1
|
Haybar H, Bandar B, Torfi E, Mohebbi A, Saki N. Cytokines and their role in cardiovascular diseases. Cytokine 2023; 169:156261. [PMID: 37413877 DOI: 10.1016/j.cyto.2023.156261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
The evaluation of diagnostic and prognostic biomarkers has always been a hot topic in various diseases. Considering that cardiovascular diseases (CVDs) have the highest mortality and morbidity rates in the world, various studies have been conducted so far to find CVD associated biomarkers, including cardiac troponin (cTn) and NT-proBNP. Cytokines are components of the immune system that are involved in the pathogenesis of CVD due to their contribution to the inflammation process. The level of cytokines varies in many cardiovascular diseases. For instance, the plasma level of IL-1α, IL-18, IL-33, IL-6 and IL-8 is positively correlated with atherosclerosis and that of some other interleukins such as IL-35 is negatively correlated with acute myocardial infarction or cardiac angina. Due to its pivotal role in the inflammation process, IL-1 super family is involved in many CVDs, including atherosclerosis. IL-20 among the interleukins of IL-10 family has a pro-atherogenic role, while others, such as IL-10 and IL-19, play an anti-atherogenic role. In the present review, we have collected the latest published evidence in this respect to discuss valuable cytokines from the diagnostic and prognostic stand point in CVDs.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bita Bandar
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ekhlas Torfi
- Department of Cardiovascular Disease, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Mohebbi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Zhou H, Tu LN, Giachelli C, Nigam V, Scatena M. Monocyte Adhesion and Transmigration Through Endothelium Following Cardiopulmonary Bypass Shearing is Mediated by IL-8 Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543811. [PMID: 37333089 PMCID: PMC10274614 DOI: 10.1101/2023.06.05.543811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BackgroundThe use of cardiopulmonary bypass (CPB) can induce sterile systemic inflammation that contributes to morbidity and mortality, especially in children. Patients have been found to have increased expression of cytokines and transmigration of leukocytes during and after CPB. Previous work has demonstrated that the supraphysiologic shear stresses present during CPB are sufficient to induce proinflammatory behavior in non-adherent monocytes. The interactions between shear stimulated monocytes and vascular endothelial cells have not been well studied and have important translational implications.MethodsTo test the hypothesis that non-physiological shear stress experienced by monocytes during CPB affects the integrity and function of the endothelial monolayer via IL-8 signaling pathway, we have used an in vitro CPB model to study the interaction between THP-1 monocyte-like cells and human neonatal dermal microvascular endothelial cells (HNDMVECs). THP-1 cells were sheared in polyvinyl chloride (PVC) tubing at 2.1 Pa, twice of physiological shear stress, for 2 hours. Interactions between THP-1 cells and HNDMVECs were characterized after coculture.ResultsWe found that sheared THP-1 cells adhered to and transmigrated through the HNDMVEC monolayer more readily than static controls. When co-culturing, sheared THP-1 cells also disrupted in the VE-cadherin and led to reorganization of cytoskeletal F-actin of HNDMVECs. Treating HNDMVECs with IL-8 resulted in upregulation of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) while also increasing the adherence of non-sheared THP-1 cells. Preincubating HNDMVECs with Reparixin, an inhibitor of CXCR2/IL-8 receptor inhibited sheared THP-1 cell adhesion to the HNDMVECs.ConclusionsThese results suggested that IL-8 not only increases the endothelium permeability during monocyte migration, but also affects the initial adhesion of monocytes in a CPB setup. This study revealed a novel mechanism of post-CPB inflammation and will contribute to the development of targeted therapeutics to prevent and repair the damage to neonatal patients.HighlightsShear stress in a CPB-like environment promoted the adhesion and transmigration of monocytes to and through endothelial monolayer.Treating endothelial monolayer with sheared monocytes led to disruption of VE-cadherin and reorganization of F-actin.Interaction between sheared monocytes resulted in a significant increase of IL-8 release.Inhibiting IL-8 receptor prevented sheared monocyte adhesion, while IL-8 promoted naive monocyte adhesion.
Collapse
Affiliation(s)
- Hao Zhou
- University of Washington, Seattle, WA
| | - Lan N Tu
- Seattle Children's Hospital, Seattle, WA
| | | | - Vishal Nigam
- University of Washington, Seattle, WA
- Seattle Children's Hospital, Seattle, WA
| | | |
Collapse
|
3
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
4
|
Li S, She J, Zeng J, Xie K, Luo Z, Su S, Chen J, Xian G, Cheng Z, Zhao J, Li S, Xu X, Xu D, Tang L, Zhou X, Zeng Q. Marine-Derived Piericidin Diglycoside S18 Alleviates Inflammatory Responses in the Aortic Valve via Interaction with Interleukin 37. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6776050. [PMID: 36035206 PMCID: PMC9402299 DOI: 10.1155/2022/6776050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Calcific aortic valve disease (CAVD) is a valvular disease frequently in the elderly individuals that can lead to the valve dysfunction. Osteoblastic differentiation of human aortic valve interstitial cells (HAVICs) induced by inflammation play a crucial role in CAVD pathophysiological processes. To date, no effective drugs for CAVD have been established, and new agents are urgently needed. Piericidin glycosides, obtained from a marine-derived Streptomyces strain, were revealed to have regulatory effects on mitochondria in previous studies. Here, we discovered that 13-hydroxypiericidin A 10-O-α-D-glucose (1→6)-β-D-glucoside (S18), a specific piericidin diglycoside, suppresses lipopolysaccharide- (LPS) induced inflammatory responses of HAVICs by alleviating mitochondrial stress in an interleukin (IL)-37-dependent manner. Knockdown of IL-37 by siRNA not only exaggerated LPS-induced HAVIC inflammation and mitochondrial stress but also abrogated the anti-inflammatory effect of S18 on HAVICs. Moreover, S18 alleviated aortic valve lesions in IL-37 transgenic mice of CAVD model. Microscale thermophoresis (MST) and docking analysis of five piericidin analogues suggested that diglycosides, but not monoglycosides, exert obvious IL-37-binding activity. These results indicate that S18 directly binds to IL-37 to alleviate inflammatory responses in HAVICs and aortic valve lesions in mice. Piericidin diglycoside S18 is a potential therapeutic agent to prevent the development of CAVD.
Collapse
Affiliation(s)
- Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingxin Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Zichao Luo
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jun Chen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Gaopeng Xian
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Zhendong Cheng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Shaoping Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center of Göttingen, Georg-August-University, Göttingen, Germany
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou 510515, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
5
|
Cyclic-AMP Increases Nuclear Actin Monomer Which Promotes Proteasomal Degradation of RelA/p65 Leading to Anti-Inflammatory Effects. Cells 2022; 11:cells11091414. [PMID: 35563720 PMCID: PMC9101168 DOI: 10.3390/cells11091414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/04/2022] Open
Abstract
The second messenger, cAMP has potent immunosuppressive and anti-inflammatory actions. These have been attributed, in part, to the ability of cAMP-induced signals to interfere with the function of the proinflammatory transcription factor Nuclear Factor-kappa B (NF-κB). However, the mechanisms underlying the modulation of NF-κB activity by cAMP remain unclear. Here we demonstrate an important role for cAMP-mediated increase in nuclear actin monomer levels in inhibiting NF-κB activity. Elevated cAMP or forced expression of a nuclear localised polymerisation defective actin mutant (NLS-ActinR62D) inhibited basal and TNFα induced mRNA levels of NF-κB-dependent genes and NF-κB-dependent reporter gene activity. Elevated cAMP or NLS-ActinR62D did not affect NF-κB nuclear translocation but did reduce total cellular and nuclear RelA/p65 levels. Preventing the cAMP-induced increase in nuclear actin monomer, either by expressing a nuclear localised active mutant of the actin polymerising protein mDIA, silencing components of the nuclear actin import complex IPO9 and CFL1 or overexpressing the nuclear export complex XPO6, rescued RelA/p65 levels and NF-κB reporter gene activity in forskolin-stimulated cells. Elevated cAMP or NLS-ActinR62D reduced the half-life of RelA/p65, which was reversed by the proteasome inhibitor MG132. Accordingly, forskolin stimulated association of RelA/p65 with ubiquitin affinity beads, indicating increased ubiquitination of RelA/p65 or associated proteins. Taken together, our data demonstrate a novel mechanism underlying the anti-inflammatory effects of cAMP and highlight the important role played by nuclear actin in the regulation of inflammation.
Collapse
|
6
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
7
|
Pal S, Nath S, Meininger CJ, Gashev AA. Emerging Roles of Mast Cells in the Regulation of Lymphatic Immuno-Physiology. Front Immunol 2020; 11:1234. [PMID: 32625213 PMCID: PMC7311670 DOI: 10.3389/fimmu.2020.01234] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
Mast cells (MCs) are abundant in almost all vascularized tissues. Furthermore, their anatomical proximity to lymphatic vessels and their ability to synthesize, store and release a large array of inflammatory and vasoactive mediators emphasize their significance in the regulation of the lymphatic vascular functions. As a major secretory cell of the innate immune system, MCs maintain their steady-state granule release under normal physiological conditions; however, the inflammatory response potentiates their ability to synthesize and secrete these mediators. Activation of MCs in response to inflammatory signals can trigger adaptive immune responses by dendritic cell-directed T cell activation. In addition, through the secretion of various mediators, cytokines and growth factors, MCs not only facilitate interaction and migration of immune cells, but also influence lymphatic permeability, contractility, and vascular remodeling as well as immune cell trafficking through the lymphatic vessels. In summary, the consequences of these events directly affect the lymphatic niche, influencing inflammation at multiple levels. In this review, we have summarized the recent advancements in our understanding of the MC biology in the context of the lymphatic vascular system. We have further highlighted the MC-lymphatic interaction axis from the standpoint of the tumor microenvironment.
Collapse
Affiliation(s)
- Sarit Pal
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Shubhankar Nath
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| | - Anatoliy A Gashev
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Bryan, TX, United States
| |
Collapse
|
8
|
Monslow J, Todd L, Chojnowski JE, Govindaraju PK, Assoian RK, Puré E. Fibroblast Activation Protein Regulates Lesion Burden and the Fibroinflammatory Response in Apoe-Deficient Mice in a Sexually Dimorphic Manner. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1118-1136. [PMID: 32084369 DOI: 10.1016/j.ajpath.2020.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Fibroblast activation protein (FAP) has been established as an inducible and mesenchymal cell-specific mediator of disease progression in cancer and fibrosis. Atherosclerosis is a fibroinflammatory disease, and FAP was previously reported to be up-regulated in human atherosclerotic plaques compared with normal vessel. We investigated the spatial and temporal distribution of Fap-expressing cells in a murine model of atherosclerosis and used a genetic approach to determine if and how Fap affected disease progression. Fap was found to be expressed predominantly on vascular smooth muscle cells in lesions of athero-prone Apoe-/- mice. Global deletion of Fap (Fap-/-) in Apoe-/- mice accelerated atherosclerotic disease progression in both males and females, with the effect observed earlier in males. Sex-specific effects on lesion morphology were observed. Relative levels of extracellular matrix, fibrotic, and inflammatory cell content were comparable in lesions in male mice regardless of Fap status. In contrast, lesions in Fap-/- female mice were characterized by a more fibrotic composition due to a reduction in inflammation, specifically a reduction in Mox macrophages. Combined, these data suggest that Fap restrains the progression of atherosclerosis and may contribute to the sexually dimorphic susceptibility to atherosclerosis by regulating the balance between inflammation (an indicator of vulnerability to plaque rupture) and fibrosis (an indicator of plaque stability).
Collapse
Affiliation(s)
- James Monslow
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia Pennsylvania.
| | - Leslie Todd
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia Pennsylvania
| | - John E Chojnowski
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia Pennsylvania
| | - Priya K Govindaraju
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia Pennsylvania
| | - Richard K Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania
| | - Ellen Puré
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia Pennsylvania.
| |
Collapse
|
9
|
Wang Y, Dubland JA, Allahverdian S, Asonye E, Sahin B, Jaw JE, Sin DD, Seidman MA, Leeper NJ, Francis GA. Smooth Muscle Cells Contribute the Majority of Foam Cells in ApoE (Apolipoprotein E)-Deficient Mouse Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:876-887. [PMID: 30786740 DOI: 10.1161/atvbaha.119.312434] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective- Smooth muscle cells (SMCs) are the most abundant cells in human atherosclerotic lesions and are suggested to contribute at least 50% of atheroma foam cells. In mice, SMCs contribute fewer total lesional cells. The purpose of this study was to determine the contribution of SMCs to total foam cells in apolipoprotein E-deficient (ApoE-/-) mice, and the utility of these mice to model human SMC foam cell biology and interventions. Approach and Results- Using flow cytometry, foam cells in the aortic arch of ApoE-/- mice were characterized based on the expression of leukocyte-specific markers. Nonleukocyte foam cells increased from 37% of total foam cells in 27-week-old to 75% in 57-week-old male ApoE-/- mice fed a chow diet and were ≈70% in male and female ApoE-/- mice following 6 weeks of Western diet feeding. A similar contribution to total foam cells by SMCs was found using SMC-lineage tracing ApoE-/- mice fed the Western diet for 6 or 12 weeks. Nonleukocyte foam cells contributed a similar percentage of total atheroma cholesterol and exhibited lower expression of the cholesterol exporter ABCA1 (ATP-binding cassette transporter A1) when compared with leukocyte-derived foam cells. Conclusions- Consistent with previous studies of human atheromas, we present evidence that SMCs contribute the majority of atheroma foam cells in ApoE-/- mice fed a Western diet and a chow diet for longer periods. Reduced expression of ABCA1, also seen in human intimal SMCs, suggests a common mechanism for formation of SMC foam cells across species, and represents a novel target to enhance atherosclerosis regression.
Collapse
Affiliation(s)
- Ying Wang
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada.,Division of Vascular Surgery, Stanford University, CA (Y.W., N.J.L.)
| | - Joshua A Dubland
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Sima Allahverdian
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Enyinnaya Asonye
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Basak Sahin
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Jen Erh Jaw
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Don D Sin
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Michael A Seidman
- Pathology and Laboratory Medicine (M.A.S.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| | - Nicholas J Leeper
- Division of Vascular Surgery, Stanford University, CA (Y.W., N.J.L.)
| | - Gordon A Francis
- From the Departments of Medicine (Y.W., J.A.D., S.A., E.A., B.S., J.E.J., D.D.S., G.A.F.), Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St Paul's Hospital, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Salzano A, Pesce A, D'Andrea L, Paciello O, Della Ragione F, Ciaramella P, Salzano C, Costagliola A, Licitra F, Neglia G. Inflammatory response in repeat breeder buffaloes. Theriogenology 2020; 145:31-38. [PMID: 31982692 DOI: 10.1016/j.theriogenology.2020.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/09/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the repeat breeding condition in Italian Mediterranean buffaloes that failed to conceive after at least 300 days in milk. The trial was carried out on 40 pluriparous Italian Mediterranean buffaloes with more than 300 days in milk. All the animals underwent ultrasound examination to assess endometrial thickness and oestrus synchronization by the Ovsynch-TAI Program. On the day of oestrus, blood samples were collected for the haemocytometric cell count and biochemical assay, and the animals were slaughtered in a local abattoir. A post-mortem uterine flushing was performed using sterile saline for microbiological analyses. Furthermore, uterine biopsies were carried out for histopathological assessment. Finally, endometrial samples were used for real-time PCR (RT-PCR) analysis to evaluate the expression of genes involved in innate immune recognition of pathogens and the inflammatory response, such as Toll-like receptor (TLR)1, TLR8, interleukin (IL)-1β, IL-6, IL-8, COL4A2, connective tissue growth factor (CTGF), and cysteine-rich angiogenic inducer 61 (CYR61). Statistical analysis was performed by one-way ANOVA. Based on the infiltration of lymphocytes and plasma cells or endometrial gland, lymphatic, and blood vessel ectasia recorded in the histopathological examination, the animals were classified into three groups: healthy (H Group; n = 5), moderate endometritis (M Group; n = 25), and severe endometritis (S Group; n = 10). A significantly greater (P < 0.01) endometrial thickness was recorded in the S Group compared to that in the H and M Group (1.07 ± 0.03 vs. 0.70 ± 0.07 and 0.81 ± 0.04 cm in the S, H, and M Group, respectively). The white blood cell count was lower in the H Group compared to that in the M and S Group (6.3 ± 0.6 vs. 9.3 ± 0.4 and 10.5 ± 0.5 in the H, M, and S Group, respectively). To perform RT-PCR analysis, five animals from groups M and S were randomly selected in order to have balanced results. A higher (P < 0.01) expression of TLR1, together with a lower expression of COL4A2, IL-1β, IL-6, IL-8, and CYR61, was recorded in the H Group, compared to both the M and S Groups. In conclusion, about 90% of repeat breeder buffaloes show moderate or severe endometritis, associated with an altered histopathological endometrial profile and altered mRNA expression of pro-inflammatory and fibrotic factors.
Collapse
Affiliation(s)
- Angela Salzano
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Antonella Pesce
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), Via Salute 2, 80055, Portici, Naples, Italy
| | - Luigi D'Andrea
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy.
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics ABT, National Research Council, Via Castellino 111, 80131, Naples, Italy
| | - Paolo Ciaramella
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Caterina Salzano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno (IZSM), Via Salute 2, 80055, Portici, Naples, Italy
| | - Alessandro Costagliola
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| | - Francesca Licitra
- Istituto Zooprofilattico Sperimentale della Sicilia, 97100, Ragusa, Italy
| | - Gianluca Neglia
- Department of Veterinary Medicine and Animal Productions, University of Napoli "Federico II", Via Delpino 1, 80137, Naples, Italy
| |
Collapse
|
11
|
Heuslein JL, Gorick CM, Song J, Price RJ. DNA Methyltransferase 1-Dependent DNA Hypermethylation Constrains Arteriogenesis by Augmenting Shear Stress Set Point. J Am Heart Assoc 2017; 6:JAHA.117.007673. [PMID: 29191807 PMCID: PMC5779061 DOI: 10.1161/jaha.117.007673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Arteriogenesis is initiated by increased shear stress and is thought to continue until shear stress is returned to its original “set point.” However, the molecular mechanism(s) through which shear stress set point is established by endothelial cells (ECs) are largely unstudied. Here, we tested the hypothesis that DNA methyltransferase 1 (DNMT1)–dependent EC DNA methylation affects arteriogenic capacity via adjustments to shear stress set point. Methods and Results In femoral artery ligation–operated C57BL/6 mice, collateral artery segments exposed to increased shear stress without a change in flow direction (ie, nonreversed flow) exhibited global DNA hypermethylation (increased 5‐methylcytosine staining intensity) and constrained arteriogenesis (30% less diameter growth) when compared with segments exposed to both an increase in shear stress and reversed‐flow direction. In vitro, ECs exposed to a flow waveform biomimetic of nonreversed collateral segments in vivo exhibited a 40% increase in DNMT1 expression, genome‐wide hypermethylation of gene promoters, and a DNMT1‐dependent 60% reduction in proarteriogenic monocyte adhesion compared with ECs exposed to a biomimetic reversed‐flow waveform. These results led us to test whether DNMT1 regulates arteriogenic capacity in vivo. In femoral artery ligation–operated mice, DNMT1 inhibition rescued arteriogenic capacity and returned shear stress back to its original set point in nonreversed collateral segments. Conclusions Increased shear stress without a change in flow direction initiates arteriogenic growth; however, it also elicits DNMT1‐dependent EC DNA hypermethylation. In turn, this diminishes mechanosensing, augments shear stress set point, and constrains the ultimate arteriogenic capacity of the vessel. This epigenetic effect could impact both endogenous collateralization and treatment of arterial occlusive diseases.
Collapse
Affiliation(s)
- Joshua L Heuslein
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| |
Collapse
|
12
|
Harling L, Lambert J, Ashrafian H, Darzi A, Gooderham NJ, Athanasiou T. Pre-operative serum VCAM-1 as a biomarker of atrial fibrillation after coronary artery bypass grafting. J Cardiothorac Surg 2017; 12:70. [PMID: 28821262 PMCID: PMC5563046 DOI: 10.1186/s13019-017-0632-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Objective Systemic inflammation is a recognised contributory factor in the pathogenesis of de novo post-operative atrial fibrillation after cardiac surgery. This study aims to determine whether serum soluble vascular endothelial cell adhesion molecule (sVCAM-1) may predict the onset of POAF in patients under going coronary artery bypass grafting. Methods 34 patients undergoing non-emergent, on-pump CABG were prospectively recruited. Plasma was obtained at 24 h pre-operatively and at 48 and 96 h post-operatively. POAF was defined by continuous Holter recording. Inter-group comparisons were performed using student t-test or ANOVA as appropriate. Results Thirteen (13/34) patients developed POAF at a mean of 2.5 days post-operatively. Serum sVCAM-1 was significantly increased in the pre-operative serum of POAF when compared to non-POAF patients (p = 0.022). No significant difference was observed between the groups at 48 h (p = 0.073) or 96 h (p = 0.135) post-operatively. sVCAM-1 had a sensitivity of 60.0% and specificity of 77.27%, with an overall diagnostic accuracy of 75.2% in predicting POAF. Conclusions sVCAM-1 concentration in the pre-operative serum of patients undergoing CABG may accurately predict the onset of de novo POAF. As such, serum sVCAM-1 may be used as a predictive biomarker for this common arrhythmia. Further work must now perform prospective, targeted validation of these results in a larger patient cohort.
Collapse
Affiliation(s)
- Leanne Harling
- Department of Surgery and Cancer, Imperial College London, London, UK. .,Department of Cardiothoracic Surgery, Hammersmith Hospital, London, UK. .,Department of Biomolecular Medicine, Imperial College London, London, UK.
| | - Jonathan Lambert
- Department of Biomolecular Medicine, Imperial College London, London, UK.,Institute for Child Health, University College London, London, UK
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Nigel J Gooderham
- Department of Biomolecular Medicine, Imperial College London, London, UK
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, UK.,Department of Cardiothoracic Surgery, Hammersmith Hospital, London, UK
| |
Collapse
|
13
|
Franzoni M, Walsh MT. Towards the Identification of Hemodynamic Parameters Involved in Arteriovenous Fistula Maturation and Failure: A Review. Cardiovasc Eng Technol 2017; 8:342-356. [PMID: 28744783 DOI: 10.1007/s13239-017-0322-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/13/2017] [Indexed: 12/13/2022]
Abstract
Native arteriovenous fistulas have a high failure rate mainly due to the lack of maturation and uncontrolled neo-intimal hyperplasia development. Newly established hemodynamics is thought to be central in driving the fistula fate, after surgical creation. To investigate the effects of realistic wall shear stress stimuli on endothelial cells, an in vitro approach is necessary in order to reduce the complexity of the in vivo environment. After a systematic review, realistic WSS waveforms were selected and analysed in terms of magnitude, temporal gradient, presence of reversing phases (oscillatory shear index, OSI) and frequency content (hemodynamics index, HI). The effects induced by these waveforms in cellular cultures were also considered, together with the materials and methods used to cultivate and expose cells to WSS stimuli. The results show a wide heterogeneity of experimental approaches and WSS waveform features that prevent a complete understanding of the mechanisms that regulate mechanotransduction. Furthermore, the hemodynamics derived from the carotid bifurcation is the most investigated (in vitro), while the AVF scenario remains poorly addressed. In conclusion, standardisation of the materials and methods employed, as well as the decomposition of realistic WSS profiles, are required for a better understanding of the hemodynamic effects on AVF outcomes. This standardisation may also lead to a new classification of WSS features according to the risk associated with vascular dysfunction.
Collapse
Affiliation(s)
- Marco Franzoni
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- Centre for Applied Biomedical Engineering Research, Health Research Institute, Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.
| |
Collapse
|
14
|
Collado MS, Cole BK, Figler RA, Lawson M, Manka D, Simmers MB, Hoang S, Serrano F, Blackman BR, Sinha S, Wamhoff BR. Exposure of Induced Pluripotent Stem Cell-Derived Vascular Endothelial and Smooth Muscle Cells in Coculture to Hemodynamics Induces Primary Vascular Cell-Like Phenotypes. Stem Cells Transl Med 2017. [PMID: 28628273 PMCID: PMC5689791 DOI: 10.1002/sctm.17-0004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) can be differentiated into vascular endothelial (iEC) and smooth muscle (iSMC) cells. However, because iECs and iSMCs are not derived from an intact blood vessel, they represent an immature phenotype. Hemodynamics and heterotypic cell:cell communication play important roles in vascular cell phenotypic modulation. Here we tested the hypothesis that hemodynamic exposure of iECs in coculture with iSMCs induces an in vivo‐like phenotype. iECs and iSMCs were cocultured under vascular region‐specific blood flow hemodynamics, and compared to hemodynamic cocultures of blood vessel‐derived endothelial (pEC) and smooth muscle (pSMC) cells. Hemodynamic flow‐induced gene expression positively correlated between pECs and iECs as well as pSMCs and iSMCs. While endothelial nitric oxide synthase 3 protein was lower in iECs than pECs, iECs were functionally mature as seen by acetylated‐low‐density lipoprotein (LDL) uptake. SMC contractile protein markers were also positively correlated between pSMCs and iSMCs. Exposure of iECs and pECs to atheroprone hemodynamics with oxidized‐LDL induced an inflammatory response in both. Dysfunction of the transforming growth factor β (TGFβ) pathway is seen in several vascular diseases, and iECs and iSMCs exhibited a transcriptomic prolife similar to pECs and pSMCs, respectively, in their responses to LY2109761‐mediated transforming growth factor β receptor I/II (TGFβRI/II) inhibition. Although there are differences between ECs and SMCs derived from iPSCs versus blood vessels, hemodynamic coculture restores a high degree of similarity in their responses to pathological stimuli associated with vascular diseases. Thus, iPSC‐derived vascular cells exposed to hemodynamics may provide a viable system for modeling rare vascular diseases and testing new therapeutic approaches. Stem Cells Translational Medicine2017;6:1673–1683
Collapse
Affiliation(s)
| | | | | | - Mark Lawson
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - David Manka
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | | | - Steve Hoang
- HemoShear Therapeutics, LLC, Charlottesville, Virginia, USA
| | - Felipe Serrano
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Sanjay Sinha
- Department of Medicine and WT-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Kondera-Anasz Z. Abnormal peritoneal regulation of chemokine activation-The role of IL-8 in pathogenesis of endometriosis. Am J Reprod Immunol 2017; 77. [DOI: 10.1111/aji.12622] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/21/2016] [Indexed: 02/03/2023] Open
Affiliation(s)
- Justyna Sikora
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Marta Smycz-Kubańska
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| | - Zdzisława Kondera-Anasz
- Department of Immunology and Serology; Sosnowiec School of Pharmacy with the Division of Medical Analytics in Sosnowiec; Medical University of Silesia in Katowice; Sosnowiec Poland
| |
Collapse
|
16
|
Sistare FD, Mattes WB, LeCluyse EL. The Promise of New Technologies to Reduce, Refine, or Replace Animal Use while Reducing Risks of Drug Induced Liver Injury in Pharmaceutical Development. ILAR J 2017; 57:186-211. [DOI: 10.1093/ilar/ilw025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/25/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022] Open
|
17
|
Wang L, Zhao XC, Cui W, Ma YQ, Ren HL, Zhou X, Fassett J, Yang YZ, Chen Y, Xia YL, Du J, Li HH. Genetic and Pharmacologic Inhibition of the Chemokine Receptor CXCR2 Prevents Experimental Hypertension and Vascular Dysfunction. Circulation 2016; 134:1353-1368. [PMID: 27678262 PMCID: PMC5084654 DOI: 10.1161/circulationaha.115.020754] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is available in the text. Background: The recruitment of leukocytes to the vascular wall is a key step in hypertension development. Chemokine receptor CXCR2 mediates inflammatory cell chemotaxis in several diseases. However, the role of CXCR2 in hypertension development and the underlying mechanisms remain unknown. Methods: Angiotensin II (490 ng·kg-1·min-1) or deoxycorticosterone acetate (DOCA) salt–induced mouse hypertensive models in genetic ablation, pharmacologic inhibition of CXCR2, and adoptive bone marrow transfer mice were used to determine the role of CXCR2 in hypertension (measured by radiotelemetry and tail-cuff system), inflammation (verified by flow cytometry and quantitative real-time polymerase chain reaction [PCR] analysis), vascular remodeling (studied by haematoxylin and eosin and Masson’s trichrome staining), vascular dysfunction (assessed by aortic ring), and oxidative stress (indicated by nicotinamide adenine dinucleotide phosphate [NADPH] oxidase activity, dihydroethidium staining, and quantitative real-time PCR analysis). Moreover, the blood CXCR2+ cells in normotensive controls and hypertension patients were analyzed by flow cytometry. Results: Angiotensin II significantly upregulated the expression of CXCR2 mRNA and protein and increased the number of CD45+ CXCR2+ cells in mouse aorta (n=8 per group). Selective CXCR2 knockout (CXCR2-/-) or pharmacological inhibition of CXCR2 markedly reduced angiotensin II- or DOCA-salt-induced blood pressure elevation, aortic thickness and collagen deposition, accumulation of proinflammatory cells into the vascular wall, and expression of cytokines (n=8 per group). CXCR2 inhibition also ameliorated angiotensin II-induced vascular dysfunction and reduced vascular superoxide formation, NADPH activity, and expression of NADPH oxidase subunits (n=6 per group). Bone marrow reconstitution of wild-type mice with CXCR2-/- bone marrow cells also significantly abolished angiotensin II-induced responses (n=6 per group). It is important to note that CXCR2 blockade reversed established hypertension induced by angiotensin II or DOCA-salt challenge (n=10 per group). Furthermore, we demonstrated that CXCR2+ proinflammatory cells were higher in hypertensive patients (n=30) compared with normotensive individuals (n=20). Conclusions: Infiltration of CXCR2+ cells plays a pathogenic role in arterial hypertension and vascular dysfunction. Inhibition of CXCR2 pathway may represent a novel therapeutic approach to treat hypertension.
Collapse
Affiliation(s)
- Lei Wang
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Xue-Chen Zhao
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Wei Cui
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yong-Qiang Ma
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Hua-Liang Ren
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Xin Zhou
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - John Fassett
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yan-Zong Yang
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yingjie Chen
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Yun-Long Xia
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Jie Du
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.)
| | - Hui-Hua Li
- From Department of Cardiology, Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China (L.W., X.-C.Z., Y.Z.Z., Y.-L.X., H.-H.L.); Beijing Anzhen Hospital, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Beijing, China (W.C., J.D.); Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Tianjin, China (Y.-Q.M., X.Z.); Department of Vascular Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (H.-L.R.); Department of Pharmacology and Toxicology, University of Graz, Graz, Austria (J.F.); Cardiovascular Division, University of Minnesota, Minneapolis, MN (Y.C.); and Department of Nutrition and Food Hygiene, School of Public Health, Advanced Institute of Medical Sciences, Dalian Medical University, Dalian, China (H.-H.L.).
| |
Collapse
|
18
|
Bleizgys A, Šapoka V. Could both vitamin D and geomagnetic activity impact serum levels of soluble cell adhesion molecules in young men? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1075-1088. [PMID: 26546313 DOI: 10.1007/s00484-015-1101-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 10/25/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Vitamin D might have a role in diminishing endothelial dysfunction (ED). The initial aim was to test the hypothesis of reciprocity between levels of 25-hydroxyvitamin D (25(OH)D) and levels of soluble endothelial cell adhesion molecules (CAMs) that could serve as biomarkers of ED. Randomly selected men of age 20-39 were examined at February or March (cold season) and reexamined at August or September (warm season). Some lifestyle and anthropometrical data were recorded. Laboratory measurements, including those for serum levels of soluble CAMs-sICAM-1, sVCAM-1, sE-selectin and sP-selectin-were also performed. As some of the results were rather unexpected, indices of geomagnetic activity (GMA), obtained from the online database, were included in further analysis as a confounder. In 2012-2013, 130 men were examined in cold season, and 125 of them were reexamined in warm season. 25(OH)D levels were found to be significantly negatively associated with sVCAM-1 levels (β = -0.15, p = 0.043 in warm season; β = -0.19, p = 0.007 for changes). Levels of sVCAM-1 and sICAM-1 from the same seasons were notably different between years and have changed in an opposite manner. Soluble P-selectin levels were higher at warm season in both years. GMA was positively associated with sVCAM-1 (β = 0.17, p = 0.039 in cold season; β = 0.22, p = 0.002 for changes) and negatively with sICAM-1 (β = -0.30. p < 0.001 in cold season) levels. Vitamin D might play a role in diminishing sVCAM-1 levels. Levels of sVCAM-1 and sICAM-1 were associated with the GMA; this implies a need for further research.
Collapse
Affiliation(s)
- Andrius Bleizgys
- Clinic of Internal Diseases, Family Medicine and Oncology of Medical Faculty, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania.
| | - Virginijus Šapoka
- Clinic of Internal Diseases, Family Medicine and Oncology of Medical Faculty, Vilnius University, Santariškių 2, LT-08661, Vilnius, Lithuania
- Vilnius University Hospital Santariskiu Clinics, Santariškių 2, LT-08661, Vilnius, Lithuania
| |
Collapse
|
19
|
Transcriptional profiling suggests that Nevirapine and Ritonavir cause drug induced liver injury through distinct mechanisms in primary human hepatocytes. Chem Biol Interact 2015; 255:31-44. [PMID: 26626330 DOI: 10.1016/j.cbi.2015.11.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Drug induced liver injury (DILI), a major cause of pre- and post-approval failure, is challenging to predict pre-clinically due to varied underlying direct and indirect mechanisms. Nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI) and Ritonavir, a protease inhibitor, are antiviral drugs that cause clinical DILI with different phenotypes via different mechanisms. Assessing DILI in vitro in hepatocyte cultures typically requires drug exposures significantly higher than clinical plasma Cmax concentrations, making clinical interpretations of mechanistic pathway changes challenging. We previously described a system that uses liver-derived hemodynamic blood flow and transport parameters to restore primary human hepatocyte biology, and drug responses at concentrations relevant to in vivo or clinical exposure levels. Using this system, primary hepatocytes from 5 human donors were exposed to concentrations approximating clinical therapeutic and supra-therapeutic levels of Nevirapine (11.3 and 175.0 μM) and Ritonavir (3.5 and 62.4 μM) for 48 h. Whole genome transcriptomics was performed by RNAseq along with functional assays for metabolic activity and function. We observed effects at both doses, but a greater number of genes were differentially expressed with higher probability at the toxic concentrations. At the toxic doses, both drugs showed direct cholestatic potential with Nevirapine increasing bile synthesis and Ritonavir inhibiting bile acid transport. Clear differences in antigen presentation were noted, with marked activation of MHC Class I by Nevirapine and suppression by Ritonavir. This suggests CD8+ T cell involvement for Nevirapine and possibly NK Killer cells for Ritonavir. Both compounds induced several drug metabolizing genes (including CYP2B6, CYP3A4 and UGT1A1), mediated by CAR activation in Nevirapine and PXR in Ritonavir. Unlike Ritonavir, Nevirapine did not increase fatty acid synthesis or activate the respiratory electron chain with simultaneous mitochondrial uncoupling supporting clinical reports of a lower propensity for steatosis. This in vitro study offers insights into the disparate direct and immune-mediated toxicity mechanisms underlying Nevirapine and Ritonavir toxicity in the clinic.
Collapse
|
20
|
Liu J, Hou M, Yan M, Lü X, Gu W, Zhang S, Gao J, Liu B, Wu X, Liu G. ICAM-1-dependent and ICAM-1-independent neutrophil lung infiltration by porcine reproductive and respiratory syndrome virus infection. Am J Physiol Lung Cell Mol Physiol 2015; 309:L226-36. [DOI: 10.1152/ajplung.00037.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/13/2015] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are innate immune cells that play a crucial role in the first line of host defense. It is also known that neutrophil lung recruitment and infiltration may cause lung injury. The roles of neutrophils in virus infection-induced lung injury are not clear. We explore the mechanisms of neutrophil lung infiltration and the potential biomarkers for lung injury in a swine model of lung injury caused by natural or experimental porcine reproductive and respiratory syndrome virus (PRRSV) infection. Neutrophil lung infiltration was determined by measurement of myeloperoxidase expression and enzyme activity of lung tissues. Myeloperoxidase expression and enzyme activity were dramatically increased in the naturally and experimentally infected lung tissues. Chemokine analysis by quantitative PCR and ELISA showed that IL-8 expression was increased in both infections, while monocyte chemoattractant protein-1 expression was increased only in experimentally infected lung tissues. Expression of the cell adhesion molecules VCAM-1 and ICAM-1 was measured by quantitative PCR and Western blotting. VCAM-1 expression was increased in experimentally and naturally infected lungs, whereas ICAM-1 expression was increased only in the naturally infected lung samples. Our results suggest that neutrophil lung infiltrations in the infected animals are both ICAM-1- and -independent and that combined expression of VCAM-1 and IL-8 may serve as the biomarker for lung injury induced by virus infection.
Collapse
Affiliation(s)
- Jie Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Make Hou
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Meiping Yan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xinhui Lü
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Songlin Zhang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong Province, People's Republic of China
| | - Jianfeng Gao
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Bang Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China; and
- Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Xiaoxiong Wu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
- Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| |
Collapse
|
21
|
Liu B, Liang F, Gu LP, Wang CQ, Li XH, Jiang YM, Li WM, Guo QZ, Ma F. Renal blood perfusion in GK rats using targeted contrast enhanced ultrasonography. ASIAN PAC J TROP MED 2015; 8:668-73. [PMID: 26321523 DOI: 10.1016/j.apjtm.2015.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/20/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To explore application of targeted contrast enhanced ultrasonography in diagnosis of early stage vascular endothelial injury and diabetic nephropathy. METHODS Targeted SonoVue-TM microbubble was prepared by attaching anti-TM monoclonal antibody to the surface of ordinary microbubble SonoVue by biotin - avidin bridge method and ultrasonic instrument was used to evaluate the developing situation of targeted microbubble in vitro. Twenty 12-week-old male GK rats and 20 Wistar rats were enrolled in this study, and were randomly divided into targeted angiography group and ordinary angiography group. Targeted microbubbles SonoVue-TM or general microbubble SonoVue were rapidly injected to the rats via tail vein; the developing situation of the two contrast agents in rats kidneys was dynamically observed. Time-intensity curve was used to analyze rat kidney perfusion characteristics in different groups. RESULTS Targeted ultrasound microbubble SonoVue-TM was successfully constructed, and it could be used to develop an external image. Targeted microbubbles SonoVue-TM enabled clear development of experimental rat kidney. Time-intensity curve shapes of rat kidney of the two groups showed as single apex with steep ascending and slowly descending branch. Compared with the control group, the rising slope of the GK rat renal cortex, medulla in targeted angiography group increased (P < 0.05); the peak intensity of medulla increased (P < 0.05), and the total area under the curve of medulla increased (P < 0.05). Compared with control group, the ascending branch of the GK rat in renal cortex, medulla in ordinary angiography group increased (P < 0.05). The peak intensity of the curve increased (P < 0.05), and the total area under the curve increased (P < 0.05). Compared with the ordinary angiography group, the peak of GK rat medulla curve in targeted angiography group intensity increased (P < 0.05), and the total area under the curve increased (P < 0.05). CONCLUSIONS Targeted microbubbles SonoVue-TM can make a clear development of experimental rat kidney, its stable performance meet the requirement of ultrasonic observation time limit, and it can reflect early changes of blood perfusion in GK rat kindey.
Collapse
Affiliation(s)
- Bo Liu
- Xinxiang Medical College, Xinxiang, Henan 453003, China
| | - Feng Liang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Li-Ping Gu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | | | - Xing-Hua Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yi-Min Jiang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wei-Mei Li
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Qing-Zhi Guo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Fang Ma
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
22
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Vascular smooth muscle cell in atherosclerosis. Acta Physiol (Oxf) 2015; 214:33-50. [PMID: 25677529 DOI: 10.1111/apha.12466] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/02/2015] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit phenotypic and functional plasticity in order to respond to vascular injury. In case of the vessel damage, VSMCs are able to switch from the quiescent 'contractile' phenotype to the 'proinflammatory' phenotype. This change is accompanied by decrease in expression of smooth muscle (SM)-specific markers responsible for SM contraction and production of proinflammatory mediators that modulate induction of proliferation and chemotaxis. Indeed, activated VSMCs could efficiently proliferate and migrate contributing to the vascular wall repair. However, in chronic inflammation that occurs in atherosclerosis, arterial VSMCs become aberrantly regulated and this leads to increased VSMC dedifferentiation and extracellular matrix formation in plaque areas. Proatherosclerotic switch in VSMC phenotype is a complex and multistep mechanism that may be induced by a variety of proinflammatory stimuli and hemodynamic alterations. Disturbances in hemodynamic forces could initiate the proinflammatory switch in VSMC phenotype even in pre-clinical stages of atherosclerosis. Proinflammatory signals play a crucial role in further dedifferentiation of VSMCs in affected vessels and propagation of pathological vascular remodelling.
Collapse
Affiliation(s)
- D. A. Chistiakov
- Research Center for Children's Health; Moscow Russia
- The Mount Sinai Community Clinical Oncology Program; Mount Sinai Comprehensive Cancer Center; Mount Sinai Medical Center; Miami Beach FL USA
| | - A. N. Orekhov
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Laboratory of Angiopathology; Institute of General Pathology and Pathophysiology; Russian Academy of Sciences; Moscow Russia
- Department of Biophysics; Biological Faculty; Moscow State University; Moscow Russia
| | - Y. V. Bobryshev
- Institute for Atherosclerosis; Skolkovo Innovative Center; Moscow Russia
- Faculty of Medicine; School of Medical Sciences; University of New South Wales; Kensington Sydney NSW Australia
- School of Medicine; University of Western Sydney; Campbelltown NSW Australia
| |
Collapse
|
23
|
Increased size and cellularity of advanced atherosclerotic lesions in mice with endothelial overexpression of the human TRPC3 channel. Proc Natl Acad Sci U S A 2015; 112:E2201-6. [PMID: 25870279 DOI: 10.1073/pnas.1505410112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In previous in vitro studies, we showed that Transient Receptor Potential Canonical 3 (TRPC3), a calcium-permeable, nonselective cation channel endowed with high constitutive function, is an obligatory component of the inflammatory signaling that controls expression of the vascular cell adhesion molecule-1 (VCAM-1) and monocyte adhesion to coronary artery endothelial cells. Also, TRPC3 expression in these cells was found to be up-regulated by proatherogenic factors, which enhanced inflammation and VCAM-1 expression. However, it remained to be determined whether these in vitro findings were of relevance to atherosclerotic lesion development in vivo. To answer this important question in the present work, we generated mice with endothelial-specific overexpression of human TRPC3 in an Apoe knockout background (TgEST3ApoeKO) and examined lesions in the aortic sinus following 10 and 16 wk on a high-fat diet. No significant differences were found in size or complexity of early stage lesions (10 wk). However, advanced plaques (16 wk) from TgEST3ApoeKO mice exhibited a significant increase in size and macrophage content compared with nontransgenic littermate controls. Remarkably, this change was correlated with increased VCAM-1 and phospho-IkBα immunoreactivity along the endothelial lining of lesions from transgenic animals compared with controls. These findings validate the in vivo relevance of previous in vitro findings and represent, to our knowledge, the first in vivo evidence for a proatherogenic role of endothelial TRPC3.
Collapse
|
24
|
Curaj A, Wu Z, Fokong S, Liehn EA, Weber C, Burlacu A, Lammers T, van Zandvoort M, Kiessling F. Noninvasive molecular ultrasound monitoring of vessel healing after intravascular surgical procedures in a preclinical setup. Arterioscler Thromb Vasc Biol 2015; 35:1366-73. [PMID: 25838431 DOI: 10.1161/atvbaha.114.304857] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/22/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Cardiovascular interventions induce damage to the vessel wall making antithrombotic therapy inevitable until complete endothelial recovery. Without a method to accurately determine the endothelial status, many patients undergo prolonged anticoagulation therapy, denying them any invasive medical procedures, such as surgical operations and dental interventions. Therefore, we aim to introduce molecular ultrasound imaging of the vascular cell adhesion molecule (VCAM)-1 using targeted poly-n-butylcyanoacrylate microbubbles (MB(VCAM-1)) as an easy accessible method to monitor accurately the reendothelialization of vessels. APPROACH AND RESULTS ApoE(-/-) mice were fed with an atherogenic diet for 1 and 12 weeks and subsequently, endothelial denudation was performed in the carotid arteries using a guidewire. Molecular ultrasound imaging was performed at different time points after denudation (1, 3, 7, and 14 days). An increased MB(VCAM-1) binding after 1 day, a peak after 3 days, and a decrease after 7 days was found. After 12 weeks of diet, MB(VCAM-1) binding also peaked after 3 days but remained high until 7 days, indicating a delay in endothelial recovery. Two-photon laser scanning microscopy imaging of double fluorescence staining confirmed the exposure of VCAM-1 on the superficial layer after arterial injury only during the healing phase. After complete reendothelialization, VCAM-1 expression persisted in the subendothelial layer but was not reachable for the MBV(CAM-1) anymore. CONCLUSION Molecular ultrasound imaging with MB(VCAM-1) is promising to assess vascular damage and to monitor endothelial recovery after arterial interventions. Thus, it may become an important diagnostic tool supporting the development of adequate therapeutic strategies to personalize anticoagulant and anti-inflammatory therapy after cardiovascular intervention.
Collapse
Affiliation(s)
- Adelina Curaj
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Zhuojun Wu
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Stanley Fokong
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Elisa A Liehn
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Christian Weber
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Alexandrina Burlacu
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Twan Lammers
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.)
| | - Marc van Zandvoort
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.).
| | - Fabian Kiessling
- From the Institute for Experimental Molecular Imaging (A.C., Z.W., S.F., T.L., F.K.), Institute for Molecular Cardiovascular Research (A.C., Z.W., E.A.L., M.v.Z.), University Clinic, RWTH Aachen University, Aachen, Germany; Institute of Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany (C.W.); DZHK (German Centre for Cardiovascular Research, partner site Munich Heart Alliance), Munich, Germany (C.W.); Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania (A.B.); Department of Controlled Drug Delivery, University of Twente, AE Enschede, The Netherlands (T.L.); and Department of Genetics and Molecular Cell Biology, School for Cardiovascular Diseases CARIM, Maastricht University, Maastricht, The Netherlands (M.v.Z.).
| |
Collapse
|
25
|
Collagen inhibitory peptide R1R2 mediates vascular remodeling by decreasing inflammation and smooth muscle cell activation. PLoS One 2015; 10:e0117356. [PMID: 25675397 PMCID: PMC4326127 DOI: 10.1371/journal.pone.0117356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022] Open
Abstract
The extracellular matrix (ECM) is a major constituent of the vessel wall. In addition to providing a structural scaffold, the ECM controls numerous cellular functions in both physiologic and pathologic settings. Vascular remodeling occurs after injury and is characterized by endothelial cell activation, inflammatory cell infiltration, phenotypic modulation of smooth muscle cells (SMCs), and augmented deposition of collagen-rich ECM. R1R2, a peptide derived from the bacterial adhesin SFS, with sequence homology to collagen, is known to inhibit collagen type I deposition in vitro by inhibiting the binding of fibronectin to collagen. However, the inhibitory effects of R1R2 during vascular remodeling have not been explored. We periadventitially delivered R1R2 to carotid arteries using pluronic gel in a vascular remodeling mouse model induced by blood flow cessation, and evaluated its effects on intima-media thickening, ECM deposition, SMC activation, and inflammatory cell infiltration. Morphometric analysis demonstrated that R1R2 reduced intima-media thickening compared to the control groups. R1R2 treatment also decreased collagen type I deposition in the vessel wall, and maintained SMC in the contractile phenotype. Interestingly, R1R2 dramatically reduced inflammatory cell infiltration into the vessel by ∼78%. This decrease was accompanied by decreased VCAM-1 and ICAM-1 expression. Our in vitro studies revealed that R1R2 attenuated SMC proliferation and migration, and also decreased monocyte adhesion and transendothelial migration through endothelial cells. Together, these data suggest that R1R2 attenuates vascular remodeling responses by decreasing inflammation and by modulating SMC proliferation and migration, and suggest that the R1R2 peptide may have therapeutic potential in treating occlusive vascular diseases.
Collapse
|
26
|
Ackers-Johnson M, Talasila A, Sage AP, Long X, Bot I, Morrell NW, Bennett MR, Miano JM, Sinha S. Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol 2015; 35:817-28. [PMID: 25614278 DOI: 10.1161/atvbaha.114.305218] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atherosclerosis, the cause of 50% of deaths in westernized societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local proinflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. APPROACH AND RESULTS We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic apolipoprotein E(-/-) mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines, and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis, and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. CONCLUSIONS We propose myocardin as a guardian of the contractile, noninflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease.
Collapse
Affiliation(s)
- Matthew Ackers-Johnson
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Amarnath Talasila
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Andrew P Sage
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Xiaochun Long
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Ilze Bot
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Nicholas W Morrell
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Martin R Bennett
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Joseph M Miano
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Sanjay Sinha
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.).
| |
Collapse
|
27
|
Pirvulescu MM, Gan AM, Stan D, Simion V, Calin M, Butoi E, Manduteanu I. Subendothelial resistin enhances monocyte transmigration in a co-culture of human endothelial and smooth muscle cells by mechanisms involving fractalkine, MCP-1 and activation of TLR4 and Gi/o proteins signaling. Int J Biochem Cell Biol 2014; 50:29-37. [PMID: 24508784 DOI: 10.1016/j.biocel.2014.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/03/2023]
Abstract
The cytokine resistin and the chemokine fractalkine (FKN) were found at increased levels in human atherosclerotic plaque, in the subendothelium, but their role in this location still needs to be characterized. Recently, high local resistin in the arterial vessel wall was shown to contribute to an enhanced accumulation of macrophages by mechanisms that need to be clarified. Our recent data showed that resistin activated smooth muscle cells (SMC) by up-regulating FKN and MCP-1 expression and monocyte chemotaxis by activating toll-like receptor 4 (TLR4) and Gi/o proteins. Since in the vessel wall both endothelial cells (EC) and SMC respond to cytokines and promote atherosclerosis, we questioned whether subendothelial resistin (sR) has a role in vascular cells cross-talk leading to enhanced monocyte transmigration and we investigated the mechanisms involved. To this purpose we used an in vitro system of co-cultured SMC and EC activated by sR and we analyzed monocyte transmigration. Our results indicated that: (1) sR enhanced monocyte transmigration in EC/SMC system compared to EC cultured alone; (2) sR activated TLR4 and Gi/o signaling in EC/SMC system and induced the secretion of more FKN and MCP-1 compared to EC cultured alone and used both chemokines to specifically recruit monocytes by CX3CR1 and CCR2 receptors. Moreover, FKN produced by resistin in EC/SMC system, by acting on CX3CR1 on EC/SMC specifically contributes to MCP-1 secretion in the system and to the enhanced monocyte transmigration. Our study indicates new possible targets for therapy to reduce resistin-dependent enhanced macrophage infiltration in the atherosclerotic arterial wall.
Collapse
Affiliation(s)
| | - Ana Maria Gan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Daniela Stan
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Viorel Simion
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Manuela Calin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Elena Butoi
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| | - Ileana Manduteanu
- Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest 050568, Romania
| |
Collapse
|
28
|
Ricotti L, Fujie T, Vazão H, Ciofani G, Marotta R, Brescia R, Filippeschi C, Corradini I, Matteoli M, Mattoli V, Ferreira L, Menciassi A. Boron nitride nanotube-mediated stimulation of cell co-culture on micro-engineered hydrogels. PLoS One 2013; 8:e71707. [PMID: 23977119 PMCID: PMC3743765 DOI: 10.1371/journal.pone.0071707] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
In this paper, we describe the effects of the combination of topographical, mechanical, chemical and intracellular electrical stimuli on a co-culture of fibroblasts and skeletal muscle cells. The co-culture was anisotropically grown onto an engineered micro-grooved (10 µm-wide grooves) polyacrylamide substrate, showing a precisely tuned Young’s modulus (∼ 14 kPa) and a small thickness (∼ 12 µm). We enhanced the co-culture properties through intracellular stimulation produced by piezoelectric nanostructures (i.e., boron nitride nanotubes) activated by ultrasounds, thus exploiting the ability of boron nitride nanotubes to convert outer mechanical waves (such as ultrasounds) in intracellular electrical stimuli, by exploiting the direct piezoelectric effect. We demonstrated that nanotubes were internalized by muscle cells and localized in both early and late endosomes, while they were not internalized by the underneath fibroblast layer. Muscle cell differentiation benefited from the synergic combination of topographical, mechanical, chemical and nanoparticle-based stimuli, showing good myotube development and alignment towards a preferential direction, as well as high expression of genes encoding key proteins for muscle contraction (i.e., actin and myosin). We also clarified the possible role of fibroblasts in this process, highlighting their response to the above mentioned physical stimuli in terms of gene expression and cytokine production. Finally, calcium imaging-based experiments demonstrated a higher functionality of the stimulated co-cultures.
Collapse
Affiliation(s)
- Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa, Italy
- * E-mail:
| | - Toshinori Fujie
- Center of MicroBioRobotics @ SSSA, Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy
- WPI - Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Helena Vazão
- Biocant - Center of Biotechnology Innovation Center, Cantanhede, Coimbra, Portugal
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gianni Ciofani
- Center of MicroBioRobotics @ SSSA, Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy
| | | | | | - Carlo Filippeschi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa, Italy
- Center of MicroBioRobotics @ SSSA, Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy
| | - Irene Corradini
- Fondazione Filarete, Milano, Italy
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Michela Matteoli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
- Humanitas Clinical and Research Center, Rozzano, Italy
| | - Virgilio Mattoli
- Center of MicroBioRobotics @ SSSA, Istituto Italiano di Tecnologia, Pontedera, Pisa, Italy
| | - Lino Ferreira
- Biocant - Center of Biotechnology Innovation Center, Cantanhede, Coimbra, Portugal
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pontedera, Pisa, Italy
| |
Collapse
|
29
|
Feaver RE, Gelfand BD, Blackman BR. Human haemodynamic frequency harmonics regulate the inflammatory phenotype of vascular endothelial cells. Nat Commun 2013; 4:1525. [PMID: 23443553 DOI: 10.1038/ncomms2530] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 01/21/2013] [Indexed: 01/14/2023] Open
Abstract
Haemodynamic variations are inherent to blood vessel geometries (such as bifurcations) and correlate with regional development of inflammation and atherosclerosis. However, the complex frequency spectrum characteristics from these haemodynamics have never been exploited to test whether frequency variations are critical determinants of endothelial inflammatory phenotype. Here we utilize an experimental Fourier transform analysis to systematically manipulate individual frequency harmonics from human carotid shear stress waveforms applied in vitro to human endothelial cells. The frequency spectrum, specifically the 0 th and 1st harmonics, is a significant regulator of inflammation, including NF-κB activity and downstream inflammatory phenotype. Further, a harmonic-based regression-model predicts eccentric NF-κB activity observed in the human internal carotid artery. Finally, short interfering RNA-knockdown of the mechanosensor PECAM-1 reverses frequency-dependent regulation of NF-κB activity. Thus, PECAM-1 may have a critical role in the endothelium's exquisite sensitivity to complex shear stress frequency harmonics and provide a mechanism for the focal development of vascular inflammation.
Collapse
Affiliation(s)
- Ryan E Feaver
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
30
|
Smooth muscle cell mineralocorticoid receptors: role in vascular function and contribution to cardiovascular disease. Pflugers Arch 2013; 465:1661-70. [PMID: 23636772 DOI: 10.1007/s00424-013-1282-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 04/11/2013] [Indexed: 02/07/2023]
Abstract
The mineralocorticoid receptor (MR), a member of the steroid receptor family, regulates blood pressure by mediating the effects of the hormone aldosterone on renal sodium handling. In recent years, it has become clear that MR is expressed in vascular smooth muscle cells (SMCs), and interest has grown in understanding the direct role of SMC MR in regulating vascular function. This interest stems from multiple clinical studies where MR inhibitor treatment reduced the incidence of cardiovascular events and mortality. This review summarizes the most recent advances in our understanding of SMC MR in regulating normal vascular function and in promoting vascular disease. Many new studies suggest a role for SMC MR activation in stimulating vascular contraction and contributing to vessel inflammation, fibrosis, and remodeling. These detrimental vascular effects of MR activation appear to be independent of changes in blood pressure and are synergistic with the presence of endothelial dysfunction or damage. Thus, in humans with underlying cardiovascular disease or cardiovascular risk factors, SMC MR activation may promote hypertension, atherosclerosis, and vascular aging. Further exploration of the molecular mechanisms for the effects of SMC MR activation has the potential to identify novel therapeutic targets to prevent or treat common cardiovascular disorders.
Collapse
|
31
|
Zhang R, Zhou SJ, Li CJ, Wang XN, Tang YZ, Chen R, Lv L, Zhao Q, Xing QL, Yu DM, Yu P. C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I complex promotes atherosclerosis in diabetic BALB/c mice via p38mitogen-activated protein kinase signal pathway. Lipids Health Dis 2013; 12:42. [PMID: 23531147 PMCID: PMC3643870 DOI: 10.1186/1476-511x-12-42] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/10/2013] [Indexed: 01/18/2023] Open
Abstract
Background The aim of this study was to investigate the effect of C-reactive protein/oxidised low-density lipoprotein/β2-glycoprotein I (CRP/oxLDL/β2GPI) complex on atherosclerosis (AS) in diabetic BALB/c mice. Methods BALB/c mice were fed high-fat and normal diet. Eight weeks later, the mice fed with high-fat diet were injected with streptozotocin (STZ) to induce diabetes. The diabetic mice were respectively injected twice monthly with 20 μg oxLDL, 20 μg β2GPI, 40 μg oxLDL/β2GPI complex, 44 μg CRP/oxLDL/β2GPI complex, and PBS. Aortas were stained with Sudan IV to investigate lipid plaque formation. The infiltration condition of smooth muscle cells (SMCs), macrophages, and T cells in the aortas were determined by immunohistochemistry (IH). The mRNA expressions of receptors associated with lipid metabolism were quantified by real-time PCR. The phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and MKK3/6 in aorta tissues were assessed by Western blot. The expression of inflammation cytokines was evaluated by protein chip. Results The lipid plaques were more extensive, the lumen area was obviously narrower, the ratio of intima and media thickness were increased, and the normal internal elastic lamia structure and endothelial cell disappeared (P < 0.05) in the oxLDL and CRP/oxLDL/β2GPI groups (P < 0.05). CRP/oxLDL/β2GPI complex dramatically promoted infiltration of SMCs, macrophages, and T cells, improved the mRNA expression of ABCA1 and ABCG1, but reduced the mRNA expression of SR-BI and CD36 and increased the phosphorylation of p38MAPK and MKK3/6 (all P < 0.05). The highest expression levels of IL-1, IL-9, PF-4, bFGF, and IGF-II were detected in the CRP/oxLDL/β2GPI group (P < 0.05). Conclusions CRP/oxLDL/β2GPI complex aggravated AS in diabetic BALB/c mice by increasing lipid uptake, the mechanism of which may be mediated by the p38MAPK signal pathway.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Diabetic Nephropathy Hemodialysis, Key Laboratory of Hormones and Development, Ministry of Health, Metabolic Diseases Hospital & Tianjin Institute of Endocrinology Tianjin Medical University, Tongan Street, Tianjin, Heping District 300070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Dash A, Simmers MB, Deering TG, Berry DJ, Feaver RE, Hastings NE, Pruett TL, LeCluyse EL, Blackman BR, Wamhoff BR. Hemodynamic flow improves rat hepatocyte morphology, function, and metabolic activity in vitro. Am J Physiol Cell Physiol 2013; 304:C1053-63. [PMID: 23485712 DOI: 10.1152/ajpcell.00331.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In vitro primary hepatocyte systems typically elicit drug induction and toxicity responses at concentrations much higher than corresponding in vivo or clinical plasma C(max) levels, contributing to poor in vitro-in vivo correlations. This may be partly due to the absence of physiological parameters that maintain metabolic phenotype in vivo. We hypothesized that restoring hemodynamics and media transport would improve hepatocyte architecture and metabolic function in vitro compared with nonflow cultures. Rat hepatocytes were cultured for 2 wk either in nonflow collagen gel sandwiches with 48-h media changes or under controlled hemodynamics mimicking sinusoidal circulation within a perfused Transwell device. Phenotypic, functional, and metabolic parameters were assessed at multiple times. Hepatocytes in the devices exhibited polarized morphology, retention of differentiation markers [E-cadherin and hepatocyte nuclear factor-4α (HNF-4α)], the canalicular transporter [multidrug-resistant protein-2 (Mrp-2)], and significantly higher levels of liver function compared with nonflow cultures over 2 wk (albumin ~4-fold and urea ~5-fold). Gene expression of cytochrome P450 (CYP) enzymes was significantly higher (fold increase over nonflow: CYP1A1: 53.5 ± 10.3; CYP1A2: 64.0 ± 15.1; CYP2B1: 15.2 ± 2.9; CYP2B2: 2.7 ± 0.8; CYP3A2: 4.0 ± 1.4) and translated to significantly higher basal enzyme activity (device vs. nonflow: CYP1A: 6.26 ± 2.41 vs. 0.42 ± 0.015; CYP1B: 3.47 ± 1.66 vs. 0.4 ± 0.09; CYP3A: 11.65 ± 4.70 vs. 2.43 ± 0.56) while retaining inducibility by 3-methylcholanthrene and dexamethasone (fold increase over DMSO: CYP1A = 27.33 and CYP3A = 4.94). These responses were observed at concentrations closer to plasma levels documented in vivo in rats. The retention of in vivo-like hepatocyte phenotype and metabolic function coupled with drug response at more physiological concentrations emphasizes the importance of restoring in vivo physiological transport parameters in vitro.
Collapse
Affiliation(s)
- A Dash
- HemoShear, LLC, Charlottesville, VA 22902, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H, Armani A, Caprio M, Carmeliet P, Jaffe IZ. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J Am Heart Assoc 2013; 2:e000018. [PMID: 23525413 PMCID: PMC3603255 DOI: 10.1161/jaha.112.000018] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood. Methods and Results Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis‐prone apolipoprotein E–knockout mouse (ApoE−/−). Aldosterone increased atherosclerosis in the aortic root 1.8±0.1‐fold after 4 weeks and in the aortic arch 3.7±0.2‐fold after 8 weeks, without significantly affecting plaque size in the abdominal aorta or traditional cardiac risk factors. Aldosterone treatment increased lipid content of plaques (2.1±0.2‐fold) and inflammatory cell content (2.2±0.3‐fold), induced early T‐cell (2.9±0.3‐fold) and monocyte (2.3±0.3‐fold) infiltration into atherosclerosis‐prone vascular regions, and enhanced systemic inflammation with increased spleen weight (1.52±0.06‐fold) and the circulating cytokine RANTES (regulated and normal T cell secreted; 1.6±0.1‐fold). To explore the mechanism, 7 genes were examined for aldosterone regulation in the ApoE−/− aorta. Further studies focused on the proinflammatory placental growth factor (PlGF), which was released from aldosterone‐treated ApoE−/− vessels. Activation of the mineralocorticoid receptor by aldosterone in human coronary artery smooth muscle cells (SMCs) caused the release of factors that promote monocyte chemotaxis, which was inhibited by blocking monocyte PlGF receptors. Furthermore, PlGF‐deficient ApoE−/− mice were resistant to early aldosterone‐induced increases in plaque burden and inflammation. Conclusions Aldosterone increases early atherosclerosis in regions of turbulent blood flow and promotes an inflammatory plaque phenotype that is associated with rupture in humans. The mechanism may involve SMC release of soluble factors that recruit activated leukocytes to the vessel wall via PlGF signaling. These findings identify a novel mechanism and potential treatment target for aldosterone‐induced ischemia in humans.
Collapse
Affiliation(s)
- Adam P McGraw
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang J, Liao Y, Fan J, Ye T, Sun X, Dong S. Apigenin inhibits the expression of IL-6, IL-8, and ICAM-1 in DEHP-stimulated human umbilical vein endothelial cells and in vivo. Inflammation 2013; 35:1466-76. [PMID: 22527144 DOI: 10.1007/s10753-012-9460-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) in house dust is associated with asthma and allergic inflammatory symptoms in children. This study aimed to examine an inhibitory effect of a flavonoid apigenin on DEHP-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs). We found that apigenin significantly suppressed DEHP-stimulated expression of intercellular adhesion molecule-1 (ICAM-1) at the mRNA and protein levels and subsequently inhibited the adhesion of THP-1 monocytic cells to HUVECs. Treatment with apigenin also led to a dose-dependent inhibition of mRNA and protein expression of interleukin (IL)-6 and IL-8 in DEHP-stimulated HUVECs. Moreover, pretreatment with apigenin partially inhibited the DEHP-induced activation of c-Jun N-terminal kinase (JNK) but not the degradation of IκBα or the phosphorylation of extracellular-regulated kinase (ERK)1/2, indicating that the inhibitory effect of apigenin on the expression of IL-6, IL-8, and ICAM-1 may be mediated by JNK pathway but not IκBα/nuclear factor-κB or ERK/mitogen-activated protein kinase pathway. Furthermore, apigenin reduced the release of IL-6, IL-8, and ICAM-1 and inhibited compound 48/80-induced systemic anaphylaxis in vivo. These results suggest that apigenin can be used as a therapeutic means for the treatment of DEHP-associated allergic disorders.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
35
|
LeCluyse EL, Witek RP, Andersen ME, Powers MJ. Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 2012; 42:501-48. [PMID: 22582993 PMCID: PMC3423873 DOI: 10.3109/10408444.2012.682115] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 02/07/2023]
Abstract
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment.
Collapse
Affiliation(s)
- Edward L LeCluyse
- The Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
36
|
Dash A, Blackman BR, Wamhoff BR. Organotypic systems in drug metabolism and toxicity: challenges and opportunities. Expert Opin Drug Metab Toxicol 2012; 8:999-1014. [DOI: 10.1517/17425255.2012.693161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Taube A, Schlich R, Sell H, Eckardt K, Eckel J. Inflammation and metabolic dysfunction: links to cardiovascular diseases. Am J Physiol Heart Circ Physiol 2012; 302:H2148-65. [PMID: 22447947 DOI: 10.1152/ajpheart.00907.2011] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abdominal obesity is a major risk factor for cardiovascular disease, and recent studies highlight a key role of adipose tissue dysfunction, inflammation, and aberrant adipokine release in this process. An increased demand for lipid storage results in both hyperplasia and hypertrophy, finally leading to chronic inflammation, hypoxia, and a phenotypic change of the cellular components of adipose tissue, collectively leading to a substantially altered secretory output of adipose tissue. In this review we have assessed the adipo-vascular axis, and an overview of adipokines associated with cardiovascular disease is provided. This resulted in a first list of more than 30 adipokines. A deeper analysis only considered adipokines that have been reported to impact on inflammation and NF-κB activation in the vasculature. Out of these, the most prominent link to cardiovascular disease was found for leptin, TNF-α, adipocyte fatty acid-binding protein, interleukins, and several novel adipokines such as lipocalin-2 and pigment epithelium-derived factor. Future work will need to address the potential role of these molecules as biomarkers and/or drug targets.
Collapse
Affiliation(s)
- Annika Taube
- Paul Langerhans Group, German Diabetes Center, Duesseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Cook-Mills JM, Marchese ME, Abdala-Valencia H. Vascular cell adhesion molecule-1 expression and signaling during disease: regulation by reactive oxygen species and antioxidants. Antioxid Redox Signal 2011; 15:1607-38. [PMID: 21050132 PMCID: PMC3151426 DOI: 10.1089/ars.2010.3522] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The endothelium is immunoregulatory in that inhibiting the function of vascular adhesion molecules blocks leukocyte recruitment and thus tissue inflammation. The function of endothelial cells during leukocyte recruitment is regulated by reactive oxygen species (ROS) and antioxidants. In inflammatory sites and lymph nodes, the endothelium is stimulated to express adhesion molecules that mediate leukocyte binding. Upon leukocyte binding, these adhesion molecules activate endothelial cell signal transduction that then alters endothelial cell shape for the opening of passageways through which leukocytes can migrate. If the stimulation of this opening is blocked, inflammation is blocked. In this review, we focus on the endothelial cell adhesion molecule, vascular cell adhesion molecule-1 (VCAM-1). Expression of VCAM-1 is induced on endothelial cells during inflammatory diseases by several mediators, including ROS. Then, VCAM-1 on the endothelium functions as both a scaffold for leukocyte migration and a trigger of endothelial signaling through NADPH oxidase-generated ROS. These ROS induce signals for the opening of intercellular passageways through which leukocytes migrate. In several inflammatory diseases, inflammation is blocked by inhibition of leukocyte binding to VCAM-1 or by inhibition of VCAM-1 signal transduction. VCAM-1 signal transduction and VCAM-1-dependent inflammation are blocked by antioxidants. Thus, VCAM-1 signaling is a target for intervention by pharmacological agents and by antioxidants during inflammatory diseases. This review discusses ROS and antioxidant functions during activation of VCAM-1 expression and VCAM-1 signaling in inflammatory diseases.
Collapse
Affiliation(s)
- Joan M Cook-Mills
- Allergy-Immunology Division, Northwestern University Feinberg School of Medicine, 240 E Huron, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
39
|
Newcomer SC, Thijssen DHJ, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol (1985) 2011; 111:311-20. [PMID: 21436465 DOI: 10.1152/japplphysiol.00033.2011] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Physical activity, exercise training, and fitness are associated with decreased cardiovascular risk. In the context that a risk factor "gap" exists in the explanation for the beneficial effects of exercise on cardiovascular disease, it has recently been proposed that exercise generates hemodynamic stimuli which exert direct effects on the vasculature that are antiatherogenic. In this review we briefly introduce some of the in vitro and in vivo evidence relating exercise hemodynamic modulation and vascular adaptation. In vitro data clearly demonstrate the importance of shear stress as a potential mechanism underlying vascular adaptations associated with exercise. Supporting this is in vivo human data demonstrating that exercise-mediated shear stress induces localized impacts on arterial function and diameter. Emerging evidence suggests that exercise-related changes in hemodynamic stimuli other than shear stress may also be associated with arterial remodeling. Taken together, in vitro and in vivo data strongly imply that hemodynamic influences combine to orchestrate a response to exercise and training that regulates wall stress and peripheral vascular resistance and contributes to the antiatherogenic impacts of physical activity, fitness, and training.
Collapse
Affiliation(s)
- S C Newcomer
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
40
|
|
41
|
Li X, Zhang X, Li F, Chen L, Li L, Qin X, Gao J, Su T, Zeng Y, Liao D. 14-3-3 mediates apelin-13-induced enhancement of adhesion of monocytes to human umbilical vein endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2010; 42:403-9. [PMID: 20539940 DOI: 10.1093/abbs/gmq036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate whether apelin-13 induced THP-1 monocytes (MCs) adhesion to ECV304 human umbilical vein endothelial cells (HUVECs) via 14-3-3 signaling transduction pathway and the potential novel physiological function and signaling transduction pathway of apelin-APJ, HUVECs ECV304 were cultured in DMEM and MCs THP-1 were cultured in RPMI 1640 medium. Monocyte adhesion and the expression of vascular cell adhesion molecule-1 (VCAM-1) and 14-3-3 were measured with monocyte adhesion assay and western blot analysis. Data showed that apelin-13 increased adhesion of MCs to HUVECs in a concentration- and time-dependent manner, which reached their peaks at 1 mM and 12 h, respectively. Similarly, apelin-13 induced the expression of HUVECs adhesion molecule, VCAM-1, in a concentration- and time-dependent manner, reached their peaks at 1 microM and 12 h, respectively. Apelin-13 induced the expression of 14-3-3 in a concentration- and timedependent manner, which reached their peaks at 1 mM and 5 min, respectively. Furthermore, the potent 14-3-3 inhibitor difopein significantly reduced the expression of 14-3-3 and VCAM-1 in apelin-13 stimulated HUVECs, and difopein significantly inhibited the effect of apelin-13 on induction of MCs adhesion to HUVECs. These data suggested that 14-3-3 mediated the induction of adhesion of MCs to HUVECs by Apelin-13.
Collapse
Affiliation(s)
- Xin Li
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Oudi MEL, Aouni Z, Mazigh C, Khochkar R, Gazoueni E, Haouela H, Machghoul S. Homocysteine and markers of inflammation in acute coronary syndrome. Exp Clin Cardiol 2010; 15:e25-e28. [PMID: 20631860 PMCID: PMC2898531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND An elevated level of homocysteine (Hcy) has been shown to be a cardiovascular risk factor in the majority of research studies. Recently, it was found to be associated with new risk factors such as inflammatory markers. OBJECTIVES To investigate the distribution of plasma total Hcy (tHcy) and the levels of inflammatory markers in patients with acute coronary syndrome (ACS), and to evaluate the association between these parameters and the severity of the disease. METHODS A total of 122 patients with ACS and 80 control subjects were recruited from the cardiac intensive care unit of the Military Hospital of Tunis, Tunisia. Lipid profile and the levels of tHcy, high-sensitivity C-reactive protein (HsCRP), interleukin (IL)-6, IL-8, IL-1beta and tumour necrosis factor-alpha (TNFalpha) were determined for all participants. The distribution of these parameters were compared between groups and according to the number of diseased vessels in patients with ACS. RESULTS ACS patients had significantly elevated levels of tHcy (P<0.01), HsCRP (P<0.001), IL-6 (P<0.001), TNFalpha (P<0.001), folates (P<0.05) and vitamin B(12) (P<0.001), but lower high-density lipoprotein cholesterol (P<0.05) levels. The analysis of the association between these parameters and the number of diseased vessels showed significant differences in tHcy, HsCRP, IL-6 and TNFalpha, with positive correlations. Significantly negative correlations were found between the number of diseased vessels and folate (r=-0.34; P<0.01), and vitamin B(12) (r=-0.22; P<0.01). CONCLUSION Elevated levels of tHcy, IL-6, TNFalpha and HsCRP appear to be associated with a greater number of diseased arteries and, consequently, the severity of coronary artery disease.
Collapse
Affiliation(s)
| | - Zied Aouni
- Research Unit, Department of Biochemistry
| | | | | | | | - Habib Haouela
- Department of Cardiology, Military Hospital of Tunis, Tunisia
| | | |
Collapse
|
43
|
Orr AW, Hastings NE, Blackman BR, Wamhoff BR. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res 2009; 47:168-80. [PMID: 19851078 DOI: 10.1159/000250095] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022] Open
Abstract
Vascular smooth muscle cell (SMC) phenotypic modulation plays a key role in atherosclerosis and is classically defined as a switch from a 'contractile' phenotype to a 'synthetic' phenotype, whereby genes that define the contractile SMC phenotype are suppressed and proliferation and/or migratory mechanisms are induced. There is also evidence that SMCs may take on a 'proinflammatory' phenotype, whereby SMCs secrete cytokines and express cell adhesion molecules, e.g. IL-8, IL-6, and VCAM-1, respectively, which may functionally regulate monocyte and macrophage adhesion and other processes during atherosclerosis. Factors that drive the inflammatory phenotype are not limited to cytokines but also include hemodynamic forces imposed on the blood vessel wall and intimate interaction of endothelial cells with SMCs, as well as changes in matrix composition in the vessel wall. However, it is critical to recognize that our understanding of the complex interaction of these multiple signal inputs has only recently begun to shed light on mechanisms that regulate the inflammatory SMC phenotype, primarily through models that attempt to recreate this environment ex vivo. The goal of this review is to summarize our current knowledge in this area and identify some of the key unresolved challenges and questions requiring further study.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, La., USA
| | | | | | | |
Collapse
|
44
|
Wang SH, Nan KJ, Wang YC. Endothelial cells promote the proliferation of lymphocytes partly through the Wnt pathway via LEF-1. Biochem Biophys Res Commun 2009; 388:67-72. [PMID: 19643084 DOI: 10.1016/j.bbrc.2009.07.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2009] [Accepted: 07/23/2009] [Indexed: 10/20/2022]
Abstract
The function of T cells and B cells is to recognize specific "non-self" antigens, during a process known as antigen presentation. Once they have identified an invader, the cells generate specific responses that are tailored to maximally eliminate specific pathogens or pathogen-infected cells. Endothelial cells (ECs) can trigger the activation of T cells through their class I and class II MHC molecules. In this study, we examined the effect of ECs on the proliferation of lymphocytes. We report that the proliferation of T and B cells can be improved by interaction with ECs. LEF-1 is one of the main molecular mediators in this process, and the inhibition of LEF-1 induces apoptosis. These results suggest that LEF-1 modulates positively the proliferation of lymphocytes induced by their interaction with ECs.
Collapse
Affiliation(s)
- Shu-Hong Wang
- Department of Medical Oncology, The First Affiliated Hospital of The School of Medicine of Xi'an Jiaotong University, Shaanxi Province, PR China
| | | | | |
Collapse
|
45
|
Biomarkers of premature atherosclerosis. Trends Mol Med 2009; 15:323-32. [PMID: 19577961 DOI: 10.1016/j.molmed.2009.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 05/07/2009] [Accepted: 06/01/2009] [Indexed: 12/14/2022]
Abstract
C-reactive protein (CRP) is an acute phase protein and a biochemical marker with important prognostic value for cardiovascular events. Interleukins IL-1 and IL-6 are implicated in the pathogenesis of atherosclerosis and are associated with CRP. Apolipoproteins ApoA-I and ApoB are the main lipid metabolic markers implicated in the development and progression of atherosclerosis. Fibrinogen has also been proposed to be a major independent risk factor for cardiovascular events. Because premature atherosclerosis precedes the development of cardiovascular disease, identification of the associated biomarkers is of great importance. However, further studies will be needed to determine whether or not these markers are useful predictors of future cardiovascular events. Here, we review the roles of specific biomarkers that have been implicated in premature atherosclerosis.
Collapse
|