1
|
Yang Q, Guo C, Deng F, Ding C, Yang J, Wu H, Ni Y, Huang L, Chen L, Zhang M. Fabrication of highly concentrated collagens using cooled urea/HAc as novel binary solvent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2
|
Non-invasive evaluation of neuroprotective drug candidates for cerebral infarction by PET imaging of mitochondrial complex-I activity. Sci Rep 2016; 6:30127. [PMID: 27440054 PMCID: PMC4954989 DOI: 10.1038/srep30127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/22/2016] [Indexed: 01/12/2023] Open
Abstract
The development of a diagnostic technology that can accurately determine the pathological progression of ischemic stroke and evaluate the therapeutic effects of cerebroprotective agents has been desired. We previously developed a novel PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF) for detecting activity of mitochondrial complex I (MC-I). This probe was shown to visualize neuronal damage in the living brain of rodent and primate models of neurodegenerative diseases. In the present study, [18F]BCPP-EF was applied to evaluate the therapeutic effects of a neuroprotectant, liposomal FK506 (FK506-liposomes), on cerebral ischemia/reperfusion (I/R) injury in transient middle cerebral artery occlusion rats. The PET imaging using [18F]BCPP-EF showed a prominent reduction in the MC-I activity in the ischemic brain hemisphere. Treatment with FK506-liposomes remarkably increased the uptake of [18F]BCPP-EF in the ischemic side corresponding to the improvement of blood flow disorders and motor function deficits throughout the 7 days after I/R. Additionally, the PET scan could diagnose the extent of the brain damage accurately and showed the neuroprotective effect of FK506-liposomes at Day 7, at which 2, 3, 5-triphenyltetrazolium chloride staining couldn’t visualize them. Our study demonstrated that the PET technology using [18F]BCPP-EF has a potent capacity to evaluate the therapeutic effect of drug candidates in living brain.
Collapse
|
3
|
Posterior Reversible Encephalopathy Syndrome After Transplantation: a Review. Mol Neurobiol 2015; 53:6897-6909. [PMID: 26666662 DOI: 10.1007/s12035-015-9560-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/29/2015] [Indexed: 12/29/2022]
Abstract
Posterior reversible encephalopathy syndrome (PRES) is a rare neurological disease. Recently, an increase in the number of transplantations has led to more cases being associated with PRES than what was previously reported. Calcineurin inhibitors (CNIs) are major risk factors for PRES in posttransplantation patients. The mechanisms of the development of PRES remain to be unclear. The typical clinical symptoms of PRES include seizures, acute encephalopathy syndrome, and visual symptoms. The hyperintense signal on fluid-attenuated inversion recovery image is the characteristic of the imaging appearance in these patients. In addition, other abnormal signals distributed in multiple locations are also reported in some atypical cases. Unfortunately, PRES is often not recognized or diagnosed too late due to complicated differential diagnoses, such as ischemic stroke, progressive multifocal leukoencephalopathy, and neurodegenerative diseases. Thus, this review emphasizes the importance of considering the possibility of PRES when neurological disturbances appear after solid organ transplantation or hematopoietic cell transplantation. Moreover, this review demonstrates the molecular mechanisms of PRES associated with CNIs after transplantation, which aims to help clinicians further understand PRES in the transplantation era.
Collapse
|
4
|
Ishii T, Asai T, Oyama D, Agato Y, Yasuda N, Fukuta T, Shimizu K, Minamino T, Oku N. Treatment of cerebral ischemia-reperfusion injury with PEGylated liposomes encapsulating FK506. FASEB J 2012; 27:1362-70. [PMID: 23241312 DOI: 10.1096/fj.12-221325] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
FK506 (Tacrolimus) has the potential to decrease cerebral ischemia-reperfusion injury. However, the clinical trial of FK506 as a neuroprotectant failed due to adverse side effects. This present study aimed to conduct the selective delivery of FK506 to damaged regions, while at the same time reducing the dosage of FK506, by using a liposomal drug delivery system. First, the cytoprotective effect of polyethylene glycol-modified liposomes encapsulating FK506 (FK506-liposomes) on neuron-like pheochromocytoma PC12 cells was examined. FK506-liposomes protected these cells from H2O2-induced toxicity in a dose-dependent manner. Next, we investigated the usefulness of FK506-liposomes in transient middle cerebral artery occlusion (t-MCAO) rats. FK506-liposomes accumulated in the brain parenchyma by passing through the disrupted blood-brain barrier at an early stage after reperfusion had been initiated. Histological analysis showed that FK506-liposomes strongly suppressed neutrophil invasion and apoptotic cell death, events that lead to a poor stroke outcome. Corresponding to these results, a single injection of FK506-liposomes at a low dosage significantly reduced cerebral cell death and ameliorated motor function deficits in t-MCAO rats. These results suggest that liposomalization of FK506 could reduce the administration dose by enhancing the therapeutic efficacy; hence, FK506-liposomes should be a promising neuroprotectant after cerebral stroke.
Collapse
Affiliation(s)
- Takayuki Ishii
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ye R, Kong X, Yang Q, Zhang Y, Han J, Li P, Xiong L, Zhao G. Ginsenoside rd in experimental stroke: superior neuroprotective efficacy with a wide therapeutic window. Neurotherapeutics 2011; 8:515-25. [PMID: 21647765 PMCID: PMC3250281 DOI: 10.1007/s13311-011-0051-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, has been demonstrated to protect against ischemic cerebral damage in vitro and in vivo. In this study, we aimed to further define the preclinical characteristics of Rd. We show that Rd passes the intact blood-brain barrier and exerts protection in both transient and permanent middle cerebral artery occlusion (MCAO) in rats. In the dose-response study, Rd (10-50 mg/Kg) significantly reduced the infarct volume on postoperative days (PODs) 1, 3, and 7. This protection was associated with an improved neurological outcome for as many as 6 weeks after transient MCAO, as assessed by modified neurological severity score, modified sticky-tape test, and corner test. For comparison, Rd was significantly more effective than edaravone and slightly more effective than N-tert-butyl-alpha-phenylnitrone (PBN). In the therapeutic window study, Rd exhibited remarkable neuroprotection, even when administered for as many as 4 h after the recirculation of transient MCAO or after the onset of permanent MCAO. Furthermore, in female rats or 16-month-old male rats, the salutary effects of Rd were also observed. These findings suggest Rd is a promising neuroprotectant and provide support for future clinical studies to confirm whether Rd is beneficial in ischemic stroke.
Collapse
Affiliation(s)
- Ruidong Ye
- Department of Neurology, Xijing Hospital, Xi’an, China
| | - Xiangwei Kong
- College of Stomatology, the Fourth Military Medical University, Xi’an, China 710032
| | - Qianzi Yang
- Department of Anesthesiology, Xijing Hospital, Xi’an, China
| | - Yunxia Zhang
- Department of Neurology, Xijing Hospital, Xi’an, China
| | - Junliang Han
- Department of Neurology, Xijing Hospital, Xi’an, China
| | - Ping Li
- Department of Orthopedics, Xijing Hospital, Xi’an, China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Xi’an, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Xi’an, China
| |
Collapse
|
6
|
Kumar P, Kalonia H, Kumar A. Possible nitric oxide modulation in protective effect of FK-506 against 3-nitropropionic acid-induced behavioral, oxidative, neurochemical, and mitochondrial alterations in rat brain. Drug Chem Toxicol 2010; 33:377-92. [DOI: 10.3109/01480541003642050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
The calcineurin inhibitor, FK506, does not alter glutamate transport in the ischaemic mouse retina. Exp Eye Res 2010; 91:315-9. [PMID: 20434440 DOI: 10.1016/j.exer.2010.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/20/2022]
Abstract
The protein phosphatase 2B inhibitor, FK506, is an immunomodulatory polypeptide that has neuroprotective properties, the mechanisms of which have not been elucidated. A possible mechanism may be phosphorylation-mediated regulation of glutamate transporter activity. In the present study, we investigated the effect of FK506 on glutamate transporter localization and activity in the ischaemic mouse retina. FK506 did not appear to modulate the localization or activity of glutamate transporters under simulated ischaemic conditions. Our present data suggest that the mechanism by which FK506 exerts its neuroprotective action is not attributable to alterations in retinal glutamate transport.
Collapse
|
8
|
Neuroprotective action of FK-506 (tacrolimus) after seizures induced with pilocarpine: quantitative and topographic elemental analysis of brain tissue. J Biol Inorg Chem 2009; 15:283-9. [PMID: 19862562 DOI: 10.1007/s00775-009-0597-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Accepted: 10/13/2009] [Indexed: 01/29/2023]
Abstract
In the present work, X-ray fluorescence microscopy with a synchrotron source for the exciting radiation was applied for topographic and quantitative elemental analysis of rat brain tissue in pilocarpine-induced epilepsy and neuroprotection with FK-506. The mass per unit area of the elements P, S, Cl, K, Ca, Fe, Cu, Zn, Se, Br, and Rb was determined in four fields of the hippocampal formation (sectors 1 and 3 of Ammon's horn-CA1, CA3; dentate gyrus; hilus of dentate gyrus) and the parietal cortex. The results obtained for epileptic rats treated with FK-506 (SNF) were compared with data obtained previously for epileptic rats (SNS) and a control group. Many statistically significant differences in elemental composition were observed between the SNF and SNS groups. Higher mass per unit area of P was noticed in CA1 and CA3 regions of the hippocampus of SNF rats in comparison with SNS rats. A similar relation was observed for K in all five brain areas analyzed. Also, Fe in CA3 and dentate gyrus, Cu in the parietal cortex, and Zn in CA3 and in the cortex were present at a higher level in the SNF group in comparison with the SNS group. The findings obtained in the present study suggest that the neuroprotective action of FK-506 in epileptic rat brain may involve not only the inhibition of calcineurin but also blockade of the K(+) channels.
Collapse
|
9
|
Gabryel B, Chalimoniuk M, Stolecka A, Waniek K, Langfort J, Malecki A. Inhibition of Arachidonic Acid Release by Cytosolic Phospholipase A2 Is Involved in the Antiapoptotic Effect of FK506 and Cyclosporin A on Astrocytes Exposed to Simulated Ischemia In Vitro. J Pharmacol Sci 2006; 102. [DOI: 10.1254/jphs.fp0060605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
10
|
Labrande C, Velly L, Canolle B, Guillet B, Masmejean F, Nieoullon A, Pisano P. Neuroprotective effects of tacrolimus (FK506) in a model of ischemic cortical cell cultures: role of glutamate uptake and FK506 binding protein 12 kDa. Neuroscience 2005; 137:231-9. [PMID: 16289353 DOI: 10.1016/j.neuroscience.2005.08.080] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 08/29/2005] [Accepted: 08/31/2005] [Indexed: 11/16/2022]
Abstract
BACKGROUND The mechanisms underlying the neuroprotective effects of the immunosuppressant tacrolimus, observed in vivo, remain unclear. Here we quantify these effects in vitro, and evaluate the potential involvement of the glutamate and/or immunophilin FK506 binding protein 12 kDa in tacrolimus-induced neuroprotection. METHODS Primary cultures of neurons and astrocytes from rat cerebral cortex were subjected to transient oxygen-glucose deprivation. Neuronal injury was evaluated by cell counting after immunostaining experiments, lactate dehydrogenase release and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide reduction. The involvement of the immunophilin FK506 binding protein 12 kDa was explored using an anti-FK506 binding protein 12 kDa antibody, (3-3-pyridyl)-1-propyl(2 s)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidine carboxylate and rapamycin. Extracellular glutamate and glutamate uptake were respectively measured by high performance liquid chromatography and l-[3H]glutamate incorporation. RESULTS When added during either oxygen-glucose deprivation or reoxygenation, FK506 (50-500 pM) offered significant neuroprotection. During oxygen-glucose deprivation, it was able to reverse the oxygen-glucose deprivation-induced increase in extracellular glutamate and decrease in glutamate uptake and this effect was reversed in the presence of threo-3-methyl glutamate, a specific inhibitor of glutamate transporter-1. Blocking FK506 binding protein 12 kDa inhibited the neuroprotection induced by tacrolimus added during either oxygen-glucose deprivation or reoxygenation. Tacrolimus-induced neuroprotection was also reversed in the presence of rapamycin, an immunosuppressant FK506 binding protein 12 kDa ligand devoid of neuroprotective properties and (3-3-pyridyl)-1-propyl(2 s)-1-(3,3-dimethyl-1,2-dioxopentyl)-2-pyrrolidine carboxylate, a non-immunosuppressant ligand of FK506 binding protein 12 kDa, exerteing neuroprotective effects. CONCLUSION The beneficial effects of tacrolimus during in vitro ischemia/reperfusion seem to indicate the restoration of a glutamate transporter-1-mediated activity and could be mediated by a FK506 binding protein 12 kDa pathway.
Collapse
Affiliation(s)
- C Labrande
- Laboratoire de Pharmacodynamie, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Macleod MR, O'Collins T, Horky LL, Howells DW, Donnan GA. Systematic review and metaanalysis of the efficacy of FK506 in experimental stroke. J Cereb Blood Flow Metab 2005; 25:713-21. [PMID: 15703698 DOI: 10.1038/sj.jcbfm.9600064] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
FK506 is a candidate drug for acute stroke. For such drugs, any decision to proceed to clinical trial should be based on a full and unbiased assessment of the animal data, and consideration should be given to the limitations of those data. Such an assessment should include not only the efficacy of a drug but also the in vivo characteristics and limits to that efficacy. Here we use systematic review and meta-analysis to assess the evidence for a protective effect of FK506 in animal models of stroke. In all, 29 studies were identified describing procedures involving 1759 animals. The point estimate for the effect of FK506 was a 31.3% (95% confidence interval 27.2% to 35.4%) improvement in outcome. Efficacy was higher with ketamine anaesthesia and temporary ischaemia and was lower in rats, in animals with comorbidities, and where outcome was measured as infarct size alone. Reported study quality was modest by clinical trial standards, and efficacy was lower in high-quality studies. These findings show a substantial efficacy for FK506 in experimental stroke, but raise concerns that our estimate of effect size might be too high because of factors such as study quality and possible publication bias.
Collapse
|
12
|
Kaymaz M, Emmez H, Bukan N, Dursun A, Kurt G, Paşaoğlu H, Paşaoğlu A. Effectiveness of FK506 on lipid peroxidation in the spinal cord following experimental traumatic injury. Spinal Cord 2005; 43:22-6. [PMID: 15111998 DOI: 10.1038/sj.sc.3101621] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN An in vivo study in Wistar albino rats with injured spinal cord. SETTING Department of Neurosurgery, Biochemistry and Pathology, Gazi University, Ankara, Turkey. OBJECTIVES The aim of this study was to investigate and compare the effects of FK506 an immunosupressive agent with methylprednisolone (MP) on lipid peroxidation (LP) in injured spinal cord tissue. METHOD A total of 28 adult healthy Wistar albino rats were subjected to traumatic spinal cord injuries (SCI) by using an aneurysmal clip compression technique, and they were divided into four groups. The G1 group (n=8) received FK506 (1 mg/kg); the G2 group (n=8) received FK506 (1 mg/kg) and MP (30 mg/kg); the G3 group (n=6) received only MP (30 mg/kg); and the G4 group (n=6) received no medication. The injured spinal cord tissue was studied by means of lipid peroxides, malondialdehyde (MDA), with thiobarbituric acid reaction and additionally the FK506 (G1); the MP (G3) groups were studied for histopathologic alterations 72 h after SCI with eight separate animals. RESULTS Although LP values of G1, G2, G3 showed no statistical difference between intergroup analyses (P=0.547), a histopathological examination revealed that in the group that received MP, the oedema pattern was more significant than the group that received FK506. Another interesting finding was the presence of polymorphonuclear leucocytes in the MP group, whereas no infiltration was found in the FK506 group. CONCLUSION Analysis of the results indicated that FK506 is a valuable pharmacological agent that could be used to decrease the LP and polymorphonuclear leucocyte infiltration and inflamatory reactions in the injured spinal cord tissue.
Collapse
Affiliation(s)
- Memduh Kaymaz
- Department of Neurosurgery, Gazi University Medical School, Beşevler, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin JY, Cheng FC, Chung SY, Lin MC. Ginkgo biloba extract (EGb761) and FK506 preserve energy metabolites in the striatum during focal cerebral ischemia and reperfusion in gerbils monitored by microdialysis. J Biomed Sci 2005; 11:611-6. [PMID: 15316136 DOI: 10.1007/bf02256126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 04/13/2004] [Indexed: 10/25/2022] Open
Abstract
Cell death after cerebral ischemia is mediated by the accumulation of excitatory amino acids, calcium influx into cells and the generation of free radicals. The aim of this study was to evaluate changes in energy-related metabolites in the striatum of gerbils subjected to focal cerebral ischemia after pretreatment with Ginkgo biloba extract (EGb761), a well-known antioxidant, and FK506, a calcium-dependent phosphatase calcineurin inhibitor. Ischemia was induced by occlusion of the right common carotid artery and the right middle cerebral artery for 60 min. A microdialysis probe was inserted into the right striatum to monitor extracellular glucose, lactate and pyruvate levels. This study showed decreases in glucose (10% of the baseline), pyruvate (20% of the baseline) and lactate (60% of the baseline), and a 5-fold increase in the lactate to pyruvate ratio during ischemia in the control group. Both EGb761 treatment and the combination (EGb761 and FK506) therapy significantly preserved glucose (50% of the baseline) and pyruvate (60% of the baseline) levels during ischemia. The marked increase in the lactate to pyruvate ratio was not observed in the combination group. These results suggest that preservation of cellular energy metabolism during cerebral ischemia and after restoration with reperfusion may contribute to the neuroprotective effects of EGb761 and FK506.
Collapse
Affiliation(s)
- Jing-Ying Lin
- Department of Medical Technology, Chung-Tai Institute of Health Sciences and Technology, Taichung Veterans General Hospital, Taichung, Taiwan, ROC.
| | | | | | | |
Collapse
|
14
|
Tachibana T, Shiiya N, Kunihara T, Wakamatsu Y, Kudo AF, Ooka T, Watanabe S, Yasuda K. Immunophilin ligands FK506 and cyclosporine A improve neurologic and histopathologic outcome after transient spinal cord ischemia in rabbits. J Thorac Cardiovasc Surg 2005; 129:123-8. [PMID: 15632833 DOI: 10.1016/j.jtcvs.2004.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND We comparatively evaluated the protective effect of the immunophilin ligands cyclosporine A (INN: ciclosporin), FK506, and rapamycin on the spinal cord in a rabbit model of transient ischemia. Both cyclosporine A and FK506 inhibit calcineurin, whereas rapamycin does not. METHODS Thirty-six male New Zealand White rabbits were divided into the following 6 groups: group C, 15 minutes of spinal cord ischemia; group FK, FK506 (1 mg/kg) administered 30 minutes before ischemia; group CsA, cyclosporine A (30 mg/kg) administered 30 minutes before ischemia; group CsA-C, chronic administration of cyclosporine A (20 mg/kg) for 9 days before ischemia; group R, rapamycin (1 mg/kg) administered 30 minutes before ischemia; and group R+FK, rapamycin (1 mg/kg) administered 20 minutes before FK506 pretreatment (1 mg/kg). Group CsA-C was added because the drug does not readily cross the blood-brain barrier. Neurologic function was evaluated by Johnson's 5-point scale at 8, 24, and 48 hours after ischemia, and histopathology was assessed 48 hours after ischemia. RESULTS At 24 and 48 hours after ischemia, the Johnson score was better in groups FK (4.0 +/- 1.1), R+FK (3 +/- 1.1), and CsA-C (2.7 +/- 1.2) than in group C (0.8 +/- 1.2). Numbers of morphologically intact anterior horn cells were higher in groups FK (31.3 +/- 9.9), R+FK (23.2 +/- 4.5), and CsA-C (18.3 +/- 6.8) than in group C (6.3 +/- 4.3). CONCLUSIONS FK506 and chronic administration of cyclosporine A, but not rapamycin, protect the spinal cord from transient ischemia. Although these results are compatible with inhibition of calcineurin in the mechanism of neuroprotective action of these drugs, other effects through different pathways cannot be excluded before further study.
Collapse
Affiliation(s)
- Tsuyoshi Tachibana
- Department of Cardiovascular Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Sasaki T, Hamada J, Shibata M, Gotoh J, Araki N, Fukuuchi Y. FK506 abrogates delayed neuronal death via suppression of nitric oxide production in rats. Brain Res 2004; 1009:34-9. [PMID: 15120581 DOI: 10.1016/j.brainres.2004.01.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND PURPOSE The mechanism of the neuroprotective effect of FK506 in relation to nitric oxide (NO) production has not been clarified in vivo. We have investigated the effect of FK506 on ischemia-induced NO production in association with the pathogenesis of delayed neuronal death (DND) in rats. METHODS In vivo microdialysis was performed in the hippocampus of male Sprague-Dawley rats (250-350 g). Dialysate samples were collected every 3 min. In the ischemia group (n=16), global ischemia was induced for 21 min and reperfusion was achieved. In the FK506 treatment group (n=25), FK506 (1 mg/kg, i.v.) was administered 21 min prior to the onset of global ischemia. Sham operations were done (n=15). The levels of NO(2)(-) in the dialysate samples were determined by the Griess reaction. The animals were decapitated 7 days after ischemia. Coronal brain sections were stained with hematoxylin and eosin. RESULTS In the ischemia group, the NO(2)(-) level significantly increased during ischemia. In the FK506 treatment group, there was no significant change in the NO(2)(-) level during ischemia. In histological examinations, FK506 treatment showed a neuroprotective effect against DND. CONCLUSIONS The effect of FK506 inhibiting NO production contributes to the neuro-protective effect of FK506 on DND in the hippocampus.
Collapse
Affiliation(s)
- Takahiro Sasaki
- Department of Neurology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Shichinohe H, Kuroda S, Abumiya T, Ikeda J, Kobayashi T, Yoshimoto T, Iwasaki Y. FK506 reduces infarct volume due to permanent focal cerebral ischemia by maintaining BAD turnover and inhibiting cytochrome c release. Brain Res 2004; 1001:51-9. [PMID: 14972653 DOI: 10.1016/j.brainres.2003.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2003] [Indexed: 11/19/2022]
Abstract
It has been reported that immunosuppressant FK506 inhibited ischemic neuronal injury in forebrain ischemia or transient focal cerebral ischemia, but the mechanisms of the neuroprotective effect have not been clarified. In permanent focal cerebral ischemia, we investigated whether FK506 caused remission of brain infarction, and how mechanism was concerned. Male Balb/c mice were subjected to permanent middle cerebral artery (MCA) occlusion. They were treated with 1.0 or 3.0 mg/kg FK506 or vehicle 30 min before ischemia. Infarct volume was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) method after 24 h. Cytochrome c release from mitochondria was evaluated by Western blotting and immunocytochemistry after ischemia. Simultaneously, the immunoreactivity of total and phosphorylated BAD was also studied using immunocytochemistry. We demonstrated that pretreatment with 3.0 mg/kg FK506 salvaged the tissue damage in the infarct rim and significantly reduced infarct volume to 75.5% (P<0.05), and FK506 inhibited cytochrome c release on 6 h after ischemia for Western blot analysis (P<0.05). Immunocytochemical study showed that permanent MCA occlusion increased the amount of cytochrome c and total BAD in the cytosol, but not phosphorylated BAD, in the ischemic core and the infarct rim as early as 1 h after ischemia, and FK506 inhibited the increases in the infarct rim. The results suggest that FK506 may, at least in part, ameliorate tissue damage due to permanent focal cerebral ischemia in the infarct rim through maintaining BAD turnover and inhibiting cytochrome c release from mitochondria.
Collapse
Affiliation(s)
- Hideo Shichinohe
- Department of Neurosurgery, Hokkaido University Graduate School of Medicine, North 15 West 7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Ebisu T, Mori Y, Katsuta K, Fujikawa A, Matsuoka N, Aoki I, Umeda M, Naruse S, Tanaka C. Neuroprotective effects of an immunosuppressant agent on diffusion/perfusion mismatch in transient focal ischemia. Magn Reson Med 2004; 51:1173-80. [PMID: 15170837 DOI: 10.1002/mrm.20087] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The immunosuppressant FK506 (tacrolimus) exerts potent neuroprotection following focal ischemia in animals; however, the separate effects of FK506 on the ischemic core and penumbra have not been reported. The ischemic penumbra is clinically defined as the difference between a large abnormal area on perfusion-weighted imaging (PWI) and a smaller lesion on diffusion-weighted imaging (DWI). The goal of this study was to determine the effect of FK506 on DWI/PWI match and mismatch areas in transient focal ischemia in rats. Twelve rats were subjected to 1 hr of transient middle cerebral artery (MCA) occlusion, and given an intravenous injection of a placebo (N = 6) or 1 mg/kg FK506 (N = 6) immediately before reperfusion. Magnetic resonance imaging (MRI) was performed during MCA occlusion, and 0.5, 1, and 24 hr after reperfusion. FK506 significantly protected the ischemic brain only in the mismatch cortex where the initial apparent diffusion coefficient (ADC) was normal and there was a mild reduction of cerebral blood flow (CBF). This is the first report to describe the protective effects of FK506 on ischemic penumbra, as measured by DWI/PWI mismatch. The findings provide direct evidence for the utility of DWI/PWI mismatch as a guideline for therapeutic intervention with FK506.
Collapse
Affiliation(s)
- Toshihiko Ebisu
- Department of Neurosurgery, Meiji University of Oriental Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kaminska B, Gaweda-Walerych K, Zawadzka M. Molecular mechanisms of neuroprotective action of immunosuppressants--facts and hypotheses. J Cell Mol Med 2004; 8:45-58. [PMID: 15090260 PMCID: PMC6740149 DOI: 10.1111/j.1582-4934.2004.tb00259.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cyclosporin A (CsA) and FK506 (Tacrolimus) are short polypeptides which block the activation of lymphocytes and other immune system cells. Immunosuppressants exert neuroprotective and neurotrophic action in traumatic brain injury, sciatic nerve injury, focal and global ischemia in animals. Their neuroprotective actions are not understood and many hypotheses have been formed to explain such effects. We discuss a role of drug target--calcineurin in neuroprotective action of immunosuppressants. Protein dephosphorylation by calcineurin plays an important role in neuronal signal transduction due to its ability to regulate the activity of ion channels, glutamate release, and synaptic plasticity. In vitro FK506 protects cortex neurons from NMDA-induced death, augments NOS phosphorylation inhibiting its activity and NO synthesis. However, in vivo experiments demonstrated that FK506 in neuroprotective doses did not block excitotoxic cell death nor did it alter NO production during ischemia/reperfusion. Tissue damage in ischemia is the result of a complex pathophysiological cascade, which comprises a variety of distinct pathological events. Resident non-neuronal brain cells respond rapidly to neuronal cell death and may have both deleterious and useful role in neuronal damage. There is increasing evidence that reactive gliosis and post-ischemic inflammation involving microglia contribute to ischemic damage. We have demonstrated that FK506 modulates hypertrophic/proliferative responses and proinflammatory cytokine expression in astrocytes and microglia in vitro and in focal transient brain ischemia. Our findings suggest that astrocytes and microglia are direct targets of FK506 and modulation of glial response and inflammation is a possible mechanism of FK506-mediated neuroprotection in ischemia.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Transcription Regulation, Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
| | | | | |
Collapse
|
19
|
Zawadzka M, Kaminska B. A novel mechanism of FK506-mediated neuroprotection: Downregulation of cytokine expression in glial cells. Glia 2004; 49:36-51. [PMID: 15390105 DOI: 10.1002/glia.20092] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunosuppressant FK506 is neuroprotective in experimental models of cerebral ischemia, but the molecular mechanisms underlying this neuroprotection remain unknown. We have demonstrated that FK506 inhibits the signaling pathways that regulate hypertrophic/proliferative responses in cultured astrocytes. Ischemia/reperfusion injury is associated with the proliferation and hypertrophy of astrocytes and with inflammatory responses. In the present work, we sought to determine whether FK506 neuroprotection after middle cerebral artery occlusion (MCAo) in rat is mediated via suppression of glia activation and changes in cytokine expression. Neurological deficits, infarct size, and astrocyte/microglial response were quantified in rats subjected to 90 min of MCAo. Changes in the mRNA expression of interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor-alpha (TNF-alpha) in ipsilateral and contralateral cortices were determined by reverse transcription-polymerase chain reaction (RT-PCR). FK506 administered at 1 mg/kg, 60 min after MCAo, produced a significant improvement in neurological function and reduction of infarct volume. In FK506-treated rats, a significant reduction of IL-1beta, IL-6, and TNF-alpha expression was observed 12 h after reperfusion. FK506 neuroprotection was associated with a significant downregulation of IL-1beta expression in astrocytes and microglia in the injured side. FK506 selectively decreased the levels of TNF-alpha, and IL-1beta mRNAs in astrocytes in vitro, with no effect on transforming growth factor-beta 1 (TGF-beta1) and IL-6 expression. Moreover, FK506 inhibits lipopolysaccharide (LPS)-induced activation and cytokine expression in microglia in vitro. Our findings suggest that astrocytes and microglia are targets for FK506, and that modulation of glial response and inflammation may be a mechanism of FK506-mediated neuroprotection in ischemia.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Astrocytes/immunology
- Brain/drug effects
- Brain/immunology
- Brain/physiopathology
- Cells, Cultured
- Cerebral Infarction/drug therapy
- Cerebral Infarction/immunology
- Cerebral Infarction/pathology
- Cytokines/genetics
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/immunology
- Gliosis/drug therapy
- Gliosis/immunology
- Gliosis/prevention & control
- Immunosuppressive Agents/pharmacology
- Immunosuppressive Agents/therapeutic use
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/immunology
- Infarction, Middle Cerebral Artery/physiopathology
- Interleukin-1/genetics
- Interleukin-6/genetics
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/immunology
- Ischemic Attack, Transient/physiopathology
- Lipopolysaccharides/antagonists & inhibitors
- Male
- Microglia/drug effects
- Microglia/immunology
- Neuroglia/drug effects
- Neuroglia/metabolism
- Neuroprotective Agents/pharmacology
- Neuroprotective Agents/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reperfusion Injury/drug therapy
- Reperfusion Injury/immunology
- Reperfusion Injury/physiopathology
- Tacrolimus/pharmacology
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Malgorzata Zawadzka
- Laboratory of Transcription Regulation, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
20
|
Singh A, Naidu PS, Kulkarni SK. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia. Eur J Pharmacol 2003; 477:87-94. [PMID: 14519411 DOI: 10.1016/s0014-2999(03)02124-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Tardive dyskinesia is a serious motor side effect of chronic neuroleptic therapy. The pathophysiology of this disabling and commonly irreversible movement disorder is still obscure. It may be caused by a loss of dopaminergic cells, due to free radicals as a product of high synaptic dopamine levels. Chronic treatment with neuroleptics leads to the development of abnormal oral movements in rats called vacuous chewing movements. Vacuous chewing movements in rats are widely accepted as an animal model of tardive dyskinesia. Chronic haloperidol (1 mg/kg for 21 days) treatment significantly induced vacuous chewing movements and tongue protrusions in rats, and FK506 (Tacrolimus) [[3S-[3R*[E(1S*,3S*,4S*)],4S*,5R*,8S*,9E,12R*,14R*,15S*,16R*,18S*,19S*,26aR*]]-5,6,8,11,12,13,14,15,16,17,18,19,24,25,26,26a-hexadecahydro-5, 19-dihydroxy-3-[2-(4-hydroxy-3-methoxycyclohexyl)-1-methylethenyl]-14, 16-dimethoxy-4,10,12, 18-tetramethyl-8-(2-propenyl)-15, 19-epoxy-3H-pyrido[2,1-c][1,4] oxaazacyclotricosine-1,7,20, 21(4H,23H)-tetrone, monohydrate] dose dependently (0.5 and 1 mg/kg) reduced these haloperidol-induced movements. Biochemical analysis revealed that chronic haloperidol treatment significantly induced lipid peroxidation and decreased the levels of glutathione and of the antioxidant defense enzymes, superoxide dismutase and catalase, in the brains of rats. Co-administration of FK506 dose dependently (0.5 and 1 mg/kg) and significantly reduced the lipid peroxidation and restored the decreased glutathione levels induced by chronic haloperidol treatment. It also significantly reversed the haloperidol-induced decrease in brain superoxide dismutase and catalase levels. The major findings of the present study suggest that oxidative stress-induced neuronal death might play a significant role in neuroleptic-induced orofacial dyskinesia. In conclusion, FK506 could be a useful drug for the treatment of neuroleptic-induced orofacial dyskinesia.
Collapse
Affiliation(s)
- Amanpreet Singh
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh-160014, India
| | | | | |
Collapse
|
21
|
Keswani SC, Chander B, Hasan C, Griffin JW, McArthur JC, Hoke A. FK506 is neuroprotective in a model of antiretroviral toxic neuropathy. Ann Neurol 2003; 53:57-64. [PMID: 12509848 DOI: 10.1002/ana.10401] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antiretroviral toxic neuropathy is the most common neurological complication of human immunodeficiency virus infection. This painful neuropathy not only affects the quality of life of human immunodeficiency virus-infected patients but also severely limits viral suppression strategies. We have developed an in vitro model of this toxic neuropathy to better understand the mechanism of neurotoxicity and to test potential neuroprotective compounds. We show that among the dideoxynucleosides, ddC appears to be the most neurotoxic, followed by ddI and then d4T. This reflects their potency in causing neuropathy. AZT, which does not cause a peripheral neuropathy in patients, does not cause significant neurotoxicity in our model. Furthermore, in this model, we show that the immunophilin ligand FK506 but not cyclosporin A prevents the development of neurotoxicity by ddC, as judged by amelioration of ddC-induced "neuritic pruning," neuronal mitochondrial depolarization, and neuronal necrotic death. This finding suggests a calcineurin-independent mechanism of neuroprotection. As calcineurin inhibition underlies the immunosuppressive properties of these clinically used immunophilin ligands, this holds promise for the neuroprotective efficacy of nonimmunosuppressive analogs of FK506 in the prevention or treatment of antiretroviral toxic neuropathy.
Collapse
Affiliation(s)
- Sanjay C Keswani
- Department of Neurology, The Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
22
|
Kupina NC, Detloff MR, Dutta S, Hall ED. Neuroimmunophilin ligand V-10,367 is neuroprotective after 24-hour delayed administration in a mouse model of diffuse traumatic brain injury. J Cereb Blood Flow Metab 2002; 22:1212-21. [PMID: 12368660 DOI: 10.1097/01.wbc.0000037994.34930.bc] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors present two studies that investigate the biochemical and histologic effects of the nonimmunosuppressive neuroimmunophilin (NIMM) ligand V-10,367 in a mouse model of traumatic brain injury (TBI). In study 1, the authors examined the effect of V-10,367 (50 mg/kg x 2 per day, by mouth) on neurofilament M (NFM) protein levels and on alpha-spectrin breakdown products (SBDPs) when dosed for 2 days, starting 24 hours after TBI and killed on day 3. In study 2, V-10,367 was given for 10 days, starting 24 hours after TBI and the mice killed 6 weeks after TBI, to measure the extent of neurodegeneration (amino CuAg stain). The results in study 1 revealed that V-10,367-treatment significantly increased NFM protein levels in both sham and TBI mice. In addition, V-10,367 attenuated SBDP 150 levels in the cortex, striatum, and hippocampus. The results of study 2 indicated that TBI mice treated with V-10,367 demonstrated significantly less neurodegeneration compared to injured, vehicle-treated mice. In summary, these results suggest that NIMMs may be neuroprotective indirectly through inhibition of calpain-mediated cytoskeletal damage and perhaps via maintenance of neuronal plasticity. In the context of this mouse model of TBI, the therapeutic window for V-10,367's positive effects is at least 24 hours after injury, which, in the case of TBI models, is largely unprecedented for a neuroprotective compound.
Collapse
Affiliation(s)
- Nancy C Kupina
- CNS Pharmacology, Pfizer Global Research and Development, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
23
|
Myckatyn TM, Ellis RA, Grand AG, Sen SK, Lowe JB, Hunter DA, Mackinnon SE. The effects of rapamycin in murine peripheral nerve isografts and allografts. Plast Reconstr Surg 2002; 109:2405-17. [PMID: 12045568 DOI: 10.1097/00006534-200206000-00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The FKBP-12-binding ligand FK506 has been successfully used to stimulate nerve regeneration and prevent the rejection of peripheral nerve allografts. The immunosuppressant rapamycin, another FKBP-12-binding ligand, stimulates axonal regeneration in vitro, but its influence on nerve regeneration in peripheral nerve isografts or allografts has not been studied. Sixty female inbred BALB/cJ mice were randomized into six tibial nerve transplant groups, including three isograft and three allograft (C57BL/6J) groups. Grafts were left untreated (groups I and II), treated with FK506 (groups III and IV), or treated with rapamycin (groups V and VI). Nerve regeneration was quantified in terms of histomorphometry and functional recovery, and immunosuppression was confirmed with mixed lymphocyte reactivity assays. Animals treated with FK506 and rapamycin were immunosuppressed and demonstrated significantly less immune cell proliferation relative to untreated recipient animals. Although every animal demonstrated some functional recovery during the study, animals receiving an untreated peripheral nerve allograft were slowest to recover. Isografts treated with FK506 but not rapamycin demonstrated significantly increased nerve regeneration. Nerve allografts in animals treated with FK506, and to a lesser extent rapamycin, however, both demonstrated significantly more nerve regeneration and increased nerve fiber widths relative to untreated controls. The authors suggest that rapamycin can facilitate regeneration through peripheral nerve allografts, but it is not a neuroregenerative agent in this in vivo model. Nerve regeneration in FK506-treated peripheral nerve isografts and allografts was superior to that found in rapamycin-treated animals. Rapamycin may have a role in the treatment of peripheral nerve allografts when used in combination with other medications, or in the setting of renal failure that often precludes the use of calcineurin inhibitors such as FK506.
Collapse
Affiliation(s)
- Terence M Myckatyn
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, One Barnes-Jewish Hospital Plaza, East Pavilion, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Grand AG, Myckatyn TM, Mackinnon SE, Hunter DA. Axonal regeneration after cold preservation of nerve allografts and immunosuppression with tacrolimus in mice. J Neurosurg 2002; 96:924-32. [PMID: 12005401 DOI: 10.3171/jns.2002.96.5.0924] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to combine the immunosuppressive and neuroregenerative effects of tacrolimus (FK506) with cold preservation of peripheral nerve allografts to maximize axonal regeneration across short peripheral nerve gaps. METHODS Ninety-six male C3H mice were randomized to six groups, which were composed of animals with isografts (Group 1, positive control), allografts (Group 2, negative control), allografts treated with subtherapeutic doses of FK506 without and with cold preservation (Groups 3 and 4), and allografts treated with therapeutic doses of FK506 without and with cold preservation (Groups 5 and 6). Results were determined using walking-track data and histomorphometric measurements. Three weeks postoperatively, animals treated with therapeutic doses of FK506 after receiving cold-preserved allografts demonstrated accelerated functional recovery relative to all other groups. In addition, histomorphometric parameters in these animals (1,257 +/- 847 total axons, 6.7 +/- 3.3% nerve tissue, 11.8 +/- 6.5% neural debris, 8,844 +/- 4,325 fibers/mm2 nerve density, and 2.53 +/- 0.25 microm fiber width) were the same as or better than in all other groups. The parameters of percent nerve tissue (p < 0.016), nerve density (p < 0.038), and percent neural debris (p < 0.01) were statistically significantly better than those in all other groups, including Group 1 (isograft, positive control). CONCLUSIONS The combination of FK506 treatment with cold preservation of nerve allografts resulted in functional and histomorphometric recovery superior to that with either modality alone.
Collapse
Affiliation(s)
- Aaron G Grand
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
25
|
Krishnadasan B, Naidu B, Rosengart M, Farr AL, Barnes A, Verrier ED, Mulligan MS. Decreased lung ischemia-reperfusion injury in rats after preoperative administration of cyclosporine and tacrolimus. J Thorac Cardiovasc Surg 2002; 123:756-67. [PMID: 11986604 DOI: 10.1067/mtc.2002.120351] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Calcineurin inhibitors reduce experimental reperfusion injury in the liver, brain, heart, kidney, and small bowel. These studies were undertaken to determine whether these agents are similarly protective against lung ischemia-reperfusion injury. METHODS Left lungs of male rats were rendered ischemic for 90 minutes and reperfused for as long as 4 hours. Treated animals received cyclosporine A (INN: ciclosporin; 1 or 5 mg/kg) or tacrolimus (0.2 mg/kg) 6 hours before ischemia, at reperfusion, or 2 hours after reperfusion. Injury was quantitated in terms of tissue polymorphonuclear leukocyte accumulation (myeloperoxidase content), vascular permeability (iodine 125-labeled bovine serum albumin extravasation), and bronchoalveolar lavage leukocyte content. Separate tissue samples were processed for nuclear protein and cytokine messenger RNA. RESULTS Treatment with cyclosporine (5 mg/kg) or tacrolimus (0.2 mg/kg) 6 hours before reperfusion reduced lung vascular permeability by 54% and 56% relative to control animals (P <.03). The protective effects of cyclosporine and tacrolimus treatment before reperfusion correlated with 42% and 43% reductions in tissue polymorphonuclear leukocyte (myeloperoxidase) content (P <.008) and marked reductions in bronchoalveolar lavage leukocyte accumulation (P <.01). Administration of cyclosporine or tacrolimus at the time of reperfusion or 2 hours into the reperfusion period offered little or no protection. Animals treated before reperfusion also demonstrated marked reductions in nuclear factor kappaB activation and expression of proinflammatory cytokine messenger RNA. CONCLUSION Cyclosporine and tacrolimus treatment before reperfusion was protective against lung ischemia-reperfusion injury in rats. The mechanism of these protective effects may involve the inhibition of nuclear factor kappaB, a central transcription factor mediating inflammatory injury. The decreased expression of cytokine messenger RNA indicates that both cyclosporine and tacrolimus may exert their protective effects at the pretranscriptional level.
Collapse
Affiliation(s)
- B Krishnadasan
- Division of Cardiothoracic Surgery, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Macleod MR, Butcher SP. Nitric-oxide-synthase-mediated cyclic guanosine monophosphate production in neonatal rat cerebellar prisms is resistant to calcineurin inhibition. Neurosci Lett 2002; 322:41-4. [PMID: 11958839 DOI: 10.1016/s0304-3940(02)00080-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the macrolide immunosuppressant tacrolimus (FK506) is neuroprotective in animal models of focal and global cerebral ischaemia, the mechanism of this action is not known. FK506 inhibits the protein phosphatase calcineurin, whose substrates can include nitric oxide synthase (NOS), and the neuroprotective effect of FK506 has been attributed to inhibition of NOS activity. We have examined nitric oxide-mediated cyclic guanosine monophosphate (cGMP) accumulation in neonatal rat cerebellar prisms. As expected, N-methyl-D-aspartate (NMDA) induced a rapid, concentration dependent accumulation of cGMP that was inhibited by the NMDA receptor antagonist dizocilpine (MK801) and the NOS inhibitor L-nitro-arginine methyl ester. Phosphoserine immunopositivity following NMDA exposure was increased in the presence of FK506, confirming inhibition of calcineurin. However, FK506 had no effect on NMDA-stimulated cGMP accumulation. These findings suggest that the neuroprotective effect of FK506 may be mediated by mechanisms other than increased NOS phosphorylation.
Collapse
Affiliation(s)
- Malcolm R Macleod
- Department of Pharmacology, University of Edinburgh, 1 George Square, EH10 5EY, UK.
| | | |
Collapse
|
27
|
Griffiths C, Garthwaite G, Goodwin DA, Garthwaite J. Dynamics of nitric oxide during simulated ischaemia-reperfusion in rat striatal slices measured using an intrinsic biosensor, soluble guanylyl cyclase. Eur J Neurosci 2002; 15:962-8. [PMID: 11918655 DOI: 10.1046/j.1460-9568.2002.01930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) may act as a toxin in several neuropathologies, including the brain damage resulting from cerebral ischaemia. Rat striatal slices were used to determine the mechanism of enhanced NO release following simulated ischaemia and, for estimating the NO concentrations, the activity of guanylyl cyclase served as a biosensor. Exposure of the slices for 10 min to an oxygen- and glucose-free medium caused a 70% fall in cGMP levels. On recovery, cGMP increased 2-fold above basal, where it remained for 40 min before declining. The pattern of changes matched those of cGMP or NO oxidation products measured during and after brain ischaemia in vivo. The increase observed during the recovery period was blocked by inhibition of NO synthase or NMDA receptors and was curtailed by tetrodotoxin, implying that it was caused by glutamate release leading to activation of the NMDA receptor-NO synthase pathway. Calibration of the cGMP levels against NO-stimulated guanylyl cyclase yielded a basal NO concentration of 0.6 nm. The peak NO concentration achieved on recovery from simulated ischaemia was estimated as 0.8 nm. These values are compatible with the low micromolar concentrations of NO oxidation products (chiefly nitrate) found by microdialysis in vivo, providing the NO inactivation rate (forming nitrate) is accounted for. NO at a concentration around 1 nm is unlikely to be toxic to cells. However, if the NO inactivation mechanism were to fail (as it can) the NO production rate normally providing only subnanomolar NO could readily generate toxic (microM) NO concentrations.
Collapse
Affiliation(s)
- Charmaine Griffiths
- The Wolfson Institute of Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
28
|
Guo X, Dawson VL, Dawson TM. Neuroimmunophilin ligands exert neuroregeneration and neuroprotection in midbrain dopaminergic neurons. Eur J Neurosci 2001; 13:1683-93. [PMID: 11359520 DOI: 10.1046/j.0953-816x.2001.01542.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunosuppressant drugs, like FK506, and nonimmunosuppressant compounds like, GPI1046 and L685818, are immunophilin ligands that specifically bind to immunophilins, like FK506 binding protein 12 (FKBP12). Several lines of evidence show that these ligands exert neurotrophic properties in neural injury models and in PC12 cells. However, the mechanism of the neurotrophic function of the immunophilin ligands is poorly known. In the present study, we use MPP+ and 6-OHDA toxicity models to examine both neuroprotective and neuroregenerative effects of immunophilin ligands on primary cultures of midbrain dopaminergic neurons. We find that FK506, GPI1046 and L685818 at concentrations from 0.01 to 1 microM partially, but significantly, protect dopaminergic neurons against both MPP+ and 6-OHDA toxicity. By Western blot analysis, we also find that all three compounds prevent tyrosine hydroxylase (TH) loss induced by MPP+ and 6-OHDA treatments. Morphologic analysis of dopaminergic neurons, by immunocytochemistry, shows that MPP+ and 6-OHDA cause the retraction and loss of neuronal processes, while FK506, GPI1046 and L685818 promote regeneration of these processes as indicated by increases in process number and length. To examine if FKBP12 is required for neurotrophic effects of immunophilin ligands, we cultured dopaminergic neurons from FKBP12 knockout mice and find that FK506 still protects dopaminergic neurons against MPP+ toxicity. These results suggest that FKBP12 is not essential for the neurotrophic properties of immunophilin ligands, and immunophilin ligands are a new class of neuroprotective and neuroregenerative agents that may have therapeutic potential in a variety of neurological disorders.
Collapse
Affiliation(s)
- X Guo
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Carnegie 2-214, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
29
|
Klettner A, Baumgrass R, Zhang Y, Fischer G, Bürger E, Herdegen T, Mielke K. The neuroprotective actions of FK506 binding protein ligands: neuronal survival is triggered by de novo RNA synthesis, but is independent of inhibition of JNK and calcineurin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 97:21-31. [PMID: 11744159 DOI: 10.1016/s0169-328x(01)00286-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunosuppressant FK506 displays substantial neuroprotective and neuroregenerative effects. It is not fully understood to which extent these effects depend on the inhibition of the calcineurin phosphatase (PP2B). The present study has re-addressed this issue using Lie120, a novel highly specific inhibitor of calcineurin, which does not block the enzymatic activity of FKBPs or cyclophilins, respectively. We have determined the effect of FK506 (10-500 nM), V-10,367 (a FK506 derivative which does not block calcineurin; 1-5 microM) and Lie120 (a novel specific inhibitor of calcineurin, 0.1-5 microM) on the cellular survival and the pro-degenerative JNK activity of PC12 and Neuro2A cells following application of 200 microM H(2)O(2). FK506 and V-10,367, but not Lie120, protected both cell lines against H(2)O(2)-mediated death, whereas an increase in JNK1 activity was blocked by FK506 and Lie120, but not by V-10,367. Co-incubation of FK506 and V-10,367 with the mRNA synthesis inhibitor actinomycin D abolished the protective effect of FK506 and V-10,367. This antagonization was effective when actinomycin D was applied 30 min or 1 h, but not 2 or 4 h, after H(2)O(2) suggesting that FKBP-ligands confer their neuroprotection by rapid de novo synthesis of (functionally) anti-apoptotic proteins. The search for the corresponding effector genes revealed that the expression of FKBP25, FKBP38 and FKBP52 (analysis by reverse transcription-polymerase chain reaction (RT-PCR) did not change following H(2)O(2) or FK506, and this was also true for the expression of apoptosis-related genes caspase 3, bax, bcl-2 and bcl-xL (analysis by Multiplex-PCR). Summarizing, neuronal protection by FKBP-ligands is not mediated either by calcineurin or by JNK1 in this experimental set-up, whereas the FK506 mediated inhibition of JNK1 is realized by the inhibition of calcineurin, an effective activator of JNK1 in neurons.
Collapse
Affiliation(s)
- A Klettner
- Institute of Pharmacology, Christian-Albrechts-University, Hospitalstrasse 4, 24105, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Hwang KK, Hall CS, Spielman WS, Sparks HV. FK506 promotes adenosine release from endothelial cells via inhibition of adenosine kinase. Eur J Pharmacol 2001; 425:85-93. [PMID: 11502273 DOI: 10.1016/s0014-2999(01)01179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The immunosuppressants, cyclosporin A and tacrolimus (FK506) induce an increase in plasma levels of adenosine and mimic ischemic preconditioning. However, the mechanism of action of the two drugs on adenosine metabolism is not clear. Since inhibition of adenosine kinase promotes an increase in endogenous adenosine release, we tested a hypothesis that FK506 induces adenosine release via inhibition of adenosine kinase activity. In cultured endothelial cells, FK506 enhanced release of tracer adenosine and inhibited uptake of tracer adenosine. It also reduced adenosine kinase activity of the cell membrane fraction. In addition, FK506 does not inhibit membrane transport of tracer adenosine. These observations indicate that FK506 inhibits in situ adenosine kinase activity in endothelial cells. Other cell signaling inhibitors were found to inhibit adenosine uptake via inhibition of adenosine transport. In conclusion, FK506 promotes adenosine release from endothelial cells by a novel mechanism involving inhibition of adenosine kinase activity associated with the membrane.
Collapse
Affiliation(s)
- K K Hwang
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
31
|
Guo X, Dillman JF, Dawson VL, Dawson TM. Neuroimmunophilins: novel neuroprotective and neuroregenerative targets. Ann Neurol 2001; 50:6-16. [PMID: 11456311 DOI: 10.1002/ana.1030] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cyclosporin A (CsA) and FK506 (tacrolimus) are immunosuppresants that are widely used in organ transplantation. CsA is an 11-member cyclic peptide, whereas FK506 is a macrolide antibiotic. Recently, these powerful and useful compounds have become of great interest to neuroscientists for their unique neuroprotective and neuroregenerative effects. These drugs and nonimmunosuppressive analogs protect neurons from the effects of glutamate excitotoxicity, focal ischemia, and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic cell death. They also stimulate functional recovery of neurons in a variety of neurologic injury paradigms. These drugs exert their effects via immunophilins, the protein receptors for these agents. The immunophilin ligands show particular promise as a novel class of neuroprotective and neuroregenerative agents that have the potential to treat a variety of neurologic disorders.
Collapse
Affiliation(s)
- X Guo
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
32
|
Lang-Lazdunski L, Heurteaux C, Dupont H, Rouelle D, Widmann C, Mantz J. The effects of FK506 on neurologic and histopathologic outcome after transient spinal cord ischemia induced by aortic cross-clamping in rats. Anesth Analg 2001; 92:1237-44. [PMID: 11323353 DOI: 10.1097/00000539-200105000-00029] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED Spinal cord injury is a devastating complication of thoracoabdominal aortic surgery. We investigated the effect of the immunosuppressant FK506, a macrolide antibiotic demonstrated to have neuroprotective effects in cerebral ischemia models, in a rat model of transient spinal cord ischemia. Spinal cord ischemia was induced in anesthetized rats by using direct aortic arch plus left subclavian artery cross-clamping through a limited thoracotomy. Experimental groups were as follows: sham-operation; control, receiving only vehicle; FK506 A, receiving FK506 (1 mg/kg IV) before clamping; and FK506 B, receiving FK506 (1 mg/kg IV) at the onset of reperfusion. Neurologic status was assessed at 24 h and then daily up to 96 h with a 0 to 6 scale (0, normal function; 6, severe paraplegia). Rats were randomly killed at 24, 48, or 96 h, and spinal cords were harvested for histopathology. Physiologic variables did not differ significantly among experimental groups. All control rats suffered severe and definitive paraplegia. FK506-treated rats had significantly better neurologic outcome compared with control. Histopathologic analysis disclosed severe injury in the lumbar gray matter of all control rats, whereas most FK506-treated rats had less injury. These data suggest that FK506 can improve neurologic recovery and attenuate spinal cord injury induced by transient thoracic aortic cross-clamping. IMPLICATIONS A single dose-injection of the immunosuppressant FK506 significantly improved neurologic outcome and attenuated spinal cord injury induced by transient thoracic aortic cross-clamping in the rat.
Collapse
Affiliation(s)
- L Lang-Lazdunski
- Department of Cardiovascular Surgery, Bichat University Hospital and Xavier Bichat Medical University, Paris, France.
| | | | | | | | | | | |
Collapse
|
33
|
Fredduzzi S, Mariucci G, Tantucci M, Del Soldato P, Ambrosini MV. Nitro-aspirin (NCX4016) reduces brain damage induced by focal cerebral ischemia in the rat. Neurosci Lett 2001; 302:121-4. [PMID: 11290402 DOI: 10.1016/s0304-3940(01)01672-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The potential neuroprotective effects of the novel nitro-derivate of aspirin (NCX4016) on permanent focal cerebral ischemia in spontaneously hypertensive rats (SHRs) was investigated. Reference compounds were acetylsalicilic acid (ASA) and FK506 (tacrolimus). Ten minutes after surgery, SHRs were randomly divided into four groups of ten, pharmacologically treated and sacrificed 24 h after treatment. Brains were removed and processed to measure infarct volume, 70 kDa heat shock protein (hsp70), glial fibrillary acidic protein (GFAP) and vimentin (Vim) immunoreactivity (IR), and apoptosis using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-digoxigenin nick end-labeling (TUNEL) assay. NCX-4016 significantly reduced total infarct volume compared to ASA (-20%, P < 0.05), FK506 (-18%, P < 0.05) and vehicle treatment (-20%, P < 0.05). Experimental groups did not differ in hsp70-IR and GFAP-IR. Conversely, hyperplastic astrocytes, measured by Vim-IR, were significantly lower in NCX-4016 than in the vehicle group (-36%, P<0.01). TUNEL assay indicated a significantly lower degree of apoptosis in NCX-4016 group than vehicle in both the homolateral (-27%, P < 0.01) and contralateral hemisphere (-29%, P < 0.05). These findings indicate that NO release associated with aspirin confers neuroprotective effects against ischemic injury.
Collapse
Affiliation(s)
- S Fredduzzi
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Sezione di Biologia Sperimentale, Via del Giochetto, 06124, Perugia, Italy
| | | | | | | | | |
Collapse
|
34
|
Peeling J, Yan HJ, Corbett D, Xue M, Del Bigio MR. Effect of FK-506 on inflammation and behavioral outcome following intracerebral hemorrhage in rat. Exp Neurol 2001; 167:341-7. [PMID: 11161622 DOI: 10.1006/exnr.2000.7564] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beginning 15 min after induction of intracerebral hemorrhage (ICH) by intrastriatal administration of collagenase, rats were treated intramuscularly with FK-506 (3 mg/kg) or with vehicle. Treatment was repeated daily for 7 days. MR imaging 1, 7, and 28 days post-ICH showed that treatment did not affect hematoma size or its subsequent resolution. Two days post-ICH, neutrophil infiltration around the hematoma was decreased in the FK-506-treated rats, as was the number of TUNEL-positive cells at the edge of the hematoma and in the peripheral region. The decreased inflammatory response was accompanied by functional improvement in the treated rats. The neurological deficit induced by the ICH (beam walking ability, postural reflex, spontaneous circling) was significantly decreased from 3 to 21 days post-ICH by treatment with FK-506. Skilled use of the forelimb ipsilateral to the ICH was improved and sensory neglect of the same limb was decreased 8-9 weeks post-ICH in rats treated with FK-506. However, neuronal loss assessed 9 weeks post-ICH was not different in the treated and untreated rats.
Collapse
Affiliation(s)
- J Peeling
- Department of Chemistry, The University of Manitoba, Winnipeg, Manitoba, R3E 0W3, Canada
| | | | | | | | | |
Collapse
|
35
|
Nagatomo I, Hashiguchi W, Tominaga M, Akasaki Y, Uchida M, Takigawa M. Effects of MK-801, dantrolene, and FK506 on convulsive seizures and brain nitric oxide production in seizure-susceptible EL mice. Brain Res 2001; 888:306-310. [PMID: 11150489 DOI: 10.1016/s0006-8993(00)03101-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To clarify the role of nitric oxide (NO) in the pathogenesis of seizures in susceptible EL mice, we investigated effects of three drugs potentially related to NO production, MK-801, dantrolene, and FK506, on convulsive seizures and brain NO metabolites (NOx). MK-801 or dantrolene, but not FK506, suppressed convulsive seizures in EL mice; only MK-801 reduced NOx in the brain. Our results suggested involvement of the N-methyl-D-aspartate receptor-channel complex and intracellular calcium mobilization, but not calcineurin, in the convulsions of EL mice.
Collapse
Affiliation(s)
- I Nagatomo
- Department of Neuropsychiatry, Faculty of Medicine, Kagoshima University, 8-35-1, Sakuragaoka, 890-8520, Kagoshima, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
It is widely believed that calcium plays a primary role in the development of neuronal cell injury in different pathological states of the brain. Disturbances of calcium homeostasis may be induced in three different subcellular compartments, the cytoplasm, mitochondria or the endoplasmic reticulum (ER). The traditional calcium hypothesis holds that neuronal cell injury is induced by a marked increase in cytoplasmic calcium activity during stress (e.g., cerebral ischemia). Recently, this hypothesis has been modified, taking into account that under different experimental conditions the extent of cell injury does not correlate closely with calcium load or total calcium influx into the cell, and that neuronal cell injury has been found to be associated with both increases and decreases of cytoplasmic calcium activity. The mitochondrial calcium hypothesis is based on the observation that after a severe form of stress there is a massive influx of calcium ions into mitochondria, which may lead to production of free radicals, opening of the mitochondrial permeability transition (MPT) pore and disturbances of energy metabolism. However, it has still to be established whether drugs such as cyclosporin A are neuroprotective through their effect on MPT or through the blocking of processes upstream of MPT. The ER calcium hypothesis arose from the observation that ER calcium stores are depleted after severe forms of stress, and that the response of cells to disturbances of ER calcium homeostasis (activation of the expression of genes coding for ER resident stress proteins and suppression of the initiation of protein synthesis) resembles their response to a severe form of stress (e.g., transient ischemia) implying common underlying mechanisms. Elucidating the exact mechanisms of calcium toxicity and identifying the subcellular compartment playing the most important role in this pathological process will help to evaluate strategies for specific therapeutic intervention.
Collapse
Affiliation(s)
- W Paschen
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Köln, Germany.
| |
Collapse
|
37
|
Gold BG. Neuroimmunophilin ligands: evaluation of their therapeutic potential for the treatment of neurological disorders. Expert Opin Investig Drugs 2000; 9:2331-42. [PMID: 11060810 DOI: 10.1517/13543784.9.10.2331] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neuroimmunophilin ligands are a class of compounds that hold great promise for the treatment of nerve injuries and neurological disease. In contrast to neurotrophins (e.g., nerve growth factor), these compounds readily cross the blood-brain barrier, being orally effective in a variety of animal models of ischaemia, traumatic nerve injury and human neurodegenerative disorders. A further distinction is that neuroimmunophilin ligands act via unique receptors that are unrelated to the classical neurotrophic receptors (e.g., trk), making it unlikely that clinical trials will encounter the same difficulties found with the neurotrophins. Another advantage is that two neuroimmunophilin ligands (cyclosporin A and FK-506) have already been used in humans (as immunosuppressant drugs). Whereas both cyclosporin A and FK-506 demonstrate neuroprotective actions, only FK-506 and its derivatives have been clearly shown to exhibit significant neuroregenerative activity. Accordingly, the neuroprotective and neuroregenerative properties seem to arise via different mechanisms. Furthermore, the neuroregenerative property does not involve calcineurin inhibition (essential for immunosuppression). This is important since most of the limiting side effects produced by these drugs arise via calcineurin inhibition. A major breakthrough for the development of this class of compounds for the treatment of human neurological disorders was the ability to separate the neuroregenerative property of FK-506 from its immunosuppressant action via the development of non-immunosuppressant (non-calcineurin inhibiting) derivatives. Further studies revealed that different receptor subtypes, or FK-506-binding proteins (FKBPs), mediate immunosuppression and nerve regeneration (FKBP-12 and FKBP-52, respectively, the latter being a component of steroid receptor complexes). Thus, steroid receptor chaperone proteins represent novel targets for future drug development of novel classes of compounds for the treatment of a variety of human neurological disorders, including traumatic injury (e.g., peripheral nerve and spinal cord), chemical exposure (e.g., vinca alkaloids, Taxol) and neurodegenerative disease (e.g. , diabetic neuropathy and Parkinson's disease).
Collapse
Affiliation(s)
- B G Gold
- Center for Research on Occupational and Environmental Toxicology (CROET) and the Department of Cell and Developmental Biology, Oregon Health Sciences University, Portland, Oregon, 97201-3098, USA.
| |
Collapse
|
38
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|