1
|
Kumar M, Sharma T, Patel K, Chinnapparaj S, Dixit R, Gendle C, Aggarwal A, Takkar A, Gupta T, Singla N, Pal A, Salunke P, Dhandapani S, Chabra R, Chatterjee A, Gowda H, Bhagat H. Molecular Basis of Cerebral Vasospasm: What Can We Learn from Transcriptome and Temporal Gene Expression Profiling in Intracranial Aneurysm? OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:234-245. [PMID: 38717843 DOI: 10.1089/omi.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cerebral vasospasm (CV) is a significant complication following aneurysmal subarachnoid hemorrhage (aSAH), and lacks a comprehensive molecular understanding. Given the temporal trajectory of intracranial aneurysm (IA) formation, its rupture, and development of CV, altered gene expression might be a molecular substrate that runs through these clinical events, influencing both disease inception and progression. Utilizing RNA-Seq, we analyzed tissue samples from ruptured IAs with and without vasospasm to identify the dysregulated genes. In addition, temporal gene expression analysis was conducted. We identified seven dysregulated genes in patients with ruptured IA with vasospasm when compared with those without vasospasm. We found 192 common genes when the samples of each clinical subset of patients with IA, that is, unruptured aneurysm, ruptured aneurysm without vasospasm, and ruptured aneurysm with vasospasm, were compared with control samples. Among these common genes, TNFSF13B, PLAUR, OSM, and LAMB3 displayed temporal expression (progressive increase) with the pathological progression of disease that is formation of aneurysm, its rupture, and consequently the development of vasospasm. We validated the temporal gene expression pattern of OSM at both the transcript and protein levels and OSM emerges as a crucial gene implicated in the pathological progression of disease. In addition, RSAD2 and ATP1A2 appear to be pivotal genes for CV development. To the best of our knowledge, this is the first study to compare the transcriptome of aneurysmal tissue samples of aSAH patients with and without CV. The findings collectively provide new insights on the molecular basis of IA and CV and new leads for translational research.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ravi Dixit
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chandrashekhar Gendle
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pravin Salunke
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajesh Chabra
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
2
|
Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, Liu X, Zhang M. High glucose levels accelerate atherosclerosis via NLRP3-IL/ MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun 2024; 704:149702. [PMID: 38422898 DOI: 10.1016/j.bbrc.2024.149702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1β, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Hui Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hong Ma
- Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, China
| | - Shuen Li
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Xia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lijie Yao
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xuelian Pang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Guihua Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
3
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Carsuzaa F, Bequignon E, Bartier S, Coste A, Dufour X, Bainaud M, Lecron JC, Louis B, Tringali S, Favot L, Fieux M. Oncostatin M Contributes to Airway Epithelial Cell Dysfunction in Chronic Rhinosinusitis with Nasal Polyps. Int J Mol Sci 2023; 24:6094. [PMID: 37047067 PMCID: PMC10094365 DOI: 10.3390/ijms24076094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a typical type-2 inflammation involving several cytokines and is associated with epithelial cell dysfunction. Oncostatin M (OSM) (belonging to the interleukin(IL)-6 family) could be a key driver of epithelial barrier dysfunction. Therefore, we investigated the presence of OSM and IL-6 and the expression pattern of tight junctions (TJs) in the nasal tissue of CRSwNP patients and controls using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) and Western blotting. Then, their potential role in the epithelial barrier was evaluated in vitro in 27 different primary cultures of human nasal epithelial cells (HNECs) by measuring TJ expression and transepithelial electric resistance (TEER) with or without OSM or IL-6 (1, 10, and 100 ng/mL). The effect on ciliary beating efficiency was evaluated by high-speed videomicroscopy and on repair mechanisms with a wound healing model with or without OSM. OSM and IL-6 were both overexpressed, and TJ (ZO-1 and occludin) expression was decreased in the nasal polyps compared to the control mucosa. OSM (100 ng/mL) but not IL-6 induced a significant decrease in TJ expression, TEER, and ciliary beating efficiency in HNECs. After 24 h, the wound repair rate was significantly higher in OSM-stimulated HNECs at 100 ng/mL. These results suggest that OSM could become a new target for monoclonal antibodies.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Emilie Bequignon
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Sophie Bartier
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Service d’ORL, de Chirurgie Cervico Faciale, Hôpital Henri-Mondor, Assistance Publique des Hôpitaux de Paris, F-94010 Créteil, France
| | - André Coste
- Centre Hospitalier Intercommunal de Créteil, Service d’Oto-Rhino-Laryngologie et de Chirurgie Cervico-Faciale, F-94010 Créteil, France
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Xavier Dufour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service ORL, Chirurgie Cervico-Maxillo-Faciale et Audiophonologie, Centre Hospitalier Universitaire de Poitiers, F-86000 Poitiers, France
| | - Matthieu Bainaud
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Jean Claude Lecron
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
- Service Immunologie et Inflammation, Centre Hospitalier Universitaire de Poitiers, F-86021 Poitiers, France
| | - Bruno Louis
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
| | - Stéphane Tringali
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
- UMR 5305, Laboratoire de Biologie Tissulaire et d’Ingénierie Thérapeutique, Institut de Biologie et Chimie des Protéines, CNRS, Université Claude Bernard Lyon 1, 7 Passage du Vercors, CEDEX 07, F-69367 Lyon, France
| | - Laure Favot
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines (LITEC), UR15560, Université de Poitiers, F-86000 Poitiers, France
| | - Maxime Fieux
- CNRS EMR 7000, F-94010 Créteil, France
- INSERM, IMRB, Univ Paris Est Creteil, F-94010 Créteil, France
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d’ORL, d’Otoneurochirurgie et de Chirurgie Cervico-Faciale, F-69310 Pierre Bénite, France
- Faculté de Médecine et de Maïeutique Lyon Sud-Charles Mérieux, Université de Lyon, Université Lyon 1, F-69003 Lyon, France
| |
Collapse
|
5
|
Kim HK, Kim H, Lee MK, Choi WH, Jang Y, Shin JS, Park JY, Bae DH, Hyun SI, Kim KH, Han HW, Lim B, Choi G, Kim M, Chang Lim Y, Yoo J. Generation of human tonsil epithelial organoids as an ex vivo model for SARS-CoV-2 infection. Biomaterials 2022; 283:121460. [PMID: 35286852 PMCID: PMC8901203 DOI: 10.1016/j.biomaterials.2022.121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022]
Abstract
The palatine tonsils (hereinafter referred to as "tonsils") serve as a reservoir for viral infections and play roles in the immune system's first line of defense. The aims of this study were to establish tonsil epithelial cell-derived organoids and examine their feasibility as an ex vivo model for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The tonsil organoids successfully recapitulated the key characteristics of the tonsil epithelium, including cellular composition, histologic properties, and biomarker distribution. Notably, the basal layer cells of the organoids express molecules essential for SARS-CoV-2 entry, such as angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2) and furin, being susceptible to the viral infection. Changes in the gene expression profile in tonsil organoids revealed that 395 genes associated with oncostatin M signaling and lipid metabolism were highly upregulated within 72 h after SARS-CoV-2 infection. Notably, remdesivir suppressed the viral RNA copy number in organoid culture supernatants and intracellular viral protein levels in a dose-dependent manner. Here, we suggest that tonsil epithelial organoids could provide a preclinical and translational research platform for investigating SARS-CoV-2 infectivity and transmissibility or for evaluating antiviral candidates.
Collapse
Affiliation(s)
- Han Kyung Kim
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea; R&D Institute, Organoidsciences Ltd., Seongnam, Republic of Korea
| | - Hyeryeon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Myoung Kyu Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Woo Hee Choi
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Yejin Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jin Soo Shin
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Jun-Yeol Park
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Dong Hyuck Bae
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea
| | - Seong-In Hyun
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Kang Hyun Kim
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Hyun Wook Han
- Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Byungho Lim
- Data Convergence Drug Research Center, KRICT, Daejeon, Republic of Korea
| | - Gildon Choi
- Data Convergence Drug Research Center, KRICT, Daejeon, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Meehyein Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea.
| | - Young Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, The Research Institute, Konkuk University School of Medicine, Seoul, Republic of Korea.
| | - Jongman Yoo
- Department of Microbiology, CHA University School of Medicine, Seongnam, Republic of Korea; CHA Organoid Research Center, CHA University, Seongnam, Republic of Korea; R&D Institute, Organoidsciences Ltd., Seongnam, Republic of Korea.
| |
Collapse
|
6
|
4-Methoxyphenyl (E)-3-(Furan-3-yl) Acrylate Inhibits Vascular Smooth Muscle Cell Proliferation. J Cardiovasc Pharmacol 2021; 76:106-111. [PMID: 32644321 DOI: 10.1097/fjc.0000000000000831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Cordyceps extract exhibits antiproliferative potential in vascular smooth muscle cells (SMCs) through the mitogen-activated protein kinase signaling pathway. In this study, we aimed to identify the active compounds in the Cordyceps extract and analyze their role in remodeling the arterial wall. On investigation, we discovered the following active compound: 4-methoxyphenyl (E)-3-(furan-3-yl) acrylate and synthesized it. We performed antiproliferation and antimigration assays in addition to an in vivo vessel wall remodeling experiment. Investigation of the mechanism adopted by the active compound to remodel the vessel was performed. The newly synthesized compound inhibited the proliferation and migration of SMCs. Treatment with the synthesized compound reduced neointima formation in the balloon-injured Sprague-Dawley rat model. In addition, this compound inhibited the activation of matrix metalloproteinase-2 and matrix metalloproteinase-9 in type I collagen-activated SMCs. Moreover, this compound suppressed the expression of cycloxygenase-2 (COX-2) in SMCs. Therefore, this compound can exert potential antiarteriosclerotic effects by modulating vessel wall remodeling. In conclusion, the newly synthesized 4-methoxyphenyl (E)-3-(furan-3-yl) acrylate might be an alternative therapeutic intervention for the treatment of atherosclerosis.
Collapse
|
7
|
Leimert KB, Verstraeten BSE, Messer A, Nemati R, Blackadar K, Fang X, Robertson SA, Chemtob S, Olson DM. Cooperative effects of sequential PGF2α and IL-1β on IL-6 and COX-2 expression in human myometrial cells†. Biol Reprod 2020; 100:1370-1385. [PMID: 30794283 DOI: 10.1093/biolre/ioz029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022] Open
Abstract
The change from the state of pregnancy to the state of parturition, which we call uterine transitioning, requires the actions of inflammatory mediators and results in an activated uterus capable of performing the physiology of labor. Interleukin (IL)-1β and prostaglandin (PG)F2α are two key mediators implicated in preparing the uterus for labor by regulating the expression of uterine activation proteins (UAPs) and proinflammatory cytokines and chemokines. To investigate this process, primary human myometrial smooth muscle cells (HMSMC) isolated from the lower segment of women undergoing elective cesarean sections at term (not in labor) were used to test the inflammatory cytokine and UAP outputs induced by PGF2α and IL-1β alone or in sequential combinations. PGF2α and IL-1β regulate mRNA abundance of the PGF2α receptor FP, the IL-1 receptor system, interleukin 6, and other UAPs (OXTR, COX2), driving positive feedback interactions to further amplify their own proinflammatory effects. Sequential stimulation of HMSMC by PGF2α and IL-1β in either order results in amplified upregulation of IL-6 and COX-2 mRNA and protein, compared to their effects individually. These profound increases were unique to myometrium and not observed with stimulation of human fetal membrane explants. These results suggest that PGF2α and IL-1β act cooperatively upstream in the birth cascade to maximize amplification of IL-6 and COX-2, to build inflammatory load and thereby promote uterine transition. Targeting PGF2α or IL-1β, their actions, or intermediates (e.g. IL-6) would be an effective therapeutic intervention for preterm birth prevention or delay.
Collapse
Affiliation(s)
- Kelycia B Leimert
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Angela Messer
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Rojin Nemati
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Kayla Blackadar
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Xin Fang
- Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Robertson
- Department of Obstetrics and Gynecology, University of Adelaide, Adelaide, South Australia, Australia
| | - Sylvain Chemtob
- Department of Pediatrics, Ophthalmology, and Pharmacology, CHU Sainte-Justine Research Center, Montréal, Quebec, Canada
| | - David M Olson
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada.,Department of Obstetrics, Gynecology and Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Rathod S, Khan F, Kolte A, Gupta M, Chari S, Gonde N. Quantitative analysis of oncostatin M levels in chronic periodontitis patients. JOURNAL OF THE INTERNATIONAL CLINICAL DENTAL RESEARCH ORGANIZATION 2020. [DOI: 10.4103/jicdro.jicdro_51_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
9
|
Richards CD, Botelho F. Oncostatin M in the Regulation of Connective Tissue Cells and Macrophages in Pulmonary Disease. Biomedicines 2019; 7:E95. [PMID: 31817403 PMCID: PMC6966661 DOI: 10.3390/biomedicines7040095] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Oncostatin M (OSM), as one of the gp130/IL-6 family of cytokines, interacts with receptor complexes that include the gp130 signaling molecule and OSM receptor β OSMRβ chain subunits. OSMRβ chains are expressed relatively highly across a broad array of connective tissue (CT) cells of the lung, such as fibroblasts, smooth muscle cells, and epithelial cells, thus enabling robust responses to OSM, compared to other gp130 cytokines, in the regulation of extracellular matrix (ECM) remodeling and inflammation. OSMRβ chain expression in lung monocyte/macrophage populations is low, whereas other receptor subunits, such as that for IL-6, are present, enabling responses to IL-6. OSM is produced by macrophages and neutrophils, but not CT cells, indicating a dichotomy of OSM roles in macrophage verses CT cells in lung inflammatory disease. ECM remodeling and inflammation are components of a number of chronic lung diseases that show elevated levels of OSM. OSM-induced products of CT cells, such as MCP-1, IL-6, and PGE2 can modulate macrophage function, including the expression of OSM itself, indicating feedback loops that characterize Macrophage and CT cell interaction.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 3Z5, Canada;
| | | |
Collapse
|
10
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|
11
|
Tawara K, Scott H, Emathinger J, Wolf C, LaJoie D, Hedeen D, Bond L, Montgomery P, Jorcyk C. HIGH expression of OSM and IL-6 are associated with decreased breast cancer survival: synergistic induction of IL-6 secretion by OSM and IL-1β. Oncotarget 2019; 10:2068-2085. [PMID: 31007849 PMCID: PMC6459341 DOI: 10.18632/oncotarget.26699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic inflammation has been recognized as a risk factor for the development and maintenance of malignant disease. Cytokines such as interleukin-6 (IL-6), oncostatin M (OSM), and interleukin-1 beta (IL-1β) promote the development of both acute and chronic inflammation while promoting in vitro metrics of breast cancer metastasis. However, anti-IL-6 and anti-IL-1β therapeutics have not yielded significant results against solid tumors in clinical trials. Here we show that these three cytokines are interrelated in expression. Using the Curtis TCGA™ dataset, we have determined that there is a correlation between expression levels of OSM, IL-6, and IL-1β and reduced breast cancer patient survival (r = 0.6, p = 2.2 x 10−23). Importantly, we confirm that OSM induces at least a 4-fold increase in IL-6 production from estrogen receptor-negative (ER−) breast cancer cells in a manner that is dependent on STAT3 signaling. Furthermore, OSM induces STAT3 phosphorylation and IL-1β promotes p65 phosphorylation to synergistically induce IL-6 secretion in ER− MDA-MB-231 and to a lesser extent in ER+ MCF7 human breast cancer cells. Induction may be reduced in the ER+ MCF7 cells due to a previously known suppressive interaction between ER and STAT3. Interestingly, we show in MCF7 cells that ER’s interaction with STAT3 is reduced by 50% through both OSM and IL-1β treatment, suggesting a role for ER in mitigating STAT3-mediated inflammatory cascades. Here, we provide a rationale for a breast cancer treatment regime that simultaneously suppresses multiple targets, as these cytokines possess many overlapping functions that increase metastasis and worsen patient survival.
Collapse
Affiliation(s)
- Ken Tawara
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA
| | - Hannah Scott
- Boise State University, Department of Biological Sciences, Boise, ID, USA
| | | | - Cody Wolf
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| | - Dollie LaJoie
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Danielle Hedeen
- Boise State University, Department of Biological Sciences, Boise, ID, USA.,University of Utah, Department of Oncological Sciences, Salt Lake City, UT, USA
| | - Laura Bond
- Boise State University, Biomolecular Research Center, Boise, ID, USA
| | | | - Cheryl Jorcyk
- Boise State University, Biomolecular Sciences Program, Boise, ID, USA.,Boise State University, Department of Biological Sciences, Boise, ID, USA
| |
Collapse
|
12
|
Zhang X, Li J, Qin JJ, Cheng WL, Zhu X, Gong FH, She Z, Huang Z, Xia H, Li H. Oncostatin M receptor β deficiency attenuates atherogenesis by inhibiting JAK2/STAT3 signaling in macrophages. J Lipid Res 2017; 58:895-906. [PMID: 28258089 PMCID: PMC5408608 DOI: 10.1194/jlr.m074112] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
Oncostatin M (OSM) is a secreted cytokine mainly involved in chronic inflammatory and cardiovascular diseases through binding to OSM receptor β (OSMR-β). Recent studies demonstrated that the presence of OSM contributed to the destabilization of atherosclerotic plaque. To investigate whether OSMR-β deficiency affects atherosclerosis, male OSMR-β−/−ApoE−/− mice were generated and utilized. Here we observed that OSMR-β expression was remarkably upregulated in both human and mouse atherosclerotic lesions, which were mainly located in macrophages. We found that OSMR-β deficiency significantly ameliorated atherosclerotic burden in aorta and aortic root relative to ApoE-deficient littermates and enhanced the stability of atherosclerotic plaques by increasing collagen and smooth muscle cell content, while decreasing macrophage infiltration and lipid accumulation. Moreover, bone marrow transplantation of OSMR-β−/− hematopoietic cells to atherosclerosis-prone mice displayed a consistent phenotype. Additionally, we observed a relatively reduced level of JAK2 and signal transducer and activator of transcription (STAT)3 in vivo and under Ox-LDL stimulation in vitro. Our findings suggest that OSMR-β deficiency in macrophages improved high-fat diet-induced atherogenesis and plaque vulnerability. Mechanistically, the protective effect of OSMR-β deficiency on atherosclerosis may be partially attributed to the inhibition of the JAK2/STAT3 activation in macrophages, whereas OSM stimulation can activate the signaling pathway.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Wen-Lin Cheng
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Xueyong Zhu
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Fu-Han Gong
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Zhigang She
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China.,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Zan Huang
- College of Life Science, Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital, Wuhan University, Wuhan, China .,Institute of Model Animals, Wuhan University, Wuhan, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Feng X, Shen S, Cao P, Zhu L, Zhang Y, Zheng K, Feng G, Zhang D. The role of oncostatin M regulates osteoblastic differentiation of dental pulp stem cells through STAT3 pathway. Cytotechnology 2016; 68:2699-2709. [PMID: 27376650 DOI: 10.1007/s10616-016-9995-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/09/2016] [Indexed: 12/29/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are a type of mesenchymal stem cells, which have the self-renewal and multi-lineage differentiation potential, including chondrocytes, adipocytes, neural cells and osteoblasts. So they play a significant role in pulp repair and bone regeneration. Oncostatin M (OSM), one of the IL-6 family cytokines, inhibits adipogenic differentiation and stimulates osteogenic differentiation of human bone marrow mesenchymal stem cells. However, the effect of OSM on DPSCs is unclear. We found that OSM induced osteogenic differentiation of DPSCs, promoting matrix mineralization as measured by Alizarin Red S staining. OSM also increased expression of osteogenesis-associated gene products Alkaline phosphatase, Bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 and Osteocalcin (OCN) as assessed by immunoblotting. We also found that OSM activated the Signal Transducer And Activator Of Transcription 3 (STAT3) pathway during the osteogenic differentiation of DPSCs. Blocking the osteogenic differentiation by silencing of STAT3 can significantly inhibit OSM-induced osteogenic differentiation of DPSCs and the expression of related genes, furthermore matrix mineralization was also suppressed. In summary, OSM promotes osteoblastic differentiation of DPSCs and osteogenesis-related genes expression through the JAK3/STAT3 signaling pathway which may be useful for the autologous transplantation of DPSCs.
Collapse
Affiliation(s)
- Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China
| | - Shuling Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China
| | - Linhe Zhu
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Ye Zhang
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China
| | - Ke Zheng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226000, China.
| | - Dongmei Zhang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226000, China.
| |
Collapse
|
14
|
Chuerduangphui J, Pientong C, Chaiyarit P, Patarapadungkit N, Chotiyano A, Kongyingyoes B, Promthet S, Swangphon P, Wongjampa W, Ekalaksananan T. Effect of human papillomavirus 16 oncoproteins on oncostatin M upregulation in oral squamous cell carcinoma. Med Oncol 2016; 33:83. [PMID: 27349249 DOI: 10.1007/s12032-016-0800-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 06/21/2016] [Indexed: 01/17/2023]
Abstract
Human papillomavirus (HPV) infection modulates several host cytokines contributing to cancer development. Oncostatin M (OSM), an IL-6 family cytokine, acts to promote cell senescence and inhibit growth. Its dysregulation promotes cell survival, cell proliferation and metastasis in various malignancies. The effect of HPV on OSM dysregulation has not been investigated. To elucidate this, immunohistochemistry was used on formalin-fixed, paraffin-embedded oral squamous cell carcinoma (OSCC) tissues: HPV-positive (50) and HPV-negative (50) cases. Immortalized human cervical keratinocytes expressing HPV16E6 (HCK1T, Tet-On system) were used to demonstrate the role of HPV16E6 in OSM expression. In addition, a vector containing HPV16E6/E7 was transiently transfected into oral cancer cell lines. Cell viability, cell-cycle progression and cell migration were evaluated using flow cytometry and a wound healing assay, respectively. The results showed various intensities of OSM expression in OSCC. Interestingly, the median percentages of strongly stained cells were significantly higher in HPV-positive OSCCs than in HPV-negative OSCCs. To explore the role of HPV oncoproteins on OSM expression, the expression of HPV16E6 in the HCK1T Tet-On condition was induced by doxycycline and HPV16E6 was found to significantly upregulate levels of OSM mRNA and protein, with concomitant upregulation of c-Myc. In addition, the levels of OSM mRNA and protein in E6/E7 transiently transfected oral cancer cells also gradually increased in a time-dependent manner and these transfected cells showed greater viability and higher migration rates and cell-cycle progression than controls. This result demonstrates that HPV16 oncoproteins upregulate OSM and play an important role to promote OSCC development.
Collapse
Affiliation(s)
- Jureeporn Chuerduangphui
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Ponlatham Chaiyarit
- Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.,Research Group of Chronic Inflammatory Oral Diseases and Systemic Diseases Associated with Oral Health, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Natcha Patarapadungkit
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Chotiyano
- Anatomical Pathology Unit, Khon Kaen Hospital, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Bunkerd Kongyingyoes
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supannee Promthet
- Department of Epidemiology, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Piyawut Swangphon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Weerayut Wongjampa
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand. .,HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
15
|
Kakutani Y, Shioi A, Shoji T, Okazaki H, Koyama H, Emoto M, Inaba M. Oncostatin M Promotes Osteoblastic Differentiation of Human Vascular Smooth Muscle Cells Through JAK3-STAT3 Pathway. J Cell Biochem 2016; 116:1325-33. [PMID: 25735629 DOI: 10.1002/jcb.25088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/16/2015] [Indexed: 12/16/2022]
Abstract
Vascular calcification is a clinically significant component of atherosclerosis and arises from chronic vascular inflammation. Oncostatin M (OSM) derived from plaque macrophages may contribute to the development of atherosclerotic calcification. Here, we investigated the stimulatory effects of OSM on osteoblastic differentiation of human vascular smooth muscle cells (HVSMC) derived from various arteries including umbilical artery, aorta, and coronary artery and its signaling pathway. Osteoblastic differentiation was induced by exposure of HVSMC to osteogenic differentiation medium (ODM) (10% fetal bovine serum, 0.1 μM dexamethasone, 10 mM β-glycerophosphate and 50 μg/ml ascorbic acid 2-phosphate in Dulbecco's modified Eagle's medium [DMEM]). OSM significantly increased alkaline phosphate (ALP) activity and matrix mineralization in HVSMC from all sources. Osteoblast marker genes such as ALP and Runx2 were also up-regulated by OSM in these cells. OSM treatment induced activation of STAT3 in HVSMC from umbilical artery as evidenced by immunoblot. Moreover, not only a JAK3 inhibitor, WHI-P154, but also knockdown of JAK3 by siRNA prevented the OSM-induced ALP activity and matrix mineralization in umbilical artery HVSMC. On the other hand, silencing of STAT3 almost completely suppressed OSM-induced ALP expression and matrix mineralization in HVSMC from all sources. These data suggest that OSM promotes osteoblastic differentiation of vascular smooth muscle cells through JAK3/STAT3 pathway and may contribute to the development of atherosclerotic calcification.
Collapse
Affiliation(s)
- Yoshinori Kakutani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Shioi
- Department of Geriatrics and Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Shoji
- Department of Geriatrics and Vascular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hirokazu Okazaki
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hidenori Koyama
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
16
|
Richards CD. The enigmatic cytokine oncostatin m and roles in disease. ISRN INFLAMMATION 2013; 2013:512103. [PMID: 24381786 PMCID: PMC3870656 DOI: 10.1155/2013/512103] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/29/2013] [Indexed: 12/11/2022]
Abstract
Oncostatin M is a secreted cytokine involved in homeostasis and in diseases involving chronic inflammation. It is a member of the gp130 family of cytokines that have pleiotropic functions in differentiation, cell proliferation, and hematopoetic, immunologic, and inflammatory networks. However, Oncostatin M also has activities novel to mediators of this cytokine family and others and may have fundamental roles in mechanisms of inflammation in pathology. Studies have explored Oncostatin M functions in cancer, bone metabolism, liver regeneration, and conditions with chronic inflammation including rheumatoid arthritis, lung and skin inflammatory disease, atherosclerosis, and cardiovascular disease. This paper will review Oncostatin M biology in a historical fashion and focus on its unique activities, in vitro and in vivo, that differentiate it from other cytokines and inspire further study or consideration in therapeutic approaches.
Collapse
Affiliation(s)
- Carl D. Richards
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street, West, Hamilton, ON, Canada L8S 4K1
| |
Collapse
|
17
|
Vromman A, Trabelsi N, Rouxel C, Béréziat G, Limon I, Blaise R. β-Amyloid context intensifies vascular smooth muscle cells induced inflammatory response and de-differentiation. Aging Cell 2013; 12:358-69. [PMID: 23425004 DOI: 10.1111/acel.12056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 11/28/2022] Open
Abstract
Several studies have shown that the accumulation of β-amyloid peptides in the brain parenchyma or vessel wall generates an inflammatory environment. Some even suggest that there is a cause-and-effect relationship between inflammation and the development of Alzheimer's disease and/or cerebral amyloid angiopathy (CAA). Here, we studied the ability of wild-type Aβ1-40 -peptide (the main amyloid peptide that accumulates in the vessel wall in sporadic forms of CAA) to modulate the phenotypic transition of vascular smooth muscle cells (VSMCs) toward an inflammatory/de-differentiated state. We found that Aβ1-40 -peptide alone neither induces an inflammatory response, nor decreases the expression of contractile markers; however, the inflammatory response of VSMCs exposed to Aβ1-40 -peptide prior to the addition of the pro-inflammatory cytokine IL-1β is greatly intensified compared with IL-1β-treated VSMCs previously un-exposed to Aβ1-40 -peptide. Similar conclusions could be drawn when tracking the decline of contractile markers. Furthermore, we found that the mechanism of this potentiation highly depends on an Aβ1-40 preactivation of the PI3 Kinase and possibly NFκB pathway; indeed, blocking the activation of these pathways during Aβ1-40 -peptide treatment completely suppressed the observed potentiation. Finally, strengthening the possible in vivo relevance of our findings, we evidenced that endothelial cells exposed to Aβ1-40 -peptide generate an inflammatory context and have similar effects than the ones described with IL-1β. These results reinforce the idea that intraparietal amyloid deposits triggering adhesion molecules in endothelial cells, contribute to the transition of VSMCs to an inflammatory/de-differentiated phenotype. Therefore, we suggest that acute inflammatory episodes may increase vascular alterations and contribute to the ontogenesis of CAA.
Collapse
Affiliation(s)
- Amélie Vromman
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| | - Nesrine Trabelsi
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| | - Clotilde Rouxel
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| | - Gilbert Béréziat
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| | - Isabelle Limon
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| | - Régis Blaise
- UR4, Vieillissement, Stress et Inflammation Université Paris 6 7 quai St‐Bernard75252Paris cedex 5 France
| |
Collapse
|
18
|
Dumas A, Lagarde S, Laflamme C, Pouliot M. Oncostatin M decreases interleukin-1 β secretion by human synovial fibroblasts and attenuates an acute inflammatory reaction in vivo. J Cell Mol Med 2012; 16:1274-85. [PMID: 21854541 PMCID: PMC3823080 DOI: 10.1111/j.1582-4934.2011.01412.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Oncostatin M (OSM) is a pleiotropic cytokine of the IL-6 family and displays both pro-inflammatory and anti-inflammatory activities. We studied the impact of OSM on the gene activation profile of human synovial cells, which play a central role in the progression of inflammatory responses in joints. In synovial cells stimulated with lipopolysaccharide and recombinant human granulocyte-macrophage colony-stimulating factor, recombinant human OSM and native OSM secreted by human granulocytes both reduced the gene expression and secretion of IL-1β and CXCL8, but increased that of IL-6 and CCL2. This impact on synovial cell activation was not obtained using IL-6 or leukaemia inhibitory factor. Signal transducer and activator of transcription-1 appeared to mediate the effects of OSM on stimulated human synovial fibroblasts. In the murine dorsal air pouch model of inflammation, OSM reduced the expression of the pro-inflammatory cytokines IL-1β and TNF-α in lining tissues, and their presence in the cavity. These results as a whole suggest an anti-inflammatory role for OSM, guiding inflammatory processes towards resolution.
Collapse
Affiliation(s)
- Aline Dumas
- Centre de Recherche en Rhumatologie et Immunologie du CHUQ, and Department of Microbiology-Infectiology and Immunology, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | | | | | | |
Collapse
|
19
|
Vascular effects of glycoprotein130 ligands--part I: pathophysiological role. Vascul Pharmacol 2011; 56:34-46. [PMID: 22197898 DOI: 10.1016/j.vph.2011.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 12/02/2011] [Accepted: 12/09/2011] [Indexed: 12/25/2022]
Abstract
The vessel wall is no longer considered as only an anatomical barrier for blood cells but is recognized as an active endocrine organ. Dysfunction of the vessel wall occurs in various disease processes including atherosclerosis, hypertension, peripheral artery disease, aneurysms, and transplant and diabetic vasculopathies. Different cytokines were shown to modulate the behavior of the cells, which constitute the vessel wall such as immune cells, endothelial cells and smooth muscle cells. Glycoprotein 130 (gp130) is a common cytokine receptor that controls the activity of a group of cytokines, namely, interleukin (IL)-6, oncostatin M (OSM), IL-11, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), cardiotrophin-like cytokine (CLC), IL-27, and neuropoietin (NP). Gp130 and associated cytokines have abundantly diverse functions. Part I of this review focuses on the pathophysiological functions of gp130 ligands. We specifically describe vascular effects of these molecules and discuss the respective underlying molecular and cellular mechanisms.
Collapse
|
20
|
Albasanz-Puig A, Murray J, Preusch M, Coan D, Namekata M, Patel Y, Dong ZM, Rosenfeld ME, Wijelath ES. Oncostatin M is expressed in atherosclerotic lesions: a role for Oncostatin M in the pathogenesis of atherosclerosis. Atherosclerosis 2011; 216:292-8. [PMID: 21376322 DOI: 10.1016/j.atherosclerosis.2011.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/19/2011] [Accepted: 02/01/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Chronic inflammation plays a pivotal role in the development and progression of atherosclerosis. The inflammatory response is mediated by cytokines. The aim of this study was to determine if Oncostatin M (OSM), a monocyte and T-lymphocyte specific cytokine is present in atherosclerotic lesions. We also investigated the roles of signal transducer and activator of transcription (STAT)-1 and STAT-3 in regulating OSM-induced smooth muscle cell (SMC) proliferation, migration and cellular fibronectin (cFN) synthesis. METHODS AND RESULTS Immunostaining of atherosclerotic lesions from human carotid plaques demonstrated the expression of OSM antigen in both macrophages and SMCs. Explanted SMCs from human carotid plaques expressed OSM mRNA and protein as determined by RT-PCR and Western blotting. Using the chow-fed ApoE(-/-) mouse model of atherosclerosis, we observed that OSM was initially expressed in the intima at 20 weeks of age. By 30 weeks, OSM was expressed in both the intima and media. In vitro studies show that OSM promotes SMC proliferation, migration and cFN synthesis. Lentivirus mediated-inhibition of STAT-1 and STAT-3 prevented OSM-induced SMC proliferation, migration and cellular fibronectin synthesis. CONCLUSIONS These findings demonstrate that OSM is expressed in atherosclerotic lesions and may contribute to the progression of atherosclerosis by promoting SMC proliferation, migration and extracellular matrix protein synthesis through the STAT pathway.
Collapse
Affiliation(s)
- Adaia Albasanz-Puig
- Department of Surgery, Division of Vascular Surgery, VA Puget Sound Health Care System and University of Washington School of Medicine, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Demyanets S, Kaun C, Rychli K, Pfaffenberger S, Kastl SP, Hohensinner PJ, Rega G, Katsaros KM, Afonyushkin T, Bochkov VN, Paireder M, Huk I, Maurer G, Huber K, Wojta J. Oncostatin M-enhanced vascular endothelial growth factor expression in human vascular smooth muscle cells involves PI3K-, p38 MAPK-, Erk1/2- and STAT1/STAT3-dependent pathways and is attenuated by interferon-γ. Basic Res Cardiol 2010; 106:217-31. [PMID: 21174212 DOI: 10.1007/s00395-010-0141-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 12/21/2022]
Abstract
The pleiotropic cytokine oncostatin M (OSM), a member of the glycoprotein (gp)130 ligand family, plays a key role in inflammation and cardiovascular disease. As inflammation precedes and accompanies pathological angiogenesis, we investigated the effect of OSM and other gp130 ligands on vascular endothelial growth factor (VEGF) production in human vascular smooth muscle cells (SMC). Human coronary artery SMC (HCASMC) and human aortic SMC (HASMC) were treated with different gp130 ligands. VEGF protein was determined by ELISA. Specific mRNA was detected by RT-PCR. Western blotting was performed for signal transducers and activators of transcription1 (STAT1), STAT3, Akt and p38 mitogen-activated protein kinase (p38 MAPK). OSM mRNA and VEGF mRNA expression was analyzed in human carotid endaterectomy specimens from 15 patients. OSM increased VEGF production in both HCASMC and HASMC derived from different donors. OSM upregulated VEGF and OSM receptor-specific mRNA in these cells. STAT3 inhibitor WP1066, p38 MAPK inhibitors SB-202190 and BIRB 0796, extracellular signal-regulated kinase1/2 (Erk1/2) inhibitor U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitors LY-294002 and PI-103 reduced OSM-induced VEGF synthesis. We found OSM expression in human atherosclerotic lesions where OSM mRNA correlated with VEGF mRNA expression. Interferon-γ (IFN-γ), but not IL-4 or IL-10, reduced OSM-induced VEGF production in vascular SMC. Our findings that OSM, which is present in human atherosclerotic lesions and correlates with VEGF expression, stimulates production of VEGF by human coronary artery and aortic SMC indicate that OSM could contribute to plaque angiogenesis and destabilization. IFN-γ reduced OSM-induced VEGF production by vascular SMC.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kolkhof P, Geerts A, Schäfer S, Torzewski J. Cardiac glycosides potently inhibit C-reactive protein synthesis in human hepatocytes. Biochem Biophys Res Commun 2010; 394:233-9. [PMID: 20206126 DOI: 10.1016/j.bbrc.2010.02.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 02/27/2010] [Indexed: 11/29/2022]
Abstract
Elevated plasma levels of C-reactive protein (CRP), the prototype acute-phase protein (APP), are predictive for future cardiovascular events. Controversial evidence suggests that CRP may play a causal role in cardiovascular disease. CRP synthesis inhibition is a potential approach for reducing cardiovascular mortality. We show here that endogenous and plant-derived inhibitors of the Na(+)/K(+)-ATPase, i.e. the cardiac glycosides ouabain and digitoxin, inhibit IL-1beta- and IL-6-induced APP expression in human hepatoma cells and primary human hepatocytes (PHH) at nanomolar concentrations. Inhibition is demonstrated on transcriptional and on protein level. The molecular target of cardiac glycosides, i.e. the alpha1 subunit of the Na(+)/K(+)-ATPase, is strongly expressed in human hepatocytes. Inhibition of APP synthesis correlates with the potency of cardiac glycosides at the Na(+)/K(+)-ATPase. The trigger for APP expression inhibition is an increase in intracellular calcium since the calcium ionophore calcimycin is also active. Qualified specificity of oubain for hepatocellular APP synthesis inhibition is demonstrated by lack of effectivity on IL-1beta-induced IL-6 release from primary human coronary artery smooth muscle cells. The inhibitory activity of cardiac glycosides on CRP expression may have important implications for the treatment of cardiovascular disease. Cardiac glycosides may be used for CRP synthesis inhibition in the future.
Collapse
Affiliation(s)
- Peter Kolkhof
- Global Drug Discovery, BAYER HealthCare, Wuppertal, Germany
| | | | | | | |
Collapse
|
23
|
Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 2008; 14:63-87. [PMID: 18713724 DOI: 10.1177/1753425908091246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik und Poliklinik für Innere Medizin , Halle (Saale), Germany.
| | | | | |
Collapse
|
24
|
Duluc D, Delneste Y, Tan F, Moles MP, Grimaud L, Lenoir J, Preisser L, Anegon I, Catala L, Ifrah N, Descamps P, Gamelin E, Gascan H, Hebbar M, Jeannin P. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells. Blood 2007; 110:4319-30. [PMID: 17848619 DOI: 10.1182/blood-2007-02-072587] [Citation(s) in RCA: 338] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-associated macrophages (TAMs), the most abundant immunosuppressive cells in the tumor microenvironment, originate from blood monocytes and exhibit an IL-10(high)IL-12(low) M2 profile. The factors involved in TAM generation remain unidentified. We identify here leukemia inhibitory factor (LIF) and IL-6 as tumor microenvironmental factors that can promote TAM generation. Ovarian cancer ascites switched monocyte differentiation into TAM-like cells that exhibit most ovarian TAM functional and phenotypic characteristics. Ovarian cancer ascites contained high concentrations of LIF and IL-6. Recombinant LIF and IL-6 skew monocyte differentiation into TAM-like cells by enabling monocytes to consume monocyte-colony-stimulating factor (M-CSF). Depletion of LIF, IL-6, and M-CSF in ovarian cancer ascites suppressed TAM-like cell induction. We extended these observations to different tumor-cell line supernatants. In addition to revealing a new tumor-escape mechanism associated with TAM generation via LIF and IL-6, these findings offer novel therapeutic perspectives to subvert TAM-induced immunosuppression and hence improve T-cell-based antitumor immunotherapy efficacy.
Collapse
|
25
|
Demyanets S, Kaun C, Rychli K, Rega G, Pfaffenberger S, Afonyushkin T, Bochkov VN, Maurer G, Huber K, Wojta J. The inflammatory cytokine oncostatin M induces PAI-1 in human vascular smooth muscle cells in vitro via PI 3-kinase and ERK1/2-dependent pathways. Am J Physiol Heart Circ Physiol 2007; 293:H1962-8. [PMID: 17604327 DOI: 10.1152/ajpheart.01366.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) plays a pivotal role in the regulation of the fibrinolytic system and in the modulation of extracellular proteolysis. Increased PAI-1 was found in atherosclerotic lesions, and high PAI-1 plasma levels were associated with coronary heart disease. Smooth muscle cells (SMC) are a major source of PAI-1 within the vascular wall, and PAI-1 was implicated in SMC migration, proliferation, and apoptosis. We treated human coronary artery SMC (HCASMC) and human aortic SMC (HASMC) with the glycoprotein 130 (gp130) ligands cardiotrophin-1, interleukin-6 (IL-6), leukemia inhibitory factor (LIF), or oncostatin M (OSM). Only OSM increased PAI-1 antigen and activity production significantly in these cells up to 20-fold. OSM upregulated mRNA specific for PAI-1 up to 4.5-fold in these cells. HCASMC and HASMC express gp130, OSM receptor, IL-6 receptor, and LIF receptor. OSM induced extracellular signal-regulated kinase (ERK) 1/2 and Akt phosphorylations in HASMC. A phosphatidylinositol 3-kinase inhibitor and a mitogen-activated protein/extracellular signal-regulated kinase inhibitor reduced Akt and ERK1/2 phosphorylation, respectively, and abolished OSM-induced PAI-1 upregulation. A janus kinase/signal transducer and activator of transcription inhibitor, a p38 mitogen-activated protein kinase inhibitor, or c-Jun NH2-terminal kinase inhibitor I did not inhibit the OSM-dependent PAI-1 induction. OSM enhanced proliferation of both HCASMC and HASMC by 77 and 90%, respectively. We hypothesize that, if the effect of OSM on PAI-1 expression in smooth muscle cells is operative in vivo, it could, via modulation of fibrinolysis and extracellular proteolysis, be involved in the development of vascular pathologies such as plaque progression, destabilization and subsequent thrombus formation, and restenosis and neointima formation.
Collapse
Affiliation(s)
- Svitlana Demyanets
- Department of Internal Medicine II, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wincewicz A, Sulkowska M, Rutkowski R, Sulkowski S, Musiatowicz B, Hirnle T, Famulski W, Koda M, Sokol G, Szarejko P. STAT1 and STAT3 as intracellular regulators of vascular remodeling. Eur J Intern Med 2007; 18:267-71. [PMID: 17574099 DOI: 10.1016/j.ejim.2006.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
The roles of signal transducers and activators of transcription (STAT) proteins are widely discussed in the pathogenesis of cardiovascular diseases. It is highly probable that STAT1 and STAT3 are activated during proliferation and inflammation inside atheromatous plaques. Luminal surfaces of endothelium become thrombogenic because of STAT1-dependent induction of MHC II and STAT3-regulated recruitment of phospholipase A2. As with STAT1, STAT3 seems to mediate stimulation of vascular wall cells by VEGF, HGF, and Ang II. STAT3 can contribute to counteracting apoptosis by eventual cooperation with c-fos and the bcl-xl gene. As pharmacological agents called statins are reported to regulate activities of STAT proteins, these signal messenger proteins could serve as targets for anti-atherogenic therapy. We attempted to review the role of STAT1 and STAT3 proteins in vascular remodeling.
Collapse
Affiliation(s)
- Andrzej Wincewicz
- Department of Pathology, Waszyngtona St 13, 15-269 Białystok, Collegium Pathologicum, Medical University of Bialystok, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang X, Zhang J, Yang X, Han X. Several transcription factors regulate COX-2 gene expression in pancreatic beta-cells. Mol Biol Rep 2007; 34:199-206. [PMID: 17505916 DOI: 10.1007/s11033-007-9085-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Accepted: 04/09/2007] [Indexed: 12/21/2022]
Abstract
Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic beta-cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair beta-cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. In this report, we used pancreatic beta-cells (RINm5F) to explore the potential transcription factors regulating COX-2 promoter activity. Using promoter screening method, we selected several transcription factors in our study. Through luciferase reporter studies, we found that these factors can regulate COX-2 promoter activity in RINm5F cells. Among these factors, cyclic AMP response-element binding protein (CREB), Ets family members Ets-1 and Elk-1 can positively regulate COX-2 promoter activity. On the contrary, signal transducer and activator of transcription 1 (STAT1) plays a negative role on COX-2 promoter. Our findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic beta-cells. Moreover, these transcriptional regulators of COX-2 expression will be potential targets for the prevention of beta-cell damage mediated by PGE2.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing, PR China
| | | | | | | |
Collapse
|
28
|
Smyth DC, Kerr C, Richards CD. Oncostatin M-Induced IL-6 Expression in Murine Fibroblasts Requires the Activation of Protein Kinase Cδ. THE JOURNAL OF IMMUNOLOGY 2006; 177:8740-7. [PMID: 17142776 DOI: 10.4049/jimmunol.177.12.8740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Oncostatin M (OSM) is an IL-6/LIF cytokine family member whose role has been identified in a range of biological activities in vitro, including up-regulation of inflammatory gene expression and regulation of connective tissue metabolism. However, the mechanisms through which OSM regulates cellular responses are not completely understood. In this study, we show that activation of the calcium-independent or novel protein kinase C (PKC) isoform PKCdelta is a critical event during OSM-mediated up-regulation of IL-6 expression in murine fibroblasts. The pan-PKC inhibitor GF109203X (bisindolylmaleimide I) reduced secretion of IL-6; however, use of Go6976, an inhibitor of calcium-dependent PKC enzymes, did not. The PKCdelta-selective inhibitory compound rottlerin abrogated expression of IL-6 transcript and protein, but only reduced PKCdelta activity when used at higher concentrations as determined by kinase activity assay, suggesting rottlerin may inhibit IL-6 expression in a PKCdelta-independent manner. However, silencing of PKCdelta protein expression, but not the related novel isoform PKCepsilon, by use of RNA interference (i.e., small interfering RNA) demonstrated that PKCdelta is required for murine OSM (mOSM) induction of IL-6 protein secretion. Furthermore, inhibition of PI3K by use of LY294002 reduces expression of IL-6 at both the mRNA and protein level in murine fibroblasts, and we suggest that PI3K is required for activation of PKCdelta. Knockdown of phosphoinositide-dependent kinases PDK-1 or Akt1 using small interfering RNA strategies did not influence mOSM-induced IL-6 expression, suggesting mOSM uses a PI3K-PKCdelta pathway of activation independent of these kinases. Our findings illustrate a novel signaling network used by mOSM that may be important for its mediation of inflammatory processes.
Collapse
Affiliation(s)
- David C Smyth
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
29
|
Cohen M, Marchand-Adam S, Lecon-Malas V, Marchal-Somme J, Boutten A, Durand G, Crestani B, Dehoux M. HGF synthesis in human lung fibroblasts is regulated by oncostatin M. Am J Physiol Lung Cell Mol Physiol 2006; 290:L1097-103. [PMID: 16684952 DOI: 10.1152/ajplung.00166.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oncostatin M (OSM) is a IL-6 family cytokine locally produced in acute lung injury. Its profibrotic properties suggest a role in lung wound repair. Hepatocyte growth factor (HGF), produced by fibroblasts, is involved in pulmonary epithelial repair. We investigated the role of OSM in HGF synthesis by human lung fibroblasts. We showed that OSM upregulated HGF mRNA in MRC5 cells and in human lung fibroblasts, whereas IL-6 and leukemia inhibitory factor did not. OSM induced HGF secretion to a similar extent as IL-1beta in both a time- and dose-dependent manner. HGF was released in its cleaved mature form, and its secretion was completely inhibited in the presence of cycloheximide, indicating a de novo protein synthesis. OSM in combination with prostaglandin E(2), a powerful HGF inductor, led to an additive effect. OSM and indomethacin in combination further increased HGF secretion. This could be explained, at least in part, by a moderate upregulation of specific OSM receptor beta mRNA expression through cyclooxygenase inhibition. These results demonstrate that OSM-induced HGF synthesis did not involve a PGE(2) pathway. OSM-induced HGF secretion was inhibited by PD-98059 (a specific pharmacological inhibitor of ERK1/2), SB-203580 (a p38 MAPK inhibitor), and SP-600125 (a JNK inhibitor) by 70, 82, and 100%, respectively, whereas basal HGF secretion was only inhibited by SP-600125 by 30%. Our results demonstrate a specific upregulation of HGF synthesis by OSM, most likely through a MAPK pathway, and support the suggestion that OSM may participate in lung repair through HGF production.
Collapse
Affiliation(s)
- Murielle Cohen
- Service de Biochimie A, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris, 46 rue Henri Huchard, 75877 Paris cedex 18, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tabibiazar R, Wagner RA, Ashley EA, King JY, Ferrara R, Spin JM, Sanan DA, Narasimhan B, Tibshirani R, Tsao PS, Efron B, Quertermous T. Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease. Physiol Genomics 2005; 22:213-26. [PMID: 15870398 DOI: 10.1152/physiolgenomics.00001.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The propensity for developing atherosclerosis is dependent on underlying genetic risk and varies as a function of age and exposure to environmental risk factors. Employing three mouse models with different disease susceptibility, two diets, and a longitudinal experimental design, it was possible to manipulate each of these factors to focus analysis on genes most likely to have a specific disease-related function. To identify differences in longitudinal gene expression patterns of atherosclerosis, we have developed and employed a statistical algorithm that relies on generalized regression and permutation analysis. Comprehensive annotation of the array with ontology and pathway terms has allowed rigorous identification of molecular and biological processes that underlie disease pathophysiology. The repertoire of atherosclerosis-related immunomodulatory genes has been extended, and additional fundamental pathways have been identified. This highly disease-specific group of mouse genes was combined with an extensive human coronary artery data set to identify a shared group of genes differentially regulated among atherosclerotic tissues from different species and different vascular beds. A small core subset of these differentially regulated genes was sufficient to accurately classify various stages of the disease in mouse. The same gene subset was also found to accurately classify human coronary lesion severity. In addition, this classifier gene set was able to distinguish with high accuracy atherectomy specimens from native coronary artery disease vs. those collected from in-stent restenosis lesions, thus identifying molecular differences between these two processes. These studies significantly focus efforts aimed at identifying central gene regulatory pathways that mediate atherosclerotic disease, and the identification of classification gene sets offers unique insights into potential diagnostic and therapeutic strategies in atherosclerotic disease.
Collapse
Affiliation(s)
- Raymond Tabibiazar
- Donald W. Reynolds Cardiovascular Clinical Research Center, Division of Cardiovascular Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dreuw A, Hermanns HM, Heise R, Joussen S, Rodríguez F, Marquardt Y, Jugert F, Merk HF, Heinrich PC, Baron JM. Interleukin-6-type cytokines upregulate expression of multidrug resistance-associated proteins in NHEK and dermal fibroblasts. J Invest Dermatol 2005; 124:28-37. [PMID: 15654950 DOI: 10.1111/j.0022-202x.2004.23499.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Normal human epidermal keratinocytes (NHEK) and dermal fibroblasts express a cell-specific pattern of efflux transport proteins. Since regulatory mechanisms for these transporters in cells of the human skin were unknown, we analyzed the influence of inflammatory cytokines on the expression of multidrug resistance-associated proteins (MRP1, 3, 4, 5). Using real-time PCR, RT-PCR, cDNA microarray, immunostaining and efflux assays we demonstrated that stimulation of NHEK and primary human dermal fibroblasts with interleukin-6 (IL-6), in combination with its soluble alpha-receptor, or oncostatin M (OSM) for 24-72 h resulted in an upregulation of MRP expression and activity. Both cytokines induced a strong activation of signal transducer and activator of transcription (STAT)1 and STAT3 as well as the mitogen-activated protein kinase (MAPK) Erk1/2. OSM additionally activated proteinkinase B strongly. Using the MAPK/extracellular signal-regulated kinase kinase 1-specific inhibitor U0126 we could exclude a stimulatory effect of MAPK on MRP gene expression. Inhibition of the phosphatidylinositol 3-kinase, however, indicated that this pathway might be involved of OSM-mediated upregulation of MRP4 in dermal fibroblasts. Several inflammatory skin diseases show an enhanced expression of IL-6-type cytokines. Correspondingly, upregulation of MRP expression was found in lesional skin taken from patients with psoriasis and lichen planus.
Collapse
Affiliation(s)
- Alexandra Dreuw
- Department of Biochemistry, University Hospital, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Faffe DS, Flynt L, Mellema M, Whitehead TR, Bourgeois K, Panettieri RA, Silverman ES, Shore SA. Oncostatin M causes VEGF release from human airway smooth muscle: synergy with IL-1beta. Am J Physiol Lung Cell Mol Physiol 2005; 288:L1040-8. [PMID: 15665043 DOI: 10.1152/ajplung.00333.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular endothelial growth factor (VEGF), a potent angiogenesis factor, likely contributes to airway remodeling in asthma. We sought to examine the effects and mechanism of action of IL-6 family cytokines on VEGF release from human airway smooth muscle (HASM) cells. Oncostatin M (OSM), but not other IL-6 family cytokines, increased VEGF release, and IL-1beta enhanced OSM-induced VEGF release. OSM increased VEGF mRNA expression and VEGF promoter activity, whereas IL-1beta had no effect. IL-1beta did not augment the effects of OSM on VEGF promoter activity but did augment OSM-induced VEGF mRNA expression and mRNA stability. The STAT3 inhibitor piceatannol decreased both OSM-induced VEGF release and synergy between OSM and IL-1beta, without affecting responses to IL-1beta alone. Piceatannol also inhibited OSM-induced VEGF mRNA expression. In contrast, inhibitors of MAPK pathway had no effect on OSM or OSM plus IL-1beta-induced VEGF release. OSM increased type 1 IL-1 receptor (IL-1R1) mRNA expression, as measured by real-time PCR, and piceatannol attenuated this response. Consistent with the increase in IL-1R1 expression, OSM markedly augmented IL-1beta-induced VEGF, MCP-1, and IL-6 release. In summary, our data indicate OSM causes VEGF expression in HASM cells by a transcriptional mechanism involving STAT3. IL-1beta also synergizes with OSM to increase VEGF release, likely as a result of effects of IL-1beta on VEGF mRNA stability as well as effects of OSM on IL-1R1 expression. This is the first description of a role for OSM on IL-1R1 expression in any cell type. OSM may contribute to airway remodeling observed in chronic airway disease.
Collapse
Affiliation(s)
- Débora S Faffe
- Physiology Program, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sanchez C, Deberg MA, Burton S, Devel P, Reginster JYL, Henrotin YE. Differential regulation of chondrocyte metabolism by oncostatin M and interleukin-6. Osteoarthritis Cartilage 2004; 12:801-10. [PMID: 15450530 DOI: 10.1016/j.joca.2004.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 06/18/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effects of interleukin (IL)-6 and oncostatin M (OSM) added separately or in combination with IL-1beta on human osteoarthritic (OA) chondrocytes in alginate beads. DESIGN Human chondrocytes were isolated from OA cartilage and cultured in alginate beads for 12 days, in the absence or in the presence of increasing amounts of IL-6 (20-500ng/ml) with its soluble receptor or OSM (0.1-10ng/ml) and with or without IL-1beta (1.7ng/ml). Aggrecan (AGG), transforming growth factor-beta1 (TGF-beta1), stromelysin-1 [matrix metalloprotease (MMP)-3], tissue inhibitor of metalloproteinases-1 (TIMP-1), macrophage inflammatory protein-1 beta (MIP-1beta), IL-6 and IL-8 productions were assayed by specific enzyme amplified sensitivity immunoassays. Prostaglandin (PG)E(2) was measured by a specific radioimmunoassay and nitrite (NO(2)(-)) by a spectrophotometric method based upon the Griess reaction. RESULTS OSM, but not IL-6, decreased basal AGG and TGF-beta1 synthesis. Although IL-6 stimulated basal TIMP-1 production, it did not significantly modify MMP-3/TIMP-1 ratio. In contrast, 10ng/ml OSM highly increased TIMP-1 production, and decreased by half the ratio MMP-3/TIMP-1. IL-1beta highly stimulated *NO, IL-8, IL-6, MIP-1beta and PGE(2) synthesis but decreased AGG and TGF-beta1 production. Neither IL-6 nor OSM modulated IL-1beta-inhibitory effect on AGG production. IL-6, but not OSM, reversed IL-1beta-induced TGF-beta1 inhibition. At 1-10ng/ml, OSM significantly decreased IL-1beta-stimulated IL-8, MIP-1beta, PGE(2) and *NO production but amplified IL-1beta stimulating effect on IL-6 production. IL-6 had no effect on these parameters. CONCLUSIONS OSM and IL-6, two glycoprotein 130 binding cytokines, show different activity profiles on OA chondrocytes, indicating that these cytokines could play different roles in the OA disease process.
Collapse
Affiliation(s)
- Christelle Sanchez
- Bone and Cartilage Metabolism Research Unit, Institute of Pathology B23, University Hospital, Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
34
|
Nakamura K, Nonaka H, Saito H, Tanaka M, Miyajima A. Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor knockout mice. Hepatology 2004; 39:635-44. [PMID: 14999682 DOI: 10.1002/hep.20086] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oncostatin M (OSM) is a member of the IL-6 family of cytokines. Mice deficient in the OSM receptor (OSMR(-/-)) showed impaired liver regeneration with persistent parenchymal necrosis after carbon tetrachloride (CCl(4)) exposure. The recovery of liver mass from partial hepatectomy was also significantly delayed in OSMR(-/-) mice. In contrast to wildtype mice, CCl(4) administration only marginally induced expression of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 genes in OSMR(-/-) mice, correlating with the increased gelatinase activity of matrix metalloproteinase (MMP)-9 and matrix degradation in injured livers. The activation of STAT3 and expression of immediate early genes and cyclins were decreased in OSMR(-/-) liver, indicating that OSM signaling is required for hepatocyte proliferation and tissue remodeling during liver regeneration. We also found that CCl(4) administration in IL-6(-/-) mice failed to induce OSM expression and that OSM administration in IL-6(-/-) mice after CCl(4) injection induced the expression of cyclin D1 and proliferating cell nuclear antigen, suggesting that OSM is a key mediator of IL-6 in liver regeneration. Consistent with these results, administration of OSM ameliorated liver injury in wildtype mice by preventing hepatocyte apoptosis as well as tissue destruction. In conclusion, OSM and its signaling pathway may provide a useful therapeutic target for liver regeneration.
Collapse
Affiliation(s)
- Koji Nakamura
- Stem Cell Regulation Project, Kanagawa Academy of Science and Technology (KAST), Kawasaki, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
35
|
Repovic P, Mi K, Benveniste EN. Oncostatin M enhances the expression of prostaglandin E2 and cyclooxygenase-2 in astrocytes: synergy with interleukin-1beta, tumor necrosis factor-alpha, and bacterial lipopolysaccharide. Glia 2003; 42:433-46. [PMID: 12730964 DOI: 10.1002/glia.10182] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oncostatin M (OSM), a cytokine of the interleukin-6 family, is expressed in rheumatoid arthritis, multiple sclerosis, multiple myeloma, and other inflammatory and neoplastic conditions. Prostaglandin E(2) (PGE(2)), an eicosanoid also associated with inflammation and cancer, has recently been shown to induce OSM expression. We report here that OSM in turn induces PGE(2) production by astrocytes and astroglioma cells. More importantly, in combination with the inflammatory mediators IL-1beta, tumor necrosis factor-alpha, and lipopolysaccharide, OSM exhibits a striking synergy, resulting in up to 50-fold higher PGE(2) production by astrocytes, astroglioma, and neuroblastoma cell lines. Enhanced PGE(2) production by OSM and IL-1beta treatment is explained by their effect on cyclooxygenase-2 (COX-2), an enzyme that catalyzes the committed step in PGE(2) synthesis. Of the enzymes involved in PGE(2) biosynthesis, only COX-2 mRNA and protein levels are synergistically amplified by OSM and IL-1beta. Nuclear run-on assays demonstrate that OSM and IL-1beta synergistically upregulate transcription of the COX-2 gene, and the mRNA stability assay indicates that COX-2 mRNA is posttranscriptionally stabilized by OSM and IL-1beta. To effect synergy on the PGE(2) level, OSM signals in part through its gp130/OSMRbeta receptor, since neutralizing antibodies against gp130 and OSMRbeta, but not LIFRbeta, decrease PGE(2) production in response to OSM plus IL-1beta. SB202190 and U0126, inhibitors of p38 MAPK and ERK1/2 activation, respectively, inhibit IL-1beta and OSM upregulation of COX-2 and PGE(2), indicating that these MAPK cascades are utilized by both stimuli. This mechanism of PGE(2) amplification may be active in brain pathologies where both OSM and IL-1beta are present, such as glioblastomas and multiple sclerosis.
Collapse
Affiliation(s)
- Pavle Repovic
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
36
|
Mirshahi F, Vasse M, Tedgui A, Li H, Merval R, Legrand E, Vannier JP, Soria J, Soria C. Oncostatin M induces procoagulant activity in human vascular smooth muscle cells by modulating the balance between tissue factor and tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2002; 13:449-55. [PMID: 12138373 DOI: 10.1097/00001721-200207000-00010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oncostatin M (OSM) is a cytokine of the interleukin-6 (IL-6) family secreted by activated monocytes, and is expressed in atherosclerotic plaque. Smooth muscle cells (SMC), by expressing tissue factor (TF) and tissue factor pathway inhibitor (TFPI) can contribute to the thrombogenicity of atherosclerotic plaque. Consequently, the aim of this study was to evaluate the effects of OSM on the procoagulant activity of SMC. We observed that OSM induced in a concentration-dependent manner a potent procoagulant activity (PCA) that was related in part to an increased synthesis of TF, both at the cell membrane and in SMC lysates. The increased expression of TF on SMC membrane induced by OSM was sustained and was still observed 24 h after stimulation by OSM. IL-6 and leukaemia inhibitory factor (LIF), two OSM-related cytokines, did not significantly modify TF expression at the surface of SMC. In addition to its effects on TF, OSM decreased the secretion of TFPI in the supernatants of SMC, as well as in the lysates, but was devoid of effect on TFPI bound at the membrane of SMC. IL-6 and LIF reduced also TFPI secretion, which could explain why the PCA of SMC lysates treated by IL-6 or LIF was increased, despite an absence of effect on TF expression. In conclusion, these data support the hypothesis that by increasing the PCA of SMC, OSM might be involved in the thrombotic complications associated with plaque rupture.
Collapse
Affiliation(s)
- F Mirshahi
- Laboratoire DIFEMA, UFR de Médecine et Pharmacie de Rouen, Rouen, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Scaffidi AK, Mutsaers SE, Moodley YP, McAnulty RJ, Laurent GJ, Thompson PJ, Knight DA. Oncostatin M stimulates proliferation, induces collagen production and inhibits apoptosis of human lung fibroblasts. Br J Pharmacol 2002; 136:793-801. [PMID: 12086989 PMCID: PMC1573397 DOI: 10.1038/sj.bjp.0704769] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Oncostatin M (OSM), a member of the interleukin-6 (IL-6) cytokine family, acts on a variety of cells and elicits diversified biological responses, suggesting potential roles in the regulation of cell survival, differentiation and proliferation. 2. We have examined the effect of OSM on the regulation of human lung fibroblast proliferation, collagen production and spontaneous apoptosis. The proliferative effects of OSM (0.5 - 100 ng ml(-1)) were assessed using a MTS assay as well as [(3)H]-thymidine incorporation and cell counts at 24 and 48 h. Hydroxyproline was measured as an index of procollagen production by high pressure liquid chromotography (HPLC). Apoptosis was determined by annexin staining. 3. OSM enhanced the mitotic activity of lung fibroblasts in a time and dose dependent manner. Maximum proliferation of 57% above control was observed after incubation for 48 h with 2 ng ml(-1) OSM (P<0.05). 4. Incubation with the mitogen activated protein kinase (MAPK) kinase inhibitor, PD98059 or the tyrosine kinase inhibitor, genestein both significantly reduced the mitogenic effect of OSM (P<0.05). 5. In contrast, proliferation in response to OSM was not regulated by induction of cyclo-oxygenase and subsequent prostaglandin E(2) (PGE(2)) release or by IL-6. 6. OSM also stimulated fibroblasts to synthesize pro-collagen by a maximum of 35% above control levels after 48 h (P<0.05). 7. OSM significantly inhibited the spontaneous apoptosis of fibroblasts at 24 and 48 h. 8. These results provide evidence that OSM has pro-fibrotic properties and suggest that it may play a role in normal lung wound repair and fibrosis.
Collapse
Affiliation(s)
- Amelia K Scaffidi
- Asthma and Allergy Research Institute, Ground Floor, “E” Block, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia 6009
- Department of Medicine, The University of Western Australia, Nedlands, Western Australia, 6009
| | - Steven E Mutsaers
- Asthma and Allergy Research Institute, Ground Floor, “E” Block, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia 6009
- Centre for Cardiopulmonary Biochemistry, University College London Medical School, Rayne Institute, London WCIE 6JJ
| | - Yuben P Moodley
- Asthma and Allergy Research Institute, Ground Floor, “E” Block, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia 6009
- Department of Medicine, The University of Western Australia, Nedlands, Western Australia, 6009
| | - Robin J McAnulty
- Centre for Cardiopulmonary Biochemistry, University College London Medical School, Rayne Institute, London WCIE 6JJ
| | - Geoffrey J Laurent
- Centre for Cardiopulmonary Biochemistry, University College London Medical School, Rayne Institute, London WCIE 6JJ
| | - Philip J Thompson
- Asthma and Allergy Research Institute, Ground Floor, “E” Block, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia 6009
- Department of Medicine, The University of Western Australia, Nedlands, Western Australia, 6009
| | - Darryl A Knight
- Asthma and Allergy Research Institute, Ground Floor, “E” Block, Sir Charles Gairdner Hospital, Verdun Street, Nedlands, Western Australia 6009
- Department of Medicine, The University of Western Australia, Nedlands, Western Australia, 6009
- Author for correspondence:
| |
Collapse
|
38
|
Degraeve F, Bolla M, Blaie S, Créminon C, Quéré I, Boquet P, Lévy-Toledano S, Bertoglio J, Habib A. Modulation of COX-2 expression by statins in human aortic smooth muscle cells. Involvement of geranylgeranylated proteins. J Biol Chem 2001; 276:46849-55. [PMID: 11591701 DOI: 10.1074/jbc.m104197200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cyclooxygenase (COX)-2 and COX-1 play an important role in prostacyclin production in vessels and participate in maintaining vascular homeostasis. Statins are inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase, which is crucial in cholesterol biosynthesis. Recently, cholesterol-independent effects of statins have been described. In this study, we evaluated the effect of two inhibitors of HMG CoA reductase, mevastatin and lovastatin, on the production of prostacyclin and the expression of COX in human aortic smooth muscle cells. Treatment of cells with 25 microm mevastatin or lovastatin resulted in the induction of COX-2 and increase in prostacyclin production. Mevalonate, the direct metabolite of HMG CoA reductase, and geranylgeranyl-pyrophosphate reversed this effect. GGTI-286, a selective inhibitor of geranylgeranyltransferases, increased COX-2 expression and prostacyclin formation, thus indicating the involvement of geranylgeranylated proteins in the down-regulation of COX-2. Furthermore, Clostridium difficile toxin B, an inhibitor of the Rho GTP-binding protein family, the Rho selective inhibitor C3 transferase, and Y-27632, a selective inhibitor of the Rho-associated kinases, targets of Rho A, increased COX-2 expression whereas the activator of the Rho GTPase, the cytotoxic necrotizing factor 1, blocked interlukin-1alpha-dependent COX-2 induction. These results demonstrate that statins up-regulate COX-2 expression and subsequent prostacyclin formation in human aortic smooth muscle cells in part through inhibition of Rho.
Collapse
Affiliation(s)
- F Degraeve
- Commissariat à l'Energie Atomique (CEA), Service de Pharmacologie et d'Immunologie, 91191 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Grahame-Clarke C, Alber DG, Lucas SB, Miller R, Vallance P. Association between Kaposi's sarcoma and atherosclerosis: implications for gammaherpesviruses and vascular disease. AIDS 2001; 15:1902-4. [PMID: 11579262 DOI: 10.1097/00002030-200109280-00029] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The treatment of HIV-positive patients with protease inhibitors has been suggested to increase their risk of atherosclerosis. The cause of this accelerated atherogenesis is unknown, but on the basis of previous studies we postulated that it could be linked to the presence of human herpesvirus-8. A retrospective analysis of post-mortem reports showed a strong correlation between Kaposi's sarcoma and the presence of atheroma. This hypothesis merits further investigation.
Collapse
Affiliation(s)
- C Grahame-Clarke
- Centre for Clinical Pharmacology, Department of Medicine, Royal Free and University Colleg Medical School, UK
| | | | | | | | | |
Collapse
|
40
|
Lahiri T, Laporte JD, Moore PE, Panettieri RA, Shore SA. Interleukin-6 family cytokines: signaling and effects in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1225-32. [PMID: 11350802 DOI: 10.1152/ajplung.2001.280.6.l1225] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)-1β induces cyclooxygenase (COX)-2 expression and prostanoid formation in cultured human airway smooth muscle (HASM) cells. In other cell types, IL-6 family cytokines induce COX-2 or augment IL-1β-induced COX-2 expression. The purpose of this study was to determine whether IL-6 family cytokines were involved in COX-2 expression in HASM cells. RT-PCR was used to demonstrate that the necessary receptor components for IL-6-type cytokine binding are expressed in HASM cells. IL-6 and oncostatin M (OSM) each caused a dose-dependent phosphorylation of signal transducer and activator of transcription-3, whereas IL-11 did not. IL-6, IL-11, and OSM alone had no effect on COX-2 expression. However, OSM caused dose-dependent augmentation of COX-2 expression and prostaglandin (PG) E2release induced by IL-1β. In contrast, IL-6 and IL-11 did not alter IL-1β-induced COX-2 expression. IL-6 did increase IL-1β-induced PGE2formation in unstimulated cells but not in cells stimulated with arachidonic acid (AA; 10−5M), suggesting that IL-6 effects were mediated at the level of AA release. Our results indicate that IL-6 and OSM are capable of inducing signaling in HASM cells. In addition, OSM and IL-1β synergistically cause COX-2 expression and PGE2release.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacology
- Cells, Cultured
- Cyclooxygenase 2
- Cytokine Receptor gp130
- Cytokines/metabolism
- Cytokines/pharmacology
- DNA-Binding Proteins/metabolism
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Humans
- Interleukin-1/pharmacology
- Interleukin-11/pharmacology
- Interleukin-11 Receptor alpha Subunit
- Interleukin-6/metabolism
- Interleukin-6/pharmacology
- Isoenzymes/antagonists & inhibitors
- Isoenzymes/biosynthesis
- Membrane Glycoproteins/biosynthesis
- Membrane Proteins
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Muscle, Smooth/cytology
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Oncostatin M
- Peptides/pharmacology
- Phosphorylation/drug effects
- Prostaglandin-Endoperoxide Synthases/biosynthesis
- Receptors, Cytokine/biosynthesis
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin-11
- Receptors, Interleukin-6/biosynthesis
- Receptors, Oncostatin M
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Trachea
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- T Lahiri
- Physiology Program, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
41
|
Knight DA, Asokananthan N, Watkins DN, Misso NL, Thompson PJ, Stewart GA. Oncostatin M synergises with house dust mite proteases to induce the production of PGE(2) from cultured lung epithelial cells. Br J Pharmacol 2000; 131:465-72. [PMID: 11015296 PMCID: PMC1572366 DOI: 10.1038/sj.bjp.0703612] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The release of PGE(2) and nitric oxide (NO) from the respiratory epithelium may act to dampen inflammation. In other tissues, oncostatin M (OSM), a potent inducer of epithelial antiproteases, has also been shown to interact with IL-1beta to stimulate PGE(2) release. However, whether OSM interacts with pro-inflammatory cytokines and proteases in the production of anti-inflammatory eicosanoids and NO from airway epithelium is unknown. The effect of OSM and the related cytokine leukaemia inhibitory factor (LIF) on PGE(2) and NO production by the respiratory epithelial cell line, A549 in response to pro-inflammatory cytokines as well as protease-rich house dust mite (HDM) fractions and a protease-deficient rye grass pollen extract was examined by immunohistochemistry, cell culture, ELISA and enzyme-immunoassay. Cells treated with a mixture of IL-1beta, IFNgamma and LPS for 48 h produced a 9 fold increase in PGE(2) and a 3 fold increase in NO levels (both P<0.05). Both OSM and LIF were without effect. However, OSM added together with the cytokine mixture synergistically enhanced PGE(2) production (22 fold, P<0.05). OSM also synergistically enhanced PGE(2) production in response to a cysteine protease-enriched, but not serine protease-enriched HDM fraction (P<0.05). Rye grass extract, neither alone nor in combination with OSM, induced PGE(2) or NO production, although it did induce the release of GM-CSF. These observations suggest that OSM is an important co-factor in the release of PGE(2) and NO from respiratory epithelial cells and may play a role in defense against exogenous proteases such as those derived from HDM.
Collapse
Affiliation(s)
- D A Knight
- Asthma & Allergy Research Institute, University of Western Australia, Nedlands, Western Australia.
| | | | | | | | | | | |
Collapse
|