1
|
Li J, Long Q, Ding H, Wang Y, Luo D, Li Z, Zhang W. Progress in the Treatment of Central Nervous System Diseases Based on Nanosized Traditional Chinese Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308677. [PMID: 38419366 PMCID: PMC11040388 DOI: 10.1002/advs.202308677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Traditional Chinese Medicine (TCM) is widely used in clinical practice to treat diseases related to central nervous system (CNS) damage. However, the blood-brain barrier (BBB) constitutes a significant impediment to the effective delivery of TCM, thus substantially diminishing its efficacy. Advances in nanotechnology and its applications in TCM (also known as nano-TCM) can deliver active ingredients or components of TCM across the BBB to the targeted brain region. This review provides an overview of the physiological and pathological mechanisms of the BBB and systematically classifies the common TCM used to treat CNS diseases and types of nanocarriers that effectively deliver TCM to the brain. Additionally, drug delivery strategies for nano-TCMs that utilize in vivo physiological properties or in vitro devices to bypass or cross the BBB are discussed. This review further focuses on the application of nano-TCMs in the treatment of various CNS diseases. Finally, this article anticipates a design strategy for nano-TCMs with higher delivery efficiency and probes their application potential in treating a wider range of CNS diseases.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Qingyin Long
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Huang Ding
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| | - Yang Wang
- Institute of Integrative MedicineDepartment of Integrated Traditional Chinese and Western MedicineXiangya HospitalCentral South University ChangshaChangsha410008China
| | - Dan Luo
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Wei Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral Diseases, School of Integrated Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunan410208China
| |
Collapse
|
2
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Garnier E, Levard D, Ali C, Buendia I, Hommet Y, Gauberti M, Crepaldi T, Comoglio P, Rubio M, Vivien D, Docagne F, Martinez de Lizarrondo S. Factor XII protects neurons from apoptosis by epidermal and hepatocyte growth factor receptor-dependent mechanisms. J Thromb Haemost 2021; 19:2235-2247. [PMID: 34060720 DOI: 10.1111/jth.15414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Factor XII (FXII) is a serine protease that participates in the intrinsic coagulation pathway. Several studies have shown that plasma FXII exerts a deleterious role in cerebral ischemia and traumatic brain injury by promoting thrombo-inflammation. Nevertheless, the impact of FXII on neuronal cell fate remains unknown. OBJECTIVES We investigated the role of FXII and FXIIa in neuronal injury and apoptotic cell death. METHODS We tested the neuroprotective roles of FXII and FXIIa in an experimental model of neuronal injury induced by stereotaxic intracerebral injection of N-methyl-D-aspartic acid (NMDA) in vivo and in a model of apoptotic death of murine primary neuronal cultures through serum deprivation in vitro. RESULTS Here, we found that exogenous FXII and FXIIa reduce brain lesions induced by NMDA injection in vivo. Furthermore, FXII protects cultured neurons from apoptosis through a growth factor--like effect. This mechanism was triggered by direct interaction with epidermal growth factor (EGF) receptor and subsequent activation of this receptor. Interestingly, the "proteolytically" active and two-chain form of FXII, FXIIa, exerts its protective effects by an alternative signaling pathway. FXIIa activates the pro-form of hepatocyte growth factor (HGF) into HGF, which in turn activated the HGF receptor (HGFR) pathway. CONCLUSION This study describes two novel mechanisms of action of FXII and identifies neurons as target cells for the protective effects of single and two-chain forms of FXII. Therefore, inhibition of FXII in neurological disorders may have deleterious effects by preventing its beneficial effects on neuronal survival.
Collapse
Affiliation(s)
- Eugénie Garnier
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Damien Levard
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Carine Ali
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Izaskun Buendia
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Yannick Hommet
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Maxime Gauberti
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Tiziana Crepaldi
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, Italy
- Department of Oncology, University of Torino Medical School, Candiolo, Italy
| | | | - Marina Rubio
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Denis Vivien
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
- CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Fabian Docagne
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie Univ, Unicaen, Inserm, Physiopathology and imaging of neurological disorders (PhIND), Caen, France
| |
Collapse
|
4
|
Chavda V, Shah P, Patel SS, Bhadada S. Pre-exposure of voglibose exerts cerebroprotective effects through attenuating activation of the polyol pathway and inflammation. Eur J Neurosci 2021; 53:2541-2552. [PMID: 33608957 DOI: 10.1111/ejn.15151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 11/29/2022]
Abstract
Chronic hyperglycemia induces activation of the polyol-sorbitol pathway, which is a major contributor to microvascular complications like stroke. The current study was designed to elucidate the therapeutic role of α-glucose inhibitor in chronic hyperglycemia-induced impaired polyol pathway and associated micro-complications. Male albino-Wistar rats (200-250 g) were treated with voglibose 10 mg kg-1 day-1 /p.o. for 2 weeks before middle cerebral artery occlusion; 72 hr after surgery, neurological score was evaluated and blood was collected for the assessment of various serum biochemical parameters like CRP, CK-MB, LDH, lipid profile, and blood glucose levels. In the end, brain samples were excised for determination of brain infarct volume, brain hemisphere weight difference, Na+-K+ ATPase activity oxidative stress-related parameters, aldose reductase activity, and gene expression studies. Results from the present study indicate that pre-treatment with voglibose showed significant improvement in lipid parameters but did not impact glucose levels. Voglibose has shown a statistically significant (p < .05) reduction in neurological score and brain infarct volume, and the difference in brain hemisphere weight as compared to the disease control group. Voglibose significantly (p < .05) improve all biochemical parameters and reduced Na+-K+ ATPase and aldose reductase activity. Moreover, voglibose produced a significant reduction in oxidative stress and down-regulation of TNF-α and BCl-2 gene expression which reduces the risk of factors related to stroke. In conclusion, the pleiotropic effect of voglibose on cerebrovascular complications may be due to inhibition of aldose reductase or anti-inflammatory pathways.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmadabad, Gujarat, India
| | - Pooja Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmadabad, Gujarat, India
| | - Snehal S Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmadabad, Gujarat, India
| | - Shraddha Bhadada
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmadabad, Gujarat, India
| |
Collapse
|
5
|
Wang Y, Wang X, Zhang X, Chen S, Sun Y, Liu W, Jin X, Zheng G. D1 receptor-mediated endogenous tPA upregulation contributes to blood-brain barrier injury after acute ischaemic stroke. J Cell Mol Med 2020; 24:9255-9266. [PMID: 32627929 PMCID: PMC7417722 DOI: 10.1111/jcmm.15570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/02/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023] Open
Abstract
Blood‐brain barrier (BBB) integrity injury within the thrombolytic time window is becoming a critical target to reduce haemorrhage transformation (HT). We have previously reported that BBB damage was initially damaged in non‐infarcted striatum after acute ischaemia stroke. However, the underlying mechanism is not clear. Since acute ischaemic stroke could induce a significant increase of dopamine release in striatum, in current study, our aim is to investigate the role of dopamine receptor signal pathway in BBB integrity injury after acute ischaemia using rat middle cerebral artery occlusion model. Our data showed that 2‐h ischaemia induced a significant increase of endogenous tissue plasminogen activator (tPA) in BBB injury area and intra‐striatum infusion of tPA inhibitor neuroserpin, significantly alleviated 2‐h ischaemia‐induced BBB injury. In addition, intra‐striatum infusion of D1 receptor antagonist SCH23390 significantly decreased ischaemia‐induced upregulation of endogenous tPA, accompanied by decrease of BBB injury and occludin degradation. More important, inhibition of hypoxia‐inducible factor‐1 alpha with inhibitor YC‐1 significantly decreased 2‐h ischaemia‐induced endogenous tPA upregulation and BBB injury. Taken together, our data demonstrate that acute ischaemia disrupted BBB through activation of endogenous tPA via HIF‐1α upregulation, thus representing a new therapeutic target for protecting BBB after acute ischaemic stroke.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaona Wang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xinyu Zhang
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Chen
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Xinchun Jin
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Guoqing Zheng
- Department of Cardiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Evaluation of long-term rt-PA effects on bEnd.3 endothelial cells under ischemic conditions; changes in ZO-1 expression and glycosylation of the bradykinin B2 receptor. Thromb Res 2020; 187:1-8. [PMID: 31935582 DOI: 10.1016/j.thromres.2019.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Recombinant tissue plasminogen activator (rt-PA) has proven effective in the treatment of acute ischemic stroke, despite the increased risk of hemorrhagic transformation (HT), its major associated complication. Although it is known that HT is related to blood brain barrier (BBB) disruption, the underlying mechanisms are not well established. We assessed time-dependent effects of rt-PA on the bEnd.3 murine brain endothelial cell line subjected either to normoxia or to 2.5 h of oxygen and glucose deprivation (OGD), evaluating a longer period than has previously been done, beyond 6 h post-reoxygenation. Parameters of cell viability, metabolic activity, ionic and transcellular permeability, as well as levels of claudin-5, zonula occludens-1 (ZO-1) and bradykinin B2 receptor (B2R) protein expression were analyzed at 24, 48 and 72 h post-reoxygenation with or without the administration of rt-PA. rt-PA treatment increased both the ionic and transcellular permeability until 72 h and did not modify cell viability or metabolic activity or the expression of claudin-5, ZO-1 and B2R under normoxia at any analyzed time. Under OGD conditions, rt-PA exacerbated OGD effects on metabolic activity from 48 to 72 h, increased transcellular permeability from 24 to 72 h, significantly decreased ZO-1 protein levels at the plasma membrane and increased B2R glycosylation at 72 h post-reoxygenation. Our findings suggest that a long-term analysis is necessary to elucidate time-dependent molecular mechanisms associated to BBB breakdown due to rt-PA administration under ischemia. Thus, protective BBB therapies after ischemic stroke and rt-PA treatment should be explored at least until 72 h after OGD and rt-PA administration.
Collapse
|
7
|
Mican J, Toul M, Bednar D, Damborsky J. Structural Biology and Protein Engineering of Thrombolytics. Comput Struct Biotechnol J 2019; 17:917-938. [PMID: 31360331 PMCID: PMC6637190 DOI: 10.1016/j.csbj.2019.06.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Myocardial infarction and ischemic stroke are the most frequent causes of death or disability worldwide. Due to their ability to dissolve blood clots, the thrombolytics are frequently used for their treatment. Improving the effectiveness of thrombolytics for clinical uses is of great interest. The knowledge of the multiple roles of the endogenous thrombolytics and the fibrinolytic system grows continuously. The effects of thrombolytics on the alteration of the nervous system and the regulation of the cell migration offer promising novel uses for treating neurodegenerative disorders or targeting cancer metastasis. However, secondary activities of thrombolytics may lead to life-threatening side-effects such as intracranial bleeding and neurotoxicity. Here we provide a structural biology perspective on various thrombolytic enzymes and their key properties: (i) effectiveness of clot lysis, (ii) affinity and specificity towards fibrin, (iii) biological half-life, (iv) mechanisms of activation/inhibition, and (v) risks of side effects. This information needs to be carefully considered while establishing protein engineering strategies aiming at the development of novel thrombolytics. Current trends and perspectives are discussed, including the screening for novel enzymes and small molecules, the enhancement of fibrin specificity by protein engineering, the suppression of interactions with native receptors, liposomal encapsulation and targeted release, the application of adjuvants, and the development of improved production systems.
Collapse
Key Words
- EGF, Epidermal growth factor domain
- F, Fibrin binding finger domain
- Fibrinolysis
- K, Kringle domain
- LRP1, Low-density lipoprotein receptor-related protein 1
- MR, Mannose receptor
- NMDAR, N-methyl-D-aspartate receptor
- P, Proteolytic domain
- PAI-1, Inhibitor of tissue plasminogen activator
- Plg, Plasminogen
- Plm, Plasmin
- RAP, Receptor antagonist protein
- SAK, Staphylokinase
- SK, Streptokinase
- Staphylokinase
- Streptokinase
- Thrombolysis
- Tissue plasminogen activator
- Urokinase
- t-PA, Tissue plasminogen activator
Collapse
Affiliation(s)
- Jan Mican
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Martin Toul
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - David Bednar
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
| |
Collapse
|
8
|
Wu L, Su Z, Zha L, Zhu Z, Liu W, Sun Y, Yu P, Wang Y, Zhang G, Zhang Z. Tetramethylpyrazine Nitrone Reduces Oxidative Stress to Alleviate Cerebral Vasospasm in Experimental Subarachnoid Hemorrhage Models. Neuromolecular Med 2019; 21:262-274. [PMID: 31134485 DOI: 10.1007/s12017-019-08543-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
Cerebral vasospasm is one of the deleterious complications after subarachnoid hemorrhage (SAH), leading to delayed cerebral ischemia and permanent neurological deficits or even death. Free radicals and oxidative stress are considered as crucial causes contributing to cerebral vasospasm and brain damage after SAH. Tetramethylpyrazine nitrone (TBN), a derivative of the clinically used anti-stroke drug tetramethylpyrazine armed with a powerful free radical scavenging nitrone moiety, has been reported to prevent brain damage from ischemic stroke. The present study aimed to investigate the effects of TBN on vasospasm and brain damage after SAH. Two experimental SAH models were used, a rat model by endovascular perforation and a rabbit model by intracisternal injection of autologous blood. The effects of TBN on SAH were evaluated assessing basilar artery spasm, neuronal apoptosis, and neurological deficits. TBN treatment significantly attenuated vasospasm, improved neurological behavior functions and reduced the number of apoptotic neurons in both the SAH rats and rabbits. Mechanistically, TBN suppressed the increase in 3-nitrotyrosine and 8-hydroxy-2-deoxyguanosine immuno-positive cells in the cortex of SAH rat brain. Western blot analyses indicated that TBN effectively reversed the altered expression of Bcl-2, Bax and cytochrome C, and up-regulated nuclear factor erythroid-derived 2-like 2 (Nrf2) and hemeoxygenase-1 (HO-1) protein expressions. In the in vitro studies, TBN inhibited H2O2-induced bEnd.3 cell apoptosis and reduced ROS generation. Additionally, TBN alleviated the contraction of rat basilar artery rings induced by H2O2 ex vivo. In conclusion, TBN ameliorated SAH-induced cerebral vasospasm and neuronal damage. These effects of TBN may be attributed to its anti-oxidative stress effect and up-regulation of Nrf2/HO-1.
Collapse
Affiliation(s)
- Liangmiao Wu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zhiyang Su
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Ling Zha
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Zeyu Zhu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Wei Liu
- Foshan Magpie Pharmaceuticals Co., LTD, Foshan, Guangdong Province, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy, Huangpu Road, Guangzhou, China.
| |
Collapse
|
9
|
Zhu J, Wan Y, Xu H, Wu Y, Hu B, Jin H. The role of endogenous tissue-type plasminogen activator in neuronal survival after ischemic stroke: friend or foe? Cell Mol Life Sci 2019; 76:1489-1506. [PMID: 30656378 PMCID: PMC11105644 DOI: 10.1007/s00018-019-03005-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/19/2018] [Accepted: 01/03/2019] [Indexed: 12/29/2022]
Abstract
Endogenous protease tissue-type plasminogen activator (tPA) has highly efficient fibrinolytic activity and its recombinant variants alteplase and tenecteplase are established as highly effective thrombolytic drugs for ischemic stroke. Endogenous tPA is constituted of five functional domains through which it interacts with a variety of substrates, binding proteins and receptors, thus having enzymatic and cytokine-like effects to act on all cell types of the brain. In the past 2 decades, numerous studies have explored the clinical relevance of endogenous tPA in neurological diseases, especially in ischemic stroke. tPA is released from many cells within the brain parenchyma exposed to ischemia conditions in vitro and in vivo, which is believed to control neuronal fate. Some studies proved that tPA could induce blood-brain barrier disruption, neural excitotoxicity and inflammation, while others indicated that tPA also has anti-excitotoxic, neurotrophic and anti-apoptotic effects on neurons. Therefore, more work is needed to elucidate how tPA mediates such opposing functions that may amplify tPA from a therapeutic means into a key therapeutic target in endogenous neuroprotection after stroke. In this review, we summarize the biological characteristics and pleiotropic functions of tPA in the brain. Then we focus on possible hypotheses about why and how endogenous tPA mediates ischemic neuronal death and survival. Finally, we analyze how endogenous tPA affects neuron fate in ischemic stroke in a comprehensive view.
Collapse
Affiliation(s)
- Jiayi Zhu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yan Wan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Hexiang Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Yulang Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| |
Collapse
|
10
|
Canonical Wnt Pathway Maintains Blood-Brain Barrier Integrity upon Ischemic Stroke and Its Activation Ameliorates Tissue Plasminogen Activator Therapy. Mol Neurobiol 2019; 56:6521-6538. [PMID: 30852795 DOI: 10.1007/s12035-019-1539-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 12/22/2022]
Abstract
Stroke induces blood-brain barrier (BBB) breakdown, which promotes complications like oedema and hemorrhagic transformation. Administration of recombinant tissue plasminogen activator (rtPA) within a therapeutic time window of 4.5 h after stroke onset constitutes the only existing treatment. Beyond this time window, rtPA worsens BBB breakdown. Canonical Wnt pathway induces BBB formation and maturation during ontogeny. We hypothesized that the pathway is required to maintain BBB functions after stroke; thus, its activation might improve rtPA therapy. Therefore, we first assessed pathway activity in the brain of mice subjected to transient middle cerebral artery occlusion (MCAo). Next, we evaluated the effect of pathway deactivation early after stroke onset on BBB functions. Finally, we assessed the impact of pathway activation on BBB breakdown associated to delayed administration of rtPA. Our results show that pathway activity is induced predominately in endothelial cells early after ischemic stroke. Early deactivation of the pathway using a potent inhibitor, XAV939, aggravates BBB breakdown and increases hemorrhagic transformation incidence. On the other hand, pathway activation using a potent activator, 6-bromoindirubin-3'-oxime (6-BIO), reduces the incidence of hemorrhagic transformation associated to delayed rtPA administration by attenuating BBB breakdown via promotion of tight junction formation and repressing endothelial basal permeability independently of rtPA proteolytic activity. BBB preservation upon pathway activation limited the deleterious effects of delayed rtPA administration. Our study demonstrates that activation of the canonical Wnt pathway constitutes a clinically relevant strategy to extend the therapeutic time window of rtPA by attenuating BBB breakdown via regulation of BBB-specific mechanisms.
Collapse
|
11
|
Gong P, Li M, Zou C, Tian Q, Xu Z. Tissue Plasminogen Activator Causes Brain Microvascular Endothelial Cell Injury After Oxygen Glucose Deprivation by Inhibiting Sonic Hedgehog Signaling. Neurochem Res 2018; 44:441-449. [PMID: 30552546 PMCID: PMC6394519 DOI: 10.1007/s11064-018-2697-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
The thrombolytic activity of tissue plasminogen activator (tPA) has undisputed benefits. However, the documented neurotoxicity of tPA raises important issues. Currently, common treatments for stroke might not be optimum if exogenous tPA can pass through the blood–brain barrier and enter the brain, thus adding to the deleterious effects of tPA within the cerebral parenchyma. Here, we determined whether tPA could damage brain microvascular endothelial cells (BMECs) during cerebral ischemia. We showed that treatment of BMECs with tPA decreased trans-endothelial electrical resistance and cell proliferation, and blocked the cell cycle at the G0–G1 phase. In addition, the Sonic hedgehog (Shh) signaling pathway was involved in tPA-induced BMECs dysfunction. However, tPA-enhanced oxygen glucose deprivation-induced BMECs dysfunction was eliminated by Shh administration and the effects could be reversed by Shh inhibitors. Taken together, these results demonstrate that tPA administration might result in damage to the endothelial barrier owing to blocked Shh signaling pathway.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China.
| | - Changlin Zou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, No. 9 Zhangzhidong Road, Wuchang District, Wuhan, 430072, Hubei Province, China
| |
Collapse
|
12
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Jeanneret V, Ospina JP, Diaz A, Manrique LG, Merino P, Gutierrez L, Torre E, Wu F, Cheng L, Yepes M. Tissue-type plasminogen activator protects the postsynaptic density in the ischemic brain. J Cereb Blood Flow Metab 2018; 38:1896-1910. [PMID: 29547062 PMCID: PMC6259311 DOI: 10.1177/0271678x18764495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral ischemia causes the presynaptic release of tissue-type plasminogen activator (tPA). The postsynaptic density (PSD) is a postsynaptic structure that provides a matrix where signaling transduction of excitatory synapses takes place. The postsynaptic density protein-95 (PSD-95) is the most abundant scaffolding protein in the postsynaptic density (PSD), where it modulates the postsynaptic response to the presynaptic release of glutamate by regulating the anchoring of glutamate receptors to the PSD. We found that tPA induces the local translation of PSD-95 mRNA and the subsequent recruitment of PSD-95 protein to the PSD, via plasminogen-independent activation of TrkB receptors. Our data show that PSD-95 is removed from the PSD during the early stages of cerebral ischemia, and that this effect is abrogated by either the release of neuronal tPA, or intravenous administration of recombinant tPA (rtPA). We report that the effect of tPA on PSD-95 is associated with inhibition of the phosphorylation and recruitment of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors to the PSD, known to amplify the effect of the excitotoxic injury, and that this is followed by TrkB-mediated protection of dendritic spines from the harmful effects of the hypoxic insult. These data reveal that tPA is a synaptic protector in the ischemic brain.
Collapse
Affiliation(s)
- Valerie Jeanneret
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Juan P Ospina
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Ariel Diaz
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Luis G Manrique
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Paola Merino
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Laura Gutierrez
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA
| | - Enrique Torre
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Fang Wu
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Lihong Cheng
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Manuel Yepes
- 1 Department of Neurology & Center for Neurodegenerative Disease, School of Medicine, Emory University, Atlanta, GA, USA.,2 Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA, USA.,3 Department of Neurology, Veterans Affairs Medical Center, Atlanta, GA, USA
| |
Collapse
|
14
|
Chen S, Chen Z, Cui J, McCrary ML, Song H, Mobashery S, Chang M, Gu Z. Early Abrogation of Gelatinase Activity Extends the Time Window for tPA Thrombolysis after Embolic Focal Cerebral Ischemia in Mice. eNeuro 2018; 5:ENEURO.0391-17.2018. [PMID: 29963617 PMCID: PMC6021166 DOI: 10.1523/eneuro.0391-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 04/28/2018] [Accepted: 05/22/2018] [Indexed: 02/02/2023] Open
Abstract
Acute ischemic stroke (AIS) is caused by clotting in the cerebral arteries, leading to brain oxygen deprivation and cerebral infarction. Recombinant human tissue plasminogen activator (tPA) is currently the only Food and Drug Administration-approved drug for ischemic stroke. However, tPA has to be administered within 4.5 h from the disease onset and delayed treatment of tPA can increase the risk of neurovascular impairment, including neuronal cell death, blood-brain barrier (BBB) disruption, and hemorrhagic transformation. A key contributing factor for tPA-induced neurovascular impairment is activation of matrix metalloproteinase-9 (MMP-9). We used a clinically-relevant mouse embolic model of focal-cerebral ischemia by insertion of a single embolus of blood clot to block the right middle cerebral artery. We showed that administration of the potent and highly selective gelatinase inhibitor SB-3CT extends the time window for administration of tPA, attenuating infarct volume, mitigating BBB disruption, and antagonizing the increase in cerebral hemorrhage induced by tPA treatment. We demonstrated that SB-3CT attenuates tPA-induced expression of vascular MMP-9, prevents gelatinase-mediated cleavage of extracellular laminin, rescues endothelial cells, and reduces caveolae-mediated transcytosis of endothelial cells. These results suggest that abrogation of MMP-9 activity mitigates the detrimental effects of tPA treatment, thus the combination treatment holds great promise for extending the therapeutic window for tPA thrombolysis, which opens the opportunity for clinical recourse to a greater number of patients.
Collapse
Affiliation(s)
- Shanyan Chen
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Interdisciplinary Neuroscience Program, University of Missouri at Columbia, Columbia, MO 65212
| | - Zhenzhou Chen
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
| | - Jiankun Cui
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO 65201
| | - Myah L. McCrary
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
| | - Hailong Song
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Interdisciplinary Neuroscience Program, University of Missouri at Columbia, Columbia, MO 65212
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri at Columbia, Columbia, MO 65212
- Harry S. Truman Memorial Veterans' Hospital Research Service, Columbia, MO 65201
| |
Collapse
|
15
|
Kanno T, Yasutake K, Tanaka K, Hadano S, Ikeda JE. A novel function of N-linked glycoproteins, alpha-2-HS-glycoprotein and hemopexin: Implications for small molecule compound-mediated neuroprotection. PLoS One 2017; 12:e0186227. [PMID: 29016670 PMCID: PMC5633190 DOI: 10.1371/journal.pone.0186227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/27/2017] [Indexed: 11/18/2022] Open
Abstract
Therapeutic agents to the central nervous system (CNS) need to be efficiently delivered to the target site of action at appropriate therapeutic levels. However, a limited number of effective drugs for the treatment of neurological diseases has been developed thus far. Further, the pharmacological mechanisms by which such therapeutic agents can protect neurons from cell death have not been fully understood. We have previously reported the novel small-molecule compound, 2-[mesityl(methyl)amino]-N-[4-(pyridin-2-yl)-1H-imidazol-2-yl] acetamide trihydrochloride (WN1316), as a unique neuroprotectant against oxidative injury and a highly promising remedy for the treatment of amyotrophic lateral sclerosis (ALS). One of the remarkable characteristics of WN1316 is that its efficacious doses in ALS mouse models are much less than those against oxidative injury in cultured human neuronal cells. It is also noted that the WN1316 cytoprotective activity observed in cultured cells is totally dependent upon the addition of fetal bovine serum in culture medium. These findings led us to postulate some serum factors being tightly linked to the WN1316 efficacy. In this study, we sieved through fetal bovine serum proteins and identified two N-linked glycoproteins, alpha-2-HS-glycoprotein (AHSG) and hemopexin (HPX), requisites to exert the WN1316 cytoprotective activity against oxidative injury in neuronal cells in vitro. Notably, the removal of glycan chains from these molecules did not affect the WN1316 cytoprotective activity. Thus, two glycoproteins, AHSG and HPX, represent a pivotal glycoprotein of the cytoprotective activity for WN1316, showing a concrete evidence for the novel glycan-independent function of serum glycoproteins in neuroprotective drug efficacy.
Collapse
Affiliation(s)
- Takuya Kanno
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kaori Yasutake
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Kazunori Tanaka
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
| | - Shinji Hadano
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- The Institute of Medical Sciences, Tokai University, Isehara, Kanagawa, Japan
| | - Joh-E Ikeda
- NGP Biomedical Research Institute, Neugen Pharma Inc., Meguro, Tokyo, Japan
- Department of Molecular Neurology, Faculty of Medicine, Kitasato University, Sagamihara, Kanagawa, Japan
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario, Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
16
|
Wu HJ, Wu C, Niu HJ, Wang K, Mo LJ, Shao AW, Dixon BJ, Zhang JM, Yang SX, Wang YR. Neuroprotective Mechanisms of Melatonin in Hemorrhagic Stroke. Cell Mol Neurobiol 2017; 37:1173-1185. [PMID: 28132129 DOI: 10.1007/s10571-017-0461-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 01/05/2017] [Indexed: 12/30/2022]
Abstract
Hemorrhagic stroke which consists of subarachnoid hemorrhage and intracerebral hemorrhage is a dominant cause of death and disability worldwide. Although great efforts have been made, the physiological mechanisms of these diseases are not fully understood and effective pharmacological interventions are still lacking. Melatonin (N-acetyl-5-methoxytryptamine), a neurohormone produced by the pineal gland, is a broad-spectrum antioxidant and potent free radical scavenger. More importantly, there is extensive evidence demonstrating that melatonin confers neuroprotective effects in experimental models of hemorrhagic stroke. Multiple molecular mechanisms such as antioxidant, anti-apoptosis, and anti-inflammation, contribute to melatonin-mediated neuroprotection against brain injury after hemorrhagic stroke. This review article aims to summarize current knowledge regarding the beneficial effects of melatonin in experimental models of hemorrhagic stroke and explores the underlying mechanisms. We propose that melatonin is a promising neuroprotective candidate that is worthy of further evaluation for its potential therapeutic applications in hemorrhagic stroke.
Collapse
Affiliation(s)
- Hai-Jian Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Cheng Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Huan-Jiang Niu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Kun Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Lian-Jie Mo
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - An-Wen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Brandon J Dixon
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Min Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shu-Xu Yang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Yi-Rong Wang
- Department of Neurosurgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
17
|
Sun Y, Chen X, Zhang X, Shen X, Wang M, Wang X, Liu WC, Liu CF, Liu J, Liu W, Jin X. β2-Adrenergic Receptor-Mediated HIF-1α Upregulation Mediates Blood Brain Barrier Damage in Acute Cerebral Ischemia. Front Mol Neurosci 2017; 10:257. [PMID: 28855859 PMCID: PMC5558520 DOI: 10.3389/fnmol.2017.00257] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/31/2017] [Indexed: 12/28/2022] Open
Abstract
Disruption of the blood brain barrier (BBB) within the thrombolytic time window is an antecedent event to intracerebral hemorrhage in ischemic stroke. Our recent studies showed that 2-h cerebral ischemia induced BBB damage in non-infarcted area and secreted matrix metalloproteinase-2 (MMP-2) accounted for this disruption. However, the factors that affect MMP-2 secretion and regulate BBB damage remains unknown. Since hypoxia-inducible factor-1 alpha (HIF-1α) was discovered as a mater regulator in hypoxia, we sought to investigate the roles of HIF-1α in BBB damage as well as the factors regulating HIF-1α expression in the ischemic brain. in vivo rat middle cerebral artery occlusion (MCAO) and in vitro oxygen glucose deprivation (OGD) models were used to mimic ischemia. Pretreatment with HIF-1α inhibitor YC-1 significantly inhibited 2-h MCAO-induced BBB damage, which was accompanied by suppressed occludin degradation and vascular endothelial growth factor (VEGF) mRNA upregulation. Interestingly, β2-adrenergic receptor (β2-AR) antagonist ICI 118551 attenuated ischemia-induced BBB damage by regulating HIF-1α expression. Double immunostaining showed that HIF-1α was upregulated in ischemic neurons but not in astrocytes andendothelial cells. Of note, HIF-1α inhibition with inhibitor YC-1 or siRNA significantly prevented OGD-induced VEGF upregulation as well as the secretion of VEGF and MMP-2 in neurons. More importantly, blocking β2-AR with ICI 118551 suppressedHIF-1α upregulation in ischemic neurons and attenuated occludin degradation induced by the conditioned media of OGD-treatedneurons. Taken together, blockade of β2-AR-mediated HIF-1α upregulation mediates BBB damage during acute cerebral ischemia. These findings provide new mechanistic understanding of early BBB damage in ischemic stroke and may help reduce thrombolysis-related hemorrhagic complications.
Collapse
Affiliation(s)
- Yanyun Sun
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Ministry of EducationYantai, China
| | - Xi Chen
- The People's Hospital of Baoan ShenzhenShenzhen, China
| | - Xinyu Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Xianzhi Shen
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Mengwei Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Xiaona Wang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Ministry of EducationYantai, China
| | - Wen-Cao Liu
- Department of Emergency, Shanxi Provincial People's HospitalTaiyuan, China
| | - Chun-Feng Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China
| | - Jie Liu
- Translational Center for Stem Cell Research, Tongji Hospital, Stem Cell Research Center, Tongji University School of MedicineShanghai, China
| | - Wenlan Liu
- The Central Laboratory, Shenzhen Second People's Hospital, Stem Cell Research Center, The First Affiliated Hospital of Shenzhen UniversityShenzhen, China
| | - Xinchun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, Department of Neurology, The Second Affiliated Hospital of Soochow UniversitySuzhou, China.,School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Ministry of EducationYantai, China
| |
Collapse
|
18
|
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS JOURNAL 2017; 19:957-972. [PMID: 28484963 DOI: 10.1208/s12248-017-0091-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA.
| |
Collapse
|
19
|
Chen HS, Qi SH, Shen JG. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke. Curr Neuropharmacol 2017; 15:134-156. [PMID: 27334020 PMCID: PMC5327453 DOI: 10.2174/1570159x14666160620102055] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/21/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multitarget strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and bloodbrain- barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy.
Collapse
Affiliation(s)
- Han-Sen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Jian-Gang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| |
Collapse
|
20
|
Liberale L, Montecucco F, Casetta I, Seraceni S, Trentini A, Padroni M, Dallegri F, Mach F, Fainardi E, Carbone F. Decreased serum PCSK9 levels after ischaemic stroke predict worse outcomes. Eur J Clin Invest 2016; 46:1053-1062. [PMID: 27759884 DOI: 10.1111/eci.12692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 10/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Soluble mediators have been investigated to predict the prognosis of acute ischaemic stroke (AIS). Among them, proprotein convertase subtilisin/kexin type 9 (PCSK9) might have both clinical and pathophysiological relevance. MATERIALS AND METHODS All available serum samples from a cohort of patients with first AIS (n = 72) were tested for PCSK9 and included in this substudy analysis. The primary endpoint investigated the predictive value of early PCSK9 level variations (ΔPCSK9) from AIS onset to day 7 or from day 1 to day 7, towards a 90-day outcome by modified Rankin Scale (mRS). The secondary endpoint explored the association between ΔPCSK9 and the risk of major adverse cardiovascular events (MACEs). RESULTS Decreased serum PCSK9 levels at days 1 and 7 were associated with poor clinical outcomes at day 90. At the cut-off point identified by ROC curve analysis (-61·28 ng/mL), ΔPCSK9 day 7-day 1 predicted a poor mRS at day 90 after AIS. ΔPCSK9 day 7-day 1 ≤ -61·28 ng/mL was associated with an increased rate of MACEs. CONCLUSION A decrease in PCSK9 levels was a predictor for poor outcome and increased MACEs after AIS. Additional studies targeting post-AIS PCSK9 levels and activity are required to clarify the prognostic and pathophysiological relevance of PCSK9 after AIS.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST, Genoa, Italy.,Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Ilaria Casetta
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Ferrara, Italy
| | - Silva Seraceni
- Istitute for Maternal and Child Health 'IRCCS Burlo Garofolo', Trieste, Italy
| | - Alessandro Trentini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Padroni
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Ferrara, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST, Genoa, Italy
| | - François Mach
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Enrico Fainardi
- Neuroradiology Unit, Azienda Ospedaliera-Universitaria Careggi, Florence, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
21
|
Chen M, Lai L, Li X, Zhang X, He X, Liu W, Li R, Ke X, Fu C, Huang Z, Duan C. Baicalein Attenuates Neurological Deficits and Preserves Blood-Brain Barrier Integrity in a Rat Model of Intracerebral Hemorrhage. Neurochem Res 2016; 41:3095-3102. [PMID: 27518088 DOI: 10.1007/s11064-016-2032-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/12/2016] [Accepted: 08/05/2016] [Indexed: 01/19/2023]
Abstract
Previous studies have demonstrated that baicalein has protective effects against several diseases, which including ischemic stroke. The effect of baicalein on the blood-brain barrier (BBB) in intracerebral hemorrhage (ICH) and its related mechanisms are not well understood. We aimed to investigate the mechanisms by which baicalein may influence the BBB in a rat model of ICH. The rat model of ICH was induced by intravenous injection of collagenase IV into the brain. Animals were randomly divided into three groups: sham operation, vehicle, and baicalein group. Each group was then divided into subgroups, in which the rats were sacrificed at 24 and 72 h after ICH. We assessed brain edema, behavioral changes, BBB leakage, apoptosis, inducible nitric oxide synthase (iNOS), zonula occludens (ZO)-1, Mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB). Treatment with baicalein reduced brain water content, BBB leakage, apoptosis, and neurologic deficits, compared with vehicle. Baicalein also decreased ICH-induced changes in the levels of iNOS but increased the levels of ZO-1. The protective effect of baicalein on the BBB in ICH rats was possibly invoked by attenuated p-38 MAPK and JNK phosphorylation, and decreased activation of the NF-κB signaling pathway, which may have suppressed gene transcription, including iNOS, and eventually decreased formation of peroxynitrite (ONOO-). Our results suggest that baicalein exerts a protective effect on BBB disruption in the rat model of ICH. The likely mechanism is via inhibition of MAPKs and NF-κB signaling pathways, leading to decreased formation of iNOS and ONOO-, thereby improving neurological function.
Collapse
Affiliation(s)
- Min Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China
| | - Lingfeng Lai
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xifeng Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xin Zhang
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xuying He
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenchao Liu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ran Li
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xunchang Ke
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Chuanyi Fu
- Department of Neurosurgery, People's Hospital of Hainan Province, Haikou, Hainan, China
| | - Zhiwei Huang
- Department of Neurosurgery, Liuzhou Worker's Hospital, Guangxi, China
| | - Chuanzhi Duan
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
22
|
Strickland DK, Muratoglu SC. LRP in Endothelial Cells: A Little Goes a Long Way. Arterioscler Thromb Vasc Biol 2016; 36:213-6. [PMID: 26819461 DOI: 10.1161/atvbaha.115.306895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Dudley K Strickland
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore.
| | - Selen C Muratoglu
- From the Center for Vascular and Inflammatory Disease (D.K.S., S.C.M.), Departments of Surgery (D.K.S.), and Physiology (D.K.S., S.C.M.), University of Maryland School of Medicine, Baltimore
| |
Collapse
|
23
|
ElAli A, Bordeleau M, Thériault P, Filali M, Lampron A, Rivest S. Tissue-Plasminogen Activator Attenuates Alzheimer's Disease-Related Pathology Development in APPswe/PS1 Mice. Neuropsychopharmacology 2016; 41:1297-307. [PMID: 26349911 PMCID: PMC4793113 DOI: 10.1038/npp.2015.279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among elderly population. AD is characterized by the accumulation of beta-amyloid (Aβ) peptides, which aggregate over time to form amyloid plaques in the brain. Reducing soluble Aβ levels and consequently amyloid plaques constitute an attractive therapeutic avenue to, at least, stabilize AD pathogenesis. The brain possesses several mechanisms involved in controlling cerebral Aβ levels, among which are the tissue-plasminogen activator (t-PA)/plasmin system and microglia. However, these mechanisms are impaired and ineffective in AD. Here we show that the systemic chronic administration of recombinant t-PA (Activase rt-PA) attenuates AD-related pathology in APPswe/PS1 transgenic mice by reducing cerebral Aβ levels and improving the cognitive function of treated mice. Interestingly, these effects do not appear to be mediated by rt-PA-induced plasmin and matrix metalloproteinases 2/9 activation. We observed that rt-PA essentially mediated a slight transient increase in the frequency of patrolling monocytes in the circulation and stimulated microglia in the brain to adopt a neuroprotective phenotype, both of which contribute to Aβ elimination. Our study unraveled a new role of rt-PA in maintaining the phagocytic capacity of microglia without exacerbating the inflammatory response and therefore might constitute an interesting approach to stimulate the key populations of cells involved in Aβ clearance from the brain.
Collapse
Affiliation(s)
- Ayman ElAli
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Maude Bordeleau
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Peter Thériault
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Mohammed Filali
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Antoine Lampron
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec City, QC, Canada,Neuroscience Laboratory, CHU de Québec Research Center (CHUL), Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boulevard, Québec City, QC G1V 4G2, Canada, Tel: +1 418 525 4444, Ext. 42296, Fax: +1 418 654 2735, E-mail:
| |
Collapse
|
24
|
NADPH Oxidase: A Potential Target for Treatment of Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5026984. [PMID: 26941888 PMCID: PMC4752995 DOI: 10.1155/2016/5026984] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several reports have shown that knockout or deletion of NOX exerts a neuroprotective effect in three major experimental stroke models. Recent studies also confirmed that NOX inhibitors ameliorate brain injury and improve neurological outcome after stroke. However, the physiological and pathophysiological roles of NOX enzymes in the central nervous system (CNS) are not known well. In this review, we provide a comprehensive summary of our current understanding about expression and physiological function of NOX enzymes in the CNS and its pathophysiological roles in the three major types of stroke: ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage.
Collapse
|
25
|
The plasminogen activation system in neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2015; 1862:395-402. [PMID: 26493446 DOI: 10.1016/j.bbadis.2015.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/08/2015] [Accepted: 10/15/2015] [Indexed: 01/30/2023]
Abstract
The plasminogen activation (PA) system consists in a group of proteases and protease inhibitors regulating the activation of the zymogen plasminogen into its proteolytically active form, plasmin. Here, we give an update of the current knowledge about the role of the PA system on different aspects of neuroinflammation. These include modification in blood-brain barrier integrity, leukocyte diapedesis, removal of fibrin deposits in nervous tissues, microglial activation and neutrophil functions. Furthermore, we focus on the molecular mechanisms (some of them independent of plasmin generation and even of proteolysis) and target receptors responsible for these effects. The description of these mechanisms of action may help designing new therapeutic strategies targeting the expression, activity and molecular mediators of the PA system in neurological disorders involving neuroinflammatory processes. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
|
26
|
Wei XE, Zhao YW, Lu J, Li MH, Li WB, Zhou YJ, Li YH. Timing of recanalization and outcome in ischemic-stroke patients treated with recombinant tissue plasminogen activator. Acta Radiol 2015; 56:1119-26. [PMID: 25182802 DOI: 10.1177/0284185114545151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/02/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intravenous administration of recombinant tissue plasminogen activator (rtPA) is approved treatment for acute ischemic stroke <3 h of symptom onset. PURPOSE To determine the impact of the timing and degree of recanalization on clinical outcome after rtPA infusion in patients. MATERIAL AND METHODS Seventy-five patients with ischemic stroke in the middle cerebral artery territory treated with intravenous rtPA within 3 h were studied consecutively. Magnetic resonance imaging (MRI), including magnetic resonance angiography (MRA), before, 6 h, and 24 h after thrombolytic therapy was undertaken. Depending on the MRA results acquired 6 h after rtPA infusion, recanalization was graded as: early recanalization (ER), delayed recanalization (DR), and no recanalization (NR). Clinical outcome was assessed using the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). RESULTS Of patients in the ER, DR and NR groups, 71.4% (15/21), 13.3% (2/15), and 30.7% (12/39), respectively, showed dramatic improvement in NIHSS score 7 days after rtPA administration compared with those scores upon hospital admission. The 6-h and 24-h NIHSS scores and 3-month mRS scores of ER patients were significantly lower than those of the other two groups (P < 0.05). The 24-h, 7-d NHISS and mRS scores of DR patients were significantly higher than NR patients (P = 0.001, 0.002, 0.049, respectively). Three patients in the DR group died during follow-up. CONCLUSION These data suggest that DR is associated with clinical deterioration. Patients treated with rtPA thrombolysis should be under close observation for 6-24 h. Corresponding treatment should be considered once DR appears.
Collapse
Affiliation(s)
- Xiao-Er Wei
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Yu-Wu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Jing Lu
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Ming-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Wen-Bin Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Ya-Jun Zhou
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| | - Yue-Hua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, PR China
| |
Collapse
|
27
|
The rat endovascular perforation model of subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:321-4. [PMID: 25366645 DOI: 10.1007/978-3-319-04981-6_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
The rat endovascular perforation model is considered the closest replica of human condition. Since its development, this model has been extensively used to study early brain injury after subarachnoid hemorrhage (SAH). However, like any other animal model, it has advantages and limitations. The following is a brief review of the rat endovascular perforation SAH model. One section is dedicated to technical considerations that can be used to overcome the model limitations.
Collapse
|
28
|
Ma J, Tong Y, Yu D, Mao M. Tissue plasminogen activator-independent roles of neuroserpin in the central nervous system. Neural Regen Res 2015; 7:146-51. [PMID: 25767491 PMCID: PMC4354132 DOI: 10.3969/j.issn.1673-5374.2012.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 11/19/2011] [Indexed: 11/18/2022] Open
Abstract
A number of studies have confirmed the existence of tissue-type plasminogen activator-independent roles of neuroserpin, a member of the serine protease inhibitor superfamily. In this review article, we aim to clarify this role. These unique roles of neuroserpin are involved in its neuroprotective effect during ischemic brain injury, its regulation of tumorigenesis, and the mediation of emotion and cognition through the inhibition of urokinase-type plasminogen activator and fibrinolysin, modification of Th cells, reducing plaque formation, promoting process growth and intracellular adhesion, and altering the expression of cadherin and nuclear factor kappa B.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu Tong
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Dan Yu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Meng Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China ; Laboratory of Early Developmental and Injuries, West China Institutes for Woman and Children's Health, West China Second University Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
29
|
Rat endovascular perforation model. Transl Stroke Res 2014; 5:660-8. [PMID: 25213427 DOI: 10.1007/s12975-014-0368-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Collapse
|
30
|
Combination approaches to attenuate hemorrhagic transformation after tPA thrombolytic therapy in patients with poststroke hyperglycemia/diabetes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 71:391-410. [PMID: 25307224 DOI: 10.1016/bs.apha.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To date, tissue type plasminogen activator (tPA)-based thrombolytic stroke therapy is the only FDA-approved treatment for achieving vascular reperfusion and clinical benefit, but this agent is given to only about 5% of stroke patients in the USA. This may be related, in part, to the elevated risk of symptomatic intracranial hemorrhage, and consequently limited therapeutic time window. Clinical investigations demonstrate that poststroke hyperglycemia is one of the most important risk factors that cause intracerebral hemorrhage and worsen neurological outcomes. There is a knowledge gap in understanding the underlying molecular mechanisms, and lack of effective therapeutics targeting the severe complication. This short review summarizes clinical observations and experimental investigations in preclinical stroke models of the field. The data strongly suggest that interactions of multiple pathogenic factors including hyperglycemia-mediated vascular oxidative stress and inflammation, ischemic insult, and tPA neurovascular toxicity in concert contribute to the BBB damage-intracerebral hemorrhagic transformation process. Development of combination approaches targeting the multiple pathological cascades may help to attenuate the hemorrhagic complication.
Collapse
|
31
|
Plasmin-dependent modulation of the blood-brain barrier: a major consideration during tPA-induced thrombolysis? J Cereb Blood Flow Metab 2014; 34:1283-96. [PMID: 24896566 PMCID: PMC4126105 DOI: 10.1038/jcbfm.2014.99] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/16/2023]
Abstract
Plasmin, the principal downstream product of tissue-type plasminogen activator (tPA), is known for its potent fibrin-degrading capacity but is also recognized for many non-fibrinolytic activities. Curiously, plasmin has not been conclusively linked to blood-brain barrier (BBB) disruption during recombinant tPA (rtPA)-induced thrombolysis in ischemic stroke. This is surprising given the substantial involvement of tPA in the modulation of BBB permeability and the co-existence of tPA and plasminogen in both blood and brain throughout the ischemic event. Here, we review the work that argues a role for plasmin together with endogenous tPA or rtPA in BBB alteration, presenting the overall controversy around the topic yet creating a rational case for an involvement of plasmin in this process.
Collapse
|
32
|
Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2013; 2:316-27. [PMID: 23060945 DOI: 10.1007/s12975-011-0069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may "precondition" the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA 92350, USA
| | | |
Collapse
|
33
|
Gonias SL, Campana WM. LDL receptor-related protein-1: a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:18-27. [PMID: 24128688 DOI: 10.1016/j.ajpath.2013.08.029] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/19/2022]
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is an endocytic receptor for numerous proteins that are both structurally and functionally diverse. In some cell types, LRP1-mediated endocytosis is coupled to activation of cell signaling. LRP1 also regulates the composition of the plasma membrane and may, thereby, indirectly regulate the activity of other cell-signaling receptors. Given the scope of LRP1 ligands and its multifunctional nature, it is not surprising that numerous biological activities have been attributed to this receptor. LRP1 gene deletion is embryonic-lethal in mice. However, elegant studies using Cre-LoxP recombination have helped elucidate the function of LRP1 in mature normal and pathological tissues. One major theme that has emerged is the role of LRP1 as a regulator of inflammation. In this review, we will describe evidence for LRP1 as a regulator of inflammation in atherosclerosis, cancer, and injury to the nervous system.
Collapse
Affiliation(s)
- Steven L Gonias
- Department of Pathology, University of California School of Medicine, La Jolla, California.
| | - W Marie Campana
- Department of Anesthesiology, University of California School of Medicine, La Jolla, California; Program in Neuroscience, University of California School of Medicine, La Jolla, California
| |
Collapse
|
34
|
Tang J, Li YJ, Mu J, Li Q, Yang DY, Xie P. Albumin ameliorates tissue plasminogen activator-mediated blood–brain barrier permeability and ischemic brain injury in rats. Neurol Res 2013; 31:189-94. [DOI: 10.1179/174313209x393898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
35
|
Piechowski-Jozwiak B, Bogousslavsky J. The use of desmoteplase (bat saliva) in the treatment of ischaemia. Expert Opin Biol Ther 2013; 13:447-53. [PMID: 23394378 DOI: 10.1517/14712598.2013.767327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION In an era of ageing global populations and accumulation of cardiovascular risk factors, the importance of reperfusion/recanalisation therapies in treating vascular occlusive disease is growing. There are multiple thrombolytic agents available, including bat saliva-derived plasminogen activator. AREAS COVERED A peer reviewed literature search was conducted and focus was on the data on the use of desmoteplase in the treatment of ischaemic stroke. EXPERT OPINION Currently, there is not enough evidence for clinical use in ischaemic stroke and further Phase III studies are underway. At this stage, desmoteplase remains an investigational compound.
Collapse
Affiliation(s)
- Bartlomiej Piechowski-Jozwiak
- Princess Royal University Hospital, Clinical Lead Hyper Acute Stroke Unit & Stroke Services, South London Healthcare Trust, Farnborough Common, BR6 8ND Orpington, Kent, UK.
| | | |
Collapse
|
36
|
Parcq J, Bertrand T, Baron AF, Hommet Y, Anglès-Cano E, Vivien D. Molecular requirements for safer generation of thrombolytics by bioengineering the tissue-type plasminogen activator A chain. J Thromb Haemost 2013; 11:539-46. [PMID: 23301636 DOI: 10.1111/jth.12128] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Thrombolysis with tissue-type plasminogen activator (t-PA) is the only treatment approved for acute ischemic stroke. Although t-PA is an efficient clot lysis enzyme, it also causes damage to the neurovascular unit, including hemorrhagic transformations and neurotoxicity. OBJECTIVES On the basis of the mechanism of action of t-PA on neurotoxicity, we aimed at studying the molecular requirements to generate safer thrombolytics. METHODS We produced original t-PA-related mutants, including a non-cleavable single-chain form with restored zymogenicity (sc*-t-PA) and a t-PA modified in the kringle 2 lysine-binding site (K2*-t-PA). Both sc*-t-PA and K2*-t-PA showed fibrinolytic activities similar to that of wild-type t-PA on both euglobulin-containing and plasma-containing clots. In contrast to wild-type t-PA, the two mutants did not promote N-methyl-d-aspartate receptor-mediated neurotoxicity. CONCLUSIONS We designed t-PA mutants with molecular properties that, in contrast to t-PA, do not induce neurotoxicity.
Collapse
Affiliation(s)
- J Parcq
- Inserm, Inserm UMR-S U919, University of Caen Basse-Normandie, Serine Proteases and Pathophysiology of Neurovascular Unit, GIP Cyceron, Caen, France
| | | | | | | | | | | |
Collapse
|
37
|
Zhang Z, Chen X, Li L, Zhang K, Tian S, Gao H, Li H. t-PA reduces ischemic impairment of blood-brain barrier by strengthening endothelium junction. Neurol Sci 2013; 34:1605-11. [PMID: 23423463 DOI: 10.1007/s10072-013-1293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022]
Abstract
Cerebral ischemic stroke is one of the most prevalent diseases in senior individuals. Its therapeutical strategies include anticoagulation, thrombolysis and cell protection. Tissue-type plasminogen activator (t-PA) that interacts with thrombin for the lysis of thrombosis is widely used to treat stroke patients in early stage. The mechanism of action of t-PA is not clear. Here, we report a novel role of t-PA in protecting blood-brain barrier and its potential mechanisms. In a model of the blood-brain barrier with human umbilical vascular epithelium cells, we found that t-PA in low concentrations prevented the impairment of the blood-brain barrier as a result of oxygen and glucose deprivation. This protection was fulfilled by strengthening the junctions among vascular endothelia and by upregulating the productions of vascular endothelium growth factor and of zonula occludens-1. Therefore, t-PA may strengthen the junctions of vascular endothelia in the blood-brain barrier to improve the microenvironment of brain cells and, in turn, the outcome of stroke patients.
Collapse
Affiliation(s)
- Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You-Zheng Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
38
|
Archavlis E, Carvi Y Nievas M. Cerebral vasospasm: a review of current developments in drug therapy and research. ACTA ACUST UNITED AC 2013. [DOI: 10.7243/2050-120x-2-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Jin X, Liu J, Yang Y, Liu KJ, Yang Y, Liu W. Spatiotemporal evolution of blood brain barrier damage and tissue infarction within the first 3h after ischemia onset. Neurobiol Dis 2012; 48:309-16. [DOI: 10.1016/j.nbd.2012.07.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/29/2012] [Accepted: 07/09/2012] [Indexed: 10/28/2022] Open
|
40
|
Bérézowski V, Mysiorek C, Kuntz M, Pétrault O, Cecchelli R. [Dysfunction of the blood-brain barrier during ischaemia: a therapeutic concern]. Biol Aujourdhui 2012; 206:161-76. [PMID: 23171839 DOI: 10.1051/jbio/2012020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Indexed: 11/14/2022]
Abstract
Since it was discovered and its brain-protective role characterized, the blood-brain barrier (BBB), through the permeability-restricting action of the brain capillary endothelial cells, has been representing a hurdle for 95% of new medical compounds targeting the central nervous system. Recently, a BBB dysfunction is being found in an increasing number of pathologies such as brain ischaemic stroke, whose only therapy consists in a pharmacological thrombolysis limited to a small percentage of the admitted patients, because of the toxical effects of thrombolytics. And since the clinical failure of promising neuroprotectants, numerous studies of brain ischaemia were carried out, with physiopathological or pharmacological approaches refocused on the BBB, whose structural complexity is now expanded to perivascular cells, all forming a functional unit named the neurovascular unit (NVU). Nevertheless, in spite of the numerous molecular mechanisms identified, the process of BBB dysfunction in the ischaemia/reperfusion cascade remains insufficiently established to explain the pleiotropic action exerted by new pharmacological compounds, possibly protecting the entire NVU and representing potential treatments.
Collapse
|
41
|
Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic Benefits from Nanoparticles: The Potential Significance of Nanoscience in Diseases with Compromise to the Blood Brain Barrier. Chem Rev 2012; 113:1877-903. [DOI: 10.1021/cr200472g] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Silke Krol
- Fondazione IRCCS Institute of Neurology “Carlo Besta”, Milan, Italy
| | - Richard Macrez
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
- Department of Neurology, University Hospital of Caen, Caen, France
| | - Fabian Docagne
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
| | - Gilles Defer
- Inserm U919, University Caen Basse Normandie, Serine Proteases and Pathophysiology of the Neurovascular Unit, GIP CYCERON, F-14074 Caen, France
- Department of Neurology, University Hospital of Caen, Caen, France
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau, 19, B-7000 Mons, Belgium
| | - Masoud Rahman
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad J. Hajipour
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Patrick G. Kehoe
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, John James Laboratories, Frenchay Hospital, Bristol, U.K
| | - Morteza Mahmoudi
- Laboratory of NanoBio Interactions , Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Current address: School of Chemical Sciences, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
42
|
Henry VJ, Lecointre M, Laudenbach V, Ali C, Macrez R, Jullienne A, Berezowski V, Carmeliet P, Vivien D, Marret S, Gonzalez BJ, Leroux P. High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate. Neurobiol Dis 2012; 50:201-8. [PMID: 23103420 DOI: 10.1016/j.nbd.2012.10.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 02/06/2023] Open
Abstract
Glutamate excitotoxicity is a consolidated hypothesis in neonatal brain injuries and tissue plasminogen activator (t-PA) participates in the processes through proteolytic and receptor mediated effects. In brain microvascular endothelial cell (nBMEC) cultures from neonates, t-PA content and release upon glutamate are higher than in adult (aBMECs) cultures. Owing to the variety of t-PA substrates and receptor targets, the study was aimed at determining the putative roles of endothelial t-PA in the neonatal brain parenchyma under glutamate challenge. Basal t-PA release was 4.4 fold higher in nBMECs vs aBMECs and glutamate was 20 fold more potent to allow Evans blue vascular permeability in neonate microvessels indicating that, under noxious glutamate (50 μM) exposure, high amounts of endothelial t-PA stores may be mobilized and may access the nervous parenchyma. Culture media from nBMECS or aBMECs challenged by excitotoxic glutamate were applied to neuron cultures at DIV 11. While media from adult cells did not evoke more LDH release in neuronal cultures that under glutamate alone, media from nBMECs enhanced 2.2 fold LDH release. This effect was not observed with media from t-PA(-/-) nBMECs and was inhibited by hr-PAI-1. In Cortical slices from 10 day-old mice, hrt-PA associated with glutamate evoked neuronal necrosis in deeper (more mature) layers, an effect reversed by NMDA receptor GluN1 amino-terminal domain antibody capable of inhibiting t-PA potentiation of the receptor. In superficial layers (less mature), hrt-PA alone inhibited apoptosis, an effect reversed by the EGF receptor antagonist AG1478. Applied to immature neurons in culture (DIV5), media from nBMEC rescued 85.1% of neurons from cell death induced by serum deprivation. In cortical slices, the anti-apoptotic effect of t-PA fitted with age dependent localization of less mature neurons. These data suggest that in the immature brain, propensity of vessels to release high amounts of t-PA may not only impact vascular integrity but may also influence neuronal fate, via regulation of apoptosis in immature cells and, as in adult by potentiating glutamate toxicity in mature neurons. The data point out putative implication of microvessels in glutamate neurotoxicity in the development, and justify research towards vessel oriented neuroprotection strategies in neonates.
Collapse
Affiliation(s)
- Vincent Jean Henry
- Region INSERM Team, ERI28 NeoVasc, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, University of Rouen, Institute for Research and Innovation in Biomedicine, Rouen, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sorce S, Krause KH, Jaquet V. Targeting NOX enzymes in the central nervous system: therapeutic opportunities. Cell Mol Life Sci 2012; 69:2387-407. [PMID: 22643836 PMCID: PMC11114708 DOI: 10.1007/s00018-012-1014-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 04/18/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022]
Abstract
Among the pathogenic mechanisms underlying central nervous system (CNS) diseases, oxidative stress is almost invariably described. For this reason, numerous attempts have been made to decrease reactive oxygen species (ROS) with the administration of antioxidants as potential therapies for CNS disorders. However, such treatments have always failed in clinical trials. Targeting specific sources of reactive oxygen species in the CNS (e.g. NOX enzymes) represents an alternative promising option. Indeed, NOX enzymes are major generators of ROS, which regulate progression of CNS disorders as diverse as amyotrophic lateral sclerosis, schizophrenia, Alzheimer disease, Parkinson disease, and stroke. On the other hand, in autoimmune demyelinating diseases, ROS generated by NOX enzymes are protective, presumably by dampening the specific immune response. In this review, we discuss the possibility of developing therapeutics targeting NADPH oxidase (NOX) enzymes for the treatment of different CNS pathologies. Specific compounds able to modulate the activation of NOX enzymes, and the consequent production of ROS, could fill the need for disease-modifying drugs for many incurable CNS pathologies.
Collapse
Affiliation(s)
- Silvia Sorce
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Geneva Medical Faculty, Geneva University Hospitals Centre Medical Universitaire 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals Centre Medical Universitaire 1, Geneva 4, Switzerland
| |
Collapse
|
44
|
Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012:176287. [PMID: 22778741 PMCID: PMC3388591 DOI: 10.1155/2012/176287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.
Collapse
|
45
|
t-PA–specific modulation of a human blood-brain barrier model involves plasmin-mediated activation of the Rho kinase pathway in astrocytes. Blood 2012; 119:4752-61. [DOI: 10.1182/blood-2011-07-369512] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Tissue-type plasminogen activator (t-PA) can modulate permeability of the neurovascular unit and exacerbate injury in ischemic stroke. We examined the effects of t-PA using in vitro models of the blood-brain barrier. t-PA caused a concentration-dependent increase in permeability. This effect was dependent on plasmin formation and potentiated in the presence of plasminogen. An inactive t-PA variant inhibited the t-PA–mediated increase in permeability, whereas blockade of low-density lipoprotein receptors or exposed lysine residues resulted in similar inhibition, implying a role for both a t-PA receptor, most likely a low-density lipoprotein receptor, and a plasminogen receptor. This effect was selective to t-PA and its close derivative tenecteplase. The truncated t-PA variant reteplase had a minor effect on permeability, whereas urokinase and desmoteplase were ineffective. t-PA also induced marked shape changes in both brain endothelial cells and astrocytes. Changes in astrocyte morphology coincided with increased F-actin staining intensity, larger focal adhesion size, and elevated levels of phosphorylated myosin. Inhibition of Rho kinase blocked these changes and reduced t-PA/plasminogen–mediated increase in permeability. Hence plasmin, generated on the cell surface selectively by t-PA, modulates the astrocytic cytoskeleton, leading to an increase in blood-brain barrier permeability. Blockade of the Rho/Rho kinase pathway may have beneficial consequences during thrombolytic therapy.
Collapse
|
46
|
Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage. J Neurosci 2012; 32:3044-57. [PMID: 22378877 DOI: 10.1523/jneurosci.6409-11.2012] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Blood-brain barrier (BBB) disruption occurs early enough to be within the thrombolytic time window, and this early ischemic BBB damage is closely associated with hemorrhagic transformation and thus emerging as a promising target for reducing the hemorrhagic complications of thrombolytic stroke therapy. However, the mechanisms underlying early ischemic BBB damage remain poorly understood. Here, we investigated the early molecular events of ischemic BBB damage using in vitro oxygen-glucose deprivation (OGD) and in vivo rat middle cerebral artery occlusion (MCAO) models. Exposure of bEND3 monolayer to OGD for 2 h significantly increased its permeability to FITC-labeled dextran and promoted the secretion of metalloproteinase-2 and -9 (MMP-2/9) and cytosolic translocation of caveolin-1 (Cav-1). This same OGD treatment also led to rapid degradation of tight junction protein occludin and dissociation of claudin-5 from the cytoskeleton, which contributed to OGD-induced endothelial barrier disruption. Using selective MMP-2/9 inhibitor SB-3CT (2-[[(4-phenoxyphenyl)sulfonyl]methyl]-thiirane) or their neutralizing antibodies or Cav-1 siRNA, we found that MMP-2 was the major enzyme mediating OGD-induced occludin degradation, while Cav-1 was responsible for claudin-5 redistribution. The interaction between Cav-1 and claudin-5 was further confirmed by coimmunoprecipitation. Consistent with these in vitro findings, we observed fluorescence tracer extravasation, increased gelatinolytic activity, and elevated interstitial MMP-2 levels in ischemic subcortical tissue after 2 h MCAO. Moreover, occludin protein loss and claudin-5 redistribution were detected in ischemic cerebromicrovessels. These data indicate that cerebral ischemia initiates two rapid parallel processes, MMP-2-mediated occludin degradation and Cav-1-mediated claudin-5 redistribution, to cause BBB disruption at early stroke stages relevant to acute thrombolysis.
Collapse
|
47
|
Abstract
The plasminogen-activating enzyme system has been exploited and harnessed for therapeutic thrombolysis for nearly three decades. Tissue-type plasminogen activator is still the only thrombolytic agent approved for patients with ischemic stroke. While tissue-type plasminogen activator-induced thrombolysis is proven to be of clear benefit in these patients if administered within 4·5 h poststroke onset, it is surprisingly underused in clinics despite international guidelines and improved acute stroke systems, a situation that requires urgent attention. While tissue-type plasminogen activator has also been shown to have unforeseen roles in the brain that have presented new challenges, tissue-type plasminogen activator and related fibrinolytic agents are currently being assessed over extended time frames. This review will focus on the therapeutic experience and controversies of tissue-type plasminogen activator. Furthermore, we will also provide an overview of recent and current trials assessing tissue-type plasminogen activator and related thrombolytic agents as well as novel approaches for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Robert L Medcalf
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
48
|
Spaccapelo R, Aime E, Caterbi S, Arcidiacono P, Capuccini B, Di Cristina M, Dottorini T, Rende M, Bistoni F, Crisanti A. Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype. Sci Rep 2011; 1:39. [PMID: 22355558 PMCID: PMC3216526 DOI: 10.1038/srep00039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 06/10/2011] [Indexed: 11/17/2022] Open
Abstract
Blood stage malaria parasites causing a mild and self limited infection in mice have
been obtained with either radiation or chemical mutagenesis showing the possibility
of developing an attenuated malaria vaccine. Targeted disruption of plasmepsin-4
(pm4) or the merozoite surface protein-7 (msp7) genes also induces
a virulence-attenuated phenotype in terms of absence of experimental cerebral
malaria (ECM), delayed increase of parasitemia and reduced mortality rate. The
decrease in virulence in parasites lacking either pm4 or msp7 is
however incomplete and dependent on the parasite and mouse strain combination. The
sequential disruption of both genes induced remarkable virulence-attenuated
blood-stage parasites characterized by a self-resolving infection with low levels of
parasitemia and no ECM. Furthermore, convalescent mice were protected against the
challenge with P. berghei or P. yoelii parasites for several months.
These observations provide a proof-of-concept step for the development of human
malaria vaccines based on genetically attenuated blood-stage parasites.
Collapse
Affiliation(s)
- Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, Via Del Giochetto, 06126 Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Roussel BD, Mysiorek C, Rouhiainen A, Jullienne A, Parcq J, Hommet Y, Culot M, Berezowski V, Cecchelli R, Rauvala H, Vivien D, Ali C. HMGB-1 promotes fibrinolysis and reduces neurotoxicity mediated by tissue plasminogen activator. J Cell Sci 2011; 124:2070-6. [DOI: 10.1242/jcs.084392] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Owing to its ability to generate the clot-dissolving protease plasmin, tissue plasminogen activator (tPA) is the only approved drug for the acute treatment of ischemic stroke. However, tPA also promotes hemorrhagic transformation and excitotoxic events. High mobility group box-1 protein (HMGB-1) is a non-histone transcription factor and a pro-inflammatory cytokine, which has also been shown to bind to both tPA and plasminogen. We thus investigated the cellular and molecular effects through which HMGB-1 could influence the vascular and parenchymal effects of tPA during ischemia. We demonstrate that HMGB-1 not only increases clot lysis by tPA, but also reduces the passage of vascular tPA across the blood–brain barrier, as well as tPA-driven leakage of the blood–brain barrier. In addition, HMGB-1 prevents the pro-neurotoxic effect of tPA, by blocking its interaction with N-methyl-D-aspartate (NMDA) receptors and the attendant potentiation of NMDA-induced neuronal Ca2+ influx. In conclusion, we show in vitro that HMGB-1 can promote the beneficial effects of tPA while counteracting its deleterious properties. We suggest that derivatives of HMGB-1, devoid of pro-inflammatory properties, could be used as adjunctive therapies to improve the overall benefit of tPA-mediated thrombolysis following stroke.
Collapse
Affiliation(s)
| | - Caroline Mysiorek
- Univ Lille Nord de France, UArtois, Laboratoire de Physiopathologie de la Barrière Hémato-Encéphalique, EA 2465, IMPRT-IFR114, 62303 Lens, France
| | - Ari Rouhiainen
- Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Amandine Jullienne
- INSERM U919 ‘Serine proteases and pathophysiology of the neurovascular unit’, UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, 14032 Caen, France
| | - Jerome Parcq
- INSERM U919 ‘Serine proteases and pathophysiology of the neurovascular unit’, UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, 14032 Caen, France
| | - Yannick Hommet
- INSERM U919 ‘Serine proteases and pathophysiology of the neurovascular unit’, UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, 14032 Caen, France
| | - Maxime Culot
- Univ Lille Nord de France, UArtois, Laboratoire de Physiopathologie de la Barrière Hémato-Encéphalique, EA 2465, IMPRT-IFR114, 62303 Lens, France
| | - Vincent Berezowski
- Univ Lille Nord de France, UArtois, Laboratoire de Physiopathologie de la Barrière Hémato-Encéphalique, EA 2465, IMPRT-IFR114, 62303 Lens, France
| | - Romeo Cecchelli
- Univ Lille Nord de France, UArtois, Laboratoire de Physiopathologie de la Barrière Hémato-Encéphalique, EA 2465, IMPRT-IFR114, 62303 Lens, France
| | - Heikki Rauvala
- Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
| | - Denis Vivien
- INSERM U919 ‘Serine proteases and pathophysiology of the neurovascular unit’, UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, 14032 Caen, France
| | - Carine Ali
- INSERM U919 ‘Serine proteases and pathophysiology of the neurovascular unit’, UMR CNRS 6232 Cinaps, GIP Cyceron, University of Caen, 14032 Caen, France
| |
Collapse
|
50
|
Correa F, Gauberti M, Parcq J, Macrez R, Hommet Y, Obiang P, Hernangómez M, Montagne A, Liot G, Guaza C, Maubert E, Ali C, Vivien D, Docagne F. Tissue plasminogen activator prevents white matter damage following stroke. ACTA ACUST UNITED AC 2011; 208:1229-42. [PMID: 21576385 PMCID: PMC3173251 DOI: 10.1084/jem.20101880] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) is the only available treatment for acute stroke. In addition to its vascular fibrinolytic action, tPA exerts various effects within the brain, ranging from synaptic plasticity to control of cell fate. To date, the influence of tPA in the ischemic brain has only been investigated on neuronal, microglial, and endothelial fate. We addressed the mechanism of action of tPA on oligodendrocyte (OL) survival and on the extent of white matter lesions in stroke. We also investigated the impact of aging on these processes. We observed that, in parallel to reduced levels of tPA in OLs, white matter gets more susceptible to ischemia in old mice. Interestingly, tPA protects murine and human OLs from apoptosis through an unexpected cytokine-like effect by the virtue of its epidermal growth factor-like domain. When injected into aged animals, tPA, although toxic to the gray matter, rescues white matter from ischemia independently of its proteolytic activity. These studies reveal a novel mechanism of action of tPA and unveil OL as a target cell for cytokine effects of tPA in brain diseases. They show overall that tPA protects white matter from stroke-induced lesions, an effect which may contribute to the global benefit of tPA-based stroke treatment.
Collapse
Affiliation(s)
- Fernando Correa
- Institut National de la Santé et de la Recherche Médicale (INSERM), INSERM-U919, Caen Cedex, F-14074 France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|