1
|
Ahnström J, Petri A, Crawley JTB. Tissue factor pathway inhibitor - cofactor-dependent regulation of the initiation of coagulation. Curr Opin Hematol 2024; 31:315-320. [PMID: 39259668 PMCID: PMC11426987 DOI: 10.1097/moh.0000000000000838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW In humans, tissue factor pathway inhibitor (TFPI) exists in two alternatively spliced isoforms, TFPIα and TFPIβ. TFPIα consists of three Kunitz domains (K1, K2 and K3) and a highly basic C-terminal tail. K1 inhibits the tissue factor-activated factor VII complex, K2 specifically inhibits activated factor X, K3 is essential for interaction with its cofactor, protein S, and the basic C-terminus is binds factor V-short (FV-short) with high affinity. TFPIβ consists of K1 and K2 that is glycosylphosphatidylinositol anchored directly to cell surfaces. This review explores the structure/function of TFPI and its cofactors (protein S and FV-short), and the relative contributions that different TFPI isoforms may play in haemostatic control. RECENT FINDINGS Recent data have underscored the importance of TFPIα function and its reliance on its cofactors, protein S and FV-short, in influencing haemostatic control as well as bleeding and thrombotic risk. SUMMARY TFPIα is likely the most important pool of TFPI in modifying the risk of thrombosis and bleeding. TFPIα forms a trimolecular complex with FV-short and protein S in plasma. FV-short expression levels control the circulating levels of TFPIα, whereas protein S exerts essential cofactor mediated augmentation of it anticoagulant function.
Collapse
Affiliation(s)
- Josefin Ahnström
- Centre for Haematology, Department of Immunology and Inflammation, Hammersmith Hospital Campus, Imperial College London, London, UK
| | | | | |
Collapse
|
2
|
Li C, Xiang Z, Hou M, Yu H, Peng P, Lv Y, Ma C, Ding H, Jiang Y, Liu Y, Zhou H, Feng S. miR-NPs-RVG promote spinal cord injury repair: implications from spinal cord-derived microvascular endothelial cells. J Nanobiotechnology 2024; 22:590. [PMID: 39342236 PMCID: PMC11438374 DOI: 10.1186/s12951-024-02797-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) often leads to a loss of motor and sensory function. Axon regeneration and outgrowth are key events for functional recovery after spinal cord injury. Endogenous growth of axons is associated with a variety of factors. Inspired by the relationship between developing nerves and blood vessels, we believe spinal cord-derived microvascular endothelial cells (SCMECs) play an important role in axon growth. RESULTS We found SCMECs could promote axon growth when co-cultured with neurons in direct and indirect co-culture systems via downregulating the miR-323-5p expression of neurons. In rats with spinal cord injury, neuron-targeting nanoparticles were employed to regulate miR-323-5p expression in residual neurons and promote function recovery. CONCLUSIONS Our study suggests that SCMEC can promote axon outgrowth by downregulating miR-323-5p expression within neurons, and miR-323-5p could be selected as a potential target for spinal cord injury repair.
Collapse
Affiliation(s)
- Chao Li
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Zhenyang Xiang
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Mengfan Hou
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Hao Yu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Peng Peng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yigang Lv
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Chao Ma
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Han Ding
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China
| | - Yunpeng Jiang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yang Liu
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, Department of Orthopaedics, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Zhang F, Zhou X, Hua B, He X, Li Z, Xiao X, Wu X. Activated factor X delivered by adeno-associated virus significantly inhibited bleeding and alleviated hemophilic synovitis in hemophilic mice. Gene Ther 2024:10.1038/s41434-024-00479-5. [PMID: 39256611 DOI: 10.1038/s41434-024-00479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
In hemophilia, deficiency of factor VIII or IX prevents the activation of the common coagulation pathway, and inhibits the conversion of FX to activated FXa, which is required for thrombin generation. We hypothesized that the direct expressed FXa has the potential to activate the common pathway and restore coagulation in hemophilia patients. In this study, the cassettes that expressed FXa, FXaop and FXa-FVII were packaged into an engineered AAV capsid, AAV843, and were delivered into hemophilia A and B mice by intravenous injection. AAV-FXaop could be stably expressed in vivo and showed the best immediate and prolonged hemostatic effects, similar to those of commercial drugs (Xyntha and Benefix). AAV-FXaop also significantly inhibited bleeding in hemophilia A mice with inhibitors. In addition, FXa expression in joints significantly alleviated the occurrence of hemophilic synovitis. AAV-delivered FXa may be a novel target for treating hemophilic and hemophilic synovitis.
Collapse
Affiliation(s)
- Feixu Zhang
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xinyue Zhou
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Baolai Hua
- Department of Hematology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xinyi He
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhanao Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xiao Xiao
- School of Biotechnology, East China University of Science and Technology, Shanghai, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xia Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Lee CH, Lee HJ, Park SW, Shin J, Kang SJ, Park IB, Kim HK, Chun T. Mutational analysis of pig tissue factor pathway inhibitor α to increase anti-coagulation activity in pig-to-human xenotransplantation. Biotechnol Lett 2024; 46:521-530. [PMID: 38872071 DOI: 10.1007/s10529-024-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024]
Abstract
Blood coagulation mediated by pig tissue factor (TF), which is expressed in pig tissues, causes an instant blood-mediated inflammatory reaction during pig-to-human xenotransplantation. Previously, we generated a soluble pig tissue factor pathway inhibitor α fusion immunoglobulin (TFPI-Ig) which inhibits pig TF activity more efficiently than human TFPI-Ig in human plasma. In this study, we generated several pig TFPI-Ig mutants and tested the efficacy of these mutants in preventing pig-to-human xenogeneic blood coagulation. Structurally important amino acid residues of pig TFPI-Ig were changed into different residues by site-directed mutagenesis. Subsequently, a retroviral vector encoding each cDNA of several pig TFPI-Ig mutants was cloned and transduced into CHO-K1 cells. After establishing stable cell lines expressing each of the pig TFPI-Ig mutants, soluble proteins were produced and purified for evaluating their inhibitory effects on pig TF-mediated blood coagulation in human plasma. The replacement of K36 and K257 with R36 and H257, respectively, in pig TFPI-Ig more efficiently blocked pig TF activity in human plasma when compared with the wild-type pig TFPI-Ig. These results may provide additional information to understand the structure of pig TFPIα, and an improved pig TFPI-Ig variant that more efficiently blocks pig TF-mediated blood coagulation during pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Chang-Hee Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Jeong Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Si-Won Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jiyoon Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Seok-Jin Kang
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - In-Byung Park
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Santarpia G, Carnes E. Therapeutic Applications of Aptamers. Int J Mol Sci 2024; 25:6742. [PMID: 38928448 PMCID: PMC11204156 DOI: 10.3390/ijms25126742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Affinity reagents, or target-binding molecules, are quite versatile and are major workhorses in molecular biology and medicine. Antibodies are the most famous and frequently used type and they have been used for a wide range of applications, including laboratory techniques, diagnostics, and therapeutics. However, antibodies are not the only available affinity reagents and they do have significant drawbacks, including laborious and costly production. Aptamers are one potential alternative that have a variety of unique advantages. They are single stranded DNA or RNA molecules that can be selected for binding to many targets including proteins, carbohydrates, and small molecules-for which antibodies typically have low affinity. There are also a variety of cost-effective methods for producing and modifying nucleic acids in vitro without cells, whereas antibodies typically require cells or even whole animals. While there are also significant drawbacks to using aptamers in therapeutic applications, including low in vivo stability, aptamers have had success in clinical trials for treating a variety of diseases and two aptamer-based drugs have gained FDA approval. Aptamer development is still ongoing, which could lead to additional applications of aptamer therapeutics, including antitoxins, and combinatorial approaches with nanoparticles and other nucleic acid therapeutics that could improve efficacy.
Collapse
Affiliation(s)
- George Santarpia
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Eric Carnes
- College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Peyvandi F, Seidizadeh O, Mohsenian S, Garagiola I. Exploring nonreplacement therapies' impact on hemophilia and other rare bleeding disorders. Res Pract Thromb Haemost 2024; 8:102434. [PMID: 38873363 PMCID: PMC11169453 DOI: 10.1016/j.rpth.2024.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 06/15/2024] Open
Abstract
The management of hemophilia, von Willebrand disease (VWD), and rare coagulation disorders traditionally relied on replacement therapies, such as factor concentrates, to address clotting factor deficiencies. However, in recent years, the emergence of nonreplacement therapies has shown promise as an adjunctive approach, especially in hemophilia, and also for patients with VWD and rare bleeding disorders. This review article offers an overview of nonreplacement therapies, such as FVIII-mimicking agents and drugs aimed at rebalancing hemostasis by inhibiting natural anticoagulants, particularly in the management of hemophilia. The utilization of nonreplacement therapies in VWD and rare bleeding disorders has recently attracted attention, as evidenced by presentations at the International Society on Thrombosis and Haemostasis 2023 Congress. Nonreplacement therapies provide alternative methods for preventing bleeding episodes and enhancing patients' quality of life, as many of them are administered subcutaneously and allow longer infusion intervals, resulting in improved quality of life and comfort for patients.
Collapse
Affiliation(s)
- Flora Peyvandi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Omid Seidizadeh
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Samin Mohsenian
- Università degli Studi di Milano, Department of Pathophysiology and Transplantation, Milan, Italy
| | - Isabella Garagiola
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Angelo Bianchi Bonomi Hemophilia and Thrombosis Center and Fondazione Luigi Villa, Milan, Italy
| |
Collapse
|
7
|
Ali AE, Becker RC. The foundation for investigating factor XI as a target for inhibition in human cardiovascular disease. J Thromb Thrombolysis 2024:10.1007/s11239-024-02985-0. [PMID: 38662114 DOI: 10.1007/s11239-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Anticoagulant therapy is a mainstay in the management of patients with cardiovascular disease and related conditions characterized by a heightened risk for thrombosis. Acute coronary syndrome, chronic coronary syndrome, ischemic stroke, and atrial fibrillation are the most common. In addition to their proclivity for thrombosis, each of these four conditions is also characterized by local and systemic inflammation, endothelial/endocardial injury and dysfunction, oxidative stress, impaired tissue-level reparative capabilities, and immune dysregulation that plays a critical role in linking molecular events, environmental triggers, and phenotypic expressions. Knowing that cardiovascular disease and thrombosis are complex and dynamic, can the scientific community identify a common pathway or specific point of interface susceptible to pharmacological inhibition or alteration that is likely to be safe and effective? The contact factors of coagulation may represent the proverbial "sweet spot" and are worthy of investigation. The following review provides a summary of the fundamental biochemistry of factor XI, its biological activity in thrombosis, inflammation, and angiogenesis, new targeting drugs, and a pragmatic approach to managing hemostatic requirements in clinical trials and possibly day-to-day patient care in the future.
Collapse
Affiliation(s)
- Ahmed E Ali
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard C Becker
- Department of Internal Medicine, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA.
| |
Collapse
|
8
|
Zhao C, Zhou T, Li M, Liu J, Zhao X, Pang Y, Liu X, Zhang J, Ma L, Li W, Yao X, Feng S. Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway. Neural Regen Res 2024; 19:434-439. [PMID: 37488908 PMCID: PMC10503625 DOI: 10.4103/1673-5374.375345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/28/2022] [Accepted: 03/29/2023] [Indexed: 07/26/2023] Open
Abstract
Argatroban is a synthetic thrombin inhibitor approved by U.S. Food and Drug Administration for the treatment of thrombosis. However, whether it plays a role in the repair of spinal cord injury is unknown. In this study, we established a rat model of T10 moderate spinal cord injury using an NYU Impactor Moder III and performed intraperitoneal injection of argatroban for 3 consecutive days. Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord. RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway, which is involved in astrogliosis and glial scar formation. Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway. Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord. Taken together, these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway, thereby promoting the recovery of neurological function after spinal cord injury.
Collapse
Affiliation(s)
- Chenxi Zhao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tiangang Zhou
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Li
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqing Zhao
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yilin Pang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinjie Liu
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiawei Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenxiang Li
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xue Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
- Orthopedic Research Center of Shandong University, Cheeloo College of Medicine, Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
9
|
Seanoon K, Kitiyanant V, Payongsri P, Sirachainan N, Angchaisuksiri P, Chuansumrit A, Hongeng S, Tanratana P. Site-directed mutagenesis of tissue factor pathway inhibitor-binding exosite D60A on factor VII results in a new factor VII variant with lower coagulant activity. Res Pract Thromb Haemost 2024; 8:102309. [PMID: 38318153 PMCID: PMC10840347 DOI: 10.1016/j.rpth.2023.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 02/07/2024] Open
Abstract
Background Recombinant factor (F)VIIa (rFVIIa) has been approved by the US Food and Drug Administration for the treatment of hemophilia A and B with inhibitors and congenital FVII deficiency. Moreover, the investigational uses of rFVIIa are becoming of interest since it can be used to treat various clinical bleeding conditions. However, there is evidence showing that rFVIIa is a potent procoagulant agent that potentially leads to an increased risk of thrombotic complications. Objectives To design a new rFVII with lower coagulant activity that could potentially be used as an alternative hemostatic agent aiming to minimize the risk of thrombogenicity. Methods D60A was introduced into the F7 sequence by polymerase chain reaction-based mutagenesis. Wild type (WT) and D60A were generated in human embryonic kidney 293T cells by stable transfection. FVII coagulant activities were determined by amidolytic cleavage of the FVIIa-specific substrate, 2-step FXa generation, thrombin generation (TG), and clot-based assays. Results WT and D60A demonstrated similar FVIIa amidolytic activity. However, D60A showed approximately 50% activity on FX activation and significantly longer lag time in the TG assay than that shown by WT. The clotting time produced by D60A spiked in FVII-deficient plasma was significantly prolonged than that of WT. Additionally, the ex vivo plasma half-lives of WT and D60A were comparable. Conclusion D60A demonstrated lower coagulant activities, most likely due to the weakening of FX binding, leading to impaired FX activation and delayed TG and fibrin formation. Considering that a plasma FVII level of 15% to 25% is adequate for normal hemostasis, D60A is a molecule of interest for future development of an rFVII with a lesser extent of thrombogenicity.
Collapse
Affiliation(s)
- Karnsasin Seanoon
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Vorawat Kitiyanant
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Panwajee Payongsri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nongnuch Sirachainan
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pantep Angchaisuksiri
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ampaiwan Chuansumrit
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pansakorn Tanratana
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Ramathibodi Hemostasis and Thrombosis Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Dang Y, Zhang Y, Jian M, Luo P, Anwar N, Ma Y, Zhang D, Wang X. Advances of Blood Coagulation Factor XIII in Bone Healing. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:591-604. [PMID: 37166415 DOI: 10.1089/ten.teb.2023.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The biologic process of bone healing is complicated, involving a variety of cells, cytokines, and growth factors. As a result of bone damage, the activation of a clotting cascade leads to hematoma with a high osteogenic potential in the initial stages of healing. A major factor involved in this course of events is clotting factor XIII (FXIII), which can regulate bone defect repair in different ways during various stages of healing. Autografts and allografts often have defects in clinical practice, making the development of advanced materials that support bone regeneration a critical requirement. Few studies, however, have examined the promotion of bone healing by FXIII in combination with biomaterials, in particular, its effect on blood coagulation and osteogenesis. Therefore, we mainly summarized the role of FXIII in promoting bone regeneration by regulating the extracellular matrix and type I collagen, bone-related cells, angiogenesis, and platelets, and described the research progress of FXIII = related biomaterials on osteogenesis. This review provides a reference for investigators to explore the mechanism by which FXIII promotes bone healing and the combination of FXIII with biomaterials to achieve targeted bone tissue repair.
Collapse
Affiliation(s)
- Yi Dang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Minghui Jian
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Peng Luo
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Center for Tissue Engineering, The Fourth Military Medical University, Xian, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Filep JG. Two to tango: endothelial cell TMEM16 scramblases drive coagulation and thrombosis. J Clin Invest 2023; 133:170643. [PMID: 37259922 DOI: 10.1172/jci170643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Endothelial cells form a constitutively anticoagulant surface under homeostasis. While loss of this anticoagulant property is a hallmark of many cardiovascular diseases, the molecular mechanisms underlying the procoagulant transition remain incompletely understood. In this issue of the JCI, Schmaier et al. identify the phospholipid scramblases TMEM16E and TMEM16F, which support endothelial procoagulant activity through phosphatidylserine (PS) externalization. Genetic deletion of TMEM16E or TMEM16F or treatment with TMEM16 inhibitors prevented PS externalization and reduced fibrin formation in the vessel wall independently of platelets in a murine laser-injury model of thrombosis. These findings reveal a role for endothelial TMEM16E in thrombosis and identify TMEM16E as a potential therapeutic target for preventing thrombus formation.
Collapse
Affiliation(s)
- János G Filep
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
- Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Abdelfadiel E, Gunta R, Villuri BK, Afosah DK, Sankaranarayanan NV, Desai UR. Designing Smaller, Synthetic, Functional Mimetics of Sulfated Glycosaminoglycans as Allosteric Modulators of Coagulation Factors. J Med Chem 2023; 66:4503-4531. [PMID: 37001055 PMCID: PMC10108365 DOI: 10.1021/acs.jmedchem.3c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Indexed: 04/03/2023]
Abstract
Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.
Collapse
Affiliation(s)
- Elsamani
I. Abdelfadiel
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Rama Gunta
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Bharath Kumar Villuri
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Daniel K. Afosah
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Nehru Viji Sankaranarayanan
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Umesh R. Desai
- Institute
for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
13
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
14
|
Olson G, Jeske W, Iqbal O, Krupa E, Farooqui A, Siddiqui F, Hoppensteadt D, Kouta A, Fareed J. Potency Adjusted Blended Heparin of Bovine, Ovine, and Porcine Heparin Exhibit Comparable Biologic Effects to Referenced Single-Sourced Porcine Heparin. Clin Appl Thromb Hemost 2023; 29:10760296231163251. [PMID: 36908199 PMCID: PMC10014986 DOI: 10.1177/10760296231163251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Bovine and ovine mucosa represent alternate anticoagulants to porcine mucosa for production of unfractionated heparin (UFH). Standardized heparins from various sources can be blended and potency adjusted, blended heparins exhibit comparable effects as single-sourced porcine UFH. This study evaluated the pharmacologic profile of blended heparin and compared their activities to that of single sourced porcine, ovine, and bovine heparins. Methods: The anticoagulant effects of gravimetric and potency-adjusted heparins were evaluated with aPTT, TT, anti-Xa, anti-IIa, ACT, and TGA studies. Protamine sulfate studies were used for neutralization potential of each of the individual heparins. Results: The potency-adjusted heparins demonstrated comparable aPTT, TT, anti-Xa, anti-IIa, and ACT values at all concentrations (U/mL). However, in gravimetric studies, bovine heparin consistently showed lower values with the exception of thrombin generation inhibition studies. The protamine sulfate neutralization studies demonstrated complete neutralization at all concentrations for the potency-adjusted heparins. However, at gravimetric concentrations, minor differences were noted in the neutralization profile in each of these heparins. Conclusion: These studies support the hypothesis that blended heparin from bovine, ovine, and porcine tissue, when standardized in unit-equivalent proportions, exhibits a comparable anticoagulant profile to the single species derived heparins.
Collapse
Affiliation(s)
- Guy Olson
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Walter Jeske
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Omer Iqbal
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Emily Krupa
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Amber Farooqui
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Fakiha Siddiqui
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
- Program in Health Sciences, UCAM - Universidad Católica San Antonio
de Murcia, Murcia, Spain
| | - Debra Hoppensteadt
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Ahmed Kouta
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| | - Jawed Fareed
- Cardiovascular Research Institute, Section of Hemostasis and
Thrombosis, Loyola University Medical
Center, Maywood, IL, USA
| |
Collapse
|
15
|
Lobba ARM, Alvarez-Flores MP, Fessel MR, Buri MV, Oliveira DS, Gomes RN, Cunegundes PS, DeOcesano-Pereira C, Cinel VD, Chudzinski-Tavassi AM. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front Mol Biosci 2022; 9:936107. [PMID: 36052162 PMCID: PMC9424826 DOI: 10.3389/fmolb.2022.936107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.
Collapse
Affiliation(s)
- Aline R. M. Lobba
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Melissa Regina Fessel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Douglas S. Oliveira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Victor D. Cinel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M. Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana M. Chudzinski-Tavassi,
| |
Collapse
|
16
|
Kelliher S, Weiss L, Cullivan S, O'Rourke E, Murphy CA, Toolan S, Lennon Á, Szklanna PB, Comer SP, Macleod H, Le Chevillier A, Gaine S, O'Reilly KMA, McCullagh B, Stack J, Maguire PB, Ní Áinle F, Kevane B. Non-severe COVID-19 is associated with endothelial damage and hypercoagulability despite pharmacological thromboprophylaxis. J Thromb Haemost 2022; 20:1008-1014. [PMID: 35102689 PMCID: PMC9305123 DOI: 10.1111/jth.15660] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hypercoagulability and endothelial dysfunction are hallmarks of coronavirus disease 2019 (COVID-19) and appear to predict disease severity. A high incidence of thrombosis despite thromboprophylaxis is reported in patients with moderate to severe COVID-19. Recent randomized clinical trials suggest that therapeutic-intensity heparin confers a survival benefit in moderate-severity COVID-19 compared to standard-intensity heparin, potentially by harnessing heparin-mediated endothelial-stabilizing and anti-inflammatory effects. OBJECTIVE We hypothesized that patients with moderate-severity COVID-19 exhibit enhanced hypercoagulability despite standard-intensity thromboprophylaxis with low molecular weight heparin (LMWH) compared to non-COVID-19 hospitalized patients. METHODS Patients with moderate COVID-19 and a control group (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]-negative hospitalized patients) receiving LMWH thromboprophylaxis were recruited. Markers of endothelial damage and plasma thrombin generation parameters were assessed. RESULTS Tissue plasminogen activator levels were significantly increased in the COVID-19 group (8.3 ± 4.4 vs. 4.9 ± 2.4 ng/ml; P = .02) compared to non-COVID-19-hospitalized patients. Despite thromboprophylaxis, mean endogenous thrombin potential was significantly increased among COVID-19 patients (1929 ± 448 vs. 1528 ± 460.8 nM*min; P = .04) but lag time to thrombin generation was significantly prolonged (8.1 ± 1.8 vs. 6.2 ± 1.8 mins; P = .02). While tissue factor pathway inhibitor (TFPI) levels were similar in both groups, in the presence of an inhibitory anti-TFPI antibody, the difference in lag time between the groups was abrogated. CONCLUSIONS Collectively, these data demonstrate that COVID-19 of moderate severity is associated with increased plasma thrombin generation and endothelial damage, and that hypercoagulability persists despite standard LMWH thromboprophylaxis. These findings may be of clinical interest given recent clinical trial data which suggest escalated heparin dosing in non-severe COVID-19 may be associated with improved clinical outcomes.
Collapse
Affiliation(s)
- Sarah Kelliher
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Luisa Weiss
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Sarah Cullivan
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ellen O'Rourke
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Claire A Murphy
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- Department of Neonatology, Rotunda Hospital, Dublin, Ireland
| | - Shane Toolan
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Áine Lennon
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Paulina B Szklanna
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Shane P Comer
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Ana Le Chevillier
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
| | - Sean Gaine
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Kate M A O'Reilly
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Brian McCullagh
- Department of Respiratory Medicine, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - John Stack
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Rheumatology, Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Patricia B Maguire
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Institute for Discovery, University College Dublin, Dublin, Ireland
| | - Fionnuala Ní Áinle
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Department of Haematology, Rotunda Hospital, Dublin, Ireland
- Irish Network for VTE Research (INViTE), Dublin, Ireland
| | - Barry Kevane
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
- UCD Conway SPHERE Research Group, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Irish Network for VTE Research (INViTE), Dublin, Ireland
| |
Collapse
|
17
|
Teraz-Orosz A, Gierula M, Petri A, Jones D, Keniyopoullos R, Folgado PB, Santamaria S, Crawley JTB, Lane DA, Ahnström J. Laminin G1 residues of protein S mediate its TFPI cofactor function and are competitively regulated by C4BP. Blood Adv 2022; 6:704-715. [PMID: 34731882 PMCID: PMC8791571 DOI: 10.1182/bloodadvances.2021005382] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022] Open
Abstract
Protein S is a cofactor in the tissue factor pathway inhibitor (TFPI) anticoagulant pathway. It enhances TFPIα-mediated inhibition of factor (F)Xa activity and generation. The enhancement is dependent on a TFPIα-protein S interaction involving TFPIα Kunitz 3 and protein S laminin G-type (LG)-1. C4b binding protein (C4BP), which binds to protein S LG1, almost completely abolishes its TFPI cofactor function. However, neither the amino acids involved in TFPIα enhancement nor the mechanisms underlying the reduced TFPI cofactor function of C4BP-bound protein S are known. To screen for functionally important regions within protein S LG1, we generated 7 variants with inserted N-linked glycosylation attachment sites. Protein S D253T and Q427N/K429T displayed severely reduced TFPI cofactor function while showing normal activated protein C (APC) cofactor function and C4BP binding. Based on these results, we designed 4 protein S variants in which 4 to 6 surface-exposed charged residues were substituted for alanine. One variant, protein S K255A/E257A/D287A/R410A/K423A/E424A, exhibited either abolished or severely reduced TFPI cofactor function in plasma and FXa inhibition assays, both in the presence or absence of FV-short, but retained normal APC cofactor function and high-affinity C4BP binding. The C4BP β-chain was expressed to determine the mechanisms behind the reduced TFPI cofactor function of C4BP-bound protein S. Like C4BP-bound protein S, C4BP β-chain-bound protein S had severely reduced TFPI cofactor function. These results show that protein S Lys255, Glu257, Asp287, Arg410, Lys423, and Glu424 are critical for protein S-mediated enhancement of TFPIα and that binding of the C4BP β-chain blocks this function.
Collapse
Affiliation(s)
| | | | | | - David Jones
- Centre for Haematology, Imperial College London, London, UK
| | | | | | | | | | - David A. Lane
- Centre for Haematology, Imperial College London, London, UK
| | | |
Collapse
|
18
|
Han JP, Kim M, Choi BS, Lee JH, Lee GS, Jeong M, Lee Y, Kim EA, Oh HK, Go N, Lee H, Lee KJ, Kim UG, Lee JY, Kim S, Chang J, Lee H, Song DW, Yeom SC. In vivo delivery of CRISPR-Cas9 using lipid nanoparticles enables antithrombin gene editing for sustainable hemophilia A and B therapy. SCIENCE ADVANCES 2022; 8:eabj6901. [PMID: 35061543 PMCID: PMC8782450 DOI: 10.1126/sciadv.abj6901] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/30/2021] [Indexed: 05/24/2023]
Abstract
Hemophilia is a hereditary disease that remains incurable. Although innovative treatments such as gene therapy or bispecific antibody therapy have been introduced, substantial unmet needs still exist with respect to achieving long-lasting therapeutic effects and treatment options for inhibitor patients. Antithrombin (AT), an endogenous negative regulator of thrombin generation, is a potent genome editing target for sustainable treatment of patients with hemophilia A and B. In this study, we developed and optimized lipid nanoparticles (LNPs) to deliver Cas9 mRNA along with single guide RNA that targeted AT in the mouse liver. The LNP-mediated CRISPR-Cas9 delivery resulted in the inhibition of AT that led to improvement in thrombin generation. Bleeding-associated phenotypes were recovered in both hemophilia A and B mice. No active off-targets, liver-induced toxicity, and substantial anti-Cas9 immune responses were detected, indicating that the LNP-mediated CRISPR-Cas9 delivery was a safe and efficient approach for hemophilia therapy.
Collapse
Affiliation(s)
- Jeong Pil Han
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - MinJeong Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Jeong Hyeon Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Geon Seong Lee
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
| | - Michaela Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Yeji Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Eun-Ah Kim
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Nanyeong Go
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Hyerim Lee
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Kyu Jun Lee
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | - Un Gi Kim
- Toolgen Inc., Geumcheon-gu, Seoul 08501, Korea
| | | | | | - Jun Chang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Woman’s University, Seodaemun-gu, Seoul 03760, Korea
| | | | - Su Cheong Yeom
- Graduate School of International Agricultural Technology and Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, Gangwon 25354, Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Gwanank-gu, Seoul 08826, Korea
| |
Collapse
|
19
|
Didembourg M, Douxfils J, Carlo A, Mullier F, Hardy M, Morimont L. Effect of tissue factor pathway inhibitor on thrombin generation assay. Int J Lab Hematol 2021; 44:e115-e119. [PMID: 34783175 DOI: 10.1111/ijlh.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Didembourg
- Department of Pharmacy, Faculty of Medicine, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium
| | - Jonathan Douxfils
- Department of Pharmacy, Faculty of Medicine, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium.,Qualiblood s.a., Namur, Belgium
| | | | - François Mullier
- Hematology Laboratory, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Michael Hardy
- Hematology Laboratory, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium.,Department of Anesthesiology, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), Université Catholique de Louvain, CHU UCL Namur, Yvoir, Belgium
| | - Laure Morimont
- Department of Pharmacy, Faculty of Medicine, Namur Research Institute for Life Sciences (NARILIS), Namur Thrombosis and Hemostasis Center (NTHC), University of Namur, Namur, Belgium.,Qualiblood s.a., Namur, Belgium
| |
Collapse
|
20
|
FitzGerald ES, Chen Y, Fitzgerald KA, Jamieson AM. Lung Epithelial Cell Transcriptional Regulation as a Factor in COVID-19-associated Coagulopathies. Am J Respir Cell Mol Biol 2021; 64:687-697. [PMID: 33740387 PMCID: PMC8456886 DOI: 10.1165/rcmb.2020-0453oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. In addition to the acute pulmonary symptoms of coronavirus disease (COVID-19) (the disease associated with SARS-CoV-2 infection), pulmonary and distal coagulopathies have caused morbidity and mortality in many patients. Currently, the molecular pathogenesis underlying COVID-19-associated coagulopathies are unknown. Identifying the molecular basis of how SARS-CoV-2 drives coagulation is essential to mitigating short- and long-term thrombotic risks of sick and recovered patients with COVID-19. We aimed to perform coagulation-focused transcriptome analysis of in vitro infected primary respiratory epithelial cells, patient-derived bronchial alveolar lavage cells, and circulating immune cells during SARS-CoV-2 infection. Our objective was to identify transcription-mediated signaling networks driving coagulopathies associated with COVID-19. We analyzed recently published experimentally and clinically derived bulk or single-cell RNA sequencing datasets of SARS-CoV-2 infection to identify changes in transcriptional regulation of blood coagulation. We also confirmed that the transcriptional expression of a key coagulation regulator was recapitulated at the protein level. We specifically focused our analysis on lung tissue-expressed genes regulating the extrinsic coagulation cascade and the plasminogen activation system. Analyzing transcriptomic data of in vitro infected normal human bronchial epithelial cells and patient-derived bronchial alveolar lavage samples revealed that SARS-CoV-2 infection induces the extrinsic blood coagulation cascade and suppresses the plasminogen activation system. We also performed in vitro SARS-CoV-2 infection experiments on primary human lung epithelial cells to confirm that transcriptional upregulation of tissue factor, the extrinsic coagulation cascade master regulator, manifested at the protein level. Furthermore, infection of normal human bronchial epithelial cells with influenza A virus did not drive key regulators of blood coagulation in a similar manner as SARS-CoV-2. In addition, peripheral blood mononuclear cells did not differentially express genes regulating the extrinsic coagulation cascade or plasminogen activation system during SARS-CoV-2 infection, suggesting that they are not directly inducing coagulopathy through these pathways. The hyperactivation of the extrinsic blood coagulation cascade and the suppression of the plasminogen activation system in SARS-CoV-2-infected epithelial cells may drive diverse coagulopathies in the lung and distal organ systems. Understanding how hosts drive such transcriptional changes with SARS-CoV-2 infection may enable the design of host-directed therapeutic strategies to treat COVID-19 and other coronaviruses inducing hypercoagulation.
Collapse
Affiliation(s)
- Ethan S. FitzGerald
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island; and
| | - Yongzhi Chen
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Katherine A. Fitzgerald
- Division of Infectious Disease and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island; and
| |
Collapse
|
21
|
Wang G, Xie B, Su Y, Gu Q, Hao D, Liu H, Wang C, Hu Y, Zhang M. Expression analysis of tissue factor pathway inhibitors TFPI-1 and TFPI-2 in Paralichthys olivaceus and antibacterial and anticancer activity of derived peptides. Vet Res 2021; 52:32. [PMID: 33632337 PMCID: PMC7905887 DOI: 10.1186/s13567-021-00908-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 03/09/2023] Open
Abstract
Tissue factor pathway inhibitors (TFPI), including TFPI-1 and TFPI-2, are Kunitz-type serine protease inhibitors that mainly inhibit the blood coagulation induced by tissue factors. Previous reports on teleost proved TFPI play important roles in innate immunity. In this study, two TFPI (PoTFPI-1 and PoTFPI-2) molecules from Japanese flounder (Paralichthys olivaceus) were analyzed and characterized for their expression patterns, antibacterial and anticancer activities of the C-terminal derived peptides. Quantitative real time RT-PCR analysis shows that constitutive PoTFPI-1 expression occurred, in increasing order, in the brain, muscle, spleen, gills, head kidney, blood, intestine, heart, and liver; PoTFPI-2 was expressed, in increasing order, in the brain, gills, head kidney, muscle, intestine, spleen, liver, heart, and blood. Under the stimulation of fish pathogens, both PoTFPI-1 and PoTFPI-2 expressions increased significantly in a manner that depended on the pathogens, tissue type, and infection stage. Furthermore, C-terminal peptides TP25 and TP26, derived from PoTFPI-1 and PoTFPI-2, respectively, were synthesized and proved to be active against Micrococcus luteus (for TP25 and TP26) and Staphylococcus aureus (for TP25) via retardation effects on bacterial nucleic acids. In addition, TP25 and TP26 also displayed significant inhibitory effects on human colon cancer cell line HT-29. These results reveal that both PoTFPI-1 and PoTFPI-2 play important roles in host innate immunity. The antibacterial activity and anticancer cells function of TP25 and TP26 will add new insights into the roles of teleost TFPI.
Collapse
Affiliation(s)
- Guanghua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bing Xie
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanli Su
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qinqin Gu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dongfang Hao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hongmei Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Changbiao Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yonghua Hu
- Institute of Tropical Bioscience and Biotechnology, Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou, 571101, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China. .,Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-Resources, Haikou, 571101, China.
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China. .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
22
|
Global coagulation assays in healthy controls: are there compensatory mechanisms within the coagulation system? J Thromb Thrombolysis 2021; 52:610-619. [PMID: 33625645 DOI: 10.1007/s11239-021-02400-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Global coagulation assays (GCAs) may provide a more comprehensive individual hemostatic profiling. We aim to evaluate GCAs (thromboelastography, thrombin generation) in healthy controls, and correlate results with age, gender, lipid status, tissue factor pathway inhibitor (TFPI) and P-selectin. Blood samples were collected from healthy controls (> 18 years of age) not taking anticoagulation or antiplatelet agents and without known cardiovascular disease. Thromboelastography (TEG) was performed on citrated whole blood while calibrated automated thrombogram (CAT), P-selectin (endothelial marker) and TFPI (principle inhibitor of tissue factor-initiated coagulation) were performed on platelet-poor plasma. 153 healthy controls (mean age 42 years, 98 females (64%)) were recruited. Female controls demonstrated more hypercoagulable TEG and CAT parameters while those over 50 years of age demonstrated more hypercoagulable TEG parameters despite comparable thrombin generation. Paradoxically, individuals with "flattened" thrombin curves (lower velocity index (rate of thrombin generation) despite preserved endogenous thrombin potential (amount of thrombin)) were more likely to be male (49% vs 20%, p = 0.003) with increased low-density lipoprotein cholesterol (3.3 vs 2.6 mmol/L, p = 0.003), P-selectin (54.2 vs 47.3 ng/mL, p = 0.038) and TFPI (18.7 vs 8.6 ng/ml, p = 0.001). In addition to reduced velocity index and thrombin peak, controls in the highest TFPI tertile also demonstrated a poorer lipid profile. GCAs can detect subtle changes of the hemostatic profile. Interestingly, reduced thrombin generation was paradoxically associated with increased cardiovascular risk factors, possibly attributable to increased TFPI. This finding may suggest compensation by the coagulation system in response to endothelial activation and represent a biomarker for early cardiovascular disease. A larger prospective study evaluating these assays in the cardiovascular disease population is ongoing.
Collapse
|
23
|
Kwak H, Lee S, Jo S, Kwon YE, Kang H, Choi G, Jung ME, Kwak M, Kim S, Oh B, Kim D, Hwang SH. MG1113, a specific anti-tissue factor pathway inhibitor antibody, rebalances the coagulation system and promotes hemostasis in hemophilia. Res Pract Thromb Haemost 2020; 4:1301-1312. [PMID: 33313469 PMCID: PMC7695563 DOI: 10.1002/rth2.12438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Replacement therapy is the most common treatment for reduction of bleeding and control of episodic bleeding in individuals with hemophilia. Despite the proven effectiveness of factor replacement therapy, repeated intravenous administration is a heavy burden to individuals with hemophilia. OBJECTIVES To reduce the burden, therapeutic agents that can be subcutaneously administered need to be developed, and an anti-tissue factor pathway inhibitor (TFPI) antibody may be a suitable candidate for this purpose. METHODS MG1113 is an IgG4 monoclonal antibody that binds to Kunitz-2 domain (KD2) of TFPI. To confirm the coagulation potential of MG1113, several tests were conducted using factor VIII (FVIII)- or IX (FIX)-deficient plasma. For the ex vivo spiking test, platelet-poor plasma samples from 14 individuals with hemophilia were spiked with MG1113. The in vivo efficacy was determined using blood loss tests, modified prothrombin time (mPT), and free TFPI quantification after intravenous or subcutaneous administration of MG1113 into hemophilia A (HA)-induced rabbits. RESULTS Radiographic crystallography demonstrated the specific binding site between MG1113 and KD2. In FVIII-deficient plasma and the plasma of individuals with hemophilia, peak thrombin and endogenous thrombin levels were increased by MG1113 in a concentration-dependent manner. Rotational thromboelastometry assay revealed that clotting time, clot formation time, and maximum clot firmness were normalized in MG1113-treated blood of patients. Intravenous or subcutaneous injection of MG1113 into HA-induced rabbits resulted in rebalancing of blood loss, mPT, and free TFPI levels. CONCLUSIONS These results indicate that subcutaneous administration of MG1113 neutralizes the function of TFPI and regulates bleeding in individuals with hemophilia.
Collapse
Affiliation(s)
- Heechun Kwak
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| | - Sumin Lee
- Office of Corporate StrategyGC PharmaGyeonggi‐doKorea
| | - Seunghyun Jo
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| | - Young Eun Kwon
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| | - Hyunju Kang
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| | - Gahee Choi
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| | | | - Mi‐Jeong Kwak
- Department of Biological SciencesKAIST Institute for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Seonghoon Kim
- Department of Biological SciencesKAIST Institute for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Byung‐Ha Oh
- Department of Biological SciencesKAIST Institute for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Dong‐Sik Kim
- MOGAM Institute for Biomedical ResearchGyeonggi‐doKorea
| | - Sung Ho Hwang
- Department of Research and Early DevelopmentGC PharmaGyeonggi‐doKorea
| |
Collapse
|
24
|
José RJ, Williams A, Manuel A, Brown JS, Chambers RC. Targeting coagulation activation in severe COVID-19 pneumonia: lessons from bacterial pneumonia and sepsis. Eur Respir Rev 2020; 29:29/157/200240. [PMID: 33004529 PMCID: PMC7537941 DOI: 10.1183/16000617.0240-2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has rapidly spread throughout the world, resulting in a pandemic with high mortality. There are no effective treatments for the management of severe COVID-19 and current therapeutic trials are focused on antiviral therapy and attenuation of hyper-inflammation with anti-cytokine therapy. Severe COVID-19 pneumonia shares some pathological similarities with severe bacterial pneumonia and sepsis. In particular, it disrupts the haemostatic balance, which results in a procoagulant state locally in the lungs and systemically. This culminates in the formation of microthrombi, disseminated intravascular coagulation and multi-organ failure. The deleterious effects of exaggerated inflammatory responses and activation of coagulation have been investigated in bacterial pneumonia and sepsis and there is recognition that although these pathways are important for the host immune response to pathogens, they can lead to bystander tissue injury and are negatively associated with survival. In the past two decades, evidence from preclinical studies has led to the emergence of potential anticoagulant therapeutic strategies for the treatment of patients with pneumonia, sepsis and acute respiratory distress syndrome, and some of these anticoagulant approaches have been trialled in humans. Here, we review the evidence from preclinical studies and clinical trials of anticoagulant treatment strategies in bacterial pneumonia and sepsis, and discuss the importance of these findings in the context of COVID-19.
Collapse
Affiliation(s)
- Ricardo J José
- Centre for Inflammation and Tissue Repair, University College London, London, UK .,Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Andrew Williams
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Ari Manuel
- University Hospital Aintree, Liverpool, UK
| | - Jeremy S Brown
- Centre for Inflammation and Tissue Repair, University College London, London, UK.,Dept of Thoracic Medicine, University College London Hospital, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, University College London, London, UK
| |
Collapse
|
25
|
FitzGerald ES, Jamieson AM. Unique transcriptional changes in coagulation cascade genes in SARS-CoV-2-infected lung epithelial cells: A potential factor in COVID-19 coagulopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.06.182972. [PMID: 32676594 PMCID: PMC7359516 DOI: 10.1101/2020.07.06.182972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. In addition to the acute pulmonary symptoms of COVID-19 (the disease associated with SARS-CoV-2 infection), pulmonary and distal coagulopathies have caused morbidity and mortality in many patients. Currently, the molecular pathogenesis underlying COVID-19 associated coagulopathies are unknown. While there are many theories for the cause of this pathology, including hyper inflammation and excess tissue damage, the cellular and molecular underpinnings are not yet clear. By analyzing transcriptomic data sets from experimental and clinical research teams, we determined that changes in the gene expression of genes important in the extrinsic coagulation cascade in the lung epithelium may be important triggers for COVID-19 coagulopathy. This regulation of the extrinsic blood coagulation cascade is not seen with influenza A virus (IAV)-infected NHBEs suggesting that the lung epithelial derived coagulopathies are specific to SARS-Cov-2 infection. This study is the first to identify potential lung epithelial cell derived factors contributing to COVID-19 associated coagulopathy.
Collapse
Affiliation(s)
- Ethan S. FitzGerald
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States
| |
Collapse
|
26
|
Crawley JTB, Zalli A, Monkman JH, Petri A, Lane DA, Ahnstrӧm J, Salles‐Crawley II. Defective fibrin deposition and thrombus stability in Bambi -/- mice are mediated by elevated anticoagulant function. J Thromb Haemost 2019; 17:1935-1949. [PMID: 31351019 PMCID: PMC6899896 DOI: 10.1111/jth.14593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/22/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bone morphogenetic and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein related to the type I transforming growth factor- β (TGF-β) receptor family that is present on both platelets and endothelial cells (ECs). Bambi-deficient mice exhibit reduced hemostatic function and thrombus stability characterized by an increased embolization. OBJECTIVE We aimed to delineate how BAMBI influences endothelial function and thrombus stability. METHODS Bambi-deficient mice were subjected to the laser-induced thrombosis model where platelet and fibrin accumulation was evaluated. Expression of thrombomodulin and tissue factor pathway inhibitor (TFPI) was also assessed in these mice. RESULTS Thrombus instability in Bambi-/- mice was associated with a profound defect in fibrin deposition. Injection of hirudin into Bambi+/+ mice prior to thrombus formation recapitulated the Bambi-/- thrombus instability phenotype. In contrast, hirudin had no additional effect upon thrombus formation in Bambi-/- mice. Deletion of Bambi in ECs resulted in mice with defective thrombus stability caused by decreased fibrin accumulation. Increased levels of the anticoagulant proteins TFPI and thrombomodulin were detected in Bambi-/- mouse lung homogenates. Endothelial cells isolated from Bambi-/- mouse lungs exhibited enhanced ability to activate protein C due to elevated thrombomodulin levels. Blocking thrombomodulin and TFPI in vivo fully restored fibrin accumulation and thrombus stability in Bambi-/- mice. CONCLUSIONS We demonstrate that endothelial BAMBI influences fibrin generation and thrombus stability by modulating thrombomodulin and TFPI anticoagulant function of the endothelium; we also highlight the importance of these anticoagulant proteins in the laser-induced thrombosis model.
Collapse
Affiliation(s)
- James T. B. Crawley
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Argita Zalli
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - James H. Monkman
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Anastasis Petri
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - David A. Lane
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | - Josefin Ahnstrӧm
- Centre for HaematologyHammersmith Hospital CampusImperial College LondonLondonUK
| | | |
Collapse
|
27
|
Post-transcriptional, post-translational and pharmacological regulation of tissue factor pathway inhibitor. Blood Coagul Fibrinolysis 2018; 29:668-682. [PMID: 30439766 DOI: 10.1097/mbc.0000000000000775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: Tissue factor (TF) pathway inhibitor (TFPI) is an endogenous natural anticoagulant that readily inhibits the extrinsic coagulation initiation complex (TF-FVIIa-Xa) and prothrombinase (FXa, FVa and calcium ions). Alternatively, spliced TFPI isoforms (α, β and δ) are expressed by vascular and extravascular cells and regulate thrombosis and haemostasis, as well as cell signalling functions of TF complexes via protease-activated receptors (PARs). Proteolysis of TFPI plays an important role in regulating physiological roles of the TF pathway in host defense and possibly haemostasis. Elimination of TFPI inhibition has therefore been proposed as an approach to improve haemostasis in haemophilia patients. In this review, we focus on posttranscription and translational modification of TFPI and its function in thrombosis and how pharmacological inhibitors and endogenous proteases interfere with TFPI and alter haemostasis.
Collapse
|
28
|
Papareddy P, Kasetty G, Alyafei S, Smeds E, Salo-Ahen OMH, Hansson SR, Egesten A, Herwald H. An ecoimmunological approach to study evolutionary and ancient links between coagulation, complement and Innate immunity. Virulence 2018; 9:724-737. [PMID: 29473457 PMCID: PMC5955456 DOI: 10.1080/21505594.2018.1441589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Coagulation, complement, and innate immunity are tightly interwoven and form an alliance that can be traced back to early eukaryotic evolution. Here we employed an ecoimmunological approach using Tissue Factor Pathway Inhibitor (TFPI)-1-derived peptides from the different classes of vertebrates (i.e. fish, reptile, bird, and mammals) and tested whether they can boost killing of various human bacterial pathogens in plasma. We found signs of species-specific conservation and diversification during evolution in these peptides that significantly impact their antibacterial activity. Though all peptides tested executed bactericidal activity in mammalian plasma (with the exception of rodents), no killing was observed in plasma from birds, reptiles, and fish, pointing to a crucial role for the classical pathway of the complement system. We also observed an interference of these peptides with the human intrinsic pathway of coagulation though, unlike complement activation, this mechanism appears not to be evolutionary conserved.
Collapse
Affiliation(s)
- Praveen Papareddy
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Gopinath Kasetty
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Saud Alyafei
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Emanuel Smeds
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Outi M H Salo-Ahen
- c Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Pharmacy, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland.,d Structural Bioinformatics Laboratory, Faculty of Science and Engineering, Biochemistry, Åbo Akademi University , Tykistökatu 6A, FIN Turku , Finland
| | - Stefan R Hansson
- e Division of Obstetrics and Gynecology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Arne Egesten
- b Division of Respiratory Medicine and Allergology, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| | - Heiko Herwald
- a Division of Infection Medicine, Department of Clinical Sciences , Lund University, Biomedical Center , Tornavägen 10, SE Lund , Sweden
| |
Collapse
|
29
|
|
30
|
Oliveira D, Alvarez-Flores M, Lopes A, Chudzinski-Tavassi A. Functional characterisation of Vizottin, the first factor Xa inhibitor purified from the leech Haementeria vizottoi. Thromb Haemost 2017; 108:570-8. [DOI: 10.1160/th12-04-0235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/17/2012] [Indexed: 11/05/2022]
Abstract
SummaryThe strategic position of factor Xa (FXa) in blood coagulation makes it a compelling target for the development of new anticoagulants. Bloodsucking animals have in their salivary glands mixtures of anticoagulants, which could be used for designing novel antithrombotic compounds. Herein, we describe Vizottin, the first FXa inhibitor from the salivary complex of the leech Haementeria vizottoi. Vizottin was purified by gel filtration and reverse-phase chromatography, and shown to have anticoagulant effects in human plasma, prolonging the recalcification time in a dose-dependent manner (IC50 40 nM). Vizottin induced blood incoagulability in FX-deficient plasma, whereas in normal and reconstituted plasma, Vizottin doubled the prothrombin time at 160 nM. This peptide competitively inhibited human FXa (Ki 2 nM) like FXa inhibitors from other leeches, albeit via a distinct mechanism of action. At high concentrations, vizottin inhibited the amidolytic activity of factor VIIa/tissue factor (IC50 96.4 nM). Vizottin inhibited FXa in the prothrombinase complex and Gla-domainless FXa. Moreover, vizottin did not interfere with FX activation induced by RVV-X, a known enzyme that requires the Gla-domain of FX for activation. Competition experiments in the presence of FXa and GGACK-FXa (active site blocked) demonstrated that the inhibition of FXa by vizottin is through binding to the active site rather than an exosite. This novel inhibitor appears to exert its inhibitory effects through direct binding to the active site of FXa in a time-dependent manner, but not involving a tight-binding model. In this context, vizottin is a promising model for designing novel anticoagulants for the treatment of thrombotic diseases.
Collapse
|
31
|
Franchini M, Martinelli I, Mannucci PM. Uncertain thrombophilia markers. Thromb Haemost 2017; 115:25-30. [DOI: 10.1160/th15-06-0478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/05/2022]
Abstract
SummaryThe development of venous thromboembolism (VTE), which includes deep-vein thrombosis and pulmonary embolism, may be associated with inherited or acquired risk factors that can be measured in plasma or DNA testing. The main inherited thrombophilias include the plasma deficiencies of the natural anticoagulants antithrombin, protein C and S; the gain-of-function mutations factor V Leiden and prothrombin G20210A; some dysfibrinogenaemias and high plasma levels of coagulation factor VIII. Besides these established biomarkers, which usually represent the first-level laboratory tests for thrombophilia screening, a number of additional abnormalities have been less consistently associated with an increased VTE risk. These uncertain causes of thrombophilias will be discussed in this narrative review, focusing on their clinical impact and the underlying pathogenetic mechanisms. Currently, there is insufficient ground to recommend their inclusion within the framework of conventional thrombophilia testing.
Collapse
|
32
|
Husted S, Wallentin L, Andreotti F, Arnesen H, Bachmann F, Baigent C, Huber K, Jespersen J, Kristensen S, Lip GYH, Morais J, Rasmussen L, Siegbahn A, Verheugt FWA, Weitz JI, De Caterina R. General mechanisms of coagulation and targets of anticoagulants (Section I). Thromb Haemost 2017; 109:569-79. [PMID: 23447024 DOI: 10.1160/th12-10-0772] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 12/25/2012] [Indexed: 01/02/2023]
Abstract
SummaryContrary to previous models based on plasma, coagulation processes are currently believed to be mostly cell surface-based, including three overlapping phases: initiation, when tissue factor-expressing cells and microparticles are exposed to plasma; amplification, whereby small amounts of thrombin induce platelet activation and aggregation, and promote activation of factors (F)V, FVIII and FXI on platelet surfaces; and propagation, in which the Xase (tenase) and prothrombinase complexes are formed, producing a burst of thrombin and the cleavage of fibrinogen to fibrin. Thrombin exerts a number of additional biological actions, including platelet activation, amplification and self-inhibition of coagulation, clot stabilisation and anti-fibrinolysis, in processes occurring in the proximity of vessel injury, tightly regulated by a series of inhibitory mechanisms. ″Classical″ anticoagulants, including heparin and vitamin K antagonists, typically target multiple coagulation steps. A number of new anticoagulants, already developed or under development, target specific steps in the process, inhibiting a single coagulation factor or mimicking natural coagulation inhibitors.
Collapse
|
33
|
Choi CY, Kim YH, Bae J, Lee SJ, Kim HK, Park CG, Chun T. Pig tissue factor pathway inhibitor α fusion immunoglobulin inhibits pig tissue factor activity in human plasma moderately more efficiently than the human counterpart. Biotechnol Lett 2017; 39:1631-1638. [PMID: 28748351 DOI: 10.1007/s10529-017-2405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/19/2017] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To determine the efficacy of soluble pig tissue factor pathway inhibitor fusion immunoglobulin (TFPI-Ig) in blocking pig to human xenogeneic blood coagulation. RESULTS To generate pig TFPI-Ig or human TFPI-Ig, expression vector containing cDNA encoding pig TFPIα or human TFPIα combined with human constant Ig heavy chain region was cloned and introduced into CHO cells. After purification of pig TFPI-Ig and human TFPI-Ig, the inhibition of each recombinant protein on pig tissue factor (TF)-mediated blood coagulation was examined in human plasma. Compared to human TFPI-Ig, pig TFPI-Ig inhibited pig TF activity and thrombin generation in human plasma more efficiently at certain concentrations. CONCLUSIONS Pig TFPI-Ig will be be useful as a therapeutic protein to treat pig to human xenogeneic blood coagulation.
Collapse
Affiliation(s)
- Chang-Yong Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeon-Hui Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joonbeom Bae
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju-si, 28503, Republic of Korea
| | - Hyun Kyung Kim
- Department of Laboratory Medicine and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chung-Gyu Park
- Department of Microbiology and Immunology, Cancer Research Institute, Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul, 03087, Republic of Korea
| | - Taehoon Chun
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
34
|
Lipid levels and risk of venous thrombosis: results from the MEGA-study. Eur J Epidemiol 2017; 32:669-681. [PMID: 28540474 PMCID: PMC5591362 DOI: 10.1007/s10654-017-0251-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/29/2017] [Indexed: 12/28/2022]
Abstract
The relationship between lipid levels and risk of venous thrombosis is not well established. We aimed to assess the association between several lipids and risk of venous thrombosis using data from a population-based case-control study, and to evaluate the underlying mechanism, considering confounding by common risk factors and mediation via hemostatic factors and C-reactive protein. From the Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis (MEGA) study, 2234 patients with a first venous thrombosis and 2873 controls were included. Percentile categories of total/low-density lipoprotein/high-density lipoprotein cholesterol, triglycerides, and apolipoproteins B and A1 were established in controls (<10th, 10th-25th, 25th-75th [reference], 75th-90th, >90th percentile). In age- and sex-adjusted models, decreasing levels of apolipoproteins B and A1 were dose-dependently associated with increased thrombosis risk, with odds ratios of 1.35 (95% confidence interval 1.12-1.62) and 1.50 (95% confidence interval 1.25-1.79) for the lowest category versus the reference category, respectively. The dose-response relation remained with further adjustment for body mass index, estrogen use, statin use, and diabetes. Although apolipoproteins B and A1 were associated with several hemostatic factors and C-reactive protein, none explained the increased risk in mediation analyses. The other lipids were not associated with venous thrombosis risk. In conclusion, decreasing levels of apolipoproteins B and A1 were associated with increased risk of venous thrombosis. Our findings are consistent with experimental data on the anticoagulant properties of apolipoproteins B and A1. These findings need to be confirmed and the underlying mechanism further investigated.
Collapse
|
35
|
Winckers K, Thomassen S, ten Cate H, Hackeng TM. Platelet full length TFPI-α in healthy volunteers is not affected by sex or hormonal use. PLoS One 2017; 12:e0168273. [PMID: 28158181 PMCID: PMC5291377 DOI: 10.1371/journal.pone.0168273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Only 10% of plasma TFPIα (TFPI) exists in the full length form, the rest circulates as a C-terminally truncated form. However, blood platelets exclusively contain full length TFPI, which is released at the site of injury upon platelet activation, and which could play an important local regulatory role in thrombin generation and prevention of thrombosis. METHODS The anticoagulant activities of full length and truncated TFPI were investigated using thrombin generation assays. Blood samples were obtained from 30 healthy volunteers (10 male subjects, 10 female subjects, and 10 females using oral contraceptives). Platelet TFPI was released in platelet rich plasma and in platelet isolates using convulxin or thrombin, and measured by free TFPI ELISA and thrombin generation assays. RESULTS Full length TFPI and platelet TFPI were much more potent inhibitors of thrombin generation than truncated TFPI, which was virtually inactive. Although mean plasma TFPI antigen levels decreased from men (0.30 nM) to women (0.20 nM) to women using oral contraceptives (0.11 nM), no relevant differences were found in platelet TFPI among those subgroups. CONCLUSIONS Platelets release similar amounts of TFPI regardless of plasma TFPI concentrations and is unaffected by sex or oral contraceptive use. We speculate that platelet TFPI is important to prevent systemic coagulation and thrombosis and restrict thrombus formation to the site of the growing platelet plug. The stable contribution of platelet TFPI to the anticoagulant potential in plasma is likely to become particularly relevant under conditions of low plasma TFPI levels in combination of oral contraceptives use.
Collapse
Affiliation(s)
- Kristien Winckers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Stella Thomassen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
- Department of Internal Medicine, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Tilman M. Hackeng
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
36
|
He SW, Zhang J, Li NQ, Zhou S, Yue B, Zhang M. A TFPI-1 peptide that induces degradation of bacterial nucleic acids, and inhibits bacterial and viral infection in half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2017; 60:466-473. [PMID: 27840169 DOI: 10.1016/j.fsi.2016.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/04/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Tissue factor pathway inhibitor 1 (TFPI-1) is a serine protease inhibitor that inhibits tissue factor (TF)-mediated coagulation. The C-terminal region of TFPI-1 could be cleaved off and proved to be antimicrobial against a broad-spectrum of microorganism. In a previous study, a C-terminal peptide, TC24 (with 24 amino acids), derived from tongue sole (Cynoglossus semilaevis) TFPI-1, was synthesized and found antibacterial against Micrococcus luteus. In the present study, the antibacterial spectrum and the action mode of TC24 was further examined, and its in vivo function was analyzed. Our results showed that TC24 also possesses bactericidal activity against Staphylococcus aureus and Vibrio vulnificus. During its interaction with the target bacterial cells, TC24 destroyed cell membrane integrity, penetrated into the cytoplasm, and induced degradation of genomic DNA and total RNA. In vivo study showed that administration of tongue sole with TC24 before bacterial and viral infection significantly reduced pathogen dissemination and replication in tissues. These results indicated that TC24 is a novel antimicrobial peptide against bacterial and viral pathogens, and that the observed effect of TC24 on bacterial RNA adds new insights to the action mechanism of fish antimicrobial peptides. Moreover, TC24 may play an important role in fighting pathogenic infection in aquaculture.
Collapse
Affiliation(s)
- Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
37
|
van den Boogaard FE, Hofstra JJ, Brands X, Levi MM, Roelofs JJTH, Zaat SAJ, Van't Veer C, van der Poll T, Schultz MJ. Nebulized Recombinant Human Tissue Factor Pathway Inhibitor Attenuates Coagulation and Exerts Modest Anti-inflammatory Effects in Rat Models of Lung Injury. J Aerosol Med Pulm Drug Deliv 2016; 30:91-99. [PMID: 27977318 DOI: 10.1089/jamp.2016.1317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Critically ill patients are at a constant risk of direct (e.g., by pneumonia) or indirect lung injury (e.g., by sepsis). Excessive alveolar fibrin deposition is a prominent feature of lung injury, undermining pulmonary integrity and function. METHODS We examined the effect of local administration of recombinant human tissue factor pathway inhibitor (rh-TFPI), a natural anticoagulant, in two well-established models of lung injury in rats. Rats received intratracheal instillation of Pseudomonas aeruginosa, causing direct lung injury, or they received an intravenous injection of Escherichia coli lipopolysaccharide (LPS), causing indirect lung injury. Rats were randomized to local treatment with rh-TFPI or placebo through repeated nebulization. RESULTS Challenge with P. aeruginosa or LPS was associated with increased coagulation and decreased fibrinolysis in bronchoalveolar lavage fluid (BALF) and plasma. Rh-TFPI levels in BALF increased after nebulization, whereas plasma rh-TFPI levels remained low and systemic TFPI activity was not affected. Nebulization of rh-TFPI attenuated pulmonary and systemic coagulation in both models, without affecting fibrinolysis. Nebulization of rh-TFPI modestly reduced the inflammatory response and bacterial growth of P. aeruginosa in the alveolar compartment. CONCLUSIONS Local treatment with rh-TFPI does not alter systemic TFPI activity; however, it attenuates both pulmonary and systemic coagulopathy. Furthermore, nebulized rh-TFPI modestly reduces the pulmonary inflammatory response and allows increased bacterial clearance in rats with direct lung injury caused by P. aeruginosa.
Collapse
Affiliation(s)
- Florry E van den Boogaard
- 1 Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,2 Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,3 Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Jorrit J Hofstra
- 1 Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,4 Department of Medical Microbiology, University of Amsterdam , Amsterdam, The Netherlands
| | - Xanthe Brands
- 1 Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,2 Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Marcel M Levi
- 5 Department of Internal Medicine, University of Amsterdam , Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- 6 Department of Pathology, University of Amsterdam , Amsterdam, The Netherlands
| | - Sebastiaan A J Zaat
- 3 Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,4 Department of Medical Microbiology, University of Amsterdam , Amsterdam, The Netherlands
| | - Cornelis Van't Veer
- 2 Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,3 Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| | - Tom van der Poll
- 2 Center for Experimental and Molecular Medicine (CEMM), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,3 Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,7 Department of Infectious Diseases, University of Amsterdam , Amsterdam, The Netherlands
| | - Marcus J Schultz
- 1 Laboratory of Experimental Intensive Care and Anesthesiology (L·E·I·C·A), Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands .,8 Department of Intensive Care Medicine, Academic Medical Center, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|
38
|
Zhao XP, He SW, Yue B, Wang GH, Zhang M. Molecular characterization, expression analysis, and bactericidal activity of the derivative peptides of TFPI-1 and TFPI-2 in half-smooth tongue sole, Cynoglossus semilaevis. FISH & SHELLFISH IMMUNOLOGY 2016; 58:563-571. [PMID: 27717901 DOI: 10.1016/j.fsi.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Tissue factor pathway inhibitors (TFPIs) are Kunitz-type serine protease inhibitors that reversibly regulate the blood coagulation induced by tissue factor. TFPI family contain two members, TFPI-1 and TFPI-2. Recent studies have shown TFPI-1 and TFPI-2 also play important roles in innate immunity, however, the potential function of teleost TFPI are very limited. In this study, we characterized two TFPI (CsTFPI-1 and CsTFPI-2) molecules from half-smooth tongue sole (Cynoglossus semilaevis), examined their tissue distributions and expression patterns under pathogens stimulation as well as investigated the antibacterial activity of the C-terminal peptides. Quantitative real time RT-PCR analysis showed that constitutive CsTFPI-1 expression occurred, in increasing order, in head kidney, intestine, brain, spleen, liver, skin, gills, heart, and muscle; CsTFPI-2 was expressed, in increasing order, in the gills, intestine, skin, head kidney, liver, brain, spleen, muscle, and heart. Under Vibrio anguillarum, Streptococcus agalactiae and fish megalocytivirus stimulation, both CsTFPI-1 and CsTFPI-2 expression increased significantly in a manner that depended on the pathogen, tissue type, and infection stage, which suggested CsTFPI-1 and CsTFPI-2 play important roles in anti-bacterial and anti-viral infection. Finally, C-terminal peptides of CsTFPI-1 and CsTFPI-2, were synthesized and proved to have antibacterial effect against Micrococcus luteus that were independent of host serum. Take together, these results indicate that CsTFPI-1 and CsTFPI-2 play important roles in antimicrobial immunity of this fish.
Collapse
Affiliation(s)
- Xin-Peng Zhao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shu-Wen He
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Bin Yue
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Guang-Hua Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Min Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
39
|
Branco VG, Iqbal A, Alvarez-Flores MP, Sciani JM, de Andrade SA, Iwai LK, Serrano SMT, Chudzinski-Tavassi AM. Amblyomin-X having a Kunitz-type homologous domain, is a noncompetitive inhibitor of FXa and induces anticoagulation in vitro and in vivo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1428-35. [PMID: 27479486 DOI: 10.1016/j.bbapap.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cancer has long been associated with thrombosis and many of the standard chemotherapeutics used to treat cancer are pro-thrombotic. Thus, the identification of novel selective anticancer drugs that also have antithrombotic properties is of enormous significance. Amblyomin-X is an anticancer protein derived from the salivary glands of the Amblyomma cajennense tick. METHODS In this work, we determined the inhibition profile of Amblyomin-X and its effect on activated partial thromboplastin time (aPTT) and prothrombin time (PT), using various approaches such as, kinetic analyses, amidolytic assays, SDS-PAGE, and mass spectrometry. RESULTS Amblyomin-X inhibited factor Xa, prothrombinase and tenase activities. It was hydrolyzed by trypsin and plasmin. MS/MS data of tryptic hydrolysate of Amblyomin-X suggested the presence of Cys(8)-Cys(59) and Cys(19)-Cys(42) but not Cys(34)-Cys(55) disulfide bond. Instead of Cys(34)-Cys(55), two noncanonical Cys(34)-Cys(74) and Cys(55)-Cys(74) disulfide bonds were identified. Furthermore, when Amblyomin-X (1mg/kg) injected in rabbits, it prolonged aPTT and PT. CONCLUSION Amblyomin-X is a noncompetitive inhibitor (Ki=3.9μM) of factor Xa. It is a substrate for plasmin and trypsin, but not for factor Xa and thrombin. The disulfide Cys(34)-Cys(55) bond probably scrambles with interchain seventh free cysteine residues (Cys(74)) of Amblyomin-X. The prolongation of PT and aPTT is reversible. GENERAL SIGNIFICANCE In term of anticoagulant property, this is structural and functional characterization of Amblyomin-X. All together, these results and previous findings suggest that Amblyomin-X has a potential to become an anticancer drug with antithrombotic property.
Collapse
Affiliation(s)
- Vania G Branco
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Asif Iqbal
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Miryam P Alvarez-Flores
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil
| | - Juliana M Sciani
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Sonia A de Andrade
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil
| | - Leo K Iwai
- Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Solange M T Serrano
- Special Laboratory of Applied Toxinology, Butantan Institute, São Paulo, SP, Brazil
| | - Ana M Chudzinski-Tavassi
- Laboratory of Biochemistry and Biophysics, Butantan Institute, Sao Paulo, SP, Brazil; Centre of Excellence for New Target Discovery (CENTD), Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
40
|
Rice NT, Szlam F, Varner JD, Bernstein PS, Szlam AD, Tanaka KA. Differential Contributions of Intrinsic and Extrinsic Pathways to Thrombin Generation in Adult, Maternal and Cord Plasma Samples. PLoS One 2016; 11:e0154127. [PMID: 27196067 PMCID: PMC4873248 DOI: 10.1371/journal.pone.0154127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 04/09/2016] [Indexed: 11/18/2022] Open
Abstract
Background Thrombin generation (TG) is a pivotal process in achieving hemostasis. Coagulation profiles during pregnancy and early neonatal period are different from that of normal (non-pregnant) adults. In this ex vivo study, the differences in TG in maternal and cord plasma relative to normal adult plasma were studied. Methods Twenty consented pregnant women and ten consented healthy adults were included in the study. Maternal and cord blood samples were collected at the time of delivery. Platelet-poor plasma was isolated for the measurement of TG. In some samples, anti-FIXa aptamer, RB006, or a TFPI inhibitor, BAX499 were added to elucidate the contribution of intrinsic and extrinsic pathway to TG. Additionally, procoagulant and inhibitor levels were measured in maternal and cord plasma, and these values were used to mathematically simulate TG. Results Peak TG was increased in maternal plasma (393.6±57.9 nM) compared to adult and cord samples (323.2±38.9 nM and 209.9±29.5 nM, respectively). Inhibitory effects of RB006 on TG were less robust in maternal or cord plasma (52% vs. 12% respectively) than in adult plasma (81%). Likewise the effectiveness of BAX499 as represented by the increase in peak TG was much greater in adult (21%) than in maternal (10%) or cord plasma (12%). Further, BAX499 was more effective in reversing RB006 in adult plasma than in maternal or cord plasma. Ex vivo data were reproducible with the results of the mathematical simulation of TG. Conclusion Normal parturient plasma shows a large intrinsic pathway reserve for TG compared to adult and cord plasma, while TG in cord plasma is sustained by extrinsic pathway, and low levels of TFPI and AT.
Collapse
Affiliation(s)
- Nicklaus T. Rice
- Department of Obstetric and Gynecology, Vanderbilt Medical Center, Nashville, Tennessee, United States of America
| | - Fania Szlam
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jeffrey D. Varner
- School of Chemical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Peter S. Bernstein
- Department of Clinical Obstetric & Gynecology and Women’s Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, New York, United States of America
| | - Arthur D. Szlam
- Department of Mathematics, CCNY, New York, United States of America
| | - Kenichi A. Tanaka
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
El-Sayed OM, Dewyer NA, Luke CE, Elfline M, Laser A, Hogaboam C, Kunkel SL, Henke PK. Intact Toll-like receptor 9 signaling in neutrophils modulates normal thrombogenesis in mice. J Vasc Surg 2015; 64:1450-1458.e1. [PMID: 26482993 DOI: 10.1016/j.jvs.2015.08.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Deletion of Toll-like receptor 9 (Tlr9) signaling, which is important for sterile inflammatory processes, results in impaired resolution of venous thrombosis (VT) in mice. The purpose of this study was to determine if deletion of Tlr9 affected sterile necrosis, apoptosis, and neutrophil extracellular trap (NET) production in VT. METHODS Stasis and nonstasis murine models of VT were used in wild-type (WT) and Tlr9-/- mice, with assessment of thrombus size and determination of NETs, necrosis, and apoptosis markers. Anti-polymorphonuclear neutrophil (PMN) and antiplatelet antibody strategies were used to determine the cellular roles and their roles in WT and Tlr9-/- mice. RESULTS At 2 days, stasis thrombi in Tlr9-/- mice were 62% larger (n = 6-10), with 1.4-fold increased uric acid levels, 1.7-fold more apoptotic cells, 2-fold increased citrullinated histones, 2-fold increased peptidylarginine deiminase 4 (PAD4), and 1.5-fold increased elastase and a 2.4-fold reduction in tissue factor pathway inhibitor compared with WT mice (all n = 4-7; P < .05). In contrast, the sizes of nonstasis thrombi were not significantly different in Tlr9-/- mice (n = 4-6), and they did not have elevated necrosis or NET markers. Stasis thrombus size was not reduced at the 2-day time point in WT or Tlr9-/- mice that received treatment with deoxyribonuclease I or in PAD4-/- mice, which are incapable of forming NETs. In Tlr9-/- mice undergoing PMN depletion (n = 8-10), stasis thrombus size was reduced 18% and was associated with 29-fold decreased citrullinated histones, 1.3-fold decreased elastase, and 1.5-fold increased tissue factor pathway inhibitor (all n = 6; P < .05). Last, platelet depletion (>90% reduction) did not significantly reduce stasis thrombus size in Tlr9-/- mice. CONCLUSIONS These data suggest that the thrombogenic model affects Tlr9 thrombogenic mechanisms and that functional Tlr9 signaling in PMNs, but not in platelets or NETs, is an important mechanism in early stasis experimental venous thrombogenesis.
Collapse
Affiliation(s)
- Osama M El-Sayed
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | - Nicholas A Dewyer
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | - Catherine E Luke
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | - Megan Elfline
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | - Adriana Laser
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich
| | - Cory Hogaboam
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Mich
| | - Peter K Henke
- Department of Vascular Surgery, University of Michigan Medical School, Ann Arbor, Mich.
| |
Collapse
|
42
|
Toll-like receptor 9 signaling regulates tissue factor and tissue factor pathway inhibitor expression in human endothelial cells and coagulation in mice. Crit Care Med 2015; 43:e179-89. [PMID: 25855902 PMCID: PMC4431678 DOI: 10.1097/ccm.0000000000001005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Bacterial DNA (CpG DNA) persists in tissues and blood under pathological conditions that are associated with enhanced intravascular coagulation. Toll-like receptor 9 recognizes CpG DNA and elicits innate and adoptive immunity, yet the impact of CpG DNA on coagulation has not been studied. In this study, we investigated the effects of CpG DNA on the expression and activity of tissue factor, a key initiator of coagulation and tissue factor pathway inhibitor in human coronary artery endothelial cells and on coagulation in mice. Design: Controlled in vitro and in vivo studies. Setting: University research laboratory. Subjects: Cultured human coronary artery endothelial cell, wild-type mice, and TLR9-deficient mice. Interventions: Human coronary artery endothelial cell was challenged with CpG DNA, and tissue factor and tissue factor pathway inhibitor expression and activity were assessed. In mice, the effects of CpG DNA on bleeding time and plasma levels of thrombin-antithrombin complexes and tissue factor were measured. Measurements and Main Results: We found that CpG DNA, but not eukaryotic DNA, evoked marked nuclear factor-κB-mediated increases in tissue factor expression at both messenger RNA and protein levels, as well as in tissue factor activity. Conversely, CpG DNA significantly reduced tissue factor pathway inhibitor transcription, secretion, and activity. Inhibition of Toll-like receptor 9 with a telomere-derived Toll-like receptor 9 inhibitory oligonucleotide or transient Toll-like receptor 9 knockdown with small interfering RNA attenuated human coronary artery endothelial cell responses to CpG DNA. In wild-type mice, CpG DNA shortened the bleeding time parallel with dramatic increases in plasma thrombin-antithrombin complex and tissue factor levels. Pretreatment with inhibitory oligonucleotide or anti-tissue factor antibody or genetic deletion of TLR9 prevented these changes, whereas depleting monocytes with clodronate resulted in a modest partial inhibition. Conclusions: Our findings demonstrate that bacterial DNA through Toll-like receptor 9 shifted the balance of tissue factor and tissue factor pathway inhibitor toward procoagulant phenotype in human coronary artery endothelial cells and activated blood coagulation in mice. Our study identifies Toll-like receptor 9 inhibitory oligonucleotides as potential therapeutic agents for the prevention of coagulation in pathologies where bacterial DNA may abundantly be present.
Collapse
|
43
|
van den Boogaard FE, van 't Veer C, Roelofs JJTH, Meijers JCM, Schultz MJ, Broze GJ, van der Poll T. Endogenous tissue factor pathway inhibitor has a limited effect on host defence in murine pneumococcal pneumonia. Thromb Haemost 2015; 114:115-22. [PMID: 25832548 DOI: 10.1160/th14-12-1053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/22/2015] [Indexed: 01/12/2023]
Abstract
Streptococcus (S.) pneumoniae is the most common causative pathogen in community-acquired pneumonia. Coagulation and inflammation interact in the host response to infection. Tissue factor pathway inhibitor (TFPI) is a natural anticoagulant protein that inhibits tissue factor (TF), the main activator of inflammation-induced coagulation. It was the objective of this study to investigate the effect of endogenous TFPI levels on coagulation, inflammation and bacterial growth during S. pneumoniae pneumonia in mice. The effect of low endogenous TFPI levels was studied by administration of a neutralising anti-TFPI antibody to wild-type mice, and by using genetically modified mice expressing low levels of TFPI, due to a genetic deletion of the first Kunitz domain of TFPI (TFPIK1(-/-)) rescued with a human TFPI transgene. Pneumonia was induced by intranasal inoculation with S. pneumoniae and samples were obtained at 6, 24 and 48 hours after infection. Anti-TFPI reduced TFPI activity by ~50 %. Homozygous lowTFPI mice and heterozygous controls had ~10 % and ~50 % of normal TFPI activity, respectively. TFPI levels did not influence bacterial growth or dissemination. Whereas lung pathology was unaffected in all groups, mice with ~10 % (but not with ~50 %) of TFPI levels displayed elevated lung cytokine and chemokine concentrations 24 hours after infection. None of the groups with low TFPI levels showed an altered procoagulant response in lungs or plasma during pneumonia. These data argue against an important role for endogenous TFPI in the antibacterial, inflammatory and procoagulant response during pneumococcal pneumonia.
Collapse
Affiliation(s)
- Florry E van den Boogaard
- Floor van den Boogaard, MD, Academic Medical Center, University of Amsterdam, Center for Experimental and Molecular Medicine, G2-130, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands, Tel: +31 20 566 5910, Fax: +31 20 566 7192, E-mail:
| | | | | | | | | | | | | |
Collapse
|
44
|
Ait Aissa K, Lagrange J, Mohamadi A, Louis H, Houppert B, Challande P, Wahl D, Lacolley P, Regnault V. Vascular Smooth Muscle Cells Are Responsible for a Prothrombotic Phenotype of Spontaneously Hypertensive Rat Arteries. Arterioscler Thromb Vasc Biol 2015; 35:930-7. [DOI: 10.1161/atvbaha.115.305377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
The hypothesis that hypertension induces a hypercoagulable state arises from the complications associated with hypertension: stroke and myocardial infarction. Here, we determine whether hypertension causes changes in the thrombin-generating capacity of the vascular wall.
Approach and Results—
We used spontaneously hypertensive rats (SHR) compared with Wistar rats. The addition of thoracic aortic rings of SHR to a Wistar or SHR plasma pool resulted in a greater increase in thrombin generation compared with equivalent rings from Wistar. This increase occurred in 12- but not 5-week-old rats and was prevented by an angiotensin II–converting enzyme inhibitor, indicating that established hypertension is required to induce increased thrombin generation within the vessel wall. Whereas no difference was observed for endothelial cells, thrombin formation was higher on aortic smooth muscle cells (SMCs) from SHR than on those from Wistar. Exposure of negatively charged phospholipids was higher on SHR than on Wistar rings, as well as on cultured SMCs. Tissue factor activity was higher in SHR SMCs. Twelve-week-old SHR exhibited accelerated FeCl
3
-induced thrombus formation in carotid arteries, and the resulting occlusive thrombi were disaggregated by blockade of glycoprotein Ibα–von Willebrand factor interactions. SHR SMCs were more sensitive to thrombin-induced proliferation than Wistar SMCs. This effect was totally abolished by a protease-activated receptor 1 inhibitor.
Conclusions—
The prothrombotic phenotype of the SHR vessel wall was due to the ability of SMCs to support greater thrombin generation and resulted in accelerated occlusive thrombus formation after arterial injury, which was sensitive to glycoprotein Ibα–von Willebrand factor inhibitors.
Collapse
Affiliation(s)
- Karima Ait Aissa
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Jérémy Lagrange
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Amel Mohamadi
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Huguette Louis
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Bénédicte Houppert
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Pascal Challande
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Denis Wahl
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Patrick Lacolley
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| | - Véronique Regnault
- From the INSERM, U1116, Vandœuvre-lès-Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); Université de Lorraine, Nancy, France (K.A.A., J.L., A.M., H.L., B.H., D.W., P.L., V.R.); UPMC, University of Paris, Paris, France (P.C.); and CNRS, UMR 7190, Paris, France (P.C.)
| |
Collapse
|
45
|
Momordica charantia seed extract exhibits strong anticoagulant effect by specifically interfering in intrinsic pathway of blood coagulation and dissolves fibrin clot. Blood Coagul Fibrinolysis 2015; 26:191-9. [DOI: 10.1097/mbc.0000000000000191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zhang Z, Till S, Knappe S, Quinn C, Catarello J, Ray GJ, Scheiflinger F, Szabo CM, Dockal M. Screening of complex fucoidans from four brown algae species as procoagulant agents. Carbohydr Polym 2015; 115:677-85. [PMID: 25439948 DOI: 10.1016/j.carbpol.2014.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/26/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Fucoidans are complex sulfated polysaccharides extracted from brown algae. Depending on the concentration, they have been shown to stimulate and inhibit blood coagulation in vitro. Promotion of coagulation is mediated by blocking tissue factor pathway inhibitor (TFPI). We screened fucoidan extracts from four brown algae species in vitro with respect to their potential to improve coagulation in bleeding disorders. The fucoidans' pro- and anticoagulant activities were assessed by global hemostatic and standard clotting assays. Results showed that fucoidans improved coagulation parameters. Some fucoidans also activated the contact pathway of coagulation, an undesired property reported for sulfated glycosaminoglycans. Chemical evaluation of fucoidans' complex and variable structure included molecular weight (Mw), polydispersity (polyD), structural heterogeneity, and organic and inorganic impurities. Herewith, we describe a screening strategy that facilitates the identification of crude fucoidan extracts with desired biological and structural properties for improvement of compromised coagulation like in hemophilia.
Collapse
Affiliation(s)
- Zhenqing Zhang
- Baxter Healthcare Corporation, Round Lake, IL, USA; College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | | | | | | | | | - G Joseph Ray
- Baxter Healthcare Corporation, Round Lake, IL, USA
| | | | | | | |
Collapse
|
47
|
Inhibitory effects of LDL-associated tissue factor pathway inhibitor. Thromb Res 2014; 134:132-7. [DOI: 10.1016/j.thromres.2014.03.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/13/2014] [Accepted: 03/26/2014] [Indexed: 11/20/2022]
|
48
|
Pravda J. Metabolic theory of septic shock. World J Crit Care Med 2014; 3:45-54. [PMID: 24892019 PMCID: PMC4038812 DOI: 10.5492/wjccm.v3.i2.45] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/21/2014] [Accepted: 03/04/2014] [Indexed: 02/06/2023] Open
Abstract
Septic shock is a life threatening condition that can develop subsequent to infection. Mortality can reach as high as 80% with over 150000 deaths yearly in the United States alone. Septic shock causes progressive failure of vital homeostatic mechanisms culminating in immunosuppression, coagulopathy and microvascular dysfunction which can lead to refractory hypotension, organ failure and death. The hypermetabolic response that accompanies a systemic inflammatory reaction places high demands upon stored nutritional resources. A crucial element that can become depleted early during the progression to septic shock is glutathione. Glutathione is chiefly responsible for supplying reducing equivalents to neutralize hydrogen peroxide, a toxic oxidizing agent that is produced during normal metabolism. Without glutathione, hydrogen peroxide can rise to toxic levels in tissues and blood where it can cause severe oxidative injury to organs and to the microvasculature. Continued exposure can result in microvascular dysfunction, capillary leakage and septic shock. It is the aim of this paper to present evidence that elevated systemic levels of hydrogen peroxide are present in septic shock victims and that it significantly contributes to the development and progression of this frequently lethal condition.
Collapse
|
49
|
Snow SJ, Cheng W, Wolberg AS, Carraway MS. Air pollution upregulates endothelial cell procoagulant activity via ultrafine particle-induced oxidant signaling and tissue factor expression. Toxicol Sci 2014; 140:83-93. [PMID: 24752501 DOI: 10.1093/toxsci/kfu071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Air pollution exposure is associated with cardiovascular events triggered by clot formation. Endothelial activation and initiation of coagulation are pathophysiological mechanisms that could link inhaled air pollutants to vascular events. Here we investigated the underlying mechanisms of increased endothelial cell procoagulant activity following exposure to soluble components of ultrafine particles (soluble UF). Human coronary artery endothelial cells (HCAEC) were exposed to soluble UF and assessed for their ability to trigger procoagulant activity in platelet-free plasma. Exposed HCAEC triggered earlier thrombin generation and faster fibrin clot formation, which was abolished by an anti-tissue factor (TF) antibody, indicating TF-dependent effects. Soluble UF exposure increased TF mRNA expression without compensatory increases in key anticoagulant proteins. To identify early events that regulate TF expression, we measured endothelial H2O2 production following soluble UF exposure and identified the enzymatic source. Soluble UF exposure increased endothelial H2O2 production, and antioxidants attenuated UF-induced upregulation of TF, linking the procoagulant responses to reactive oxygen species (ROS) formation. Chemical inhibitors and RNA silencing showed that NOX-4, an important endothelial source of H2O2, was involved in UF-induced upregulation of TF mRNA. These data indicate that soluble UF exposure induces endothelial cell procoagulant activity, which involves de novo TF synthesis, ROS production, and the NOX-4 enzyme. These findings provide mechanistic insight into the adverse cardiovascular effects associated with air pollution exposure.
Collapse
Affiliation(s)
- S J Snow
- Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - W Cheng
- Department of Environmental Science and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - A S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - M S Carraway
- Environmental Public Health Division, NHEERL, US Environmental Protection Agency, Research Triangle Park, North Carolina 27599
| |
Collapse
|
50
|
Tissue factor pathway inhibitor in activated prothrombin complex concentrates (aPCC) moderates the effectiveness of therapy in some severe hemophilia A patients with inhibitor. Int J Hematol 2014; 99:577-87. [DOI: 10.1007/s12185-014-1572-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|