1
|
Li R, Chen B, Kubota A, Hanna A, Humeres C, Hernandez SC, Liu Y, Ma R, Tuleta I, Huang S, Venugopal H, Zhu F, Su K, Li J, Zhang J, Zheng D, Frangogiannis NG. Protective effects of macrophage-specific integrin α5 in myocardial infarction are associated with accentuated angiogenesis. Nat Commun 2023; 14:7555. [PMID: 37985764 PMCID: PMC10662477 DOI: 10.1038/s41467-023-43369-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
Macrophages sense changes in the extracellular matrix environment through the integrins and play a central role in regulation of the reparative response after myocardial infarction. Here we show that macrophage integrin α5 protects the infarcted heart from adverse remodeling and that the protective actions are associated with acquisition of an angiogenic macrophage phenotype. We demonstrate that myeloid cell- and macrophage-specific integrin α5 knockout mice have accentuated adverse post-infarction remodeling, accompanied by reduced angiogenesis in the infarct and border zone. Single cell RNA-sequencing identifies an angiogenic infarct macrophage population with high Itga5 expression. The angiogenic effects of integrin α5 in macrophages involve upregulation of Vascular Endothelial Growth Factor A. RNA-sequencing of the macrophage transcriptome in vivo and in vitro followed by bioinformatic analysis identifies several intracellular kinases as potential downstream targets of integrin α5. Neutralization assays demonstrate that the angiogenic actions of integrin α5-stimulated macrophages involve activation of Focal Adhesion Kinase and Phosphoinositide 3 Kinase cascades.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bijun Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akihiko Kubota
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anis Hanna
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Silvia C Hernandez
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Ma
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Izabela Tuleta
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Harikrishnan Venugopal
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fenglan Zhu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jun Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Wintruba KL, Hill JC, Richards TD, Lee YC, Kaczorowski DJ, Sultan I, Badylak SF, Billaud M, Gleason TG, Phillippi JA. Adventitia-derived extracellular matrix hydrogel enhances contractility of human vasa vasorum-derived pericytes via α 2 β 1 integrin and TGFβ receptor. J Biomed Mater Res A 2022; 110:1912-1920. [PMID: 35770946 DOI: 10.1002/jbm.a.37422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/07/2022] [Accepted: 06/15/2022] [Indexed: 11/11/2022]
Abstract
Pericytes are essential components of small blood vessels and are found in human aortic vasa vasorum. Prior work uncovered lower vasa vasorum density and decreased levels of pro-angiogenic growth factors in adventitial specimens of human ascending thoracic aortic aneurysm. We hypothesized that adventitial extracellular matrix (ECM) from normal aorta promotes pericyte function by increasing pericyte contractile function through mechanisms deficient in ECM derived from aneurysmal aortic adventitia. ECM biomaterials were prepared as lyophilized particulates from decellularized adventitial specimens of human and porcine aorta. Immortalized human aortic adventitia-derived pericytes were cultured within Type I collagen gels in the presence or absence of human or porcine adventitial ECMs. Cell contractility index was quantified by measuring the gel area immediately following gelation and after 48 h of culture. Normal human and porcine adventitial ECM increased contractility of pericytes when compared with pericytes cultured in absence of adventitial ECM. In contrast, aneurysm-derived human adventitial ECM failed to promote pericyte contractility. Pharmacological inhibition of TGFβR1 and antibody blockade of α2 β1 integrin independently decreased porcine adventitial ECM-induced pericyte contractility. By increasing pericyte contractility, adventitial ECM may improve microvascular function and thus represents a candidate biomaterial for less invasive and preventative treatment of human ascending aortic disease.
Collapse
Affiliation(s)
- Kaitlyn L Wintruba
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer C Hill
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tara D Richards
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yoojin C Lee
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David J Kaczorowski
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ibrahim Sultan
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marie Billaud
- Department of Surgery, Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas G Gleason
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie A Phillippi
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Multiscale model of integrin adhesion assembly. PLoS Comput Biol 2019; 15:e1007077. [PMID: 31163027 PMCID: PMC6568411 DOI: 10.1371/journal.pcbi.1007077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both β-1 and β-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of β-1 and β-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.
Collapse
|
4
|
Chen YW, Gregory C, Ye F, Harafuji N, Lott D, Lai SH, Mathur S, Scarborough M, Gibbs P, Baligand C, Vandenborne K. Molecular signatures of differential responses to exercise trainings during rehabilitation. ACTA ACUST UNITED AC 2017; 2. [PMID: 28845464 PMCID: PMC5568829 DOI: 10.15761/bgg.1000127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The loss and recovery of muscle mass and function following injury and during rehabilitation varies among individuals. While recent expression profiling studies have illustrated transcriptomic responses to muscle disuse and remodeling, how these changes contribute to the physiological responses are not clear. In this study, we quantified the effects of immobilization and subsequent rehabilitation training on muscle size and identified molecular pathways associated with muscle responsiveness in an orthopaedic patient cohort study. The injured leg of 16 individuals with ankle injury was immobilized for a minimum of 4 weeks, followed by a 6-week rehabilitation program. The maximal cross-sectional area (CSA) of the medial gastrocnemius muscle of the immobilized and control legs were determined by T1-weighted axial MRI images. Genome-wide mRNA profiling data were used to identify molecular signatures that distinguish the patients who responded to immobilization and rehabilitation and those who were considered minimal responders. RESULTS: Using 6% change as the threshold to define responsiveness, a greater degree of changes in muscle size was noted in high responders (−14.9 ± 3.6%) compared to low responders (0.1 ± 0.0%) during immobilization. In addition, a greater degree of changes in muscle size was observed in high responders (20.5 ± 3.2%) compared to low responders (2.5 ± 0.9%) at 6-week rehabilitation. Microarray analysis showed a higher number of genes differentially expressed in the responders compared to low responders in general; with more expression changes observed at the acute stage of rehabilitation in both groups. Pathways analysis revealed top molecular pathways differentially affected in the groups, including genes involved in mitochondrial function, protein turn over, integrin signaling and inflammation. This study confirmed the extent of muscle atrophy due to immobilization and recovery by exercise training is associated with distinct remodeling signature, which can potentially be used for evaluating and predicting clinical outcomes.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA.,Department of Integrative Systems Biology, George Washington University, Washington DC, USA
| | - Chris Gregory
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| | - Fan Ye
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Naoe Harafuji
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Donovan Lott
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - San-Huei Lai
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC, USA
| | - Sunita Mathur
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, USA
| | - Mark Scarborough
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Parker Gibbs
- Department of Orthopaedics and Rehabilitation, University of Florida, Gainesville, FL, USA
| | - Celine Baligand
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Krista Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Ziziphus nummularia Inhibits Inflammation-Induced Atherogenic Phenotype of Human Aortic Smooth Muscle Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:4134093. [PMID: 28593025 PMCID: PMC5448155 DOI: 10.1155/2017/4134093] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/02/2017] [Indexed: 11/17/2022]
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death worldwide. Atherosclerosis is a CVD characterized by plaque formation resulting from inflammation-induced insults to endothelial cells, monocytes, and vascular smooth muscle cells (VSMCs). Despite significant advances, current treatments for atherosclerosis remain insufficient, prompting the search for alternative modalities, including herbal medicine. Ziziphus nummularia is an herb commonly used in the amelioration of symptoms associated with many health conditions such as cold, diarrhea, cancer, and diabetes. However, its effect on the inflammation-induced behavior of VSMCs remains unknown. In this study, we sought to determine the effect of the ethanolic extract of Z. nummularia (ZNE) on TNF-α-induced phenotypic changes of human aortic smooth muscle cells (HASMCs). The treatment of HASMCs with ZNE decreased cell proliferation, adhesion to fibronectin, migration, and invasion. ZNE treatment also caused a concentration- and time-dependent reduction in the TNF-α-induced expression of matrix metalloproteases MMP-2 and MMP-9, NF-κB, and cell adhesion molecules ICAM-1 and VCAM-1. Furthermore, ZNE decreased the adhesion of THP-1 monocytes to HASMCs and endothelial cells in a concentration-dependent manner. These data provide evidence for the anti-inflammatory effect of Ziziphus nummularia, along with potential implications for its use as an agent that could ameliorate inflammation-induced atherogenic phenotype of VSMCs in atherosclerosis.
Collapse
|
6
|
Riedelová-Reicheltová Z, Brynda E, Riedel T. Fibrin nanostructures for biomedical applications. Physiol Res 2017; 65:S263-S272. [PMID: 27762592 DOI: 10.33549/physiolres.933428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fibrin is a versatile biopolymer that has been extensively used in tissue engineering. In this paper fibrin nanostructures prepared using a technique based on the catalytic effect of fibrin-bound thrombin are presented. This technique enables surface-attached thin fibrin networks to form with precisely regulated morphology without the development of fibrin gel in bulk solution. Moreover, the influence of changing the polymerization time, along with the antithrombin III and heparin concentrations on the morphology of fibrin nanostructures was explored. The binding of bioactive molecules (fibronectin, laminin, collagen, VEGF, bFGF, and heparin) to fibrin nanostructures was confirmed. These nanostructures can be used for the surface modification of artificial biomaterials designed for different biomedical applications (e.g. artificial vessels, stents, heart valves, bone and cartilage constructs, skin grafts, etc.) in order to promote the therapeutic outcome.
Collapse
Affiliation(s)
- Z Riedelová-Reicheltová
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | |
Collapse
|
7
|
Zhu P, Zhou Y, Wu F, Hong Y, Wang X, Shekhawat G, Mosenson J, Wu WS. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three-Dimensional Fibrin Gel. Stem Cells Transl Med 2017; 6:1412-1423. [PMID: 28244269 PMCID: PMC5442710 DOI: 10.1002/sctm.16-0427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/06/2017] [Indexed: 01/13/2023] Open
Abstract
Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine2017;6:1412–1423
Collapse
Affiliation(s)
- Pei Zhu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yalu Zhou
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Furen Wu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yuanfan Hong
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Xin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | - Gajendra Shekhawat
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, USA
| | - Jeffrey Mosenson
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Wen-Shu Wu
- Division of Hematology/Oncology, Department of Medicine and Cancer Center, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
8
|
Kwon I, Hong SY, Kim YD, Nam HS, Kang S, Yang SH, Heo JH. Thrombolytic effects of the snake venom disintegrin saxatilin determined by novel assessment methods: a FeCl3-induced thrombosis model in mice. PLoS One 2013; 8:e81165. [PMID: 24260554 PMCID: PMC3832438 DOI: 10.1371/journal.pone.0081165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/09/2013] [Indexed: 01/19/2023] Open
Abstract
Saxatilin, a novel disintegrin purified and cloned from the venom of the Korean snake Gloydius saxatilis, strongly inhibits activation and aggregation of platelets. Glycoprotein (GP) IIb/IIIa receptor antagonists can resolve thrombus, so saxatilin might also have thrombolytic effects. We investigated the thrombolytic effects of saxatilin in mice using a ferric chloride-induced carotid arterial thrombosis model. Thrombotic occlusion and thrombus resolution were evaluated quantitatively by measuring blood flow in the carotid artery with an ultrasonic flow meter and calculating the degree of flow restoration on a minute-by-minute basis; results were confirmed by histological examination. Saxatilin dissolved thrombi in a dose-dependent manner. Saxatilin at 5 mg/kg restored blood flow to baseline levels. As saxatilin dose increased, time to recanalization decreased. A bolus injection of 10% of a complete dose with continuous infusion of the remaining dose for 60 minutes resulted in effective recanalization without reocclusion. The thrombolytic effect of saxatilin was also demonstrated in vitro using platelet aggregometry by administering saxatilin in preformed thrombi. Bleeding complications were observed in 2 of 71 mice that received saxatilin. Fibrin/fibrinogen zymography and platelet aggregometry studies indicated that saxatilin does not have fibrinolytic activity, but exerted its action on platelets. Integrin-binding assays showed that saxatilin inhibited multiple integrins, specifically α2bβ3 (GP IIb/IIIa), α5β1, αvβ3, αvβ1, and αvβ5, which act on platelet adhesion/aggregation. Saxatilin inhibited multiple integrins by acting on platelets, and was safe and effective in resolving thrombi in mice.
Collapse
Affiliation(s)
- Il Kwon
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Yu Hong
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sungsoo Kang
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Cardiovascular Product Evaluation Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Hee Yang
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Severance Integrative Research Institute for Cerebral and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
9
|
Levy-Beladev L, Levdansky L, Gaberman E, Friedler A, Gorodetsky R. A family of cell-adhering peptides homologous to fibrinogen C-termini. Biochem Biophys Res Commun 2010; 401:124-30. [PMID: 20833137 DOI: 10.1016/j.bbrc.2010.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/06/2010] [Indexed: 11/16/2022]
Abstract
A family of cell-adhesive peptides homologous to sequences on different chains of fibrinogen was investigated. These homologous peptides, termed Haptides, include the peptides Cβ, preCγ, and CαE, corresponding to sequences on the C-termini of fibrinogen chains β, γ, and αE, respectively. Haptides do not affect cell survival and rate of proliferation of the normal cell types tested. The use of new sensitive assays of cell adhesion clearly demonstrated the ability of Haptides, bound to inert matrices, to mediate attachment of different matrix-dependent cell types including normal fibroblasts, endothelial, and smooth muscle cells. Here we present new active Haptides bearing homologous sequences derived from the C-termini of other proteins, such as angiopoietin 1&2, tenascins C&X, and microfibril-associated glycoprotein-4. The cell adhesion properties of all the Haptides were found to be associated mainly with their 11 N-terminal residues. Mutated preCγ peptides revealed that positively charged residues account for their attachment effect. These results suggest a mechanism of direct electrostatic interaction of Haptides with the cell membrane. The extended Haptides family may be applied in modulating adhesion of cells to scaffolds for tissue regeneration and for enhancement of nanoparticulate transfection into cells.
Collapse
Affiliation(s)
- Liron Levy-Beladev
- Institute of Chemistry, Safra Campus, Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
10
|
Jiang C, Zhang H, Zhang W, Kong W, Zhu Y, Zhang H, Xu Q, Li Y, Wang X. Homocysteine promotes vascular smooth muscle cell migration by induction of the adipokine resistin. Am J Physiol Cell Physiol 2009; 297:C1466-76. [PMID: 19828833 DOI: 10.1152/ajpcell.00304.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adipokines may represent a mechanism linking insulin resistance to cardiovascular disease. We showed previously that homocysteine (Hcy), an independent risk factor for cardiovascular disease, can induce the expression and secretion of resistin, a novel adipokine, in vivo and in vitro. Since vascular smooth muscle cell (VSMC) migration is a key event in vascular disease, we hypothesized that adipocyte-derived resistin is involved in Hcy-induced VSMC migration. To confirm our hypothesis, Sprague-Dawley rat aortic SMCs were cocultured with Hcy-stimulated primary rat epididymal adipocytes or treated directly with increasing concentrations of resistin for up to 24 h. Migration of VSMCs was investigated. Cytoskeletal structure and cytoskeleton-related proteins were also detected. The results showed that Hcy (300-500 microM) increased migration significantly in VSMCs cocultured with adipocytes but not in VSMC cultured alone. Resistin alone also significantly increased VSMC migration in a time- and concentration-dependent manner. Resistin small interfering RNA (siRNA) significantly attenuated VSMC migration in the coculture system, which indicated that adipocyte-derived resistin mediates Hcy-induced VSMC migration. On cell spreading assay, resistin induced the formation of focal adhesions near the plasma membrane, which suggests cytoskeletal rearrangement via an alpha(5)beta(1)-integrin-focal adhesion kinase/paxillin-Ras-related C3 botulinum toxin substrate 1 (Rac1) pathway. Our data demonstrate that Hcy promotes VSMC migration through a paracrine or endocrine effect of adipocyte-derived resistin, which provides further evidence of the adipose-vascular interaction in metabolic disorders. The migratory action exerted by resistin on VSMCs may account in part for the increased incidence of restenosis in diabetic patients.
Collapse
Affiliation(s)
- Changtao Jiang
- Dept. of Physiology and Pathophysiology, Peking Univ., Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Contributions of extravascular and intravascular cells to fibrin network formation, structure, and stability. Blood 2009; 114:4886-96. [PMID: 19797520 DOI: 10.1182/blood-2009-06-228940] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fibrin is essential for hemostasis; however, abnormal fibrin formation is hypothesized to increase thrombotic risk. We previously showed that in situ thrombin generation on a cell's surface modulates the 3-dimensional structure and stability of the fibrin network. Currently, we compared the abilities of extravascular and intravascular cells to support fibrin formation, structure, and stability. Extravascular cells (fibroblasts, smooth muscle) supported formation of dense fibrin networks that resisted fibrinolysis, whereas unstimulated intravascular (endothelial) cells produced coarse networks that were susceptible to fibrinolysis. All 3 cell types produced a fibrin structural gradient, with a denser network near, versus distal to, the cell surface. Although fibrin structure depended on cellular procoagulant activity, it did not reflect interactions between integrins and fibrin. These findings contrasted with those on platelets, which influenced fibrin structure via interactions between beta3 integrins and fibrin. Inflammatory cytokines that induced prothrombotic activity on endothelial cells caused the production of abnormally dense fibrin networks that resisted fibrinolysis. Blocking tissue factor activity significantly reduced the density and stability of fibrin networks produced by cytokine-stimulated endothelial cells. Together, these findings indicate fibrin structure and stability reflect the procoagulant phenotype of the endogenous cells, and suggest abnormal fibrin structure is a novel link between inflammation and thrombosis.
Collapse
|
12
|
Sun Z, Martinez-Lemus LA, Hill MA, Meininger GA. Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. Am J Physiol Cell Physiol 2008; 295:C268-78. [PMID: 18495809 DOI: 10.1152/ajpcell.00516.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Integrin-mediated mechanotransduction in vascular smooth muscle cells (VSMCs) plays an important role in the physiological control of tissue blood flow and vascular resistance. To test whether force applied to specific extracellular matrix (ECM)-integrin interactions could induce myogenic-like mechanical activity at focal adhesion sites, we used atomic force microscopy (AFM) to apply controlled forces to specific ECM adhesion sites on arteriolar VSMCs. The tip of AFM probes were fused with a borosilicate bead (2 ~ 5 microm) coated with fibronectin (FN), collagen type I (CNI), laminin (LN), or vitronectin (VN). ECM-coated beads induced clustering of alpha(5)- and beta(3)-integrins and actin filaments at sites of bead-cell contact indicative of focal adhesion formation. Step increases of an upward (z-axis) pulling force (800 ~ 1,600 pN) applied to the bead-cell contact site for FN-specific focal adhesions induced a myogenic-like, force-generating response from the VSMC, resulting in a counteracting downward pull by the cell. This micromechanical event was blocked by cytochalasin D but was enhanced by jasplakinolide. Function-blocking antibodies to alpha(5)beta(1)- and alpha(v)beta(3)-integrins also blocked the micromechanical cell event in a concentration-dependent manner. Similar pulling experiments with CNI, VN, or LN failed to induce myogenic-like micromechanical events. Collectively, these results demonstrate that mechanical force applied to integrin-FN adhesion sites induces an actin-dependent, myogenic-like, micromechanical event. Focal adhesions formed by different ECM proteins exhibit different mechanical characteristics, and FN appears of particular relevance in its ability to strongly attach to VSMCs and to induce myogenic-like, force-generating reactions from sites of focal adhesion in response to externally applied forces.
Collapse
Affiliation(s)
- Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
13
|
Molecular characterization and expression analysis of the gene coding for the porcine beta(3) integrin subunit (CD61). Gene 2007; 408:9-17. [PMID: 18006249 DOI: 10.1016/j.gene.2007.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 01/27/2023]
Abstract
Integrins are heterodimeric cell adhesion molecules with major roles in a variety of biological processes ranging from cell migration to tissue organization, immune and non-immune defense mechanisms and oncogenic transformation. Members of the beta(3) integrin subfamily are composed of a beta(3) subunit (CD61) non-covalently associated with two alpha subunits, alpha(IIb) (CD41) and alpha(v) (CD51), to constitute a group of transmembrane glycoproteins that participate in many physiologically important events. This investigation has focused on the molecular characterization of the cDNA encoding the porcine beta(3) integrin subunit. The deduced 762-amino acid sequence was 93, 92, 91, 89, 79 and 73% homologous to human, dog, rabbit, mouse, chicken and Xenopus laevis CD61 protein, respectively. Porcine CD61 molecule shares many structural features with human CD61, including a region containing a metal ion-dependent adhesion site (MIDAS) folding into an I domain-like structure. Through PCR-SSCP analysis and sequencing, six polymorphic positions were detected in the cDNA sequence of porcine CD61, and their frequencies were observed from a collection of 47 pigs. Expression analysis was done at two different levels: expression of the CD61 mRNA by RT-PCR and localization of the protein by immunohistochemistry. Our results show that CD61 transcripts were detected mainly in platelets and hematopoietic tissues. The immunohistochemical tissue localization of CD61 protein by a specific monoclonal antibody against CD61 recombinant protein showed that CD61 was expressed on vascular and non-vascular smooth muscle, epithelium and myeloid cells, being undetectable in cells of the lymphoid lineage. Furthermore, pulmonary intravascular macrophages (PIM), a subpopulation of macrophages which seem to play an important role in blood clearance, expressed much more CD61 when compared to pulmonary alveolar macrophages (PAM). The knowledge of the structure and distribution of the CD61 provides insight into the physiological function of the porcine beta(3) integrins and should be of importance in understanding the role of this integrin family in biological processes.
Collapse
|
14
|
Cho J, Degen JL, Coller BS, Mosher DF. Fibrin but not adsorbed fibrinogen supports fibronectin assembly by spread platelets. Effects of the interaction of alphaIIb beta3 with the C terminus of the fibrinogen gamma-chain. J Biol Chem 2005; 280:35490-8. [PMID: 16051597 DOI: 10.1074/jbc.m506289200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the assembly of soluble fibronectin by lysophosphatidic acid-activated platelets adherent to fibrinogen or fibrin. More fibronectin was assembled by activated platelets spread on fibrin matrices than by platelets spread on adsorbed fibrinogen. The difference between platelets adherent to fibrinogen and fibrin occurred under both static and flow conditions. Similar differences were seen in binding of the 70-kDa N-terminal fragment of fibronectin that recognizes fibronectin assembly sites on adherent cells. Antibody and peptide blocking studies demonstrated that alphaIIb beta3 integrin mediates platelet adhesion to fibrinogen, whereas both alphav beta3 and alphaIIb beta3 mediate platelet adhesion to fibrin. The hypothesis that engagement of the C-terminal QAGDV sequence of the fibrinogen gamma-chain by alphaIIb beta3 inhibits the ability of the platelet to assemble fibronectin was tested by several experiments. Activated platelets adherent to adsorbed mutant fibrinogen lacking the QAGDV sequence (gammadelta5FG) were assembly-competent, as were platelets adherent to adsorbed normal fibrinogen that had been pretreated with the 7E9 antibody to the C terminus of the gamma-chain. Moreover, adsorbed normal fibrinogen but not gammadelta5FG suppressed the ability of co-adsorbed fibronectin to direct assembly of soluble fibronectin by spread platelets. The suppressive effect was lost when a surface of co-adsorbed fibronectin and fibrinogen was pretreated with 7E9. These results support a model in which the engagement of alphaIIb beta3 by the C-terminal sequence of the fibrinogen gamma-chain initiates signals that suppress subsequent fibronectin assembly by spread platelets. This interaction is less dominant when platelets adhere to fibrin, resulting in enhanced fibronectin assembly.
Collapse
Affiliation(s)
- Jaehyung Cho
- Molecular and Cellular Pharmacology Program and Department of Medicine, University of Wisconsin-Madison School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
15
|
Mol A, van Lieshout MI, Dam-de Veen CG, Neuenschwander S, Hoerstrup SP, Baaijens FPT, Bouten CVC. Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials 2005; 26:3113-21. [PMID: 15603806 DOI: 10.1016/j.biomaterials.2004.08.007] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 08/10/2004] [Indexed: 11/18/2022]
Abstract
In cardiovascular tissue engineering approaches, efficient seeding methods are essential. To achieve this and to save time, cells can be encapsulated in gels. Combining the advantages of a gel as a cell carrier with the advantages of a fiber-based scaffold, providing structural integrity to the developing tissue, might offer several advantages. In this study, seeding by using fibrin as a cell carrier is compared to the conventional static seeding method with regard to tissue development. Seeding with fibrin resulted in less loss of soluble collagen into the medium and a more mature extracellular matrix in a shorter period of time. The use of fibrin degradation inhibitors was shown to inhibit extracellular matrix formation, although it did not hamper cell proliferation. The use of fibrin as a cell carrier to seed cells into a fiber-based scaffold may represent a promising, timesaving approach in cardiovascular tissue engineering applications.
Collapse
Affiliation(s)
- Anita Mol
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Jiménez-Marín A, Moreno A, de la Mulas JM, Millán Y, Morera L, Barbancho M, Llanes D, Garrido JJ. Localization of porcine CD29 transcripts and protein in pig cells and tissues by RT-PCR and immunohistochemistry. Vet Immunol Immunopathol 2005; 104:281-8. [PMID: 15734549 DOI: 10.1016/j.vetimm.2004.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 10/13/2004] [Accepted: 12/02/2004] [Indexed: 11/24/2022]
Abstract
Integrins are heterodimeric cell adhesion proteins with major roles in a variety of biological processes ranging from cell migration to tissue organization, immune and non-immune defense mechanisms and oncogenic transformation. Members of the beta(1) integrin subfamily are composed of a beta(1) subunit (CD29) non-covalently associated with different alpha subunits to constitute a group of transmembrane glycoproteins that participate in many physiologically important events. Here, we have studied the CD29 expression in porcine tissues and cells at two different levels: expression of the CD29 mRNA by RT-PCR and localization of the protein by immunohistochemistry. CD29 transcripts were detected in a variety of tissues and cells: platelets, PBMC, granulocytes, alveolar macrophages, smooth muscle, intestine, lung, liver, spleen, lymph node, skin, testis, heart, kidney and bone marrow. Our results suggest that CD29 gene transcription occurs in all organs examined, although with different intensities. The precise localization of CD29 protein in paraffin-embedded tissues was detected by using a specific polyclonal antibody indicating that its expression is limited to smooth muscle, epithelium cells, endothelium of blood vessels and myeloid cells and is no detectable in cells of the lymphoid lineage. The distribution of the CD29 in normal tissues provide insight into the physiological function of the porcine beta(1) integrins and should be of importance in understanding the role of this integrin family in pathological processes.
Collapse
Affiliation(s)
- Angeles Jiménez-Marín
- Unidad Mixta CSIC-UCO Marcadores Genéticos Moleculares en Animales Domésticos, Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel (C5), 14071 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Podolnikova NP, Yakubenko VP, Volkov GL, Plow EF, Ugarova TP. Identification of a novel binding site for platelet integrins alpha IIb beta 3 (GPIIbIIIa) and alpha 5 beta 1 in the gamma C-domain of fibrinogen. J Biol Chem 2003; 278:32251-8. [PMID: 12799374 DOI: 10.1074/jbc.m300410200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The interactions of platelets with fibrinogen mediate a variety of responses including adhesion, platelet aggregation, and fibrin clot retraction. Whereas it was assumed that interactions of the platelet integrin alpha IIb beta 3 with the AGDV sequence in the gamma C-domain of fibrinogen and/or RGD sites in the A alpha chains are involved in clot retraction and adhesion, recent data demonstrated that fibrinogen lacking these sites still supported clot retraction. These findings suggested that an unknown site in fibrinogen and/or other integrins participate in clot retraction. Here we have identified a sequence within gamma C that mediates binding of fibrinogen to platelets. Synthetic peptide duplicating the 365-383 sequence in gamma C, designated P3, efficiently inhibited clot retraction in a dose-dependent manner. Furthermore, P3 supported platelet adhesion and was an effective inhibitor of platelet adhesion to fibrinogen fragments. Analysis of overlapping peptides spanning P3 and mutant recombinant gamma C-domains demonstrated that the P3 activity is contained primarily within gamma 370-383. Integrins alpha IIb beta 3 and alpha 5 beta 1 were implicated in recognition of P3, since platelet adhesion to the peptide was blocked by function-blocking monoclonal antibodies against these receptors. Direct evidence that alpha IIb beta 3 and alpha 5 beta 1 bind P3 was obtained by selective capture of these integrins from platelet lysates using a P3 affinity matrix. Thus, these data suggest that the P3 sequence in the gamma C-domain of fibrinogen defines a previously unknown recognition specificity of alpha IIb beta 3 and alpha 5 beta 1 and may function as a binding site for these integrins.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, Lerner Research Institute, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
18
|
Al-Fakhri N, Wilhelm J, Hahn M, Heidt M, Hehrlein FW, Endisch AM, Hupp T, Cherian SM, Bobryshev YV, Lord RSA, Katz N. Increased expression of disintegrin-metalloproteinases ADAM-15 and ADAM-9 following upregulation of integrins alpha5beta1 and alphavbeta3 in atherosclerosis. J Cell Biochem 2003; 89:808-23. [PMID: 12858346 DOI: 10.1002/jcb.10550] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Regulation of alphavbeta3 and alpha5beta1 integrin function plays a crucial role in atherosclerosis. Possible regulators of integrin-matrix interactions are integrin-binding ADAMs (proteins with a disintegrin- and metalloproteinase-domain), like ADAM-15 and ADAM-9. Molecular interactions between ADAM-15, alpha5beta1, and alphavbeta3 have been demonstrated. ADAM-9 and ADAM-15 were found to be interdependently regulated. This study, therefore, investigated whether the upregulation of integrins alpha5beta1 and alphavbeta3 was correlated with the expression of integrin-binding ADAMs in atherosclerotic processes. Human arterial and venous vascular smooth muscle cells (VSMCs) were incubated with PDGF over different time intervals up to a 3-day culture period. mRNA concentrations, quantified by real-time RT-PCR and normalized to PBGD, of integrins alphavbeta3 and alpha5beta1 were strongly increased after a 12-h PDGF-incubation in arterial and venous VSMC. ADAM-15 and ADAM-9 mRNA production showed a corresponding increase following integrin upregulation after a 24-h incubation period. Western blot anaylsis revealed an increased protein expression of integrins and ADAMs in PDGF-stimulated VSMC. Additionally, mRNA concentrations of atherosclerotic and normal human specimens were quantified by real-time RT-PCR. mRNA of ADAMs and integrins was significantly increased in atherosclerotic arteries compared to normal arteries. Immunohistochemistry of these specimens showed an increased expression and codistribution of both ADAMs and integrins in atherosclerosis. In conclusion, upregulation of ADAM-15 and ADAM-9 in atherosclerosis appears to follow an increase in alpha5beta1 and alphavbeta3 integrins. Since alpha5beta1 and alphavbeta3 are known to promote smooth muscle cell migration and proliferation, upregulation of ADAM-15 and ADAM-9 could balance integrin-matrix interactions and cell migration, thus modulating neointima progression.
Collapse
Affiliation(s)
- Nadia Al-Fakhri
- Institute of Clinical Chemistry and Pathobiochemistry, Justus Liebig University, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gorodetsky R, Vexler A, Shamir M, An J, Levdansky L, Shimeliovich I, Marx G. New cell attachment peptide sequences from conserved epitopes in the carboxy termini of fibrinogen. Exp Cell Res 2003; 287:116-29. [PMID: 12799188 DOI: 10.1016/s0014-4827(03)00120-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fibrinogen seems to contribute significantly to cell binding and recruitment into wounds besides its major role in clot formation. We describe 19- to 21-mer cell-binding (haptotactic) peptides from the C-termini of fibrinogen beta-chain (Cbeta), the extended alphaE chain, and near the C-terminal of the gamma-chain. When these peptides were covalently bound to a biologically inert matrix such as Sepharose beads (SB), they elicited beads attachment to cells, mostly of mesenchymal origin (including fibroblasts, endothelial cells, and smooth muscle cells) as well as some transformed cell lines. Based on such haptotactic activity, these peptides were termed "haptides." By contrast, peptides homologous to fibrinogen C-termini alpha- and gamma-chains elicited no such activity. The haptide Cbeta could not block the interaction of fibroblasts with antibodies directed against integrins beta(1), alpha(v), alpha(v)beta(1), alpha(v)beta(3), and alphaIIbeta(3). Moreover, GRGDS peptide could not inhibit enhanced cell binding to SB-Cbeta, as expected from an integrin-mediated process. In soluble form the haptides were accumulated in cells with nonsaturable kinetics without any toxic or proproliferative effects in concentrations up to 80 microM. These findings suggest that the conserved haptidic sequences within fibrin(ogen) can be associated with the adhesion and migration of cells into fibrin clots and may have a significant role in normal wound healing and in various pathological conditions.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah University Hospital, P.O. Box 12000, 91120, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
20
|
Midwood KS, Wierzbicka-Patynowski I, Schwarzbauer JE. Preparation and analysis of synthetic multicomponent extracellular matrix. Methods Cell Biol 2003; 69:145-61. [PMID: 12070990 DOI: 10.1016/s0091-679x(02)69011-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kim S Midwood
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
21
|
Yamani MH, Yang J, Masri CS, Ratliff NB, Bond M, Starling RC, McCarthy P, Plow E, Young JB. Acute cellular rejection following human heart transplantation is associated with increased expression of vitronectin receptor (integrin alphavbeta3). Am J Transplant 2002; 2:129-33. [PMID: 12099514 DOI: 10.1034/j.1600-6143.2002.020203.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The vitronectin receptor (integrin alphavbeta3), a cell-surface adhesion receptor, has been shown to play a significant role in endothelial cell migration, apoptosis, atherosclerosis, and T-lymphocyte activation. This study was undertaken to test the hypothesis that cardiac allograft rejection is associated with increased expression of alphavbeta3. We also determined whether fibronectin receptor (alpha5beta1) and tissue factor are up-regulated in the presence of acute cellular rejection. We evaluated endomyocardial biopsy specimens with histologic evidence of different degrees of acute cellular rejection (grade 0, n = 10; grade 1A, n = 10; grade 2, n = 10; grade 3A, n = 10). Biopsies were obtained 2-4weeks after cardiac transplantation. Immunoperoxidase staining was performed for alphavbeta3, tissue factor, and alpha5beta1, and protein levels were further determined by Western blot analysis. Specimens with grade 2 and grade 3A rejection showed positive staining of alphavbeta3 in lymphocytic aggregates and vascular endothelial cells. By immunoblotting, we identified significantly increased expression of alphavbeta3 in the presence of acute rejection, grade 2 (3-fold, p = 0.01) and grade 3A (3.6-fold, p = 0.005) compared to grade 0 and 1 A specimens. There was no evidence of increased expression of alpha5beta1 or tissue factor. Acute cellular rejection, a process characterized by T-lymphocyte activation and release of inflammatory cytokines, is associated with increased expression of alphavbeta3.
Collapse
Affiliation(s)
- Mohamad H Yamani
- Department of Cardiology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The formation of a fibrous cap made up of intimal smooth muscle cells and connective tissue is part of an attempt by the vessel wall to encapsulate the toxic products accumulating in the necrotic core of atherosclerotic lesions, and should be viewed as a beneficial healing response. In this review, we discuss the development of the intima and the potential origins of the intimal smooth muscle cell with a focus on the unique properties of these cells. We further discuss the role of intimal smooth muscle cells in plaque rupture and in wound healing, and the relationship of wound healing to the loss of lumen that occurs with development of advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- S M Schwartz
- Department of Pathology, Box 357335, University of Washington, Seattle, WA 98195-7335, USA
| | | | | |
Collapse
|
23
|
Jang YC, Tsou R, Gibran NS, Isik FF. Vitronectin deficiency is associated with increased wound fibrinolysis and decreased microvascular angiogenesis in mice. Surgery 2000; 127:696-704. [PMID: 10840366 DOI: 10.1067/msy.2000.105858] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vitronectin has several putative functions including regulating hemostasis, cell adhesion, and cell migration. However, the targeted deletion of vitronectin in mice results in normal development and normal coagulation parameters. To determine whether vitronectin may be necessary for nondevelopmental processes, we examined the response to tissue injury in vitronectin-null mice. METHODS We examined wound healing in control and vitronectin-null mice by healing rate, zymography, reverse zymography, and Western blots. RESULTS We found that dermal wound healing was slightly delayed in mice lacking vitronectin. More importantly, we found extensive areas of delayed hemorrhage near the sprouting tips of microvessels between days 7 and 14, which temporally coincided with increased urokinase-type plasminogen activator and tissue-type plasminogen activator activity by zymography. Though Western blots confirmed the presence of plasminogen activator inhibitor-1 protein throughout wound repair and reverse zymograms showed decreased plasminogen activator inhibitor-1 activity between days 7 and 14. CONCLUSIONS Loss of vitronectin in mice was associated with changes in the fibrinolytic balance, and this may have led to focal sites of delayed hemorrhage. The mechanism that resulted in decreased angiogenesis and the formation of larger blood vessels in response to tissue injury remains unknown. This study suggests that vitronectin may have several distinct functions that are not required for normal development but are manifested in response to tissue injury.
Collapse
Affiliation(s)
- Y C Jang
- Department of Surgery, Puget Sound Health Care System, Seattle, Washington, USA
| | | | | | | |
Collapse
|
24
|
Stringa E, Knäuper V, Murphy G, Gavrilovic J. Collagen degradation and platelet-derived growth factor stimulate the migration of vascular smooth muscle cells. J Cell Sci 2000; 113 ( Pt 11):2055-64. [PMID: 10806116 DOI: 10.1242/jcs.113.11.2055] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell migration is a key event in many biological processes and depends on signals from both extracellular matrix and soluble motogenic factors. During atherosclerotic plaque development, vascular smooth muscle cells migrate from the tunica media to the intima through a basement membrane and interstitial collagenous matrix and proliferate to form a neointima. Matrix metalloproteinases have previously been implicated in neointimal formation and in this study smooth muscle cell adhesion and migration on degraded collagen have been evaluated. Vascular smooth muscle cells adhered to native intact collagen type I and to its first degradation by-product, 3/4 fragment (generated by collagenase-3 cleavage), unwound at 35 degrees C to mimic physiological conditions. PDGF-BB pre-treatment induced a fourfold stimulation of smooth muscle cell motility on the collagen 3/4 fragment whereas no increase in smooth muscle cell motility on collagen type I was observed. Cell migration on collagen type I was mediated by alpha2 integrin, whereas PDGF-BB-stimulated migration on the 3/4 collagen fragment was dependent on alphavbeta3 integrin. alphavbeta3 integrin was organised in clusters concentrated at the leading and trailing edges of the cells and was only expressed when cells were exposed to the 3/4 collagen fragment. Tyrphostin A9, an inhibitor of PDGF receptor-beta tyrosine kinase activity, resulted in complete abolition of migration of PDGF-BB treated cells on collagen type I and 3/4 fragment. These results strongly support the hypothesis that the cellular migratory response to soluble motogens can be regulated by proteolytic modification of the extracellular matrix.
Collapse
Affiliation(s)
- E Stringa
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
25
|
Ikari Y, Fujikawa K, Yee KO, Schwartz SM. Alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, or alpha(2)-macroglobulin is required for vascular smooth muscle cell spreading in three-dimensional fibrin gel. J Biol Chem 2000; 275:12799-805. [PMID: 10777577 DOI: 10.1074/jbc.275.17.12799] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is assumed that vitronectin and other adhesion molecules induce cell spreading. We found that vascular smooth muscle cells require unidentified plasma components besides adhesion molecules to spread in fibrin gel, a likely provisional matrix at wound sites. By purification, the plasma components were found to be alpha(1)-proteinase inhibitor, alpha(1)-antichymotrypsin, and alpha(2)-macroglobulin. The chemically inactivated alpha(1)-proteinase inhibitor and alpha(2)-macroglobulin lose the spreading activity, indicating that these proteins function as proteinase inhibitors but not as adhesion molecules. Not only anti-integrin (alpha(v)beta(3) and alpha(5)beta(1)) antibodies but also anti-fibronectin antibodies inhibit the cell spreading. The spreading occurs without the addition of fibronectin and integrins, suggesting that cells produce these molecules. In the absence of the proteinase inhibitors, Western blot analysis shows that the fibronectin is degraded in fibrin gel, while it is intact in the presence of the inhibitors. Thus, the proteinase inhibitors prevent adhesion molecules such as fibronectin from being degraded by a cell-derived proteinase(s) and thus play a role in cell spreading.
Collapse
Affiliation(s)
- Y Ikari
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Because of the lack of function-blocking anti-integrin antibodies that react with nonprimate species, the study of the role of integrins in in vivo animal models of atherosclerosis has been limited. In contrast, peptides or small molecules have shown less species specificity and thus may be better tools to use. In an attempt to identify integrin antagonists of potential use against smooth muscle response to injury, we investigated the role of human smooth muscle cell interactions with fibrin by using a panel of integrin antagonists consisting of the snake venom disintegrin, Kistrin, as well as cyclic peptides with well-defined integrin antagonists activities. We demonstrate that Kistrin, a disintegrin that inhibits beta1, beta2, beta3, and beta5 integrin interactions, had the most potent inhibitory effect. Based on our results, Kistrin or peptides with similar pan-integrin selectivity patterns are prime candidates for use as anti-integrin antagonists in further studies of atherosclerosis and restenosis.
Collapse
Affiliation(s)
- K O Yee
- Department of Pathology, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
The process of in-stent restenosis parallels wound healing responses. Stent deployment results in early thrombus deposition and acute inflammation, granulation tissue development, and ultimately smooth muscle cell proliferation and extracellular matrix synthesis. The severity of arterial injury during stent placement correlates with increased inflammation and late neointimal growth. These pathological findings provide useful targets for therapies aimed at reducing the incidence of in-stent restenosis.
Collapse
Affiliation(s)
- R Virmani
- Department of Cardiovascular Pathology, Armed Forces Institute of Pathology, Washington, DC 20306-6000, USA.
| | | |
Collapse
|
28
|
Felsenfeld DP, Schwartzberg PL, Venegas A, Tse R, Sheetz MP. Selective regulation of integrin--cytoskeleton interactions by the tyrosine kinase Src. Nat Cell Biol 1999; 1:200-6. [PMID: 10559917 DOI: 10.1038/12021] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell motility on extracellular-matrix (ECM) substrates depends on the regulated generation of force against the substrate through adhesion receptors known as integrins. Here we show that integrin-mediated traction forces can be selectively modulated by the tyrosine kinase Src. In Src-deficient fibroblasts, cell spreading on the ECM component vitronectin is inhibited, while the strengthening of linkages between integrin vitronectin receptors and the force-generating cytoskeleton in response to substrate rigidity is dramatically increased. In contrast, Src deficiency has no detectable effects on fibronectin-receptor function. Finally, truncated Src (lacking the kinase domain) co-localizes to focal-adhesion sites with alpha v but not with beta 1 integrins. These data are consistent with a selective, functional interaction between Src and the vitronectin receptor that acts at the integrin-cytoskeleton interface to regulate cell spreading and migration.
Collapse
Affiliation(s)
- D P Felsenfeld
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
29
|
Corbett SA, Schwarzbauer JE. Requirements for alpha(5)beta(1) integrin-mediated retraction of fibronectin-fibrin matrices. J Biol Chem 1999; 274:20943-8. [PMID: 10409640 DOI: 10.1074/jbc.274.30.20943] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin alpha(5)beta(1). Further, we show that FN-fibrin clots support increased cell spreading when compared with fibrin matrices. To determine the structural requirements for FN in this process, recombinant FN monomers deficient in ligand binding or fibrin cross-linking were incorporated into fibrin clots. We show that recombinant FN monomers support clot retraction by Chinese hamster ovary cells expressing the integrin alpha(5)beta(1). This process depends on both the Arg-Gly-Asp (RGD) and the synergy cell-binding sites and on covalent FN-fibrin binding, demonstrating that cross-linking within the clot is important for cell-FN interactions. These data show that alpha(5)beta(1) can bind to FN within a clot to promote clot retraction and support cell shape change. This provides strong evidence that alpha(5)beta(1)-FN interactions may contribute to the cellular events required for wound contraction.
Collapse
Affiliation(s)
- S A Corbett
- Department of Surgery, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903, USA.
| | | |
Collapse
|