1
|
Herculano-Houzel S, Rothman DL. From a Demand-Based to a Supply-Limited Framework of Brain Metabolism. Front Integr Neurosci 2022; 16:818685. [PMID: 35431822 PMCID: PMC9012138 DOI: 10.3389/fnint.2022.818685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/20/2022] Open
Abstract
What defines the rate of energy use by the brain, as well as per neurons of different sizes in different structures and animals, is one fundamental aspect of neuroscience for which much has been theorized, but very little data are available. The prevalent theories and models consider that energy supply from the vascular system to different brain regions is adjusted both dynamically and in the course of development and evolution to meet the demands of neuronal activity. In this perspective, we offer an alternative view: that regional rates of energy use might be mostly constrained by supply, given the properties of the brain capillary network, the highly stable rate of oxygen delivery to the whole brain under physiological conditions, and homeostatic constraints. We present evidence that these constraints, based on capillary density and tissue oxygen homeostasis, are similar between brain regions and mammalian species, suggesting they derive from fundamental biophysical limitations. The same constraints also determine the relationship between regional rates of brain oxygen supply and usage over the full physiological range of brain activity, from deep sleep to intense sensory stimulation, during which the apparent uncoupling of blood flow and oxygen use is still a predicted consequence of supply limitation. By carefully separating "energy cost" into energy supply and energy use, and doing away with the problematic concept of energetic "demands," our new framework should help shine a new light on the neurovascular bases of metabolic support of brain function and brain functional imaging. We speculate that the trade-offs between functional systems and even the limitation to a single attentional spot at a time might be consequences of a strongly supply-limited brain economy. We propose that a deeper understanding of brain energy supply constraints will provide a new evolutionary understanding of constraints on brain function due to energetics; offer new diagnostic insight to disturbances of brain metabolism; lead to clear, testable predictions on the scaling of brain metabolic cost and the evolution of brains of different sizes; and open new lines of investigation into the microvascular bases of progressive cognitive loss in normal aging as well as metabolic diseases.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| | - Douglas L. Rothman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
- Department of Biomedical Engineering, Yale University, New Haven, CT, United States
- Magnetic Resonance Research Center, Yale University, New Haven, CT, United States
| |
Collapse
|
2
|
Grammatopoulos T, Morris K, Ferguson P, Weyhenmeyer J. Angiotensin protects cortical neurons from hypoxic-induced apoptosis via the angiotensin type 2 receptor. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 99:114-24. [PMID: 11978402 DOI: 10.1016/s0169-328x(02)00101-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of angiotensin on mouse cortical neuronal cultures exposed to chemical-induced hypoxia was investigated. Cultures exposed to 10 mM sodium azide for 5 min showed a 17% increase in apoptosis when assayed 24 h postinsult. The N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 blocked sodium azide-induced cell death suggesting that the NMDA receptor contributes to the mediated cell death. Pretreatment of cultured neurons with angiotensin decreased sodium azide-induced apoptosis by 94%. When the AT(1) receptor was blocked by its receptor antagonist, losartan, angiotensin activation of the AT(2) receptor completely inhibited sodium azide-induced apoptosis. Pretreatment of neurons with the AT(2) receptor antagonist PD123319 resulted in angiotensin reducing sodium azide-induced apoptosis by 48%. These results demonstrate that angiotensin can significantly attenuate sodium azide-induced apoptosis primarily through activation of the AT(2) receptor and suggests that angiotensin may have a protective role in neurons undergoing ischemic injury.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Angiotensins/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Apoptosis/physiology
- Cells, Cultured
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Cerebral Cortex/physiopathology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/pharmacology
- Hypoxia-Ischemia, Brain/chemically induced
- Hypoxia-Ischemia, Brain/drug therapy
- Hypoxia-Ischemia, Brain/physiopathology
- Imidazoles/pharmacology
- In Situ Nick-End Labeling
- L-Lactate Dehydrogenase/metabolism
- Losartan/pharmacology
- Mice
- Mice, Inbred BALB C
- Neurons/drug effects
- Neurons/metabolism
- Neuroprotective Agents/pharmacology
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/agonists
- Receptors, Angiotensin/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/metabolism
- Sodium Azide/pharmacology
- Trypan Blue
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Tom Grammatopoulos
- Department of Cell and Structural Biology, University of Illinois, B107 Chemical and Life Science Building, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
3
|
White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 2000; 179:1-33. [PMID: 11054482 DOI: 10.1016/s0022-510x(00)00386-5] [Citation(s) in RCA: 617] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain ischemia and reperfusion engage multiple independently-fatal terminal pathways involving loss of membrane integrity in partitioning ions, progressive proteolysis, and inability to check these processes because of loss of general translation competence and reduced survival signal-transduction. Ischemia results in rapid loss of high-energy phosphate compounds and generalized depolarization, which induces release of glutamate and, in selectively vulnerable neurons (SVNs), opening of both voltage-dependent and glutamate-regulated calcium channels. This allows a large increase in cytosolic Ca(2+) associated with activation of mu-calpain, calcineurin, and phospholipases with consequent proteolysis of calpain substrates (including spectrin and eIF4G), activation of NOS and potentially of Bad, and accumulation of free arachidonic acid, which can induce depletion of Ca(2+) from the ER lumen. A kinase that shuts off translation initiation by phosphorylating the alpha-subunit of eukaryotic initiation factor-2 (eIF2alpha) is activated either by adenosine degradation products or depletion of ER lumenal Ca(2+). Early during reperfusion, oxidative metabolism of arachidonate causes a burst of excess oxygen radicals, iron is released from storage proteins by superoxide-mediated reduction, and NO is generated. These events result in peroxynitrite generation, inappropriate protein nitrosylation, and lipid peroxidation, which ultrastructurally appears to principally damage the plasmalemma of SVNs. The initial recovery of ATP supports very rapid eIF2alpha phosphorylation that in SVNs is prolonged and associated with a major reduction in protein synthesis. High catecholamine levels induced by the ischemic episode itself and/or drug administration down-regulate insulin secretion and induce inhibition of growth-factor receptor tyrosine kinase activity, effects associated with down-regulation of survival signal-transduction through the Ras pathway. Caspase activation occurs during the early hours of reperfusion following mitochondrial release of caspase 9 and cytochrome c. The SVNs find themselves with substantial membrane damage, calpain-mediated proteolytic degradation of eIF4G and cytoskeletal proteins, altered translation initiation mechanisms that substantially reduce total protein synthesis and impose major alterations in message selection, down-regulated survival signal-transduction, and caspase activation. This picture argues powerfully that, for therapy of brain ischemia and reperfusion, the concept of single drug intervention (which has characterized the approaches of basic research, the pharmaceutical industry, and clinical trials) cannot be effective. Although rigorous study of multi-drug protocols is very demanding, effective therapy is likely to require (1) peptide growth factors for early activation of survival-signaling pathways and recovery of translation competence, (2) inhibition of lipid peroxidation, (3) inhibition of calpain, and (4) caspase inhibition. Examination of such protocols will require not only characterization of functional and histopathologic outcome, but also study of biochemical markers of the injury processes to establish the role of each drug.
Collapse
Affiliation(s)
- B C White
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Marchal G, Young AR, Baron JC. Early postischemic hyperperfusion: pathophysiologic insights from positron emission tomography. J Cereb Blood Flow Metab 1999; 19:467-82. [PMID: 10326714 DOI: 10.1097/00004647-199905000-00001] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Early postischemic hyperperfusion (EPIH) has long been documented in animal stroke models and is the hallmark of efficient recanalization of the occluded artery with subsequent reperfusion of the tissue (although occasionally it may be seen in areas bordering the hypoperfused area during arterial occlusion). In experimental stroke, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called "reperfusion injury"). In humans, focal hyperperfusion in the subacute stage (i.e., more than 48 hours after onset) has been associated with tissue necrosis in most instances, but regarding the acute stage, its occurrence, its relations with tissue metabolism and viability, and its clinical prognostic value were poorly understood before the advent of positron emission tomography (PET), in part because of methodologic issues. By measuring both CBF and metabolism, PET is an ideal imaging modality to study the pathophysiologic mechanism of EPIH. Although only a few PET studies have been performed in the acute stage that have systematically assessed tissue and clinical outcome in relation to EPIH, they have provided important insights. In one study, about one third of the patients with first-ever middle cerebral artery (MCA) territory stroke studied within 5 to 18 hours after symptom onset exhibited EPIH. In most cases, EPIH affected large parts of the cortical MCA territory in a patchy fashion, together with abnormal vasodilation (increased cerebral blood volume), "luxury perfusion" (decreased oxygen extraction fraction), and mildly increased CMRO2, which was interpreted as postischemic rebound of cellular metabolism in structurally preserved tissue. In that study, the spontaneous outcome of the tissue exhibiting EPIH was good, with late structural imaging not showing infarction. This observation was supported by another PET study, which showed, in a few patients, that previously hypoperfused tissue that later exhibited hyperperfusion after thrombolysis did not undergo frank infarction at follow-up. In both studies, clinical outcome was excellent in all patients showing EPIH except one, but in this case the hyperperfused area coexisted with an extensive area of severe hypoperfusion and hypometabolism. These findings from human studies therefore suggest that EPIH is not detrimental for the tissue, which contradicts the experimental concept of "reperfusion injury" but is consistent with the apparent clinical benefit from thrombolysis. However, PET studies performed in the cat have shown that although hyperperfusion was associated with prolonged survival and lack of histologic infarction when following brief (30-minute) MCA occlusion, it often was associated with poor outcome and extensive infarction when associated with longer (60-minute) MCA occlusion. It is unclear whether this discrepancy with human studies reflects a shorter window for tissue survival after stroke in cats, points to the cat being more prone to reperfusion injury, or indicates that EPIH tends not to develop in humans after severe or prolonged ischemia because of a greater tendency for the no-reflow phenomenon, for example. Nevertheless, the fact that the degree of hyperperfusion in these cat studies was related to the severity of prior flow reduction suggests that hyperperfusion is not detrimental per se. Preliminary observations in temporary MCA occlusion in baboons suggest that hyperperfusion developing even after 6 hours of occlusion is mainly cortical and associated with no frank infarction, as in humans. Overall, therefore, PET studies in both humans and the experimental animal, including the baboon, suggest that hyperperfusion is not a key factor in the development of tissue infarction and that it may be a harmless phenomenon
Collapse
Affiliation(s)
- G Marchal
- Cyceron INSERM U.320 and University of Caen, France
| | | | | |
Collapse
|
5
|
Katayama Y, Fukuchi T, Mc Kee A, Terashi A. Effect of hyperglycemia on pyruvate dehydrogenase activity and energy metabolites during ischemia and reperfusion in gerbil brain. Brain Res 1998; 788:302-4. [PMID: 9555066 DOI: 10.1016/s0006-8993(97)01565-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of hyperglycemia on brain pyruvate dehydrogenase (PDH) and metabolites (ATP, PCr, and lactate) were investigated at 20 min ischemia, 0, 20, and 60 min, and 4 h reperfusion. During reperfusion, PDH activities were suppressed corresponding to the poor recovery of ATP and PCr concentrations and the increase in lactate concentration in the hyperglycemic group, suggesting that preischemic hyperglycemia may impair metabolism by suppressing PDH activity.
Collapse
Affiliation(s)
- Y Katayama
- The Second Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
6
|
McGoron AJ, Nair P, Schubert RW. Michaelis-Menten kinetics model of oxygen consumption by rat brain slices following hypoxia. Ann Biomed Eng 1997; 25:565-72. [PMID: 9146809 DOI: 10.1007/bf02684195] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we have measured partial pressure of oxygen (pO2) profiles through rat brain slices before and after periods of hypoxia (5 and 10 min) to determine its effect on tissue oxygen demand. Tissue pO2 profiles were measured through rat cerebral cortex slices superfused with phosphate buffer using oxygen (O2)-sensitive microelectrodes at different times in controls [40% O2 balance nitrogen (N2)], and at different times before and after 5 or 10 min of hypoxia (100% N2). A one-dimensional, steady-state model of ordinary diffusion with a Michaelis-Menten model of O2 consumption where the maximal O2 consumption (Vmax) and the rate at half-maximal O2 consumption (Km) were allowed to vary was used to determine the kinetics of O2 consumption. Actual pO2 profiles through tissue were fitted to theoretical profiles by a least-squares method. Vmax varied among penetrations in a control slice and among slices. Vmax seemed to decrease after hypoxic insult, but the change was not statistically significant. The Km value measured before hypoxia was lower than the first Km value measured after the end of hypoxia, indicating that hypoxia induced a compensatory change in the metabolic state of the tissue. Km increased immediately after both 5- and 10-min hypoxic insults and returned to normal after recovery for each case. It seems that during and immediately after short periods of hypoxia, Km increases from near zero but returns to normal values within a few minutes.
Collapse
Affiliation(s)
- A J McGoron
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, USA
| | | | | |
Collapse
|
7
|
Sims NR. Calcium, energy metabolism and the development of selective neuronal loss following short-term cerebral ischemia. Metab Brain Dis 1995; 10:191-217. [PMID: 8830281 DOI: 10.1007/bf02081026] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Short-term cerebral ischemia results in the delayed loss of specific neuronal subpopulations. This review discusses changes in energy metabolism and Ca2+ distribution during ischemia and recirculation and considers the possible contribution of these changes to the development of selective neuronal loss. Severe ischemia results in a rapid decline of ATP content and a subsequent large movement of Ca2+ from the extracellular to the intracellular space. Similar changes are seen in tissue subregions containing neurons destined to die and those areas largely resistant to short-term ischemia, although differences have been observed in Ca2+ uptake between individual neurons. The large accumulation of intracellular Ca2+ is widely considered as a critical initiating event in the development of of neuronal loss but, as yet, definitive evidence has not been obtained. the increased intracellular Ca2+ content activates a number of additional processes including lipolysis of phospholipids and degradation or inactivation of some specific proteins, all of which could contribute to altered function on restoration of blood flow to the brain. Reperfusion results in a rapid recovery of ATP production. Cytoplasmic Ca2+ concentration is also restored during early recirculation as a result of both removal to the extracellular space and uptake into mitochondria. Within a few hours of recirculation, subtle increases in intracellular Ca2+ and a reduced capacity for mitochondrial respiration have been detected in some ischemia-susceptible regions. Both of these changes could potentially contribute to the development of neuronal loss. More pronounced alterations in Ca2+ homeostasis, resulting in a second period of increased mitochondrial Ca2+, develop with further recirculation in ischemia-susceptible regions. The available evidence suggests that these increases in Ca2+, although developing late, are likely to precede the irreversible loss of neuronal function and may be a necessary contributor to the final stages of this process.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, School of Medicine, Flinders University of South Australia, Adelaide, Australia
| |
Collapse
|
8
|
Burda J, Gottlieb M, Vanický I, Chavko M, Marsala J. Short-term postischemic hypoperfusion improves recovery of protein synthesis in the rat brain cortex. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1995; 25:189-98. [PMID: 8534320 DOI: 10.1007/bf02960912] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A cell-free system from rat brain cortex was used to follow changes in protein synthesis after ischemia and reperfusion (four-vessel occlusion). The experiment was focused to prevent a violent burst of free oxygen radicals creation during the first period of postischemic reperfusion by short-term hypoperfusion. After 30 min of ischemia, the authors applied hypoperfusion produced by releasing one (right) carotid for the first 5 min of reperfusion lasting from 30 min to 3 d. Results obtained by this procedure show that the activity of protein synthesis machinery from hypoperfused brains is higher than normovolemic ones; the left hemisphere, which is contralateral to direct blood flow during hypoperfusion, shows better results than the right hemisphere.
Collapse
Affiliation(s)
- J Burda
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | | | | | | | |
Collapse
|
9
|
Von Lubitz DK, Lin RC, Popik P, Carter MF, Jacobson KA. Adenosine A3 receptor stimulation and cerebral ischemia. Eur J Pharmacol 1994; 263:59-67. [PMID: 7821362 PMCID: PMC3426360 DOI: 10.1016/0014-2999(94)90523-1] [Citation(s) in RCA: 207] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chronic treatment with the selective adenosine A3 receptor agonist N6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (IB-MECA) administered prior to either 10 or 20 min forebrain ischemia in gerbils resulted in improved postischemic cerebral blood circulation, survival, and neuronal preservation. Opposite effects, i.e., impaired postischemic blood flow, enhanced mortality, and extensive neuronal destruction in the hippocampus were seen when IB-MECA was given acutely. Neither adenosine A1 nor A2 receptors are involved in these actions. The data indicate that stimulation of adenosine A3 receptors may play an important role in the development of ischemic damage, and that adenosine A3 receptors may offer a new target for therapeutic interventions.
Collapse
Affiliation(s)
- D K Von Lubitz
- NIH/NIDDK, Laboratory of Bioorganic Chemistry, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
10
|
Sims NR. The stimulus-evoked release of glutamate and GABA from brain subregions following transient forebrain ischemia in the rat. Neurochem Res 1993; 18:1073-9. [PMID: 7902957 DOI: 10.1007/bf00966687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The release of glutamate and GABA in response to K+ depolarization was determined for tissue prisms prepared from brain subregions removed from rats following 30 min of forebrain ischemia or recirculation periods up to 24 h. There were statistically significant effects of this treatment on release of both amino acids from samples of the dorsolateral striatum, an area developing selective neuronal degeneration. However, for at least the first 3 h of recirculation the calcium-dependent and calcium-independent release of both amino acids in this region were similar to pre-ischemic values. Differences were observed under some conditions at longer recirculation times. In particular there was a decrease in calcium-dependent GABA release at 24 h of recirculation and a trend towards increased release of glutamate at 6 h of recirculation and beyond. No statistically significant differences were seen in samples from the paramedian neocortex, a region resistant to post-ischemic damage. These results suggest that changes in the ability to release glutamate and GABA in response to stimulation are not necessary for the development of neurodegeneration in the striatum but rather that release of these amino acids may be modified as a result of the degenerative process.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, Flinders University of South Australia, Adelaide
| |
Collapse
|
11
|
Abstract
BACKGROUND Brain ischemia and reperfusion produce profound protein synthesis alterations, the extent and persistence of which are dependent on the nature of the ischemia, the brain region, the cell layer within a region, and the particular proteins studied. After transient ischemia, most brain regions recover their protein synthesis capability; however, recovery in the selectively vulnerable areas is poor. It is unknown whether this phenomenon itself provokes or is a consequence of the process of neuronal death. SUMMARY OF REVIEW Protein synthesis suppression during ischemia is due to energy depletion, but this is quickly reversed upon recirculation. Reperfusion does not appear to damage DNA or transcription mechanisms, although there are changes in the profile of transcripts being made. Similarly, purified ribosomes isolated from reperfused brains can make the normal repertoire of proteins and heat-shock proteins. However, during early reperfusion, newly synthesized messenger RNAs appear to accumulate in the nucleus; this alteration in RNA handling could reflect disruption at any of several steps, including posttranscriptional processing, nuclear pore transport, cytoskeletal binding, or formation of the translation initiation complex. Another mechanism that may be responsible for protein synthesis suppression during late reperfusion is progressive membrane destruction, with consequent shifts in the concentration of ions crucial for ribosomal function. CONCLUSIONS Protein synthesis suppression after ischemia likely involves a progression of multiple mechanisms during reperfusion. Although the recent work reviewed here offers new insight into the potential mechanisms disrupting protein synthesis, detailed understanding will require further investigation.
Collapse
Affiliation(s)
- G S Krause
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, Mich
| | | |
Collapse
|
12
|
Kloiber O, Miyazawa T, Hoehn-Berlage M, Hossmann KA. Simultaneous 31P NMR spectroscopy and laser Doppler flowmetry of rat brain during global ischemia and reperfusion. NMR IN BIOMEDICINE 1993; 6:144-152. [PMID: 8499245 DOI: 10.1002/nbm.1940060207] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The relationship between blood flow and metabolism was studied in halothane-anaesthetized, normothermic rats submitted to 30 min global ischemia by four-vessel occlusion. Phosphocreatine (PCr), ATP, intracellular pH and intracellular magnesium (pMg) were measured by 31P NMR spectroscopy, and blood flow by laser Doppler flowmetry. Prior to ischemia the PCr/ATP ratio of fully relaxed spectra was 2.4 +/- 0.3, intracellular pH was 7.26 +/- 0.15 and pMg was 3.26 +/- 0.13. Vascular occlusion led to complete cessation of blood flow in four out of eight rats, and to incomplete ischaemia (< 10% of control) in the other four animals. During vascular occlusion EEG flattened and energy metabolism broke down in all but one animal with a residual blood flow of 8% of control. pH declined to 6.70 +/- 0.08. The speed of electrophysiological and metabolic recovery after 30 min ischemia varied considerably from animal to animal. Variability depended mainly on the recirculation delay (i.e., the interval from vascular release to normalization of blood flow) but was independent of residual blood flow during ischemia, pre-ischemic glucose, ischemic or post-ischemic acidosis, or the degree of post-ischemic hypoperfusion. After 3 h recirculation PCr and intracellular pH returned to normal but pMg was slightly increased, and ATP was reduced by up to 50% in all animals except the rat with incomplete breakdown of energy metabolism during ischemia. The dissociation between PCr and ATP is attributed to a loss of total adenylate, the severity of which depends on the quality of post-ischemic recirculation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- O Kloiber
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | |
Collapse
|
13
|
Hossmann KA, Behar KL, Rothman DL. NMR-spectroscopic investigation of cerebral reanimation after prolonged ischemia. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1993; 57:21-29. [PMID: 8421952 DOI: 10.1007/978-3-7091-9266-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The severity of brain injury following interruption of blood flow depends on a number of ischemic and post-ischemic variables. The most important ischemic variables are the duration of ischemia, the amount of residual blood flow, the type and depth of anesthesia, brain glucose content and temperature. Among the post-ischemic factors the no-reflow phenomenon, edema and a variety of biochemical disturbances are of particular importance. Due to the complex interaction of these factors irreversible brain injury usually occurs after less than 10 min cerebrocirculatory arrest in normothermia. However, the safe ischemia time of the brain can be substantially extended when appropriate therapeutic measures are used to alleviate post-ischemic injury. NMR-spectroscopy is particularly suited for the analysis of this process. Recording of 31P, 1H and 19F spectra allow the continuous non-invasive assessment of such basic parameters as brain energy state, tissue pH, the content of lactate and blood flow (using Freon-23 as an inert tracer). In addition, information is obtained about changes in the content of phosphomonoesters and -diesters, glutamate, glutamine, aspartate and N-acetyl aspartate. These measurements can be combined with in vivo electrophysiological and post-mortem biochemical investigations for the further refinement of functional/metabolic monitoring. We have used this approach to study the potentials of post-ischemic resuscitation after one hour complete ischemia of the normothermic cat brain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K A Hossmann
- Max-Planck-Institut für Neurologische Forschung, Köln, Federal Republic of Germany
| | | | | |
Collapse
|
14
|
Sims NR. Energy metabolism and selective neuronal vulnerability following global cerebral ischemia. Neurochem Res 1992; 17:923-31. [PMID: 1407279 DOI: 10.1007/bf00993269] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, Flinders University of South Australia, Adelaide
| |
Collapse
|
15
|
Macfarlane R, Moskowitz MA, Sakas DE, Tasdemiroglu E, Wei EP, Kontos HA. The role of neuroeffector mechanisms in cerebral hyperperfusion syndromes. J Neurosurg 1991; 75:845-55. [PMID: 1941113 DOI: 10.3171/jns.1991.75.6.0845] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cerebral hyperperfusion, a state in which blood flow exceeds the metabolic needs of brain, may complicate a number of neurological and neurosurgical conditions. It may account for the propensity with which hemorrhage, cerebral edema, or seizures follow embolic stroke, carotid endarterectomy, or the excision of large arteriovenous malformations, and for some of the morbidity that accompanies acute severe head injury, prolonged seizures, and acute severe hypertension. Hyperperfusion syndromes have in common acute increases in blood pressure, vasodilatation, breakdown of the blood-brain barrier, and the development of cerebral edema. These common features suggest the possibility that they share the same pathogenic mechanisms. It was believed until recently that reactive hyperemia was caused primarily by the generation of vasoactive metabolites, which induced vasodilatation through relaxation of vascular smooth muscle. However, the authors have recently established that the release of vasoactive neuropeptides from perivascular sensory nerves via axon reflex-like mechanisms has a significant bearing upon a number of hyperperfusion syndromes. In this article, the authors summarize their data and discuss possible therapeutic implications for blockade of these nerves or their constituent neuropeptides.
Collapse
Affiliation(s)
- R Macfarlane
- Neurosurgery Service, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | | | | | | |
Collapse
|
16
|
Sims NR. Selective impairment of respiration in mitochondria isolated from brain subregions following transient forebrain ischemia in the rat. J Neurochem 1991; 56:1836-44. [PMID: 2027001 DOI: 10.1111/j.1471-4159.1991.tb03438.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using Percoll density gradient centrifugation, free (nonsynaptosomal) mitochondria were isolated from the dorsal-lateral striatum and paramedian neocortex of rats during complete forebrain ischemia and reperfusion. Mitochondria prepared from either region after 30 min of ischemia showed decreased state 3 (ADP and substrate present) and uncoupled respiration rates (19-45% reductions) with pyruvate plus malate as substrates, whereas state 4 respiration (no ADP present) was preserved. At 6 h of recirculation, state 3 and uncoupled respiration rates for mitochondria from the paramedian neocortex (a region resistant to ischemic damage) were similar to or even increased compared with control values. By contrast, in mitochondria from the dorsal-lateral striatum (a region containing neurons susceptible to global ischemia), decreases in state 3 and uncoupled respiration rates (25 and 30% less than control values) were again observed after 6 h of recirculation. With succinate as respiratory substrate, however, no significant differences from control values were found in either region at this time point. By 24 h of recirculation, respiratory activity with either pyruvate plus malate or succinate was greatly reduced in samples from the dorsal-lateral striatum, probably reflecting complete loss of function in some organelles. In contrast with these marked changes in free mitochondria, the respiratory properties of synaptosomal mitochondria, assessed from measurements in unfractionated homogenates, were unchanged from controls in the dorsal-lateral striatum at each of the time points studied, but showed reductions (19-22%) during ischemia and after 24 h of recirculation in the paramedian neocortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N R Sims
- Department of Medical Biochemistry, Flinders University of South Australia, Adelaide
| |
Collapse
|
17
|
Affiliation(s)
- R Schmidt-Kastner
- Department of Neurophysiology, Medical Faculty, Ruhr-Universität Bochum, F.R.G
| | | |
Collapse
|
18
|
Zaidan E, Sims NR. Alterations in the production of 14CO2 and [14C]acetylcholine from [U-14C]glucose in brain subregions following transient forebrain ischemia in the rat. J Neurochem 1990; 55:1882-9. [PMID: 2121903 DOI: 10.1111/j.1471-4159.1990.tb05772.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The production of 14CO2 and [14C )acetylcholine from [U-14C]glucose was determined in vitro using tissue prisms prepared from the dorsolateral striatum (a region developing extensive neuronal loss following ischemia) and the paramedian neocortex (an ischemia-resistant region) following 30 min of forebrain ischemia and recirculation up to 24 h. Measurements were determined under basal conditions (5 mM K+) and following K+ depolarization (31 mM K+). The production of 14CO2 by the dorsolateral striatum was significantly reduced following 30 min of ischemia for measurements in either 5 or 31 mM K+ but recovered toward preischemic control values during the first hour of recirculation. Further recirculation resulted in 14CO2 production again being reduced relative to control values but with larger differences (20-27% reductions) detectable under depolarized conditions at recirculation times up to 6 h. Samples from the paramedian neocortex showed no significant changes from control values at all time points examined. [14C]Acetylcholine synthesis, a marker of cholinergic terminals that is sensitive to changes in glucose metabolism in these structures, was again significantly reduced only in the dorsolateral striatum. However, even in this tissue, only small (nonstatistically significant) differences were seen during the first 6 h of recirculation, a finding suggesting that changes in glucose oxidation during this period were not uniform within all tissue components. The results of this study provide evidence that in a region susceptible to ischemic damage there were specific changes during early recirculation in the metabolic response to depolarization. This apparent inability to respond appropriately to an increased need for energy production could contribute to the further deterioration of cell function in vivo and ultimately to the death of some cells.
Collapse
Affiliation(s)
- E Zaidan
- Department of Medical Biochemistry, Flinders University School of Medicine, Adelaide, South Australia
| | | |
Collapse
|
19
|
von Lubitz DK, Marangos PJ. Cerebral ischemia in gerbils: postischemic administration of cyclohexyl adenosine and 8-sulfophenyl-theophylline. J Mol Neurosci 1990; 2:53-9. [PMID: 2257200 DOI: 10.1007/bf02896926] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Adenosine agonists have now been shown by several laboratories to have profound neuroprotective effects when administered either pre- or postischemia. In an effort to determine whether these effects are centrally mediated, the effects of the non-brain-permeable adenosine receptor antagonist 8-sulfophenyl-theophylline (8-SPTH) on cyclohexyladenosine (CHA) -mediated protection was determined. Both survival and neurologic outcome were assessed in gerbils following 30 minutes of bilateral carotid occlusion. A dose of 2 mg/kg of CHA 5 minutes postreperfusion resulted in highly significant increases in survival relative to saline injected controls. Administration of doses of 8-SPTH sufficient to normalize the hypotension observed with CHA resulted in the same degree of postischemic protection. Similar results were obtained when neurologic status was evaluated. The results indicate that the neuroprotective effects of CHA are apparently centrally mediated.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Biochemistry, Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102
| | | |
Collapse
|
20
|
Kurup CK, Kumaroo KK, Dutka AJ. Influence of cerebral ischemia and post-ischemic reperfusion on mitochondrial oxidative phosphorylation. J Bioenerg Biomembr 1990; 22:61-80. [PMID: 2341384 DOI: 10.1007/bf00762846] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Unilateral ischemia in the right cerebral hemisphere of the rat was induced by ligation of the right common carotid artery coupled with controlled hemorrhage to produce hypotension (25 +/- 8 mm/Hg). Where indicated after 30 min of ischemia, the withdrawn blood was reinfused to restore arterial pressure to normal. Mitochondria isolated from the ipsilateral hemisphere after 30 min of ischemia showed significantly lower respiratory rates than the organelles isolated from the contralateral side. Oxidation of NAD(+)-linked substrates was more sensitive to inhibition in ischemia (30%) than was of ferrocytochrome c (12%), succinate oxidation being intermediate. The activities of membrane-bound dehydrogenases (both NADH and succinate-linked) were also significantly lowered. Ischemia did not affect the cytochrome content of mitochondria. Respiratory activity (NAD(+)-linked) of mitochondria isolated from the ipsilateral hemisphere was twice as sensitive to inhibition by fatty acid as was of preparations from the contralateral side. Mitochondria isolated from cerebral cortex after 90 min of post-ischemic reperfusion showed no significant improvement in the rate of substrate oxidation. Adenine nucleotide translocase activity and energy-dependent Ca2+ uptake, both of which decreased significantly in mitochondria isolated from the ischemic brain, showed little recovery, on reperfusion. These observations suggested the strong possibility that the deleterious effects of ischemia on mitochondrial respiratory function might be mediated by free fatty acids that are known to accumulate in large amounts in ischemic tissues. The pattern of inhibition of ATPase activity was consistent with this view.
Collapse
Affiliation(s)
- C K Kurup
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
21
|
Paschen W. Imaging of energy metabolites (ATP, glucose and lactate) in tissue sections: a bioluminescent technique. PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1990; 20:1-122. [PMID: 2315510 DOI: 10.1016/s0079-6336(11)80071-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- W Paschen
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Köln, FRG
| |
Collapse
|
22
|
Stevens MK, Yaksh TL. Systematic studies on the effects of the NMDA receptor antagonist MK-801 on cerebral blood flow and responsivity, EEG, and blood-brain barrier following complete reversible cerebral ischemia. J Cereb Blood Flow Metab 1990; 10:77-88. [PMID: 2153692 DOI: 10.1038/jcbfm.1990.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dose-dependent effects of MK-801, a glutamate receptor antagonist, on changes in CBF, CBF-PaCO2 responsiveness (133Xe clearance), EEG, and blood-brain barrier (methylene blue) were examined after a 15-min period of reversible complete global ischemia induced in halothane-anesthetized cats by occlusion of the vertebral and carotid arteries. Pretreatment with doses of MK-801 of greater than or equal to 0.5 mg/kg had no effect on resting CBF measures and produced a dose-dependent slowing of the dominant EEG frequency. In animals receiving this agent, there was an almost immediate return of baseline EEG patterns upon reinstitution of flow, no hypoperfusion after 2 h of reflow, preservation of CBF and CBF-PaCO2 responsiveness, and maintenance of blood-brain barrier integrity. In contrast, parallel control animals and animals treated with MK-801 at a dose of 0.1 mg/kg exhibited poor recovery based on the above parameters. MK-801 also diminished in a dose-dependent manner the CSF levels of 6-keto-prostaglandin (PG) F1 alpha (stable metabolite of PGI2) and thromboxane (Tx) B2 (stable metabolite of TxA2), which were otherwise elevated in vehicle-treated animals 2 h after reflow. Of particular interest, the CSF TxB2/6-keto-PGF1 alpha ratio in vehicle-treated animals was near 2. In animals pretreated with MK-801, at doses of greater than or equal to 0.5 mg/kg, this ratio was nearly 1. These observations are consistent with a possible triggering role of glutamate release in initiating at least part of the acute sequelae of ischemia. Such release in an electrically silent cell would increase Ca2+ influx and activate free fatty acid metabolism, leading to probable changes in vascular function and changes in blood-brain barrier permeability.
Collapse
Affiliation(s)
- M K Stevens
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
23
|
Sadoshima S, Ooboshi H, Okada Y, Yao H, Ishitsuka T, Fujishima M. Effect of thromboxane synthetase inhibitor on cerebral circulation and metabolism during experimental cerebral ischemia in spontaneously hypertensive rats. Eur J Pharmacol 1989; 169:75-83. [PMID: 2513212 DOI: 10.1016/0014-2999(89)90819-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The protective effect of thromboxane synthetase inhibitor, OKY-046, on brain ischemia was studied in spontaneously hypertensive rats. Cerebral ischemia was developed by bilateral carotid artery ligation (BCL) for 1 or 3 h and thereafter, circulation was restored for 15 min. OKY-046, 5 or 30 mg/kg, or saline as control was administered i.v. before BCL. Neither blood pressure nor blood gases were altered by OKY-046 or saline injection. During BCL, cerebral cortical blood flow was reduced to 25 and 15% of the resting value at 30 and 60 min, respectively, and these changes were not different among the groups. In rats with ischemia longer than 1 h, the blood flow was well preserved by OKY-046, 30 mg/kg, to 10-17% of the resting level, thus significantly higher than that (less than 5%) in non-treated rats. After 15 min recirculation, the supratentorial lactate level was lower and adenosine triphosphate (ATP) was higher in OKY-046-treated rats than in the saline-treated ischemic rats. Plasma thromboxane B2 was increased markedly in 1 h ischemic-reperfused rats without treatment and the increase was almost completely inhibited by OKY-046. In contrast, 6-keto-prostaglandin F1 alpha was increased 8.5-fold after ischemia and the increase was not affected by the treatment. OKY-046 seems to have an antiischemic effect on acutely induced cerebral ischemia. Selective inhibition of thromboxane A2 production and an inversely high level of prostaglandin I2 may be an important contribution to protection of the microcirculation during ischemia and preservation of ischemic cerebral metabolism.
Collapse
Affiliation(s)
- S Sadoshima
- Second Department of Internal Medicine, Kyushu University, Fukuoka City, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Schurr A, Rigor BM. Cerebral ischemia revisited: new insights as revealed using in vitro brain slice preparations. EXPERIENTIA 1989; 45:684-95. [PMID: 2668016 DOI: 10.1007/bf01974560] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The elucidation of the pathophysiological mechanisms of cerebral ischemia/hypoxia dictates the use of experimental models which mimic this disabling brain condition. In vivo experimental models have been available for many decades and are responsible for the bulk of, though incomplete, knowledge we have about these mechanisms. Since study in isolation of each postulated mechanism is impossible in vivo, the need for an in vitro experimental model has intensified in recent years. Consequently, rat and guinea pig hippocampal slice preparations have emerged as the models of choice. This review attempts to highlight some of the results obtained using brain slices in the study of cerebral ischemia/hypoxia and compare them to those obtained in vivo. Both the biochemical and the physiological correlates of energy metabolism, ion homeostasis, neurotransmission and neuromodulation of this brain condition are reviewed. The agreements, and especially the disagreements, between the in vivo and in vitro findings are emphasized. Details are given of the possible roles of both lactic acid, Ca2+ and excitotoxins in the neuronal damage inflicted by cerebral ischemia/hypoxia. Recent attempts to protect brain slices against experimental cerebral ischemic/hypoxic damage are also reviewed here briefly.
Collapse
Affiliation(s)
- A Schurr
- Department of Anesthesiology, University of Louisville, School of Medicine, Kentucky 40292
| | | |
Collapse
|
25
|
Kozuka M, Smith ML, Siesjö BK. Preischemic hyperglycemia enhances postischemic depression of cerebral metabolic rate. J Cereb Blood Flow Metab 1989; 9:478-90. [PMID: 2738114 DOI: 10.1038/jcbfm.1989.71] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The objective of the present study was to explore metabolic correlates to the appearance of postischemic seizures and the enhancement of brain damage observed in subjects that are made hyperglycemic prior to the induction of ischemia. To that end, transient forebrain ischemia of 10-min duration was induced in normo- and hyperglycemic rats, with subsequent measurements of local CMRglc (LCMRglc) after 3, 6, 12, and 18 h of recirculation. We posed the questions of whether postischemic depression of LCMRglc is exaggerated by preischemic hyperglycemia and whether there are signs of localized increases in LCMRglc in hyperglycemic rats, reflecting subclinical seizure activity. The results confirmed the presence of a long-lasting postischemic depression of LCMRglc in normoglycemic rats. This depression was partially but not tightly related to the degree of reduction of local CBF during ischemia. The depression was most pronounced in neocortical areas and in the hippocampus, but notably it was less pronounced in the densely ischemic caudoputamen. Little or no reduction of LCMRglc was observed in moderately or mildly ischemic structures such as the hypothalamus, red nucleus, and cerebellum. Preischemic hyperglycemia markedly accentuated the postischemic depression of LCMRglc. For example, although the subjects quickly regained wakefulness and motility, they had LCMRglc values in neocortical areas that remained below 50% of control. Corresponding but quantitatively less pronounced reductions in LCMRglc were observed in other areas. Notably, preischemic hyperglycemia reduced postischemic LCMRglc also in areas that showed only moderate to mild reductions in CBF during the ischemia. The results thus demonstrate that preischemic hyperglycemia has pronounced metabolic effects in the postischemic recovery period. The data provide no indication that postischemic seizures, which develop after a recovery period of approximately 24 h, are preceded by the appearance of hypermetabolic "seizure" foci.
Collapse
Affiliation(s)
- M Kozuka
- Laboratory for Experimental Brain Research, Lund University Hospital, Sweden
| | | | | |
Collapse
|
26
|
Katayama Y, Welsh FA. Effect of dichloroacetate on regional energy metabolites and pyruvate dehydrogenase activity during ischemia and reperfusion in gerbil brain. J Neurochem 1989; 52:1817-22. [PMID: 2723637 DOI: 10.1111/j.1471-4159.1989.tb07262.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The objective of this study was to determine whether administration of dichloroacetate (DCA), an activator of pyruvate dehydrogenase (PDH), improves recovery of energy metabolites following transient cerebral ischemia. Gerbils were pretreated with DCA, and cerebral ischemia was produced using bilateral carotid artery occlusion for 20 min, followed by reperfusion up to 4 h. DCA had no effect on the accumulation of lactic acid and the decrease in ATP and phosphocreatine (PCr) during the 20-min insult, nor on the recovery of these metabolites measured at 20 and 60 min reperfusion. However, at 4 h reperfusion, levels of ATP and PCr were significantly higher in DCA-treated animals than in controls, as PCr exhibited a secondary decrease in caudate nucleus of control animals. PDH was markedly inhibited at 20 min reperfusion in both groups, but was reactivated to a greater extent in DCA-treated animals at 60 min and 4 h reperfusion. These results demonstrate that DCA had no effect on the initial recovery of metabolites following transient ischemia. However, later in reperfusion, DCA enhanced the postischemic reactivation of PDH and prevented the secondary failure of energy metabolism in caudate nucleus. Thus, inhibition of PDH may limit the recovery of energy metabolism following cerebral ischemia.
Collapse
Affiliation(s)
- Y Katayama
- Division of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia 19104-6070
| | | |
Collapse
|
27
|
Abstract
This study documents the effects of an intracarotid artery injection of a lethal threshold amount of KCN (2.5 mg.kg-1) on the energy metabolism and histology of the rat brain. This dose of KCN resulted in a rapid abolition of electroencephalographic activity, which remained essentially absent for up to 3 h. Cerebral metabolite measurements 0.25 h after KCN infusion indicated a 52% reduction in cytochrome oxidase activity, a 600% increase in lactate, a 32% reduction in ATP, a 73% increase in ADP, and an 85% decrease in glycogen. Measurements of the above energy metabolites over the ensuing 7 days showed a return to control of all metabolites by 6-24 h. Corresponding to the normalization of energy metabolism was a return of EEG and conscious activity. Histological examination of cyanide-exposed animals revealed a paucity of change with only one animal at 0.5 h showing several dark neurons, two animals at 1 h with minor pallor of corpus callosum and caudate-putamen, and one animal at 48 h with a small hippocampal infarction. It is concluded that it may be impossible to produce a serious enough disruption of cerebral metabolism with KCN injection, to produce neuronal damage by purely "histotoxic" mechanisms.
Collapse
Affiliation(s)
- V H MacMillan
- Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Freund TF, Buzsáki G, Prohaska OJ, Leon A, Somogyi P. Simultaneous recording of local electrical activity, partial oxygen tension and temperature in the rat hippocampus with a chamber-type microelectrode. Effects of anaesthesia, ischemia and epilepsy. Neuroscience 1989; 28:539-49. [PMID: 2710329 DOI: 10.1016/0306-4522(89)90003-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A miniature multiple thin-film recording sensor was used to measure simultaneously the electrical activity, oxygen content and temperature of brain tissue. The chamber-type potential sensor was an Ag/AgCl electrode covered by an Si3N4 (silicon nitride) chamber. The chamber-type oxygen sensor consisted of an Au-Ag/AgCl two-electrode electrochemical cell embedded in an electrolyte-filled Si3N4 chamber. The temperature sensor was a thin-film germanium resistor. The different sensors were spaced 300 microns apart. Anaesthetics (pentobarbital, chloral hydrate, chlornembutal, halothane) were shown to depress electrical activity and to increase local oxygen tension in the hippocampus. Halothane, but not the other anaesthetics, also increased the current output of the oxygen sensor when tested in saline bath, indicating that the apparent increase in measured oxygen levels during halothane anaesthesia was partly due to an electrochemical effect of halothane on the oxygen sensors. The decrease of tissue oxygen consumption produced by the other anaesthetics is likely to be the result of metabolic depression. Cerebral ischemia, evoked by cauterization of the vertebral arteries and occlusion of the carotid arteries for 30 min, resulted in the disappearance of both spontaneous and evoked electrical activity in the hippocampus and a decrease of both local temperature and oxygen tension. There was a marked overshoot of the oxygen tension to above preocclusion level following the release of the carotid arteries. As soon as electrical activity returned, the oxygen tension fell again, often below the lowest level seen during the ischemic period. This secondary decrease of oxygen level could be reversed by administration of supplementary small doses of anaesthetic. The anaesthetic-induced increase in oxygen tension was accompanied by a marked decrease in electroencephalogram amplitude and frequency. During electrically induced seizures a decrease in hippocampal oxygen content occurred and was accompanied by an increase of local temperature. Since the rectal temperature was kept constant, the changes in temperature are likely to reflect changes in blood perfusion of the recorded area. These findings are in agreement with previous observations made with conventional electrodes. In addition, the miniature size of the chamber-type microelectrode assembly allows a correlated monitoring of parallel physiological changes with high spatial and temporal resolution during anaesthesia, ischemia and epilepsy.
Collapse
Affiliation(s)
- T F Freund
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, U.K
| | | | | | | | | |
Collapse
|
29
|
Stevens MK, Yaksh TL. Time course of release in vivo of PGE2, PGF2 alpha, 6-keto-PGF1 alpha, and TxB2 into the brain extracellular space after 15 min of complete global ischemia in the presence and absence of cyclooxygenase inhibition. J Cereb Blood Flow Metab 1988; 8:790-8. [PMID: 3142890 DOI: 10.1038/jcbfm.1988.134] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The time-dependent release of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), thromboxane (Tx) B2, and 6-keto-PGF1 alpha (6-keto) from brain was measured before, during, and after a 15-min interval of total ischemia (four-vessel occlusion) in halothane-anesthetized cats using the technique of cerebroventricular perfusion. Resting levels of PGE2, PGF2 alpha, 6-keto, and Tx were: 253 +/- 75, 953 +/- 300, 650 +/- 200, and 550 +/- 170 pg/ml, respectively. During the 15-min ischemia, all prostanoids rose significantly, yet the highest levels were not observed until the first 15-60 min of the reflow at which time levels of PGE2, PGF2 alpha, 6-keto, and Tx, as compared with the preischemic baseline, rose approximately 8, 3.4, 3, and 55-fold, respectively. Significantly, although all prostanoids showed increases relative to baseline, the ratios of PGF2 alpha/6-keto and PGE2/6-keto remained stable throughout the experiment in both groups of animals. In contrast, the Tx/6-keto ratio rose from approximately 1 to approximately 30 during the 60 min after reflow in untreated cats. Treatment with zomepirac sodium (5 mg/kg, i.v.), a cyclooxygenase inhibitor, resulted in highly significant reductions in the levels of all prostanoids during the preischemic period. In zomepirac sodium-treated animals, there were also highly significant reductions in the prostanoid response to ischemia.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M K Stevens
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
30
|
Nowicki JP, Assumel-Lurdin C, Duverger D, MacKenzie ET. Temporal evolution of regional energy metabolism following focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1988; 8:462-73. [PMID: 3392111 DOI: 10.1038/jcbfm.1988.87] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Focal cerebral ischemia in the rat was induced by occlusion of the left middle cerebral artery. The temporal evolution of regional energy metabolism was studied over the 14 days consequent to the induction of ischemia in the frontal, cingulate, parietal, and occipital cortices as well as in the striatum. Regional concentrations of adenosine triphosphate (ATP), phosphocreatine, and lactate and, in addition, glucose and the cerebral/plasma glucose ratio (C/P) were measured in the hemispheres both ipsilateral and contralateral to the occlusion. Two hours after middle cerebral artery occlusion, the biochemical changes were severe in the striatum and moderate in cortical regions. Later on (at 24 and 48 h), an overall aggravated metabolic status was noted while lactate declined and glucose markedly increased. These latter biochemical changes likely indicate a marked inhibition of the rate of glucose utilization. At 48 h, the energy reserves (ATP, phosphocreatine) of parietal cortex no longer equaled those of other cortical regions, but abruptly fell to the levels found in the striatum without any increase in lactate level. Finally, at 7 and 14 days, the levels of the various metabolites in most cortical regions returned toward control values, although signs of a depressed glucose metabolism remained. However, in both striatum and parietal cortex, ATP and phosphocreatine concentrations, although higher than those observed at 48 h, remained significantly decreased. Our present biochemical study permits the classification of these selected brain regions into three categories. First there are those that are outside the area of infarction: the frontal, cingulate, and occipital cortices. These regions show little temporal evolution of brain energy metabolism but, notwithstanding, they are regions in which glucose use would appear to be greatly depressed. Second is a region considered to be the focus of infarction: the striatum. The caudate-putamen is a region with early and profound metabolic disturbances with no final restitution. Last is the region of metabolic penumbra--the parietal cortex, in which there is a time-related exacerbation of the consequences of middle cerebral occlusion in the rat.
Collapse
Affiliation(s)
- J P Nowicki
- Department of Biology, Laboratoires d'Etudes et de Recherches Synthélabo, Bagneux, France
| | | | | | | |
Collapse
|
31
|
Anwar M, Buchweitz-Milton E, Weiss HR. Effect of prazosin on microvascular perfusion during middle cerebral artery ligation in the rat. Circ Res 1988; 63:27-34. [PMID: 3383381 DOI: 10.1161/01.res.63.1.27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this study was to evaluate the effects of prazosin, an alpha 1-adrenoceptor antagonist, on morphometric indexes of the total and perfused cerebral microvascular bed 1 hour after middle cerebral artery (MCA) ligation in pentobarbital-anesthetized rats. We hypothesized that this agent would prevent catecholamine-induced vasoconstriction in the ischemic brain. Cerebral blood flow (CBF) was determined with 14C-iodoantipyrine, and the perfused microvascular bed was visualized using fluorescein isothiocyanate-dextran. MCA occlusion did not alter systemic hemodynamic or blood gas parameters. CBF averaged 29 +/- 15 (mean +/- SD) ml/min/100 g in the MCA-ligated cortex and 49 +/- 18 in the other examined brain regions. Prazosin did not significantly alter these CBF values, averaging 26 +/- 14 and 48 +/- 10, respectively. There were no significant regional differences in total capillaries/mm2 in either group. The percent of the capillaries/mm2 perfused (51 +/- 6%) was similar in the two groups in all examined regions except the ischemic cortex. In the MCA-ligated cortex, 22 +/- 8% of the capillary volume was perfused in comparison with 49 +/- 8% in the prazosin-treated group. Prazosin-treated rats had an increased percentage of their microvasculature perfused despite a similarly reduced CBF. Prazosin appeared to reduce diffusion distances in the ischemic cortex. This might be due to its alpha 1-adrenoceptor blocking activity.
Collapse
Affiliation(s)
- M Anwar
- Department of Physiology and Biophysics and Pediatrics, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08854-5635
| | | | | |
Collapse
|
32
|
Sims NR, Pulsinelli WA. Altered mitochondrial respiration in selectively vulnerable brain subregions following transient forebrain ischemia in the rat. J Neurochem 1987; 49:1367-74. [PMID: 3668530 DOI: 10.1111/j.1471-4159.1987.tb01001.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial respiratory function, assessed from the rate of oxygen uptake by homogenates of rat brain subregions, was examined after 30 min of forebrain ischemia and at recirculation periods of up to 48 h. Ischemia-sensitive regions which develop extensive neuronal loss during the recirculation period (dorsal-lateral striatum, CA1 hippocampus) were compared with ischemia-resistant areas (paramedian neocortex, CA3 plus CA4 hippocampus). All areas showed reductions (to 53-69% of control) during ischemia for oxygen uptake rates determined in the presence of ADP or an uncoupling agent, which then recovered within 1 h of cerebral recirculation. In the ischemia-resistant regions, oxygen uptake rates remained similar to control values for at least 48 h of recirculation. After 3 h of recirculation, a significant decrease in respiratory activity (measured in the presence of ADP or uncoupling agent) was observed in the dorsal-lateral striatum which progressed to reductions of greater than 65% of the initial activity by 24 h. In the CA1 hippocampus, oxygen uptake rates were unchanged for 24 h, but were significantly reduced (by 30% in the presence of uncoupling agent) at 48 h. These alterations parallel the development of histological evidence of ischemic cell change determined previously and apparently precede the appearance of differential changes between sensitive and resistant regions in the content of high-energy phosphate compounds. These results suggest that alterations of mitochondrial activity are a relatively early change in the development of ischemic cell death and provide a sensitive biochemical marker for this process.
Collapse
Affiliation(s)
- N R Sims
- Department of Neurology, Cornell University Medical College, White Plains, New York
| | | |
Collapse
|
33
|
Munekata K, Hossmann KA. Effect of 5-minute ischemia on regional pH and energy state of the gerbil brain: relation to selective vulnerability of the hippocampus. Stroke 1987; 18:412-7. [PMID: 3564098 DOI: 10.1161/01.str.18.2.412] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adult male gerbils were submitted to 5-minute cerebral ischemia by bilateral carotid artery occlusion. At the end of ischemia and at various recirculation times ranging from 15 to 120 minutes, brains were frozen in situ and the regional distribution of ATP, glucose, and tissue pH was studied on coronal cryostat sections by bioluminescent and fluoroscopic techniques. During ischemia ATP was completely depleted, glucose decreased to less than 10% of control, and regional tissue pH decreased from 7.04-7.09 to about 6.0. After the beginning of recirculation tissue pH and the regional content of metabolites exhibited a triphasic course. After 15 minutes pH returned to or even above normal, and ATP- and glucose-induced bioluminescence normalized. However, there was a secondary deterioration of both tissue acidosis and the metabolic state after 30 minutes. After longer recirculation times changes again improved and returned to normal within 2 hours. These changes were similar in all brain regions with the exception of the CA1 sector of the hippocampus, where the transient normalization of tissue pH was absent after 15 minutes of recirculation. This finding is in line with the previously observed microcirculatory insufficiency of this area and demonstrates that the CA1 sector of the hippocampus suffers more pronounced postischemic acidosis than other less vulnerable regions of the brain.
Collapse
|
34
|
Schmidt-Kastner R, Hossmann KA, Ophoff BG. Pial artery pressure after one hour of global ischemia. J Cereb Blood Flow Metab 1987; 7:109-17. [PMID: 3100544 DOI: 10.1038/jcbfm.1987.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pial artery pressure was measured in anesthetized control cats and in animals subjected to 1 h of global ischemia and 6 h of recirculation. Cerebral blood flow (CBF) was measured with the intraarterial 133Xe technique before and after ischemia, and lumped segmental resistances upstream and downstream to the pial artery were calculated. In the control brain, upstream resistance was 1.30 +/- 0.28 and downstream resistance 0.94 +/- 0.1 mm Hg ml-1 100 g min. During the postischemic hypoperfusion period, both resistances significantly increased, indicating that hypoperfusion constitutes a dysregulation of both large extracerebral and small intracerebral vessels. Hypercapnia induced an increase of CBF in the control brain and was accompanied by a fall in downstream resistance, demonstrating intracortical vasodilation. By contrast, hypercapnia did not provoke changes in either CBF or segmental resistances in the hypoperfusion period. In conclusion, during the postischemic hypoperfusion period, both extra- and intracortical resistances are increased and vascular reactivity to CO2 is abolished.
Collapse
|
35
|
Rudolphi KA, Keil M, Hinze HJ. Effect of theophylline on ischemically induced hippocampal damage in Mongolian gerbils: a behavioral and histopathological study. J Cereb Blood Flow Metab 1987; 7:74-81. [PMID: 3805165 DOI: 10.1038/jcbfm.1987.11] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We investigated the influence of the adenosine antagonist theophylline on the degree of hippocampal cell damage in the Mongolian gerbil following brief periods of forebrain ischemia. Male gerbils were randomly divided into nine groups. Ten minutes before surgery, four groups, which were later subjected to 1, 2, 3, or 5 min of bilateral carotid occlusion under halothane anesthesia, received theophylline (30 mg/kg, p.o.). Four groups served as nontreated ischemic controls; the ninth group was used to measure theophylline serum concentration. Neurological symptoms were classified by using a behavioral score. Fourteen days after ischemia, the brains were removed, and the hippocampus was histologically examined "blind" for the degree of cell damage in the CA1 sector, which was expressed as a semiquantitative histopathological score. There were no behavioral or histological abnormalities in either the control or theophylline group with 1 min of ischemia. With increasing duration of ischemia, the neurological symptoms worsened and the number of necrotic pyramidal cells increased significantly. The pretreatment with theophylline only moderately aggravated the neurological symptoms, whereas it enhanced the ischemic cell damage significantly. The results are discussed with respect to recent findings that theophylline may block putatively protective effects of endogenous adenosine, whose concentration in the brain is known to rise significantly during ischemia.
Collapse
|
36
|
Abstract
Experimental evidence has recently suggested that early reperfusion following at least focal cerebral ischaemia is accompanied by a return of function which has apparently been suspended during the ischaemic period. The experimental evidence for this is presented. Clinical correlates of this reversible ischaemia sometimes referred to as "penumbral ischaemia" are well known in relation to aneurysm surgery. Several examples are presented in this paper. It is also clear that less easily documented and verifiable recovery from long-term ischaemia may occur in neurosurgery and in interesting case suggestive of this is presented. It involved a middle cerebral occlusion which occurred during the excision of a large meningioma.
Collapse
Affiliation(s)
- L Symon
- Gough-Cooper Department of Neurological Surgery, Institute of Neurology, London, U.K
| |
Collapse
|
37
|
Stevens MK, Yaksh TL, Hansen RB, Anderson RE. Effect of preischemia cyclooxygenase inhibition by zomepirac sodium on reflow, cerebral autoregulation, and EEG recovery in the cat after global ischemia. J Cereb Blood Flow Metab 1986; 6:691-702. [PMID: 3098746 DOI: 10.1038/jcbfm.1986.125] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Zomepirac sodium (ZS) (5 mg/kg i.v.) was used to evaluate the effects of preischemia cyclooxygenase inhibition on CBF (as assessed by 133Xe clearance), CBF-PaCO2 responsiveness, and electrophysiologic (EEG) parameters before and after a 15-min period of complete global ischemia produced by four-vessel occlusion and mild hypotension. During the 15-min period of ischemia, CBF was essentially zero. Following reflow all groups displayed an initial hyperemia as compared with control (92 +/- 11 vs. 141-146 ml/100 g/min). Saline-treated animals during reflow displayed a delayed hypoperfusion (26 +/- 3 ml/100 g/min), which showed no improvement during the 2-h reflow period prior to death. In contrast, ZS-treated animals during reflow displayed significantly higher flows during the hypoperfusion phase (72 +/- 9 ml/100 g/min). The CBF-PaCO2 response displayed an approximately sevenfold reduction in slope at 2 h after reflow in saline-treated animals. This decrease in PaCO2 reactivity was not observed in the ZS-pretreated animals. With regard to EEG, all animals showed a total flattening during the 15 min of ischemia. In saline-treated animals only one of seven showed any sign of even marginal recovery. In ZS-treated animals EEG activity showed prominent recovery in seven of seven. Brainstem auditory evoked potentials were monitored and showed prominent recovery of amplitude and latency in ZS but not saline-treated animals during reflow.
Collapse
|
38
|
Schmidt-Kastner R, Hossmann KA, Grosse Ophoff B. Relationship between metabolic recovery and the EEG prolonged ischemia of cat brain. Stroke 1986; 17:1164-9. [PMID: 3810716 DOI: 10.1161/01.str.17.6.1164] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In normothermic cats, cerebral blood flow was arrested for 1 hour followed by blood recirculation for 5-6 hours. Functional recovery was evaluated by qualitative and quantitative EEG analysis, and metabolic recovery by measuring metabolite and electrolyte levels in tissue samples taken from the cerebral cortex. In 5 out of 12 animals EEG activity did not recover after ischemia (group I); in 3 animals, intermittent EEG activity (group II) and in 4 animals continuous EEG activity returned during the observation period (group III). In group I the energy state was severely disturbed and an increase of calcium was detected, in group II this disturbance was much less pronounced, and in group III changes in energy metabolism and ion concentration were absent with the only exception of lower ADP levels. During recovery, the total intensity of EEG correlated positively with ATP (p less than 0.01) and inversely with lactate (p less than 0.05), and the intensity of the delta band inversely with sodium content (p less than 0.05). The results obtained demonstrate that electrophysiological recovery after prolonged ischemia is closely correlated with the restoration of the energy state and of electrolyte homeostasis of the brain. The inverse relationship of EEG intensity with lactate and sodium are interpreted as evidence for the adverse effects of ongoing post-ischemic glycolysis, resulting in the activation of the H+/Na+ antiporter for the regulation of intracellular pH.
Collapse
|
39
|
Dietrich WD, Ginsberg MD, Busto R. Effect of transient cerebral ischemia on metabolic activation of a somatosensory circuit. J Cereb Blood Flow Metab 1986; 6:405-13. [PMID: 3733900 DOI: 10.1038/jcbfm.1986.73] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effects of transient ischemia on the metabolic responsiveness of a well-defined brain circuit were investigated with [14C]2-deoxyglucose autoradiography. Rats underwent 30 min of severe forebrain ischemia followed by postischemic recirculation periods of 1, 2, 3, 5, and 10 days. At these times, unilateral whisker stimulation was carried out, resulting in the metabolic activation of the whisker barrel circuit. An altered pattern of glucose utilization within both stimulated and nonstimulated circuit relay stations was observed at 1, 2, and 3 days following ischemia. At 1 day, stimulus-evoked increases in metabolic activity were severely depressed within both the ventrobasal thalamus and layer IV of the cortical barrel field region. Baseline metabolic rate within nonstimulated relay areas was also severely depressed at this time. At postischemic days 2 and 3, moderate levels of increased glucose utilization were apparent overlying cortical layer IV and the superficial half of layer VI, while layers I, II, III, and V appeared less responsive to metabolic activation. By day 5, whisker stimulation resulted in normal levels of increased glucose utilization within the activated ventrobasal thalamus and layer IV of the cortical barrel field region. Glucose utilization within nonactivated relay stations, depressed at earlier time periods, had also returned to control levels by day 5. At both 5 and 10 days, an altered laminar pattern of elevated glucose utilization was apparent within the activated barrel field region, with local CMRglu being depressed in layer V compared with control values. These results demonstrate that periods of transient ischemia produce both reversible and longer-lasting effects on the ability of the CNS to respond to peripheral activation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
40
|
Todd NV, Picozzi P, Crockard HA, Russell RR. Reperfusion after cerebral ischemia: influence of duration of ischemia. Stroke 1986; 17:460-6. [PMID: 3715943 DOI: 10.1161/01.str.17.3.460] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The influence of the duration of ischemia on the pattern of cerebral blood flow in recirculation was studied in anesthetised rats. Severe incomplete cerebral ischemia (mean ischemic flow = 5.8 +/- 0.4 ml/100 g/min) was produced by four-vessel occlusion and recirculation permitted after 15, 30 or 60 minutes ischemia. All three groups showed an immediate hyperemia followed by hypoperfusion. Hyperemia was maximal following 15 minutes ischemia and least pronounced following 60 minutes ischemia (p = 0.0249). Hypoperfusion started most quickly following 15 minutes ischemia and was delayed following 60 minutes ischemia (p less than 0.001). In established hypoperfusion there was no difference in flow between the three groups. The possible mechanisms of these changes in flow are discussed.
Collapse
|
41
|
Dietrich WD, Ginsberg MD, Busto R, Watson BD. Photochemically induced cortical infarction in the rat. 2. Acute and subacute alterations in local glucose utilization. J Cereb Blood Flow Metab 1986; 6:195-202. [PMID: 3958064 DOI: 10.1038/jcbfm.1986.32] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Local CMRglu (LCMRglu) values were measured by [14C]2-deoxyglucose autoradiography in the rat at 4 h and 5 days following photochemically induced cortical infarction, and these data were compared with neuropathological findings in adjacent serial sections. At both time periods, LCMRglu was markedly reduced within the lesion center, and irregular regions of moderate-to-marked glucose hypermetabolism were noted within the marginal zone of the developing infarct. At 4 h, the hypermetabolic zones were shown by pathological examination to be characterized by normal-sized, moderately hyperchromatic neurons scattered among occasional dark, shrunken neurons within preserved neuropil. In contrast, the hypermetabolic zones at 5 days coincided with foci of intense macrophage infiltration, with dissolution of the neuropil. Significant decreases in glucose utilization were also demonstrated at 4 h within brain structures remote from the site of focal injury. These structures included the lateral and auditory cortices ipsilaterally, the striatum and thalamus ipsilaterally, and the hippocampus bilaterally. In addition to these remote metabolic effects, depressed metabolism occurred within the homologous cortical region contralateral to the site of infarction. By 5 days, glucose utilization was severely depressed in all ipsilateral cortical regions but not within any contralateral cortical region. Analysis of these data suggests that more than one mechanism is responsible for the metabolic alterations occurring within brain regions remote from the site of irreversible damage. Results are discussed in light of the hemodynamic alterations occurring in this stroke model, which are presented in the accompanying report.
Collapse
|
42
|
Bodsch W, Barbier A, Oehmichen M, Grosse Ophoff B, Hossmann KA. Recovery of monkey brain after prolonged ischemia. II. Protein synthesis and morphological alterations. J Cereb Blood Flow Metab 1986; 6:22-33. [PMID: 3944214 DOI: 10.1038/jcbfm.1986.4] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recovery of protein synthesis following 1 h of complete ischemia of the monkey brain was assessed by 3H-labeled amino acid incorporation in vivo at various postischemic periods between 1.5 and 24 h. The regional autoradiographic patterns obtained were compared on the basis of precursor-product relationships determined biochemically at the end of the tracer incorporation studies. Shortly after ischemia, protein synthesis was severely inhibited, but it gradually recovered with increasing recirculation times. In the cerebellum it returned to almost normal levels within 3 h and in the cortex within 24 h. Hippocampal and thalamic regions, however, did not recover control levels of protein synthesis at 24 h. Histoautoradiographic evaluation of amino acid incorporation in individual neurons revealed recovery of pyramidal neurons in the CA1 and CA3 sectors of the hippocampus within 6 h of recirculation, which, however, was followed by secondary inhibition after longer recirculation. Neurons in cortical layer 5 steadily recovered to near control within 24 h, with the exception of those located in arterial border zones, which returned to only 50% of control at 24 h. Incomplete recovery was also observed in thalamic neurons and Purkinje cells. The regional and histoautoradiographic pattern of protein synthesis correlated with the morphological appearance of cells. Ischemic cell changes (mainly of the dark type with microvacuolization and perineuronal glial swelling) were marked after short recirculation times but gradually disappeared in parallel with the return of protein synthesis in most regions of the brain. Only in pyramidal cells of the hippocampus, thalamic neurons, and Purkinje cells were changes not reversed during the observation period. The results obtained corroborate the electrophysiological observations reported in the first part of this investigation and support the notion that the majority of the neurons of monkey brain survive complete cerebrocirculatory arrest of 1 h for at least 1 day.
Collapse
|
43
|
Blomqvist P, Wieloch T. Ischemic brain damage in rats following cardiac arrest using a long-term recovery model. J Cereb Blood Flow Metab 1985; 5:420-31. [PMID: 4030919 DOI: 10.1038/jcbfm.1985.57] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A model is described in which transient complete cerebral ischemia is induced in rats by intracardiac injection of potassium chloride. The animals were intubated and mechanically ventilated with a nitrous oxide/oxygen (70:30) mixture. Cardiac arrest was achieved following a brief period of ventricular fibrillation. After 5-6 min, the circulation was restored by cardiopulmonary resuscitation and partial exchange transfusion. Local CBF (LCBF) during ischemia and cardiac resuscitation was studied by injection of [14C]iodoantipyrine into the right auricle at various periods during cardiac arrest, and was subsequently analyzed by autoradiography. No radioactive tracer could be visualized in any brain structure, demonstrating the absence of CBF during the cardiac standstill. LCBF was also studied at 5 min and 6.5 h after cardiac resuscitation. Five minutes of recirculation showed an increase in blood flow in all brain structures studied, ranging between 130 and 400% of control values. After 6.5 h of recirculation, the CBF was decreased in 13 of 24 brain structures by 20-50%, concomitantly with the depressed rate of glucose utilization found in 15 brain structures. The neocortical, hippocampal, and striatal concentrations of labile phosphates, lactate, pyruvate, phosphocreatine, glucose, and glycogen were measured 5 min after cardiac arrest. Extensive energy failure and elevation of lactate levels were observed and were similar to earlier reported values. One week following recovery from the ischemic insult, the animals were perfusion-fixed with formaldehyde. The brains were embedded in paraffin, subserially sectioned, and stained with cresyl violet/acid fuchsin. Histopathological changes were assessed by light microscopy as the number of acidophilic or pyknotic neurons. Morphological changes were observed in the hilus of the dentate gyrus, the hippocampal CA1 and subicular regions, the dorsal and lateral septum, the olfactory tubercle, the primary olfactory cortex, the entorhinal cortex, the amygdaloid nuclei, and the reticular nucleus of the thalamus. The distribution of the morphological changes suggests a transsynaptic mechanism, causing neuronal necrosis primarily in the limbic brain areas.
Collapse
|
44
|
Horikawa Y, Naruse S, Hirakawa K, Tanaka C, Nishikawa H, Watari H. In vivo studies of energy metabolism in experimental cerebral ischemia using topical magnetic resonance. Changes in 31P-nuclear magnetic resonance spectra compared with electroencephalograms and regional cerebral blood flow. J Cereb Blood Flow Metab 1985; 5:235-40. [PMID: 3988822 DOI: 10.1038/jcbfm.1985.30] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The energy state of the brain during and after transient cerebral ischemia was examined in rats by in vivo measurement of 31P-nuclear magnetic resonance (NMR) spectra using a topical magnetic resonance spectrometer. EEGs and regional CBF (rCBF) were monitored on the same ischemic models. Immediately after the induction of ischemia, the height of the ATP and phosphocreatine peaks in the spectrum began to decrease with a concurrent increase of the inorganic phosphate (Pi) peak. The calculated pH from the chemical shift of Pi decreased during ischemia. The EEG pattern became flat immediately after ischemic induction. The rCBF decreased below the sensitivity level of the measuring instrument. With 30-min ischemia, the 31P-NMR spectrum returned to a normal pattern rapidly after recirculation. However, recovery of the EEG was delayed. The rCBF after recirculation showed postischemic hyperemia followed by hypoperfusion. In cases of 120-min ischemia, none of the spectra showed recovery. Thus, we could investigate the dynamic process of pathophysiological changes occurring in the ischemic brain in vivo.
Collapse
|
45
|
Abstract
The effect of an acute systemic ammonia intoxication on the metabolic states of the cerebral cortex and the spinal cord of the same animal was studied in the cat. The intravenous infusion of ammonium acetate (2 and 4 mmol/kg body weight/30 min) increased the gross levels of tissue NH4+, glutamine, glutamine/glutamate ratio, lactate, and the lactate/pyruvate ratio in the cerebral cortex and the spinal cord. Pyruvate increased, but significantly only in the spinal cord; aspartate decreased, but significantly only in the cerebral cortex. The infusion of ammonium acetate did not significantly change the levels of phosphocreatine, ATP, ADP, AMP, total adenine nucleotides, adenylate energy charge, glucose, glutamate, alpha-ketoglutarate, and malate in either tissue. The changes of NH4+, glutamine, and lactate levels as well as glutamine/glutamate and lactate/pyruvate ratios in the spinal cord correlated significantly with the corresponding changes of these metabolites in the cerebral cortex. Thus, cerebral cortex and spinal cord show certain specific and comparable metabolic changes in response to a systemic ammonia intoxication. The effect of ammonia intoxication on the increases of glutamine and lactate levels is discussed.
Collapse
|
46
|
Hossmann KA. Post-ischemic resuscitation of the brain: selective vulnerability versus global resistance. PROGRESS IN BRAIN RESEARCH 1985; 63:3-17. [PMID: 3915126 DOI: 10.1016/s0079-6123(08)61971-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Hossmann KA, Grosse Ophoff B, Schmidt-Kastner R, Oschlies U. Mitochondrial calcium sequestration in cortical and hippocampal neurons after prolonged ischemia of the cat brain. Acta Neuropathol 1985; 68:230-8. [PMID: 4082926 DOI: 10.1007/bf00690200] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adult normothermic cats were submitted to 1- h complete cerebrocirculatory arrest, followed by blood recirculation for 6-8 h. Two groups of animals could be distinguished: In one group electrocorticogram and somatically evoked primary cortical potentials steadily recovered after ischemia, and in another electrophysiologic recovery was absent. At the end of the recirculation period, calcium content was measured in tissue samples taken from cerebral cortex and hippocampus, and compared with mitochondrial calcium sequestration as assessed by electron-microscopic cytochemistry. Protein content of cortex and hippocampus was also determined for evaluation of tissue swelling. The two regions were selected because previous experiments had revealed that in animals with electrophysiologic recovery cerebral cortex remains intact although hippocampus is selectively injured, whereas in animals without electrophysiologic recovery both cerebral cortex and hippocampus are damaged. In animals with functional recovery, neither calcium content nor mitochondrial calcium sequestration were significantly increased in either cerebral cortex or hippocampal subfield CA1. Only in dentate gyrus a minor degree of mitochondrial calcium sequestration was present. Calculation of tissue swelling revealed no change in cerebral cortex, but a volume increase by 18% in hippocampus, indicating development of brain edema in this region. In animals without functional recovery tissue calcium significantly increased both in cortex and hippocampus (by 49% and 73% of control, respectively), and there was significant mitochondrial calcium accumulation in both regions. Calculated brain swelling in these animals amounted to 16% and 26% in cortex and hippocampus, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
48
|
Marcy VR, Welsh FA. Correlation between cerebral blood flow and ATP content following tourniquet-induced ischemia in cat brain. J Cereb Blood Flow Metab 1984; 4:362-7. [PMID: 6470054 DOI: 10.1038/jcbfm.1984.53] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cerebral ischemia was produced in anesthetized cats using a neck tourniquet, which diminished cortical blood flow to less than 2 ml/100 g/min and depleted levels of ATP throughout the brain. Following a 30-min insult, cortical flow measured with H2 electrodes returned nearly to control, but subsequently decreased to 14-47% of control values. Despite this secondary hypoperfusion, ATP levels adjacent to the H2 electrode were restored to 75% of normal during the 2-h recirculation period. Therefore, this degree of hypoperfusion did not cause a secondary failure of energy metabolism. Following a 60-min insult, impaired reperfusion prevented the regeneration of brain ATP. However, preischemic bilateral craniectomies significantly improved recovery of blood flow and ATP levels following 60 min of ischemia. Therefore, in the present model, insufficient reflow is a primary factor limiting recovery of energy metabolism. Further, surgical decompression prevented the occurrence of "no reflow" caused by 60 min of ischemia.
Collapse
|
49
|
Gisvold SE, Safar P, Rao G, Moossy J, Kelsey S, Alexander H. Multifaceted therapy after global brain ischemia in monkeys. Stroke 1984; 15:803-12. [PMID: 6474530 DOI: 10.1161/01.str.15.5.803] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
UNLABELLED The pathophysiology of postischemic encephalopathy is complex, and includes tissue acidosis, edema, hypoperfusion, membrane dysfunction, impaired energy production, and possibly hypermetabolism. We tested the hypothesis that this multifactorial clinical problem must be approached with multifaceted therapy, with specific treatment aimed at each of the above postischemic changes. Eighteen minutes of complete global brain ischemia was produced with a higher pressure neck cuff in pigtailed monkeys. Control treatment postischemia (n = 9): 1) Normotension (MAP greater than or equal to 80 mmHg) restored within 2 min postischemia, 2) controlled ventilation for 24 hours with PaCO2 = 25 mmHg, 3) normothermia, and 4) phenytoin seizure prophylaxis from 20 hours postischemia. Experimental treatment (n = 10): Control treatment plus the following modifications: 1) Hemodilution to hematocrit 25% at 1-4 min postischemia, 2) brief hypertension (MAP 130 mmHg for 5 min) after accomplished hemodilution, 3) hypothermia for 6 hours, 4) pentobarbital 30 mg/kg i.v., 5) dexamethasone 4 mg/kg i.v. Outcome was evaluated at 96 hours postischemia by overall performance categories (OPC) (OPC I = normal, OPC V = brain death), neurologic deficit (ND) scores (100% ND = brain death, 0% ND = normal), and histologic damage scores of the brains. RESULTS Brain death developed in 1/9 control and 0/10 treated animals. The number of awake monkeys (OPC I and II) at 96 hours postischemia was significantly higher in the treated group (7/10) than in the control group (2/9) (p = 0.05). The median ND scores for the two groups were 16 and 35% respectively (p greater than 0.05). The results strongly suggest that postischemic treatment may be beneficial and that a multifaceted therapeutic approach is worth pursuing.
Collapse
|
50
|
|