndrome. We propose that maintenance of the peritubular microcirculation may improve renal outcomes in diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Constance Temm
- Department of Medicine, Indiana University, Indianapolis, USA
| | | |
Collapse
|
32
|
Rema M, Srivastava BK, Anitha B, Deepa R, Mohan V. Association of serum lipids with diabetic retinopathy in urban South Indians--the Chennai Urban Rural Epidemiology Study (CURES) Eye Study--2. Diabet Med 2006; 23:1029-36. [PMID: 16922712 DOI: 10.1111/j.1464-5491.2006.01890.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To study the association of serum lipids with diabetic retinopathy (DR) in Type 2 diabetic subjects. METHODS Type 2 diabetic subjects (n = 1736) were randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), which was carried out on a representative population of Chennai in South India. DR was diagnosed by retinal colour photography and classified according to the Early Treatment Diabetic Retinopathy Study (ETDRS) grading system. Classification of lipid abnormalities was done according to the National Cholesterol Education Programme-Adult Treatment Panel III (NCEP-ATP III) Guidelines. RESULTS The mean serum cholesterol (P = 0.024), serum triglycerides (P = 0.017) and non-high-density lipoprotein (HDL)-cholesterol (P = 0.025) concentrations were higher in subjects with DR compared with those without DR. Multiple logistic regression analysis revealed that after adjusting for age, gender, duration of diabetes, total cholesterol Standardised regression estimate (SRE) = 1.178, 95% confidence interval (CI) 1.042, 1.331, P = 0.014), non-HDL-cholesterol (SRE = 1.169, 95% CI 1.040, 1.313, P = 0.012) and serum triglycerides (SRE = 1.292, 95% CI 1.136, 1.467, P = 0.001) were associated with DR and non-HDL-cholesterol (SRE = 1.264, 95% CI 1.000, 1.592, P = 0.045) and low-density lipoprotein (LDL)-cholesterol (SRE = 1.453, 95% CI 1.107, 1.896, P = 0.005) with diabetic macular oedema (DME). After adjusting for HbA(1c) and body mass index, only triglycerides maintained a significant association with DR (SRE = 1.137, 95% CI 1.000, 1.291, P = 0.007) and LDL-cholesterol with macular oedema (SRE = 1.358, 95% CI 1.034, 1.774, P = 0.026). CONCLUSIONS There is a significant association of serum triglycerides with DR and LDL-cholesterol with DME.
Collapse
Affiliation(s)
- M Rema
- Madras Diabetes Research Foundation & Dr Mohan's Diabetes Specialities Centre, Gopalapuram, Chennai, India.
| | | | | | | | | |
Collapse
|
33
|
Lee K, Saidel GM, Penn MS. Macromolecular Transport in the Arterial Wall: Alternative Models for Estimating Barriers. Ann Biomed Eng 2005; 33:1491-503. [PMID: 16341918 DOI: 10.1007/s10439-005-7216-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2004] [Accepted: 07/06/2005] [Indexed: 11/25/2022]
Abstract
Early atherosclerosis, or atherogenesis, is characterized by the abnormal accumulation of plasma-borne macromolecules (e.g., LDL) in the arterial intima. The change of barrier characteristics of tissue in the arterial wall requires evaluation of macromolecular transport across the endothelial cell layer (ECL) and internal elastic lamina (IEL), the luminal and abluminal boundaries of the arterial intima, respectively. In this study, alternative mathematical models are derived from dynamic mass balances to describe macromolecular transport across the arterial wall. One model considers each medial layer as a spatially lumped compartment, whereas another model consists of a spatially lumped intima and spatially distributed media. Model simulations of a tracer concentration distribution in the arterial wall are compared with concentration distributions of horseradish peroxidase (HRP) after i.v. injection in mice. For each model, optimal parameter values are obtained that yield model outputs matching the data well for two different HRP circulation times. The model parameter estimates show that the ECL is the major barrier for macromolecular transport across the normal arterial wall. Sensitivity analysis indicates that the parameter estimates of the transport coefficients of the ECL and IEL are well determined. Optimal circulation times are determined and expected to yield improved precision of parameter estimates in future experiments to reflect disease progression.
Collapse
Affiliation(s)
- Kwangdeok Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | |
Collapse
|
34
|
Sedgwick JB, Hwang YS, Gerbyshak HA, Kita H, Busse WW. Oxidized low-density lipoprotein activates migration and degranulation of human granulocytes. Am J Respir Cell Mol Biol 2003; 29:702-9. [PMID: 12777245 DOI: 10.1165/rcmb.2002-0257oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oxidized low-density lipoprotein (oxLDL) has been reported as a major participant in the pathogenesis of atherosclerosis. We hypothesized that oxLDL can also interact with granulocytes during inflammatory airway diseases, such as asthma. To test the chemotactic effect of oxLDL, isolated human peripheral granulocytes were added to the upper chambers of Transwell filters and migration in response to oxLDL was determined. Cu+2-oxidized LDL stimulated neutrophil (23.4 +/- 3.2% for 100 microg/ml oxLDL versus 2.9 +/- 1.1% for buffer, P < 0.05) and eosinophil (19.3 +/- 3.5% versus 0.6 +/- 0.02% for buffer, P < 0.05) chemotaxis in a concentration-dependent manner. The magnitude of chemotaxis was dependent on the degree of LDL oxidation. Granulocyte transmigration across IL-1beta-activated human pulmonary microvascular endothelial cell monolayers was similarly stimulated by oxLDL. OxLDL activated significant degranulation of both neutrophils (100.9 +/- 9.8 versus 49.6 +/- 8.4 ng lactoferrin released/5 x 105 neutrophils for buffer, P < 0.05) and eosinophils (342 +/- 115.4 versus 85.8 +/- 30.4 ng eosinophil-derived neurotoxin/1 x 106 eosinophils for buffer, P < 0.05). Therefore, in vivo influx and oxidation of LDL may be an important mediator for the initiation of bronchial inflammation where granulocytes are recruited to the lung.
Collapse
Affiliation(s)
- Julie B Sedgwick
- University of Wisconsin, H6/355 CSC-3244 600 Highland Ave., Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
35
|
Cachofeiro Ramos V, Vázquez-Pérez S, de las Heras Jiménez N, Cediel Gil E, Sanz-Rosa D, Olivares E, Lahera Juliá V. Hipercolesterolemia y disfunción endotelial: mecanismos implicados. HIPERTENSION Y RIESGO VASCULAR 2003. [DOI: 10.1016/s1889-1837(03)71363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Masuko T, Funayama Y, Naito H, Fukushima K, Shibata C, Takahashi KI, Ogawa H, Ueno T, Hashimoto A, Miyazawa T, Nakagawa K, Matsuno S, Sasaki I. Measurement of phosphatidylcholine hydroperoxide in mild ischemia-reperfusion injury in rat intestine. TOHOKU J EXP MED 2002; 198:223-32. [PMID: 12630554 DOI: 10.1620/tjem.198.223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the pathogenesis of intestinal ischemia-reperfusion injury, the measurement of lipid peroxides needs to be established. Sprague-Dawley rat intestines were assessed after 30 minutes of occlusion of the superior mesenteric artery followed by reperfusion at 30, 60, 120, 180, 360 minutes. Grade of the mucosal injury, accumulation of the activated neutrophils and ICAM-1 expression were transiently increased after reperfusion. Two measuring methods of mucosal lipid peroxides using thiobarbituric acid reacting substance (TBARS) and phosphatidylcholine hydroperoxide (PCOOH) were compared. PCOOH level was significantly increased after reperfusion, while the mucosal TBARS level showed no significant change. In conclusion, lipid peroxidation could be detected with high specificity and sensitivity by measuring the mucosal phosphatidylcholine hydroperoxide level.
Collapse
Affiliation(s)
- Tsuyoshi Masuko
- Department of Surgery, Division of GI and Colorectal Surgery, Research Unit of Biological Regulation and Oncology, Tohoku University, Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pandya DP. Oxidant injury and antioxidant prevention: role of dietary antioxidants, minerals, and drugs in the management of coronary heart disease (Part II). COMPREHENSIVE THERAPY 2002; 28:62-73. [PMID: 11894444 DOI: 10.1007/s12019-002-0043-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antioxidants, trace minerals, and certain amino acids enhance antioxidant defense of the body by improving intracellular redox status, vascular endothelial function, and nitric oxide secretion. Antioxidant supplementation has been suggested for primary and secondary prevention of coronary heart disease.
Collapse
Affiliation(s)
- Dipak P Pandya
- Maryland General Hospital, Department of Medicine, 827 Linden Avenue, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Segal MS, Bihorac A, Koç M. Circulating endothelial cells: tea leaves for renal disease. Am J Physiol Renal Physiol 2002; 283:F11-9. [PMID: 12060582 DOI: 10.1152/ajprenal.00008.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fully differentiated endothelial cells and their precursors circulate in the bloodstream. Since their initial description more than 30 years ago, circulating endothelial cells have been quantified in a number of different clinical conditions that affect the endothelium. Only recently, however, have investigators begun to examine the protein expression and functionality of these cells. Because a number of diseases prevalent in the field of nephrology affect endothelial cells, the study of circulating endothelial cells may allow the direct examination of the state of the endothelium in these conditions. This review will discuss the endothelium and renal disease, the methods to quantify these circulating endothelial cells, their origins, and their therapeutic potential.
Collapse
Affiliation(s)
- Mark S Segal
- Division of Nephrology, Hypertension, and Transplantation, Department of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | |
Collapse
|
39
|
Chow SE, Chu WK, Shih SH, Chen JK. Exposure to oxidized low-density lipoprotein reduces activable Ras protein in vascular endothelial cells. In Vitro Cell Dev Biol Anim 2002; 38:320-5. [PMID: 12513119 DOI: 10.1290/1071-2690(2002)038<0320:etoldl>2.0.co;2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL) has been shown to alter the migratory and proliferative activities of the vascular endothelial cells (EC) in response to serum and growth factors. The mechanism underlying the antiproliferative effect of ox-LDL on vascular EC has not been fully elucidated. In this report, we show that exposure of vascular EC to ox-LDL results in a marked reduction of the membrane-associated Ras protein. Further study shows that in ox-LDL-treated EC, reduction of the membrane-associated Ras protein is correlated with a reduced amount of active Ras (Ras-guanosine triphosphate), indicating that the Ras signaling pathway is attenuated. The attenuation of the Ras signaling pathway in ox-LDL-treated EC may thus be responsible for the retarded response to the mitogenic stimulation of serum and growth factors.
Collapse
Affiliation(s)
- Shu-Er Chow
- Center of General Study, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | |
Collapse
|
40
|
Abstract
Oxidative stress damages the heart through a series of reactions beginning with lipid peroxidation, the main process behind atherosclerosis. Antioxidant supplementation has some beneficial effects by binding with metal ions or catalysts to prevent oxidative lipid peroxidation and chain production.
Collapse
Affiliation(s)
- D P Pandya
- Department of Medicine, Maryland General Hospital, 827 Linden Avenue, Baltimore, MD 21201, USA
| |
Collapse
|
41
|
Abstract
Reactive oxygen species, such as superoxide anion (O2(-)) and H2O2, cause oxidative stress in endothelial cells, a condition implicated in the pathogenesis of many cardiovascular and pulmonary diseases. Antioxidant enzymes, superoxide dismutases (SOD, converting superoxide anion into H2O2) and catalase (converting H2O2 into water), are candidate drugs for augmentation of antioxidant defenses in endothelium. However, SOD and catalase undergo fast elimination from the bloodstream, which compromises delivery and permits rather modest, if any, protection against vascular oxidative stress. Coupling of polyethylene glycol (PEG) to the enzymes and encapsulating them in liposomes increases their bioavailability and enhances their protective effect. Chemical modifications and genetic manipulations of SOD and catalase have been proposed in order to provide more effective delivery to endothelium. For example, chimeric protein constructs consisting of SOD and heparin-binding peptides have an affinity for charged components of the endothelial glycocalix. However, the problem of developing a more effective and precise delivery of the drugs to endothelial cells persists. Endothelial surface antigens may be employed to provide targeting and subcellular addressing of drugs (vascular immunotargeting strategy). Thus, SOD and catalase conjugated to antibodies directed against the constitutively expressed endothelial antigens, angiotensin-converting enzyme (ACE) and adhesion molecules (ICAM-1 or PECAM-1), bind to endothelium in intact animals after intravascular administration, accumulate in the pulmonary vasculature, enter endothelial cells and augment their antioxidant defenses. Such immunotargeting strategies may provide secondary therapeutic benefits by inhibiting the function of target antigens. For example, blocking of ICAM-1 and PECAM-1 by carrier antibodies may attenuate inflammation and leukocyte-mediated vascular damage. Additional studies in animal models of vascular oxidative stress are necessary in order to more fully characterize potential therapeutic effects and limitations of targeting of antioxidant enzymes to endothelial cells.
Collapse
Affiliation(s)
- V R Muzykantov
- Institute for Environmental Medicine and Department of Pharmacology, University of Pennsylvania School of Medicine, 1 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-19104, USA.
| |
Collapse
|
42
|
Constantinescu AA, Vink H, Spaan JA. Elevated capillary tube hematocrit reflects degradation of endothelial cell glycocalyx by oxidized LDL. Am J Physiol Heart Circ Physiol 2001; 280:H1051-7. [PMID: 11179046 DOI: 10.1152/ajpheart.2001.280.3.h1051] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans and plasma proteins bound to the endothelial cell glycocalyx are essential for vascular function, but at the same time, they lower capillary tube hematocrit by reducing capillary volume available to flowing blood. Because oxidized low-density lipoproteins (oxLDL) reduce the effective thickness of the glycocalyx (Vink H, Constantinescu AA, and Spaan JAE. Circulation 101: 1500-1502, 2000), we designed the present study to determine whether this is caused by pathological degradation of glycocalyx constituents or increased glycocalyx deformation by elevated shear forces of flowing blood. Capillaries from the right cremaster muscle of 24 hamsters were examined by using intravital microscopy after systemic administration of normal LDL (n = 4), moderate oxLDL (6-h oxidation with CuSO(4), n = 7), severe oxLDL (18-h oxidation, n = 5), and moderate oxLDL plus superoxide dismutase (SOD) and catalase (n = 8). Capillary tube hematocrit increased from 0.16 +/- 0.03 to 0.37 +/- 0.05 and from 0.15 +/- 0.01 to 0.31 +/- 0.03 after moderate oxLDL and severe oxLDL, respectively. These changes were paralleled by increases in red blood cell flux from 8.7 +/- 1.9 to 13.8 +/- 3 and from 10.7 +/- 2.1 to 16.3 +/- 3.2 cells/s after moderate oxLDL and severe oxLDL, respectively, in the absence of changes in anatomic capillary diameter. Red blood cell velocity, as a measure for the shear forces on the glycocalyx, was not affected by oxLDL, whereas tissue pretreatment with SOD and catalase completely abolished the effects of oxLDL on glycocalyx thickness, capillary hematocrit, and red blood cell flux. We conclude that elevation of capillary tube hematocrit by oxLDL reflects degradation of the endothelial glycocalyx by oxygen-derived free radicals.
Collapse
Affiliation(s)
- A A Constantinescu
- Department of Medical Physics, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | | | |
Collapse
|
43
|
Juskowa J, Paczek L, Laskowska-Klita T, Gajewska J, Ołdakowska-Jedynak U, Szymczak E, Foroncewicz B, Chełchowska M, Mucha K. Antioxidant potential in renal allograft recipients with stable graft function. Transplant Proc 2000; 32:1353-7. [PMID: 10995977 DOI: 10.1016/s0041-1345(00)01255-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- J Juskowa
- Transplantation Institute, Medical University of Warsaw, National Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen N, Liu Y, Greiner CD, Holtzman JL. Physiologic concentrations of homocysteine inhibit the human plasma GSH peroxidase that reduces organic hydroperoxides. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2000; 136:58-65. [PMID: 10882228 DOI: 10.1067/mlc.2000.107692] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The plasma reduced glutathione (GSH) selenoperoxidase is a highly conserved enzyme. Furthermore, a small clinical study reported that patients with severe atherosclerosis had low peroxidase activities. Together these observations suggest that the peroxidase is important in preventing atherosclerosis. Yet others have reported that when the assay was run in Tris buffer, it was inactive with the concentrations of GSH found in the plasma. Second, it is known that hyperhomocysteinemia increases the rate of atherogenesis. Because there is some homology between homocysteine and the cysteine in GSH, the question is whether the hyperhomocysteinemia effect may be due to inhibition of the peroxidase. We purified the peroxidase from human plasma and determined its activity by a coupled spectrophotometric assay and a substrate disappearance chemiluminescence assay. When the peroxidase activity was determined in phosphate-buffered saline solution (PBS), there was significant activity with the reported plasma GSH concentrations (5 to 20 micromol/L). The peroxidase was exclusively in the HDL fraction. There was no correlation between the peroxidase activity and the HDL or LDL cholesterol concentrations. Finally, at physiologic concentrations of GSH (9 micromol/L), the peroxidase was inhibited by physiologic, free homocysteine concentrations (1 to 5 micromol/L). These data suggest that the peroxidase is active in vivo and may be important in protecting the endothelium from atherosclerosis by preventing oxidant injury. The homocysteine inhibition of the peroxidase suggests a possible biochemical basis for the observed association between hyperhomocysteinemia and cardiovascular disease. Our studies imply that low concentrations of this peroxidase may be an independent risk factor for atherosclerosis.
Collapse
Affiliation(s)
- N Chen
- Department of Pharmacology, University of Minnesota, Veterans Affairs Medical Center, Minneapolis 55417, USA
| | | | | | | |
Collapse
|
45
|
Abstract
The first reports of the influences of oxidized LDL (oxLDL) on cell function pertained to negative effects on cell growth-growth arrest, injury, and toxicity. Since these studies, it has become apparent that sublethal levels of oxLDL cause some, but not all, cells to proliferate. This review highlights the growth-promoting effects of oxLDL rather than its inhibitory or injurious effects. Smooth muscle cells (SMCs) and monocyte-macrophages proliferate after exposure to oxLDL; endothelial cells do not. Scavenger receptors are involved in the proliferative effects on monocyte-macrophages, whereas the effects of oxLDL on SMCs appear to be receptor independent. Lysophosphatidylcholine (lysoPC), and structurally related lipids are among the growth-promoting constituents of oxLDL. OxLDL exerts at least a part of its effects by inducing expression or causing the release of growth factors. OxLDL (or lysoPC) can cause the release of basic fibroblast growth factor (bFGF) from SMCs; oxLDL (or lysoPC) can induce heparin binding EGF-like growth factor (HB-EGF) synthesis and release from macrophages. An imposing array of changes in cytokine and growth factor expression and/or release can be imposed by oxLDL on a wide variety of cell types. These effects and the studies probing the cell signaling events leading to them are described.
Collapse
Affiliation(s)
- G M Chisolm
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
46
|
Abstract
The literature relating lipid and lipoprotein oxidation to atherosclerosis has expanded enormously in recent years. Papers on the "oxidative modification hypothesis" of atherogenesis have ranged from the most basic studies of the chemistry and enzymology of LDL oxidation, through studies of the biological effects of oxidized LDL on cultured cells, and on to in vivo studies of the effects of antioxidants on atherosclerosis in animals and humans. The data in support of this theory are mounting but many key questions remain unanswered. For example, while it is generally agreed that LDL undergoes oxidation and that oxidized LDL is present in arterial lesions, it is still not known how and where LDL gets oxidized in vivo nor which of its many biological effects demonstrable in vitro are relevant to atherogenesis in vivo. This brief review is not intended to be comprehensive but rather to offer a perspective and a context for this Forum. We discuss the strengths and weaknesses of each line of evidence, try to identify areas in which further research is needed, assess the relevance of the hypothesis to the human disease, and point to some of the potential targets for therapy.
Collapse
Affiliation(s)
- G M Chisolm
- Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | |
Collapse
|
47
|
|
48
|
Abstract
Sphingomyelin and its metabolic products are now known to have second messenger functions in a variety of cellular signaling pathways. At the epicenter of the sphingomyelin--cell signaling pathway is a family of phospholipases called sphingomyelinases. These enzymes cleave sphingomyelin to produce ceramide and phosphocholine. Ceramide in turn serves as a lipid second messenger that induces a variety of cell regulatory phenomenon such as programmed cell death (apoptosis), cell differentiation, cell proliferation, and sterol homeostasis. Neutral sphingomyelinase (N-SMase) is a Mg2+ sensitive enzyme that can be activated by a host of physiologically relevant and structurally diverse molecules like tumor necrosis factor-alpha (TNF-alpha), oxidized human low density lipoproteins (Ox-LDL), and several growth factors. Large amounts of ceramide accumulate in human fatty streaks and plaques along with Ox-LDL, growth factors, and proinflammatory cytokines in human atherosclerosis. A further role of ceramide and N-SMase in atherosclerosis was uncovered by the finding that Ox-LDL and TNF-alpha stimulated N-SMase activity. In turn, ceramide and/or a homolog serves as an important stress signaling molecule in signal transduction, which leads to apoptosis. Interestingly, an antibody against N-SMase can abrogate Ox-LDL and TNF-alpha induced apoptosis, and therefore may be useful for additional studies of apoptosis in experimental animals. Overexpression of recombinant human N-SMase in human aortic smooth muscle cells markedly stimulate apoptosis, presumably via the multioligomerization of the 'death domain'. Since plaque stability is an integral aspect of atherosclerosis management, activation of N-SMase and subsequent apoptosis may be vital events in the onset of plaque rupture, stroke and heart failure. In contrast to these observations in human hepatocytes, TNF-alpha mediated N-SMase activation did not induce apoptosis. Rather it stimulated the maturation of sterol regulatory element (SRE) binding protein (SREBP-1). Moreover, a cell permeable ceramide was found to reconstitute the phenomenon above in a sterol-independent fashion. These findings provide alternate avenues for therapy of patients with hypercholesterolemia and atherosclerosis. The findings reported here suggests that N-SMase plays important cell regulatory roles and provide an exciting opportunity to further these findings to understand the pathophysiology of human disease states.
Collapse
Affiliation(s)
- S Chatterjee
- The Johns Hopkins Hospital, Baltimore, MD 21287-3654, USA.
| |
Collapse
|
49
|
Essler M, Retzer M, Bauer M, Heemskerk JW, Aepfelbacher M, Siess W. Mildly oxidized low density lipoprotein induces contraction of human endothelial cells through activation of Rho/Rho kinase and inhibition of myosin light chain phosphatase. J Biol Chem 1999; 274:30361-4. [PMID: 10521411 DOI: 10.1074/jbc.274.43.30361] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mildly oxidized low density lipoprotein (mox-LDL) is critically involved in the early atherogenic responses of the endothelium and increases endothelial permeability through an unknown signal pathway. Here we show that (i) exposure of confluent human endothelial cells (HUVEC) to mox-LDL but not to native LDL induces the formation of actin stress fibers and intercellular gaps within minutes, leading to an increase in endothelial permeability; (ii) mox-LDL induces a transient decrease in myosin light chain (MLC) phosphatase that is paralleled by an increase in MLC phosphorylation; (iii) phosphorylated MLC stimulated by mox-LDL is incorporated into stress fibers; (iv) cytoskeletal rearrangements and MLC phosphorylation are inhibited by C3 transferase from Clostridium botulinum, a specific Rho inhibitor, and Y-27632, an inhibitor of Rho kinase; and (v) mox-LDL does not increase intracellular Ca(2+) concentration. Our data indicate that mox-LDL induces endothelial cell contraction through activation of Rho and its effector Rho kinase which inhibits MLC phosphatase and phosphorylates MLC. We suggest that inhibition of this novel cell signaling pathway of mox-LDL could be relevant for the prevention of atherosclerosis.
Collapse
Affiliation(s)
- M Essler
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Universität München, Pettenkoferstrasse 9, 80336 München, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Siess W, Zangl KJ, Essler M, Bauer M, Brandl R, Corrinth C, Bittman R, Tigyi G, Aepfelbacher M. Lysophosphatidic acid mediates the rapid activation of platelets and endothelial cells by mildly oxidized low density lipoprotein and accumulates in human atherosclerotic lesions. Proc Natl Acad Sci U S A 1999; 96:6931-6. [PMID: 10359816 PMCID: PMC22019 DOI: 10.1073/pnas.96.12.6931] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Oxidized low density lipoprotein (LDL) is a key factor in the pathogenesis of atherosclerosis and its thrombotic complications, such as stroke and myocardial infarction. It activates endothelial cells and platelets through mechanisms that are largely unknown. Here, we show that lysophosphatidic acid (LPA) was formed during mild oxidation of LDL and was the active compound in mildly oxidized LDL and minimally modified LDL, initiating platelet activation and stimulating endothelial cell stress-fiber and gap formation. Antagonists of the LPA receptor prevented platelet and endothelial cell activation by mildly oxidized LDL. We also found that LPA accumulated in and was the primary platelet-activating lipid of atherosclerotic plaques. Notably, the amount of LPA within the human carotid atherosclerotic lesion was highest in the lipid-rich core, the region most thrombogenic and most prone to rupture. Given the potent biological activity of LPA on platelets and on cells of the vessel wall, our study identifies LPA as an atherothrombogenic molecule and suggests a possible strategy to prevent and treat atherosclerosis and cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- W Siess
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, Klinikum Innenstadt, Universität München, D 80336 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|