1
|
Quan W, Sun T, Hu B, Luo Q, Zhong Y, Chen W, Tuo Q. Dipsacoside B Attenuates Atherosclerosis by Promoting Autophagy to Inhibit Macrophage Lipid Accumulation. Biomolecules 2024; 14:1226. [PMID: 39456159 PMCID: PMC11506285 DOI: 10.3390/biom14101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by lipid accumulation and foam cell formation in the arterial wall. Promoting macrophage autophagy has emerged as a promising therapeutic strategy against atherosclerosis. Dipsacoside B (DB) is an oleanane-type pentacyclic triterpenoid saponin extracted from Lonicerae flos with potential anti-atherosclerotic properties. In this study, we investigated the effects of DB on atherosclerosis progression in ApoE-/- mice fed a high-fat diet and explored the underlying mechanisms in oxidized low-density lipoprotein (ox-LDL)-induced foam cells. DB treatment significantly reduced atherosclerotic lesion size, improved plaque stability, and regulated lipid metabolism without impairing liver and kidney function in ApoE-/- mice. In vitro studies revealed that DB dose-dependently inhibited ox-LDL internalization and intracellular lipid accumulation in RAW264.7 macrophages. Mechanistically, DB induced autophagy, as evidenced by increased autophagosome formation and upregulated expression of autophagy markers LC3-II and p62 both in vivo and in vitro. Inhibition of autophagy by chloroquine abolished the antiatherosclerotic and pro-autophagic effects of DB. Furthermore, DB treatment increased LC3-II and p62 mRNA levels, suggesting transcriptional regulation of autophagy. Collectively, our findings demonstrate that DB exerts anti-atherosclerotic effects by inhibiting foam cell formation via autophagy induction, providing new insights into the pharmacological actions of DB and its potential as a therapeutic agent against atherosclerosis.
Collapse
Affiliation(s)
- Wenjuan Quan
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Department of Critical Care Medicine, Changde Hospital of Hunan University of Chinese Medicine, Changde 415000, China
| | - Taoli Sun
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
| | - Bo Hu
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Quanye Luo
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Yancheng Zhong
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (W.Q.); (T.S.)
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (B.H.); (Q.L.); (Y.Z.)
| |
Collapse
|
2
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Xin S, Zhang M, Li P, Wang L, Zhang X, Zhang S, Mu Z, Lin H, Li X, Liu K. Marine-Fungus-Derived Natural Compound 4-Hydroxyphenylacetic Acid Induces Autophagy to Exert Antithrombotic Effects in Zebrafish. Mar Drugs 2024; 22:148. [PMID: 38667765 PMCID: PMC11051058 DOI: 10.3390/md22040148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Marine natural products are important sources of novel drugs. In this study, we isolated 4-hydroxyphenylacetic acid (HPA) from the marine-derived fungus Emericellopsis maritima Y39-2. The antithrombotic activity and mechanism of HPA were reported for the first time. Using a zebrafish model, we found that HPA had a strong antithrombotic activity because it can significantly increase cardiac erythrocytes, blood flow velocity, and heart rate, reduce caudal thrombus, and reverse the inflammatory response caused by Arachidonic Acid (AA). Further transcriptome analysis and qRT-PCR validation demonstrated that HPA may regulate autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway to exert antithrombotic effects.
Collapse
Affiliation(s)
- Shaoshuai Xin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Mengqi Zhang
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs, Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China;
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Zhenqiang Mu
- Chongqing Key Laboratory of High Active Traditional Chinese Medicine Delivery System & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 410331, China;
| | - Houwen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (S.X.); (P.L.); (L.W.); (X.Z.); (S.Z.)
| |
Collapse
|
4
|
Xu H, Fu J, Tu Q, Shuai Q, Chen Y, Wu F, Cao Z. The SGLT2 inhibitor empagliflozin attenuates atherosclerosis progression by inducing autophagy. J Physiol Biochem 2024; 80:27-39. [PMID: 37792168 DOI: 10.1007/s13105-023-00974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/10/2023] [Indexed: 10/05/2023]
Abstract
Cardiovascular disease due to atherosclerosis is one of the leading causes of death worldwide; however, the underlying mechanism has yet to be defined. The sodium-dependent glucose transporter 2 inhibitor (SGLT2i) empagliflozin is a new type of hypoglycemic drug. Recent studies have shown that empagliflozin not only reduces high glucose levels but also exerts cardiovascular-protective effects and slows the process of atherosclerosis. The purpose of this study was to elucidate the mechanism by which empagliflozin ameliorates atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat Western diet to establish an atherosclerosis model. The area and size of atherosclerotic lesions in ApoE-/- mice were then assessed by performing hematoxylin-eosin (HE) staining after empagliflozin treatment. Concurrently, oxidized low-density lipoprotein (oxLDL) was used to mimic atherosclerosis in three different types of cells. Then, following empagliflozin treatment of macrophage cells (RAW264.7), human aortic smooth muscle cells (HASMCs), and human umbilical vein endothelial cells (HUVECs), western blotting was applied to measure the levels of autophagy-related proteins and proinflammatory cytokines, and green fluorescent protein (GFP)-light chain 3 (LC3) puncta were detected using confocal microscopy to confirm autophagosome formation. Oil Red O staining was performed to detect the foaming of macrophages and HASMCs, and flow cytometry was used for the cell cycle analysis. 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and scratch assays were also performed to examine the proliferation and migration of HASMCs. Empagliflozin suppressed the progression of atherosclerotic lesions in ApoE-/- mice. Empagliflozin also induced autophagy in RAW246.7 cells, HASMCs, and HUVECs via the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, and it significantly increased the levels of the Beclin1 protein, the LC3B-II/I ratio, and p-AMPK protein. In addition, empagliflozin decreased the expression of P62 and the protein levels of inflammatory cytokines, and it inhibited the foaming of RAW246.7 cells and HASMCs, as well as the expression of inflammatory factors by inducing autophagy. Empagliflozin activated autophagy through the AMPK signaling pathway to delay the progression of atherosclerosis. Furthermore, the results of flow cytometry, EdU assays, CCK-8 cell viability assays, and scratch assays indicated that empagliflozin blocked HASMCs proliferation and migration. Empagliflozin activates autophagy through the AMPK signaling pathway to delay the evolution of atherosclerosis, indicating that it may represent a new and effective drug for the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Hualin Xu
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jie Fu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiang Tu
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qingyun Shuai
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yizhi Chen
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Fuyun Wu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Zheng Cao
- Postgraduate Training Basement of Jinzhou Medical University, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
5
|
Kim SG, Sung JY, Kang YJ, Choi HC. PPARγ activation by fisetin mitigates vascular smooth muscle cell senescence via the mTORC2-FoxO3a-autophagy signaling pathway. Biochem Pharmacol 2023; 218:115892. [PMID: 37890594 DOI: 10.1016/j.bcp.2023.115892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Cellular senescence is caused by diverse stimuli and contributes to cardiovascular diseases. Several studies have indicated that PPARγ acts as a key mediator of lipid metabolism and shown that it has a protective effect on vascular biology. Nevertheless, the mechanism responsible for the anti-aging effects of PPARγ has not been fully elucidated in vascular smooth muscle cell (VSMC). Furthermore, although mTOR complex 2 (mTORC2) is known to be involved in cellular senescence and autophagy, relatively few studies have investigated its effects as compared with mTOR complex 1 (mTORC1). Therefore, we focused on mTORC2 function and investigated the relationship between PPARγ and mTORC2, and the anti-aging mechanism in VSMC. We found PPARγ activation dose-dependently mitigated the hydrogen peroxide (H2O2)-induced senescence. Treatment of fisetin induced the translocation of PPARγ from cytosol to nuclear and inhibited VSMC senescence. Moreover, activated PPARγ increased PTEN transcription, leading to inhibition of the mTORC2 signaling pathway. We determined mTORC2 activation contributed to senescence by suppressing the FoxO3a-autophagy signaling pathway, and dual knockdown of mTORC1 and mTORC2 decreased cellular senescence and increased autophagy activation more than respective single knockdown. Finally, fisetin acted as a PPARγ activator and inhibited VSMC senescence through the mTORC2-FoxO3a-autophagy signaling pathway. These results demonstrate PPARγ is associated with cellular senescence and that fisetin has an anti-aging effect via PPARγ activation and mTORC2 inhibition in VSMC. These results demonstrate that the mTORC2 signaling pathway regulates autophagy and cellular senescence, which suggests mTORC2 should be considered a significant target for preventing cellular senescence and age-related diseases.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Young Jin Kang
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, College of Medicine, Yeungnam University, 170 Hyunchung-Ro, Nam-Gu, Daegu 42415, Republic of Korea.
| |
Collapse
|
6
|
Zeng S, Wen Y, Yu C. Desialylation of ATG5 by sialidase (NEU1) promotes macrophages autophagy and exacerbates inflammation under hypoxia. Cell Signal 2023; 112:110927. [PMID: 37844713 DOI: 10.1016/j.cellsig.2023.110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
During the process of atherosclerosis (AS), hypoxia induces plaque macrophage inflammation, promoting lipid accumulation. Autophagy is a cell homeostasis process that increases tolerance to stressors like oxidative stress and hypoxia. However, the specific mechanism by which hypoxia initiates autophagy and the inflammation of macrophages remains to be elucidated. Here, we found that hypoxia-induced macrophage inflammation was mediated by autophagy. Then, the effect of hypoxia on autophagy was investigated in terms of post-translational modifications of proteins. The results showed that desialylation of the autophagy protein ATG5 under hypoxic conditions enhanced protein stability by affecting its charge effect and promoted the formation of the ATG5-ATG12-ATG16L complex, further increasing autophagosome formation. And NEU1, a key enzyme in sialic acid metabolism, was significantly up-regulated under hypoxic conditions and was identified as an interacting protein of ATG5, affecting the sialylation of ATG5. In addition, the knockdown or inhibition of NEU1 reversed hypoxia-induced autophagy and inflammatory responses. In conclusion, our data reveal a key mechanism of autophagy regulation under hypoxia involving ATG5 sialylation and NEU1, suggesting that NEU1 may be a potential target for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Shengmei Zeng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Yilin Wen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing 400016, China.
| |
Collapse
|
7
|
Juni RP, Kocken JMM, Abreu RC, Ottaviani L, Davalan T, Duygu B, Poels EM, Vasilevich A, Hegenbarth JC, Appari M, Bitsch N, Olieslagers S, Schrijvers DM, Stoll M, Heineke J, de Boer J, de Windt LJ, da Costa Martins PA. MicroRNA-216a is essential for cardiac angiogenesis. Mol Ther 2023; 31:1807-1828. [PMID: 37073128 PMCID: PMC10277893 DOI: 10.1016/j.ymthe.2023.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023] Open
Abstract
While it is experimentally supported that impaired myocardial vascularization contributes to a mismatch between myocardial oxygen demand and supply, a mechanistic basis for disruption of coordinated tissue growth and angiogenesis in heart failure remains poorly understood. Silencing strategies that impair microRNA biogenesis have firmly implicated microRNAs in the regulation of angiogenesis, and individual microRNAs prove to be crucial in developmental or tumor angiogenesis. A high-throughput functional screening for the analysis of a whole-genome microRNA silencing library with regard to their phenotypic effect on endothelial cell proliferation as a key parameter, revealed several anti- and pro-proliferative microRNAs. Among those was miR-216a, a pro-angiogenic microRNA which is enriched in cardiac microvascular endothelial cells and reduced in expression under cardiac stress conditions. miR-216a null mice display dramatic cardiac phenotypes related to impaired myocardial vascularization and unbalanced autophagy and inflammation, supporting a model where microRNA regulation of microvascularization impacts the cardiac response to stress.
Collapse
Affiliation(s)
- Rio P Juni
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Physiology, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jordy M M Kocken
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Ricardo C Abreu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Biomaterials and Stem Cell Based Therapeutics Group, CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
| | - Lara Ottaviani
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Tim Davalan
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Burcu Duygu
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Ella M Poels
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Aliaksei Vasilevich
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Jana C Hegenbarth
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Mahesh Appari
- Division of Cardiovascular Medicine, British Heart Foundation Centre of Research Excellence, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU United Kingdom
| | - Nicole Bitsch
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Serve Olieslagers
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Dorien M Schrijvers
- Laboratory of Physiopharmacology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, 48149 Münster, Germany; Department of Biochemistry, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Joerg Heineke
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; DZHK, Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Jan de Boer
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, University of Eindhoven, Eindhoven, the Netherlands
| | - Leon J de Windt
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands
| | - Paula A da Costa Martins
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, the Netherlands; Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
8
|
Kim JH, Jang EH, Ryu JY, Lee J, Kim JH, Ryu W, Youn YN. Sirolimus-Embedded Silk Microneedle Wrap to Prevent Neointimal Hyperplasia in Vein Graft Model. Int J Mol Sci 2023; 24:ijms24043306. [PMID: 36834717 PMCID: PMC9967879 DOI: 10.3390/ijms24043306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
We investigated the role of a sirolimus-embedded silk microneedle (MN) wrap as an external vascular device for drug delivery efficacy, inhibition of neointimal hyperplasia, and vascular remodeling. Using dogs, a vein graft model was developed to interpose the carotid or femoral artery with the jugular or femoral vein. The control group contained four dogs with only interposed grafts; the intervention group contained four dogs with vein grafts in which sirolimus-embedded silk-MN wraps were applied. After 12-weeks post-implantation, 15 vein grafts in each group were explanted and analyzed. Vein grafts applied with the rhodamine B-embedded silk-MN wrap showed far higher fluorescent signals than those without the wrap. The diameter of vein grafts in the intervention group decreased or remained stable without dilatation; however, it increased in the control group. The intervention group had femoral vein grafts with a significantly lower mean neointima-to-media ratio, and had vein grafts with an intima layer showing a significantly lower collagen density ratio than the control group. In conclusion, sirolimus-embedded silk-MN wrap in a vein graft model successfully delivered the drug to the intimal layer of the vein grafts. It prevented vein graft dilatation, avoiding shear stress and decreasing wall tension, and it inhibited neointimal hyperplasia.
Collapse
Affiliation(s)
- Jung-Hwan Kim
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eui Hwa Jang
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ji-Yeon Ryu
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyong Lee
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Ho Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wonhyoung Ryu
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young-Nam Youn
- Division of Cardiovascular Surgery, Department of Thoracic and Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Correspondence: ; Tel.: +82-2-2228-8487
| |
Collapse
|
9
|
Li X, Zhu X, Wei Y. Autophagy in Atherosclerotic Plaque Cells: Targeting NLRP3 Inflammasome for Self-Rescue. Biomolecules 2022; 13:15. [PMID: 36671400 PMCID: PMC9855815 DOI: 10.3390/biom13010015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS) is a lipid-driven disorder of the artery intima characterized by the equilibrium between inflammatory and regressive processes. A protein complex called NLRP3 inflammasome is involved in the release of mature interleukin-1β (IL-1β), which is connected to the initiation and progression of atherosclerosis. Autophagy, which includes macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy, is generally recognized as the process by which cells transfer their constituents to lysosomes for digestion. Recent studies have suggested a connection between vascular inflammation and autophagy. This review summarizes the most recent studies and the underlying mechanisms associated with different autophagic pathways and NLRP3 inflammasomes in vascular inflammation, aiming to provide additional evidence for atherosclerosis research.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianjie Zhu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao 266011, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Wang X, Sun Z, Yuan R, Zhang W, Shen Y, Yin A, Li Y, Ji Q, Wang X, Li Y, Zhang M, Pan X, Shen L, He B. K-80003 Inhibition of Macrophage Apoptosis and Necrotic Core Development in Atherosclerotic Vulnerable Plaques. Cardiovasc Drugs Ther 2022; 36:1061-1073. [PMID: 34410548 PMCID: PMC9652240 DOI: 10.1007/s10557-021-07237-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Macrophage apoptosis coupled with a defective phagocytic clearance of the apoptotic cells promotes plaque necrosis in advanced atherosclerosis, which causes acute atherothrombotic vascular disease. Nonsteroidal anti-inflammatory drug sulindac derivative K-80003 treatment was previously reported to dramatically attenuate atherosclerotic plaque progression and destabilization. However, the underlying mechanisms are not fully understood. This study aimed to determine the role of K-80003 on macrophage apoptosis and elucidate the underlying mechanism. METHODS The mouse model of vulnerable carotid plaque in ApoE-/- mice was developed in vivo. Consequently, mice were randomly grouped into two study groups: the control group and the K-80003 group (30 mg/kg/day). Samples of carotid arteries were collected to determine atherosclerotic necrotic core area, cellular apoptosis, and oxidative stress. The effects of K-80003 on RAW264.7 macrophage apoptosis, oxidative stress, and autophagic flux were also examined in vitro. RESULTS K-80003 significantly suppressed necrotic core formation and inhibited cellular apoptosis of vulnerable plaques. K-80003 can also inhibit 7-ketocholesterol-induced macrophage apoptosis in vitro. Furthermore, K-80003 inhibited intraplaque cellular apoptosis mainly through the suppression of oxidative stress, which is a key cause of advanced lesional macrophage apoptosis. Mechanistically, K-80003 prevented 7-ketocholesterol-induced impairment of autophagic flux in macrophages, evidenced by the decreased LC3II and SQSTM1/p62 expression, GFP-RFP-LC3 cancellation upon K-80003 treatment. CONCLUSION Inhibition of macrophage apoptosis and necrotic core formation by autophagy-mediated reduction of oxidative stress is one mechanism of the suppression of plaque progression and destabilization by K-80003.
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Zhe Sun
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yanjie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Qingqi Ji
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Yi Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Min Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| | - Xin Pan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Xuhui Distinct, 241 West Huaihai Road, Shanghai, China
| |
Collapse
|
11
|
HSPB1 Regulates Autophagy and Apoptosis in Vascular Smooth Muscle Cells in Arteriosclerosis Obliterans. Cardiovasc Ther 2022; 2022:3889419. [PMID: 36474716 PMCID: PMC9678445 DOI: 10.1155/2022/3889419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Small heat shock protein-1 (HSPB1) is a small heat shock protein that participates in many cellular processes and alleviates stress-induced cell injury. Autophagy protects cells from many types of stress and plays a key role in preventing stress in arteriosclerosis obliterans (ASO). However, the roles of HSPB1 in autophagy and apoptosis in the context of ASO pathogenesis remain unclear. Methods In vivo and in vitro studies were used to determine whether HSPB1 is associated with ASO progression. The expression of HSPB1 was measured in normal and sclerotic blood vessels. The role of HSPB1 and its potential downstream signaling pathway were determined in VSMCs by overexpressing and silencing HSPB1. Results A total of 91 ASO patients admitted to and treated at our hospital from Sep. 2020 to Sep. 2021 were selected, and plasma HSPB1 expression was assessed. We divided the patients with ASO into the grade I (n = 39), II (n = 29), III (n = 10), and IV (n = 13) groups according to Fontaine's classification. Plasma HSPB1 levels were markedly decreased in patients with grade III (n = 10) and IV (n = 13) ASO compared with patients with grade I ASO. Furthermore, HSPB1 expression was significantly decreased, and p62 and cleaved caspase-3 were increased in the sclerotic vasculature compared to the normal vasculature (p < 0.05). Overexpression of HSPB1 promoted apoptosis of VSMCs following ox-LDL treatment. Knockdown of HSPB1 led to a marked increase in the expression of LC3II and Beclin-1 in ox-LDL-stimulated VSMCs, whereas knockdown of HSPB1 attenuated these changes (p < 0.05). Importantly, overexpression of HSPB1 promoted the dephosphorylation of JNK in ox-LDL-stimulated VSMCs. Conversely, downregulation of HSPB1 induced the opposite change. Conclusion Loss of HSPB1 promotes VSMC autophagy and inhibits VSMC apoptosis, which are associated with ASO. HSPB1 and its downstream signaling pathways could be potential therapeutic targets for ASO treatment.
Collapse
|
12
|
CHENG X, ZHAO C, JIN Z, HU J, ZHANG Z, ZHANG C. Natural products: potential therapeutic agents for atherosclerosis. Chin J Nat Med 2022; 20:830-845. [DOI: 10.1016/s1875-5364(22)60219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/24/2022]
|
13
|
Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: Advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother 2022; 155:113712. [PMID: 36130420 DOI: 10.1016/j.biopha.2022.113712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
Atherosclerosis (AS) is the most common causes of cardiovascular disease characterized by the formation of atherosclerotic plaques in the arterial wall, and it has become a dominant public health problem that seriously threaten people worldwide. Autophagy is a cellular self-catabolism process, which is critical to protect cellular homeostasis against harmful conditions. Emerging evidence suggest that dysregulated autophagy is involved in the development of AS. Therefore, pharmacological interventions have been developed to inhibit the AS via autophagy induction. Among various AS treating methods, herbal medicines and natural products have been applied as effective complementary and alternative medicines to ameliorate AS and its associated cardiovascular disease. Recently, mounting evidence revealed that natural bioactive compounds from herbs and natural products could induce autophagy to suppress the occurrence and development of AS, by promoting cholesterol efflux, reducing plaque inflammation, and inhibiting apoptosis or senescence. In the present review, we highlight recent findings regarding possible effects and molecular mechanism of natural compounds in autophagy-targeted mitigation of atherosclerosis, aiming to provide new potential therapeutic strategies for the atherosclerosis treatment preclinically and clinically.
Collapse
Affiliation(s)
- Sijian Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruolan Yuan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miao Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiwen Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bona Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Ruan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiayan Shen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
14
|
Zhang F, Wang R, Liu B, Zhang L. A bibliometric analysis of autophagy in atherosclerosis from 2012 to 2021. Front Pharmacol 2022; 13:977870. [PMID: 36188570 PMCID: PMC9520361 DOI: 10.3389/fphar.2022.977870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Regulation of autophagy affects the progression of atherosclerosis. In recent years, research on autophagy in atherosclerosis has been widely concerned. However, there is no bibliometric analysis in this field. Objective: The purpose of this study was to explore the general situation, hot spots, and trends of the research in this field through bibliometric analysis. Methods: Articles related to autophagy in atherosclerosis from 2012 to 2021 were retrieved from the Web of Science Core Collection. VOSviewer and CiteSpace were used for data analysis and visualization of countries, institutions, authors, keywords, journals, and citations. Results: A total of 988 articles were obtained in the last 10 years. The number of publications and citations increased rapidly from 2012 to 2021, especially after 2019. The most productive countries, institutions, journals, and authors were the People’s Republic of China, Shandong University, Arteriosclerosis Thrombosis and Vascular Biology, and Wim Martinet, respectively. The primary keywords were “oxidative stress,” “apoptosis,” “activated protein kinase,” and “inflammation.” The burst detection analysis of keywords found that “SIRT1” and “long non-coding RNA” might be regarded as the focus of future research. Conclusion: This is the first bibliometric analysis of autophagy in atherosclerosis, which reports the hot spots and emerging trends. The interaction between oxidative stress and autophagy, programmed cell death, and activated protein kinases are considered to be the current research priorities. Molecular mechanisms and therapeutic target for the intervention of atherosclerosis by regulating autophagy will become an emerging research direction.
Collapse
Affiliation(s)
| | | | | | - Lei Zhang
- *Correspondence: Baocheng Liu, ; Lei Zhang,
| |
Collapse
|
15
|
Zhan W, Tian W, Zhang W, Tian H, Sun T. ANGPTL4 attenuates palmitic acid-induced endothelial cell injury by increasing autophagy. Cell Signal 2022; 98:110410. [PMID: 35843572 DOI: 10.1016/j.cellsig.2022.110410] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 11/15/2022]
Abstract
ANGPTL4, a member of the angiopoietin-like protein family, is reported to be involved in angiogenesis regulation, lipid metabolism, glucose metabolism and redox reactions, among others. Our previous study showed that the plasma ANGPTL4 level was lower in coronary atherosclerotic heart disease (CAHD) and could be a useful predictor of coronary atherosclerosis. However, the molecular mechanism underlying the function of ANGPTL4 in atherosclerosis is poorly understood. In this study, we found that overexpression of ANGPTL4 in HUVECs enhanced cell proliferation and clone-forming ability in vitro, whereas knockdown of ANGPTL4 resulted in the opposite. The expression of ANGPTL4 was upregulated in palmitic acid (PA)-treated HUVECs. Overexpression of ANGPTL4 protected against PA-induced endothelial injury. Knockdown of ANGPTL4 exacerbated the effects of PA on HUVECs. Mechanistically, we demonstrated that ANGPTL4 promoted endothelial cell proliferation through the regulation of autophagy. Knockdown of ATG7 or 3-MA (an autophagy inhibitor) attenuated the effects of ANGPTL4 on endothelial cells. The serum level of ANGPTL4 was downregulated in atherosclerosis mice. Furthermore, the expression of ANGPTL4 was correlated with autophagy-related proteins in aortic tissues of atherosclerotic mice. ANGPTL4 promotes endothelial cell proliferation and suppresses PA-induced endothelial cell injury by increasing autophagy, which may protect against the development of atherosclerosis.
Collapse
Affiliation(s)
- Wanlin Zhan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Wenlu Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China.
| | - Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
16
|
Cheraga N, Ye Z, Xu MJ, Zou L, Sun NC, Hang Y, Shan CJ, Yang ZZ, Chen LJ, Huang NP. Targeted therapy of atherosclerosis by pH-sensitive hyaluronic acid nanoparticles co-delivering all-trans retinal and rapamycin. NANOSCALE 2022; 14:8709-8726. [PMID: 35673987 DOI: 10.1039/d1nr06514a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Atherosclerosis, the leading cause of death in the elderly worldwide, is typically characterized by elevated reactive oxygen species (ROS) levels and a chronic inflammatory state at the arterial plaques. Herein, pH-sensitive nanoparticles (HRRAP NPs) co-delivering all-trans retinal (ATR), an antioxidant linked to hyaluronic acid (HA) through a pH-sensitive hydrazone bond, and rapamycin (RAP), an anti-atherosclerotic drug loaded into the nanoparticle core, are developed for targeted combination therapy of atherosclerosis. In this way, HRRAP NPs might simultaneously reduce ROS levels via ATR antioxidant activity and reduce inflammation via the anti-inflammatory effect of RAP. In response to mildly acidic conditions mimicking the lesional inflammation in vitro, HRRAP NPs dissociated and both ATR and RAP were effectively released. The developed HRRAP NPs effectively inhibited pro-inflammatory macrophage proliferation, and displayed dose- and time-dependent specific internalization by different cellular models of atherosclerosis. Also, HRRAP NP combination therapy showed an efficient synergetic anti-atherosclerotic effect in vitro by effectively inhibiting the inflammatory response and oxidative stress in inflammatory cells. More importantly, HR NPs specifically accumulated in the atherosclerotic plaques of apolipoprotein E-deficient (ApoE-/-) mice, by active interaction with HA receptors overexpressed by different cells of the plaque. The treatment with HRRAP NPs remarkably inhibited the progression of atherosclerosis in ApoE-/- mice which resulted in stable plaques with considerably smaller necrotic cores, lower matrix metalloproteinase-9, and decreased proliferation of macrophages and smooth muscle cells (SMCs). Furthermore, HRRAP NPs attenuated RAP adverse effects and exhibited a good safety profile after long-term treatment in mice. Consequently, the developed pH-sensitive HRRAP NP represent a promising nanoplatform for atherosclerosis combination therapy.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Zheng Ye
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ming-Jie Xu
- Nanjing University Medical School, Nanjing, 210093, China
| | - Lin Zou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Ning-Cong Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Yue Hang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| | - Cong-Jia Shan
- Nanjing University Medical School, Nanjing, 210093, China
| | | | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.
| |
Collapse
|
17
|
Tang X, Zhang Y, Liu X, Li X, Zhao H, Cui H, Shi Y, Chen Y, Xu H, Meng Z, Zhao L, Chen H, Wang Z, Zhu M, Lin Y, Yang B, Zhang Y. Aloe-emodin derivative produces anti-atherosclerosis effect by reinforcing AMBRA1-mediated endothelial autophagy. Eur J Pharmacol 2022; 916:174641. [PMID: 34800465 DOI: 10.1016/j.ejphar.2021.174641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Atherosclerosis is an inflammatory disease of high lethality associated with endothelial dysfunction. Due to the pathophysiological complexity and our incomplete understanding of the mechanisms for the development and progression of atherosclerosis, effective means for the prevention and treatment of atherosclerosis still need further exploration. This study was designed to investigate the potential effects and underlying mechanisms of aloe-emodin derivative (AED) on atherosclerosis. High fat diet (HFD) treated ApoE-/- mice were used as an animal model of atherosclerosis. Intragastric administration of aloe-emodin (AE) or AED for 12 weeks markedly reduced the atherosclerotic plaque in aorta with decreased plaque area, lipid accumulation, macrophage infiltration, collagen content and metabolic abnormalities. By comparison, AED produced more potent anti-atherosclerosis effects than AE at the same dose. AED enhanced production of autophagy flux in cultured human aortic endothelial cells (HAECs). Moreover, AED increased the expression of activating molecule in Beclin1-regulated autophagy 1 (AMBRA1), a key protein involved in autophagosome formation. Furthermore, knockdown of AMBRA1 blocked the promotion effect of AED on autophagy in HAECs. Taken together, AED facilitates endothelial autophagy via AMBRA1 during the progression of atherosclerosis, suggesting the potential application of this compound for atherosclerosis treatment.
Collapse
Affiliation(s)
- Xueqing Tang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yue Zhang
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xin Liu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Xiaohan Li
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hongrui Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hao Cui
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yang Shi
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yongchao Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Honglin Xu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Ziyu Meng
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Limin Zhao
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Hui Chen
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Zhixia Wang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Mengying Zhu
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Yuan Lin
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China
| | - Baofeng Yang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne, Australia.
| | - Yong Zhang
- Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, PR China; Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, PR China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China.
| |
Collapse
|
18
|
Lin X, Ouyang S, Zhi C, Li P, Tan X, Ma W, Yu J, Peng T, Chen X, Li L, Xie W. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys 2022; 715:109098. [PMID: 34856194 DOI: 10.1016/j.abb.2021.109098] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
Vascular endothelial cells (VECs), which are lined up in the inner surface of blood vessels, are in direct contact with the metabolite-related endogenous danger signals in the circulatory system. Moreover, VECs death impairs vasodilation and increases endothelium-dependent permeability, which is strongly correlated with the development of atherosclerosis (AS). Among several forms of cell death, regulatory death of endothelial cells frequently occurs in AS, mainly including ferroptosis, pyroptosis, apoptosis and autophagy. In this review, we summarize regulatory factors and signaling mechanisms of regulatory death in endothelial cells, discussing their effects in the context of the atherosclerotic procession.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Siyu Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Chenxi Zhi
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Pin Li
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoqian Tan
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Wentao Ma
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Jiang Yu
- 2019 Class of Clinical Medicine, University of South China, Hengyang, 421001, Hunan, China
| | - Tianhong Peng
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Xi Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China
| | - Liang Li
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Medical Research Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China; School of Public Health, University of South China, Hengyang, 421001, Hunan, China.
| | - Wei Xie
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
19
|
Wei Q, Ren H, Zhang J, Yao W, Zhao B, Miao J. An Inhibitor of Grp94 Inhibits OxLDL-Induced Autophagy and Apoptosis in VECs and Stabilized Atherosclerotic Plaques. Front Cardiovasc Med 2021; 8:757591. [PMID: 34938782 PMCID: PMC8687133 DOI: 10.3389/fcvm.2021.757591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Oxidized low-density lipoprotein (oxLDL) induces vascular endothelial cell (VEC) injury and atherosclerosis through activating endoplasmic reticulum stress. Expression of glucose-regulated protein 94 (Grp94) is induced by endoplasmic reticulum stress and Grp94 is involved in cardiovascular diseases. This study aimed to determine the role of Grp94 in oxLDL-induced vascular endothelial cell injury and atherosclerosis. Methods and Results: An inhibitor of Grp94, HCP1, was used to investigate the role of Grp94 in oxLDL-induced VEC injury in human umbilical vein endothelial cells and atherosclerosis in apolipoprotein E−/− mice. Results showed that HCP1 inhibited autophagy and apoptosis induced by oxLDL in VECs. And we found that Grp94 might interact with adenosine monophosphate-activated protein kinase (AMPK) and activate its activity. HCP1 inhibited AMPK activity and overexpression of Grp94 blocked the effect of HCP1. Besides, HCP1 activated the activity of mechanistic target of rapamycin complex 1 (mTORC1), co-treatment with AMPK activator acadesine eliminated the effect of HCP1 on mTORC1 activity as well as autophagy. In apolipoprotein E−/− mice, HCP1 suppressed autophagy and apoptosis of atherosclerotic plaque endothelium. In addition, HCP1 increased the content of collagen, smooth muscle cells, and anti-inflammatory macrophages while reducing the activity of MMP-2/9 and pro-inflammatory macrophages in the atherosclerotic lesion. Conclusion: HCP1 inhibited oxLDL-induced VEC injury and promoted the stabilization of atherosclerotic plaque in apoE−/− mice. Grp94 might be a potential therapeutic target in the clinical treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qun Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China.,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Department of Otorhinolaryngology, Qilu Hospital, Shandong University, Jinan, China
| | - Hui Ren
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Wen Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| | - Baoxiang Zhao
- School of Chemistry and Chemical Engineering, Institute of Organic Chemistry, Shandong University, Jinan, China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
20
|
Emerging role of long non-coding RNAs in endothelial dysfunction and their molecular mechanisms. Biomed Pharmacother 2021; 145:112421. [PMID: 34798473 DOI: 10.1016/j.biopha.2021.112421] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are the novel class of transcripts involved in transcriptional, post-transcriptional, translational, and post-translational regulation of physiology and the pathology of diseases. Studies have evidenced that the impairment of endothelium is a critical event in the pathogenesis of atherosclerosis and its complications. Endothelial dysfunction is characterized by an imbalance in vasodilation and vasoconstriction, oxidative stress, proinflammatory factors, and nitric oxide bioavailability. Disruption of the endothelial barrier permeability, the first step in developing atherosclerotic lesions is a consequence of endothelial dysfunction. Though several factors interfere with the normal functioning of the endothelium, intrinsic epigenetic mechanisms governing endothelial function are regulated by lncRNAs and perturbations contribute to the pathogenesis of the disease. This review comprehensively addresses the biogenesis of lncRNA and molecular mechanisms underlying and regulation in endothelial function. An insight correlating lncRNAs and endothelial dysfunction-associated diseases can positively impact the development of novel biomarkers and therapeutic targets in endothelial dysfunction-associated diseases and treatment strategies.
Collapse
|
21
|
Ni D, Mo Z, Yi G. Recent insights into atherosclerotic plaque cell autophagy. Exp Biol Med (Maywood) 2021; 246:2553-2558. [PMID: 34407677 DOI: 10.1177/15353702211038894] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the "number one killer", seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Institute of Basic Medical Sciences, Guilin Medical University, Guilin 541000, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
22
|
Naguib M, Tarabay A, ElSaraf N, Rashed L, ElMeligy A. Beclin1 circulating level as predictor of carotid intima-media thickness in patients with type 2 diabetes mellitus. Medicine (Baltimore) 2021; 100:e26630. [PMID: 34260553 PMCID: PMC8284749 DOI: 10.1097/md.0000000000026630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/23/2021] [Indexed: 11/27/2022] Open
Abstract
Type 2 diabetes (T2DM) represents a major risk factor for atherosclerosis that is the underlying cause of most cardiovascular diseases. Identifying reliable predictive biomarkers are needed to improve the long-term outcome in diabetic patients. Autophagy plays a pivotal role in the pathogenesis of atherosclerosis. Beclin1 is a key regulatory protein of autophagy and has been localized in human atherosclerotic lesions. However, the relation of serum level of Beclin1 and atherosclerosis in patients with diabetes has not been clarified yet.To assess the relationship between serum level of Beclin1 and carotid intima-media thickness (CIMT) in patients with T2DM.In this case-control study participants were recruited from tertiary care hospitals in Egypt. The study enrolled 50 patients with T2DM and 25 healthy subjects between January, 2019 and January, 2020. Age, gender, and body mass index were recorded for all subjects. Laboratory works up including glycated hemoglobin, lipid panel, and serum Beclin1 (by enzyme-linked immunosorbent assay) were measured. CIMT was assessed by color Doppler. Comparisons between patients and the control group were done using analysis of variance and Chi-square test. Correlations between CIMT and Beclin1 level and different variables were done using the Pearson correlation coefficient. Receiver operator characteristic curve was constructed with the area under curve analysis performed to detect the best cutoff value of Beclin1 for detection of CIMT > 0.05 cm.The level of Beclin1 in the patient group was significantly lower compared with that in the control group (1.28 ± 0.51 vs 5.24 ± 1.22 ng/dL, P < .001). The level of Beclin1 apparently decreased in the higher CIMT group in T2DM patients. Serum Beclin1 levels were negatively correlated with CIMT (r = -0.762; P < .001), low-density lipoprotein-cholesterol (r = -0.283; P = .04), and triglycerides (r = -0.350; P = .01) but positively correlated with high-density lipoprotein-cholesterol (r = 0.491; P < .001) in patients with T2DM. Beclin1 level >2.2 ng/dL was an accurate predictor of CIMT >0.05 cm with an area under the curve value of 0.997, 93.9% sensitivity, and 100% specificity.Beclin1 levels were negatively correlated with atherosclerotic load in patients with T2DM and it may be considered as a promising diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Mervat Naguib
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Aya Tarabay
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Nashwa ElSaraf
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| | - Lila Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Egypt
| | - Amr ElMeligy
- Diabetes and Endocrinology Unite, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
- Internal Medicine Department, Faculty of Medicine Kasr Al-Ainy Hospital, Cairo University, Egypt
| |
Collapse
|
23
|
Impaired Autophagy Induced by oxLDL/ β2GPI/anti- β2GPI Complex through PI3K/AKT/mTOR and eNOS Signaling Pathways Contributes to Endothelial Cell Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6662225. [PMID: 34221236 PMCID: PMC8219424 DOI: 10.1155/2021/6662225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022]
Abstract
Endothelial cell dysfunction plays a fundamental role in the pathogenesis of atherosclerosis (AS), and endothelial autophagy has protective effects on the development of AS. Our previous study had shown that oxidized low-density lipoprotein/β2-glycoprotein I/anti-β2-glycoprotein I antibody (oxLDL/β2GPI/anti-β2GPI) complex could promote the expressions of inflammatory cytokines and enhance the adhesion of leukocytes to endothelial cells. In the present study, we aimed to assess the effects of oxLDL/β2GPI/anti-β2GPI complex on endothelial autophagy and explore the associated potential mechanisms. Human umbilical vein endothelial cells (HUVECs) and mouse brain endothelial cell line (bEnd.3) were used as models of the vascular endothelial cells. Autophagy was evaluated by examining the expressions of autophagic proteins using western blotting analysis, autophagosome accumulation using transmission electron microscopy, and RFP-GFP-LC3 adenoviral transfection and autophagic flux using lysosome inhibitor chloroquine. The expressions of phospho-PI3K, phospho-AKT, phospho-mTOR, and phospho-eNOS were determined by western blotting analysis. 3-Methyladenine (3-MA) and rapamycin were used to determine the role of autophagy in oxLDL/β2GPI/anti-β2GPI complex-induced endothelial cell dysfunction. We showed that oxLDL/β2GPI/anti-β2GPI complex suppressed the autophagy, evidenced by an increase in p62 protein, a decrease in LC3-II and Beclin1, and a reduction of autophagosome generation in endothelial cells. Moreover, inhibition of autophagy was associated with PI3K/AKT/mTOR and eNOS signaling pathways. Rapamycin attenuated oxLDL/β2GPI/anti-β2GPI complex-induced endothelial inflammation, oxidative stress, and apoptosis, whereas 3-MA alone induced the endothelial injury. Our results suggested that oxLDL/β2GPI/anti-β2GPI complex inhibited endothelial autophagy via PI3K/AKT/mTOR and eNOS signaling pathways and further contributed to endothelial cell dysfunction. Collectively, our findings provided a novel mechanism for vascular endothelial injury in AS patients with an antiphospholipid syndrome (APS) background.
Collapse
|
24
|
He M, Yan G, Wang Y, Gong R, Lei H, Yu S, He X, Li G, Du W, Ma T, Gao M, Yu M, Liu S, Xu Z, Idiiatullina E, Zagidullin N, Pavlov V, Cai B, Yuan Y, Yang L. Blue LED causes autophagic cell death in human osteosarcoma by increasing ROS generation and dephosphorylating EGFR. J Cell Mol Med 2021; 25:4962-4973. [PMID: 33960631 PMCID: PMC8178260 DOI: 10.1111/jcmm.16412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/29/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light‐emitting diodes (LED)‐based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation‐induced autophagy characterized by alterations in autophagy protein markers including Beclin‐1, LC3‐II/LC3‐I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti‐tumour activities of blue LED irradiation. Next, ROS scavenger N‐acetyl‐L‐cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED‐induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin‐1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin‐1 and EGFR‐immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin‐1 upon blue LED irradiation in OS cells. In addition, Beclin‐1 down‐regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti‐tumour effects on OS by triggering ROS and EGFR/Beclin‐1‐mediated autophagy signalling pathway, representing a potential approach for human OS treatment.
Collapse
Affiliation(s)
- Mingyu He
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Gege Yan
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Yang Wang
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Rui Gong
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Hong Lei
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shuting Yu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Xiaoqi He
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Guanghui Li
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Weijie Du
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Tianshuai Ma
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Manqi Gao
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Meixi Yu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Shenzhen Liu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Zihang Xu
- Department of Pharmacology, College of Pharmacy (The Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), Harbin Medical University, Harbin, China
| | - Elina Idiiatullina
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Naufal Zagidullin
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Valentin Pavlov
- Central Laboratory of Scientific Research, Bashkir State Medical University, Ufa, Russia
| | - Benzhi Cai
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Ye Yuan
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Lei Yang
- Department of Orthopedics, Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
25
|
Verhoeven J, Baelen J, Agrawal M, Agostinis P. Endothelial cell autophagy in homeostasis and cancer. FEBS Lett 2021; 595:1497-1511. [PMID: 33837545 DOI: 10.1002/1873-3468.14087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/01/2023]
Abstract
Autophagy, the major lysosomal pathway for the degradation and recycling of cytoplasmic materials, is increasingly recognized as a major player in endothelial cell (EC) biology and vascular pathology. Particularly in solid tumors, tumor microenvironmental stress such as hypoxia, nutrient deprivation, inflammatory mediators, and metabolic aberrations stimulates autophagy in tumor-associated blood vessels. Increased autophagy in ECs may serve as a mechanism to alleviate stress and restrict exacerbated inflammatory responses. However, increased autophagy in tumor-associated ECs can re-model metabolic pathways and affect the trafficking and surface availability of key mediators and regulators of the interplay between EC and immune cells. In line with this, heightened EC autophagy is involved in pathological angiogenesis, inflammatory, and immune responses. Here, we review major cellular and molecular mechanisms regulated by autophagy in ECs under physiological conditions and discuss recent evidence implicating EC autophagy in tumor angiogenesis and immunosurveillance.
Collapse
Affiliation(s)
- Jelle Verhoeven
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Jef Baelen
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Belgium.,VIB Center for Cancer Biology Research, Leuven, Belgium
| |
Collapse
|
26
|
Carresi C, Mollace R, Macrì R, Scicchitano M, Bosco F, Scarano F, Coppoletta AR, Guarnieri L, Ruga S, Zito MC, Nucera S, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. Oxidative Stress Triggers Defective Autophagy in Endothelial Cells: Role in Atherothrombosis Development. Antioxidants (Basel) 2021; 10:antiox10030387. [PMID: 33807637 PMCID: PMC8001288 DOI: 10.3390/antiox10030387] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Atherothrombosis, a multifactorial and multistep artery disorder, represents one of the main causes of morbidity and mortality worldwide. The development and progression of atherothrombosis is closely associated with age, gender and a complex relationship between unhealthy lifestyle habits and several genetic risk factors. The imbalance between oxidative stress and antioxidant defenses is the main biological event leading to the development of a pro-oxidant phenotype, triggering cellular and molecular mechanisms associated with the atherothrombotic process. The pathogenesis of atherosclerosis and its late thrombotic complications involve multiple cellular events such as inflammation, endothelial dysfunction, proliferation of vascular smooth muscle cells (SMCs), extracellular matrix (ECM) alterations, and platelet activation, contributing to chronic pathological remodeling of the vascular wall, atheromatous plague formation, vascular stenosis, and eventually, thrombus growth and propagation. Emerging studies suggest that clotting activation and endothelial cell (EC) dysfunction play key roles in the pathogenesis of atherothrombosis. Furthermore, a growing body of evidence indicates that defective autophagy is closely linked to the overproduction of reactive oxygen species (ROS) which, in turn, are involved in the development and progression of atherosclerotic disease. This topic represents a large field of study aimed at identifying new potential therapeutic targets. In this review, we focus on the major role played by the autophagic pathway induced by oxidative stress in the modulation of EC dysfunction as a background to understand its potential role in the development of atherothrombosis.
Collapse
Affiliation(s)
- Cristina Carresi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Correspondence: ; Tel.: +39-09613694128; Fax: +39-09613695737
| | - Rocco Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Research for Food Safety & Health IRC-FSH, Department of Health Sciences, University Magna Graecia, 88100 Catanzaro, Italy; (R.M.); (R.M.); (M.S.); (F.B.); (F.S.); (A.R.C.); (L.G.); (S.R.); (M.C.Z.); (S.N.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
27
|
Lee J, Yoo JH, Kim HS, Cho YK, Lee YL, Lee WJ, Park JY, Jung CH. C1q/TNF-related protein-9 attenuates palmitic acid-induced endothelial cell senescence via increasing autophagy. Mol Cell Endocrinol 2021; 521:111114. [PMID: 33301838 DOI: 10.1016/j.mce.2020.111114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/27/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Autophagy is an important process in the pathogenesis of atherosclerosis. C1q/tumor necrosis factor-related protein 9 (CTRP9) is the closest adiponectin paralog. CTRP9 has anti-aging and anti-atherogenic effects, but its roles in autophagy and endothelial senescence are currently unknown. This study aimed to evaluate whether CTRP9 prevents palmitic acid (PA)-induced endothelial senescence by promoting autophagy. After no treatment or pre-treatment of human umbilical vein endothelial cells with CTRP9 prior to PA treatment, the level of senescence was measured by senescence associated acidic β-galactosidase staining and the level of hyperphosphorylated pRB protein. Autophagy was evaluated by LC3 conversion and the level of p62/SQSTM1, a protein degraded during autophagy. Autophagosome-lysosome fusion was detected by fluorescence microscopy. Pre-treatment with CTRP9 attenuated PA-induced endothelial senescence. CTRP9 increased the conversion of LC3-I to LC3-II and decreased p62 levels in a time- and dose-dependent manner. Although both CTRP9 and PA treatment increased LC3 conversion, treatment with PA increased the expression level of p62 and decreased the fusion of autophagosomes and lysosomes, which represented decreased autophagic flux. However, pre-treatment with CTRP9 recovered the autophagic flux inhibited by PA. AMP-activated kinase (AMPK) activation was involved in LC3 conversion and decreased p62 levels induced by CTRP9. CTRP9 inhibits PA-induced endothelial senescence by recovering autophagy and autophagic flux through AMPK activation.
Collapse
Affiliation(s)
- Jiwoo Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jee Hee Yoo
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hwi Seung Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yun Kyung Cho
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Yoo La Lee
- Asan Institute of Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Woo Je Lee
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joong-Yeol Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Chang Hee Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
28
|
Loss of GRB2 associated binding protein 1 in arteriosclerosis obliterans promotes host autophagy. Chin Med J (Engl) 2020; 134:73-80. [PMID: 33323827 PMCID: PMC7862813 DOI: 10.1097/cm9.0000000000001255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Arteriosclerosis obliterans (ASO) is a major cause of adult limb loss worldwide. Autophagy of vascular endothelial cell (VEC) contributes to the ASO progression. However, the molecular mechanism that controls VEC autophagy remains unclear. In this study, we aimed to explore the role of the GRB2 associated binding protein 1 (GAB1) in regulating VEC autophagy. Methods: In vivo and in vitro studies were applied to determine the loss of adapt protein GAB1 in association with ASO progression. Histological GAB1 expression was measured in sclerotic vascular intima and normal vascular intima. Gain- and loss-of-function of GAB1 were applied in VEC to determine the effect and potential downstream signaling of GAB1. Results: The autophagy repressor p62 was significantly downregulated in ASO intima as compared to that in healthy donor (0.80 vs. 0.20, t = 6.43, P < 0.05). The expression level of GAB1 mRNA (1.00 vs. 0.24, t = 7.41, P < 0.05) and protein (0.72 vs. 0.21, t = 5.97, P < 0.05) was significantly decreased in ASO group as compared with the control group. Loss of GAB1 led to a remarkable decrease in LC3II (1.19 vs. 0.68, t = 5.99, P < 0.05), whereas overexpression of GAB1 significantly led to a decrease in LC3II level (0.41 vs. 0.93, t = 7.12, P < 0.05). Phosphorylation levels of JNK and p38 were significantly associated with gain- and loss-of-function of GAB1 protein. Conclusion: Loss of GAB1 promotes VEC autophagy which is associated with ASO. GAB1 and its downstream signaling might be potential therapeutic targets for ASO treatment.
Collapse
|
29
|
Gao J, Chen X, Shan C, Wang Y, Li P, Shao K. Autophagy in cardiovascular diseases: role of noncoding RNAs. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:101-118. [PMID: 33335796 PMCID: PMC7732971 DOI: 10.1016/j.omtn.2020.10.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular diseases (CVDs) remain the world's leading cause of death. Cardiomyocyte autophagy helps maintain normal metabolism and functioning of the heart. Importantly, mounting evidence has revealed that autophagy plays a dual role in CVD pathology. Under physiological conditions, moderate autophagy maintains cell metabolic balance by degrading and recycling damaged organelles and proteins, and it promotes myocardial survival, but excessive or insufficient autophagy is equally deleterious and contributes to disease progression. Noncoding RNAs (ncRNAs) are a class of RNAs transcribed from the genome, but most ncRNAs do not code for functional proteins. In recent years, increasingly, various ncRNAs have been identified, and they play important regulatory roles in the physiological and pathological processes of organisms, as well as in autophagy. Thus, determining whether ncRNA-regulated autophagy plays a protective role in CVDs or promotes their progression can help us to develop ncRNAs as therapeutic targets in autophagy-related CVDs. In this review, we briefly summarize the regulatory roles of several important ncRNAs, including microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in the autophagy of various CVDs to provide a theoretical basis for the etiology and pathogenesis of CVDs and develop novel therapies to treat CVDs.
Collapse
Affiliation(s)
- Jinning Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xiatian Chen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Chan Shan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kai Shao
- Department of Central Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China
| |
Collapse
|
30
|
Yuan R, Sun Z, Cai J, Yang X, Zhang W, Wu C, Shen Y, Yin A, Wang X, Cai X, Fu X, Shen L, He B. A Novel Anticancer Therapeutic Strategy to Target Autophagy Accelerates Radiation-Associated Atherosclerosis. Int J Radiat Oncol Biol Phys 2020; 109:540-552. [PMID: 32942003 DOI: 10.1016/j.ijrobp.2020.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/13/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Autophagy inhibition is a novel therapeutic strategy suggested for patients with advanced cancer, especially those who have undergone radiation therapy. In the present study, we investigated whether autophagy inhibitors accelerate the progression of radiation-associated atherosclerosis (RAA). METHODS AND MATERIALS Eight-week-old apolipoprotein (ApoE-/-) mice were fed a Western diet, and their left common carotid arteries were partially ligated to induce atherogenesis. Four weeks later, local ionizing radiation (IR) at a dose of 5 or 10 Gy was used to induce RAA in the left common carotid artery. After another 4 weeks, severe plaque burden associated with increased macrophage infiltration and lipid deposition, reduced smooth muscle cells, and decreased collagen expression was observed. In addition, these changes occurred in a dose-dependent manner. Improved autophagic flux caused by IR was observed in both macrophages of the atherosclerotic plaque and peritoneal macrophages in vitro. The inhibition of autophagic flux by chloroquine (50 mg/kg/d) further accelerated the progression of RAA in the left common carotid arteries of ApoE-/- mice. Furthermore, chloroquine treatment exacerbated IR-induced p65 nuclear translocation, IκBα degradation, and transcription of nuclear factor-κB (NF-κB) target genes in peritoneal macrophages. CONCLUSIONS IR promotes atherogenesis and increases autophagic flux. In addition, autophagy inhibition by chloroquine accelerates the progression of RAA lesions by stimulating NF-κB-mediated inflammatory responses in macrophages.
Collapse
Affiliation(s)
- Ruosen Yuan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiali Cai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Weifeng Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Caizhe Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yejiao Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Anwen Yin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xuwei Cai
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Autophagy, Hyperlipidemia, and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:237-264. [PMID: 32671753 DOI: 10.1007/978-981-15-4272-5_18] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy is an evolutionarily conserved process in eukaryotes that processes the turnover of intracellular substances. Atherosclerosis is a disease caused by multiple factors, it mainly occurs on the walls of large and medium blood vessels and atherosclerotic plaques form in the intima of the blood vessels. Hyperlipidemia is considered to be a very dangerous factor leading to cardiovascular and cerebrovascular diseases, especially atherosclerosis. This chapter mainly introduces the key role of autophagy in hyperlipidemia and atherosclerosis, that is, impaired lipophagy affects the degradation of triacylglycerol, cholesterol, etc., leading to hyperlipidemia in atherosclerosis. In patients, excessive levels of autophagy accelerate the rupture of atherosclerotic plaque. This chapter also describes the advances in the treatment of atherosclerosis and hyperlipidemia by targeted autophagy.
Collapse
|
32
|
Ni H, Xu S, Chen H, Dai Q. Nicotine Modulates CTSS (Cathepsin S) Synthesis and Secretion Through Regulating the Autophagy-Lysosomal Machinery in Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 40:2054-2069. [PMID: 32640907 DOI: 10.1161/atvbaha.120.314053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Increased CTSS (cathepsin S) has been reported to play a critical role in atherosclerosis progression. Both CTSS synthesis and secretion are essential for exerting its functions. However, the underlying mechanisms contributing to CTSS synthesis and secretion in atherosclerosis remain unclear. Approach and Results: In this study, we showed that nicotine activated autophagy and upregulated CTSS expression in vascular smooth muscle cells and in atherosclerotic plaques. Western blotting and immunofluorescent staining showed that nicotine inhibited the mTORC1 (mammalian target of rapamycin complex 1) activity, promoted the nuclear translocation of TFEB (transcription factor EB), and upregulated the expression of CTSS. Chromatin immunoprecipitation-qualificative polymerase chain reaction, electrophoretic mobility shift assay, and luciferase reporter assay further demonstrated that TFEB directly bound to the CTSS promoter. mTORC1 inhibition by nicotine or rapamycin promoted lysosomal exocytosis and CTSS secretion. Live cell assays and IP-MS (immunoprecipitation-mass spectrometry) identified that the interactions involving Rab10 (Rab10, member RAS oncogene family) and mTORC1 control CTSS secretion. Nicotine promoted vascular smooth muscle cell migration by upregulating CTSS, and CTSS inhibition suppressed nicotine-induced atherosclerosis in vivo. CONCLUSIONS We concluded that nicotine mediates CTSS synthesis and secretion through regulating the autophagy-lysosomal machinery, which offers a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Huaner Ni
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Shuang Xu
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Hangwei Chen
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Qiuyan Dai
- From the Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
33
|
Jia L, Hao SL, Yang WX. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine (Lond) 2020; 15:1419-1435. [PMID: 32529946 DOI: 10.2217/nnm-2019-0387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Due to their unique physicochemical properties, nanoparticles (NPs) have been increasingly developed for use in various fields. However, there has been both growing negative concerns with toxicity and positive realization of opportunities in nanomedicine, coming from the growing understanding of the associations between NPs and the human body, particularly relating to their cellular autophagic effects. This review summarizes NP-induced autophagy via the modulation of the mTOR signaling pathway and other associated signals including AMPK and ERK and also demonstrates how reactive oxygen species generation greatly underlies the regulation processes. The perspectives in this review aim to contribute to NP design, particularly in consideration of nanotoxicity and the potential for the precise application of NPs in nanomedicine.
Collapse
Affiliation(s)
- Lu Jia
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
34
|
Hughes WE, Beyer AM, Gutterman DD. Vascular autophagy in health and disease. Basic Res Cardiol 2020; 115:41. [PMID: 32506214 DOI: 10.1007/s00395-020-0802-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
Abstract
Homeostasis is maintained within organisms through the physiological recycling process of autophagy, a catabolic process that is intricately involved in the mobilization of nutrients during starvation, recycling of cellular cargo, as well as initiation of cellular death pathways. Specific to the cardiovascular system, autophagy responds to both chemical (e.g. free radicals) and mechanical stressors (e.g. shear stress). It is imperative to note that autophagy is not a static process, and measurement of autophagic flux provides a more comprehensive investigation into the role of autophagy. The overarching themes emerging from decades of autophagy research are that basal levels of autophagic flux are critical, physiological stressors may increase or decrease autophagic flux, and more importantly, aberrant deviations from basal autophagy may elicit detrimental effects. Autophagy has predominantly been examined within cardiac or vascular smooth muscle tissue within the context of disease development and progression. Autophagic flux within the endothelium holds an important role in maintaining vascular function, demonstrated by the necessary role for intact autophagic flux for shear-induced release of nitric oxide however the underlying mechanisms have yet to be elucidated. Within this review, we theorize that autophagy itself does not solely control vascular homeostasis, rather, it works in concert with mitochondria, telomerase, and lipids to maintain physiological function. The primary emphasis of this review is on the role of autophagy within the human vasculature, and the integrative effects with physiological processes and diseases as they relate to the vascular structure and function.
Collapse
Affiliation(s)
- William E Hughes
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA.
| | - Andreas M Beyer
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| | - David D Gutterman
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI, 53213, USA
| |
Collapse
|
35
|
Li X, Zhou J, Dou Y, Shi Y, Wang Y, Hong J, Zhao J, Zhang J, Yuan Y, Zhou M, Wei X. The protective effects of angelica organic acid against ox-LDL-induced autophagy dysfunction of HUVECs. BMC Complement Med Ther 2020; 20:164. [PMID: 32487223 PMCID: PMC7268640 DOI: 10.1186/s12906-020-02968-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Angelica root is the dry root of the Umbelliferae plant Angelica sinensis (oliv) Diels. Angelica organic acid (OA) is the main active ingredient in Angelica sinensis, and it exerts potential anti-atherosclerotic effects by preventing Oxidized low-density lipoprotein (Ox-LDL) induced endothelial injury. To study the protective effects of OA on ox-LDL-induced HUVECs autophagic flux dysfunction and inflammatory injury. METHODS OA were isolated by water extraction and alcohol precipitation, and then the content of ferulic acid (FA) in the OA was determined by high performance liquid chromatography. The ox-LDL-induced endothelial injury model was established. The effect of ferulic acid on the survival of Human umbilical vein endothelial cells (HVUECs) was detected by CCK-8 assay. HUVECs were pretreated with different concentrations of OA (20 μmol/L, 40 μmol/L, and 80 μmol/L), and Western Blot was used to detect the expressions of LC3II, p62, MCP-1, VCAM-1 and LOX-1. The autophagosomes in HUVECs were observed by transmission electron microscopy (TEM). RESULTS 20 μmol/L OA could increase the expression of LC3II and decrease the expression of p62, MCP-1, VCAM-1 and LOX-1. The results of TEM showed that angelica organic acids promoted cell organelle degradation in autolysosomes. CONCLUSION OA could reduce inflammation, protect endothelial cells and play an anti-atherosclerotic role by enhancing the autophagy flux of damaged endothelial cells, in which FA the major active ingredient of OA played a major role.
Collapse
Affiliation(s)
- Xuefeng Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Jing Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yinghuan Dou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanbin Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianli Hong
- Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Junnan Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaying Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yuan
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengru Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiangxiang Wei
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
36
|
Zhu W, Liu S. The role of human cytomegalovirus in atherosclerosis: a systematic review. Acta Biochim Biophys Sin (Shanghai) 2020; 52:339-353. [PMID: 32253424 DOI: 10.1093/abbs/gmaa005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a progressive vascular disease with increasing morbidity and mortality year by year in modern society. Human cytomegalovirus (HCMV) infection is closely associated with the development of atherosclerosis. HCMV infection may accelerate graft atherosclerosis and the development of transplant vasculopathy in organ transplantation. However, our current understanding of HCMV-associated atherosclerosis remains limited and is mainly based on clinical observations. The underlying mechanism of the involvement of HCMV infection in atherogenesis remains unclear. Here, we summarized current knowledge regarding the multiple influences of HCMV on a diverse range of infected cells, including vascular endothelial cells, vascular smooth muscle cells, monocytes, macrophages, and T cells. In addition, we described potential HCMV-induced molecular mechanisms, such as oxidative stress, endoplasmic reticulum stress, autophagy, lipid metabolism, and miRNA regulation, which are involved in the development of HCMV-associated atherogenesis. Gaining an improved understanding of these mechanisms will facilitate the development of novel and effective therapeutic strategies for the treatment of HCMV-related cardiovascular disease.
Collapse
Affiliation(s)
- Wenbo Zhu
- Clinical Research Institute, First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuangquan Liu
- Clinical Laboratory, First Affiliated Hospital, University of South China, Hengyang 421001, China
| |
Collapse
|
37
|
You G, Long X, Song F, Huang J, Tian M, Xiao Y, Deng S, Wu Q. Metformin Activates the AMPK-mTOR Pathway by Modulating lncRNA TUG1 to Induce Autophagy and Inhibit Atherosclerosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:457-468. [PMID: 32099330 PMCID: PMC7006854 DOI: 10.2147/dddt.s233932] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/11/2020] [Indexed: 12/25/2022]
Abstract
Background Metformin has been shown to inhibit the proliferation and migration of vascular wall cells. However, the mechanism through which metformin acts on atherosclerosis (AS) via the long non-coding RNA taurine up-regulated gene 1 (lncRNA TUG1) is still unknown. Thus, this research investigated the effect of metformin and lncRNA TUG1 on AS. Methods First, qRT-PCR was used to detect the expression of lncRNA TUG1 in patients with coronary heart disease (CHD). Then, the correlation between metformin and TUG1 expression in vitro and their effects on proliferation, migration, and autophagy in vascular wall cells were examined. Furthermore, in vivo experiments were performed to verify the anti-AS effect of metformin and TUG1 to provide a new strategy for the prevention and treatment of AS. Results qRT-PCR results suggested that lncRNA TUG1 expression was robustly upregulated in patients with CHD. In vitro experiments indicated that after metformin administration, the expression of lncRNA TUG1 decreased in a time-dependent manner. Metformin and TUG1 knockdown via small interfering RNA both inhibited proliferation and migration while promoted autophagy via the AMPK/mTOR pathway in vascular wall cells. In vivo experiments with a rat AS model further demonstrated that metformin and sh-TUG1 could inhibit the progression of AS. Conclusion Taken together, our data demonstrate that metformin might function to prevent AS by activating the AMPK/mTOR pathway via lncRNA TUG1.
Collapse
Affiliation(s)
- Ganhua You
- Guizhou University School of Medicine, Guiyang 550025, People's Republic of China.,Guizhou Institute for Food and Drug Control, Guiyang 550004, People's Republic of China
| | - Xiangshu Long
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Fang Song
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Maobo Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Yan Xiao
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Shiyan Deng
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, People's Republic of China.,Department of Cardiology, People's Hospital of Guizhou University, Guiyang 550002, People's Republic of China
| |
Collapse
|
38
|
Yan G, Lei H, He M, Gong R, Wang Y, He X, Li G, Pang P, Li X, Yu S, Du W, Yuan Y. Melatonin triggers autophagic cell death by regulating RORC in Hodgkin lymphoma. Biomed Pharmacother 2020; 123:109811. [PMID: 31924597 DOI: 10.1016/j.biopha.2020.109811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
Melatonin (Mel) has been shown to involve in many essential cell functions via modulating many signaling pathways. We for the first time investigated that Mel exerted anti-tumor activities in Hodgkin lymphoma (HL) via inhibiting cell proliferation and promoting cell apoptosis. Further study revealed that Mel treatment increased expression of LC3-II and decreased p62 proteins with the enhanced production of autolysosome, indicating it induced activation of autophagy. Nevertheless, Mel treatment together with autophagy inhibitors 3-MA or CQ exacerbated the damage effect of Mel in HL cells, which means autophagy plays a protective role in this process. Furthermore, we found Mel treatment increased the expression of G protein-coupled receptors MT2 and retinoic acid-related orphan receptors (RORs), eg. RORA, RORB and RORC. While RORC has the highest increase in Mel treated HL cells. In addition, RORC overexpression induced autophagy activation. Therefore, Mel showed tumor-suppressive role due to an increased level of RORC induced autophagy in HL.
Collapse
Affiliation(s)
- Gege Yan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Hong Lei
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Mingyu He
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Rui Gong
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Yang Wang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Xiaoqi He
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Guanghui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Ping Pang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Xin Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Shuting Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China
| | - Weijie Du
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.
| | - Ye Yuan
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Department of Clinical Pharmarcology, College of Pharmacy, Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
39
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
40
|
Xiao Q, Che X, Cai B, Tao Z, Zhang H, Shao Q, Pu J. Macrophage autophagy regulates mitochondria-mediated apoptosis and inhibits necrotic core formation in vulnerable plaques. J Cell Mol Med 2019; 24:260-275. [PMID: 31660692 PMCID: PMC6933382 DOI: 10.1111/jcmm.14715] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/19/2022] Open
Abstract
The vulnerable plaque is a key distinguishing feature of atherosclerotic lesions that can cause acute atherothrombotic vascular disease. This study was designed to explore the effect of autophagy on mitochondria-mediated macrophage apoptosis and vulnerable plaques. Here, we generated the mouse model of vulnerable carotid plaque in ApoE-/- mice. Application of ApoE-/- mice with rapamycin (an autophagy inducer) inhibited necrotic core formation in vulnerable plaques by decreasing macrophage apoptosis. However, 3-methyladenine (an autophagy inhibitor) promoted plaque vulnerability through deteriorating these indexes. To further explore the mechanism of autophagy on macrophage apoptosis, we used macrophage apoptosis model in vitro and found that 7-ketocholesterol (7-KC, one of the primary oxysterols in oxLDL) caused macrophage apoptosis with concomitant impairment of mitochondria, characterized by the impairment of mitochondrial ultrastructure, cytochrome c release, mitochondrial potential dissipation, mitochondrial fragmentation, excessive ROS generation and both caspase-9 and caspase-3 activation. Interestingly, such mitochondrial apoptotic responses were ameliorated by autophagy activator, but exacerbated by autophagy inhibitor. Finally, we found that MAPK-NF-κB signalling pathway was involved in autophagy modulation of 7-KC-induced macrophage apoptosis. So, we provide strong evidence for the potential therapeutic benefit of macrophage autophagy in regulating mitochondria-mediated apoptosis and inhibiting necrotic core formation in vulnerable plaques.
Collapse
Affiliation(s)
- Qingqing Xiao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Che
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Cai
- Shanghai Institute of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyu Tao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengyuan Zhang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Shao
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Jamuna S, Ashokkumar R, Sakeena Sadullah MS, Devaraj SN. Oligomeric proanthocyanidins and epigallocatechin gallate aggravate autophagy of foam cells through the activation of Class III PI3K/Beclin1-complex mediated cholesterol efflux. Biofactors 2019; 45:763-773. [PMID: 31237721 DOI: 10.1002/biof.1537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/29/2019] [Indexed: 12/23/2022]
Abstract
Foam cells are specialized types of cells which predominate the necrotic core of atherosclerotic plaque. Recently, autophagy-mediated cholesterol efflux from foam cells has been proposed as a beneficial therapy for atherosclerosis. The purpose of this study was to delineate the underlying molecular mechanism of oligomeric proanthocyanidins (OPC) and epigallocatechin gallate (EGCG) induced autophagy of foam cells and associated cholesterol efflux. The oxidized low-density lipoprotein induced foam cells demonstrated impaired autophagy flux through the downregulated expressions of LC3BII/LC3BI, autophagy related gene-5, Class III phosphoinositide 3 kinase (Class III PI3K), Beclin1, ABCA1, and ABCG1 with concomitant increase in the expressions of protein 62, Class I phosphoinositide 3 kinase, Akt, and mammalian target of rapamycin. However, these effects were significantly abolished by treatment with OPC and EGCG through activation of autophagy flux via Class III PI3K/Beclin1 and with upregulated expression of transporter proteins ABCA1 and ABCG1. Furthermore, the cholesterol efflux process in the foam cells was activated by lysosomal acid lipase and cathepsin D facilitated lipolysis of lipid droplets. Taken together, our data demonstrate that OPC and EGCG treatment stimulated the coordinated activation of autophagy and cholesterol efflux through Class III PI3K/Beclin1 pathway in foam cells, suggesting a promising therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
- Sankar Jamuna
- Department of Biochemistry, University of Madras, Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
42
|
Guo FX, Wu Q, Li P, Zheng L, Ye S, Dai XY, Kang CM, Lu JB, Xu BM, Xu YJ, Xiao L, Lu ZF, Bai HL, Hu YW, Wang Q. The role of the LncRNA-FA2H-2-MLKL pathway in atherosclerosis by regulation of autophagy flux and inflammation through mTOR-dependent signaling. Cell Death Differ 2019; 26:1670-1687. [PMID: 30683918 PMCID: PMC6748100 DOI: 10.1038/s41418-018-0235-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 10/28/2018] [Accepted: 10/30/2018] [Indexed: 01/13/2023] Open
Abstract
Atherosclerosis is a progressive, chronic inflammation in arterial walls. Long noncoding RNAs (lncRNAs) participate in inflammation, but the exact mechanism in atherosclerosis is unclear. Our microarray analyses revealed that the levels of lncRNA-FA2H-2 were significantly decreased by oxidized low-density lipoprotein (OX-LDL). Bioinformatics analyses indicated that mixed lineage kinase domain-like protein (MLKL) might be regulated by lncRNA-FA2H-2. In vitro experiments showed that lncRNA-FA2H-2 interacted with the promoter of the MLKL gene, downregulated MLKL expression, and the binding sites between -750 and 471 were necessary for lncRNA-FA2H-2 responsiveness to MLKL. Silencing lncRNA-FA2H-2 and overexpression of MLKL could activate inflammation and inhibited autophagy flux. Both lncRNA-FA2H-2 knockdown and overexpression of MLKL could significantly aggravate inflammatory responses induced by OX-LDL. We found that the 3-methyladenine (3-MA) and Atg7-shRNA enhanced inflammatory responses induced by knockdown of lncRNA-FA2H-2 and overexpression of MLKL. We demonstrated that the effects of MLKL on autophagy might be associated with a mechanistic target of rapamycin (mTOR)-dependent signaling pathways. In vivo experiments with apoE knockout mice fed a western diet demonstrated that LncRNA-FA2H-2 knockdown decreased microtubule-associated expression of microtubule-associated protein 1 light chain 3 II and lysosome-associated membrane protein 1, but increased expression of sequestosome 1 (p62), MLKL, vascular cell adhesion molecule-1, monocyte chemoattractant protein-1, and interleukin-6 in atherosclerotic lesions. Our findings indicated that the lncRNA-FA2H-2-MLKL pathway is essential for regulation of autophagy and inflammation, and suggested that lncRNA-FA2H-2 and MLKL could act as potential therapeutic targets to ameliorate atherosclerosis-related diseases.
Collapse
Affiliation(s)
- Feng-Xia Guo
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Qian Wu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Pan Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Xiao-Yan Dai
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Chun-Min Kang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing-Bo Lu
- Department of Vascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bang-Ming Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuan-Jun Xu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lei Xiao
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Feng Lu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Huan-Lan Bai
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
43
|
Wang K, Yang C, Shi J, Gao T. Ox-LDL-induced lncRNA MALAT1 promotes autophagy in human umbilical vein endothelial cells by sponging miR-216a-5p and regulating Beclin-1 expression. Eur J Pharmacol 2019; 858:172338. [DOI: 10.1016/j.ejphar.2019.04.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/05/2019] [Indexed: 12/19/2022]
|
44
|
Microparticles and autophagy: a new frontier in the understanding of atherosclerosis in rheumatoid arthritis. Immunol Res 2019; 66:655-662. [PMID: 30574665 DOI: 10.1007/s12026-018-9053-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microparticles (MPs) are small membrane vesicles released by many cell types under physiological and pathological conditions. In the last years, these particles were considered as inert cell debris, but recently many studies have demonstrated they could have a role in intercellular communication. Increased levels of MPs have been reported in various pathological conditions including infections, malignancies, and autoimmune diseases, such as rheumatoid arthritis (RA). RA is an autoimmune systemic inflammatory disease characterized by chronic synovial inflammation, resulting in cartilage and bone damage with accelerated atherosclerosis increasing mortality. According to the literature data, also MPs could have a role in endothelial dysfunction, contributing to atherosclerosis in RA patients. Moreover many researchers have shown that a dysregulated autophagy seems to be involved in endothelial dysfunction. Autophagy is a reparative process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. It has been shown in many works that basal autophagy is essential to proper vascular function. Taking into account these considerations, we hypothesized that in RA patients MPs could contribute to atherosclerosis process by dysregulation of endothelial autophagy process.
Collapse
|
45
|
Jiang Y, Yang G, Liao Q, Zou Y, Du Y, Huang J. Indole-3-carbinol inhibits lipid deposition and promotes autophagy in hyperlipidemia zebrafish larvae. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103205. [PMID: 31195360 DOI: 10.1016/j.etap.2019.103205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/17/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Indole-3-carbinol (I3C) is extracted from cruciferous vegetables and is well known for its anti-cancer, antioxidant and anti-inflammatory effects. This study investigated the protective effect of I3C in hyperlipidemia zebrafish larvae and early life stage toxicity of I3C on zebrafish embryos/larvae. Zebrafish larvae were fed with 4% high-cholesterol diet (HCD) and treated with I3C 2.5μmol/L and 5μmol/L for two weeks. Confocal image analysis, oil Red O staining were used to analysis vascular lipid accumulation and western blotting was used to evaluate possible mechanics. In addition, zebrafish embryos were treated with I3C for 96 h to assess the general toxicity and cardiotoxicity. We found that lipid deposition on vasculature was dose-dependently decreased in the I3C treated groups as compared with control group (47%, 23%, p<0.01). Moreover, we demonstrated that I3C inhibited lipid deposition by inducing autophagy, as identified by the enhancement of LC3-II, beclin-1, hVps34 and m-cathepsin D as well as by the reduction of P62, Bcl-2, Akt, p- Akt, mTOR, and p- mTOR in HCD fed zebrafish larvae (p<0.05). In summary, I3C shows protective effects on hyperlipidemia zebrafish larvae and maybe a promising multitarget drug in the prevention and protection against atherosclerotic.
Collapse
Affiliation(s)
- Yonghong Jiang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Gang Yang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Qingyao Liao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yanke Zou
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yun Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
46
|
Role of autophagy in atherosclerosis: foe or friend? JOURNAL OF INFLAMMATION-LONDON 2019; 16:8. [PMID: 31073280 PMCID: PMC6498679 DOI: 10.1186/s12950-019-0212-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Athrosclerosis is conceived as a chronic inflammatory status affecting cells from vascular walls. Different mechanisms and pathological features are evident at the onset of atherosclerotic changes via the engaging different cells from the vascular wall and circulatory cells. Attempts are currently focused on the detection of cell compensatory mechanisms against atherosclerotic changes to restore cell function and/or postpone severe vasculitis. Autophagy is an intracellular self-digesting process commonly protrudes exhausted organelles and injured cytoplasmic constituents via double-lipid bilayer membrane vesicles out the target cells. Recent investigations point to the critical and defensive role of autophagy in the vascular cells behavioral function such as endothelial cells and smooth muscle cells against different insults. Autophagy response and related effectors could be modulated in the favor to restore cell function and reduce pro-inflammatory status under pathological conditions. In this review, the recent findings were collected regarding the role of autophagy during atherosclerotic changes. We aimed to answer the question of how autophagy stimulation and/or inhibition could provide a promising effect on developing a sophisticated treatment for AS.
Collapse
|
47
|
Stachowicz A, Wiśniewska A, Kuś K, Kiepura A, Gębska A, Gajda M, Białas M, Totoń-Żurańska J, Stachyra K, Suski M, Jawień J, Korbut R, Olszanecki R. The Influence of Trehalose on Atherosclerosis and Hepatic Steatosis in Apolipoprotein E Knockout Mice. Int J Mol Sci 2019; 20:E1552. [PMID: 30925684 PMCID: PMC6479548 DOI: 10.3390/ijms20071552] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/11/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Atherosclerosis and nonalcoholic fatty liver disease (NAFLD) are frequent causes of death in the Western countries. Recently, it has been shown that autophagy dysfunction plays an important role in the pathogenesis of both atherosclerosis and NAFLD; thus, activators of autophagy might be useful for novel therapeutic interventions. Trehalose-a naturally occuring disaccharide present in plants, bacteria, fungi, insects, and certain types of shrimps-is a known inducer of autophagy. However, according to the literature, its anti-atherosclerotic and anti-steatotic potential seem to depend on the experimental setting. The aim of our study was to comprehensively describe the influence of a prolonged treatment with orally administered trehalose on the development of atherosclerotic lesions and hepatic steatosis in apolipoprotein E knockout (apoE-/-) mice in an experimental set up reflecting both moderate and severe proatherogenic conditions: male apoE-/- mice on a chow diet (CD) and female apoE-/- mice fed with a high-fat diet (HFD). We found that exogenous trehalose inhibited atherosclerosis and attenuated hepatic steatosis in apoE-/- mice. Such effects of trehalose were not associated with changes of plasma cholesterol, low-density lipoproteins (LDL), or high-density lipoproteins (HDL). Moreover, the anti-steatotic action of trehalose in the liver was associated with the induction of autophagy. The exact molecular mechanisms of both the anti-atherosclerotic action of trehalose and its inhibitory effect on liver steatosis require further clarification.
Collapse
Affiliation(s)
- Aneta Stachowicz
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Wiśniewska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Katarzyna Kuś
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Kiepura
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Anna Gębska
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Mariusz Gajda
- Department of Histology, Jagiellonian University Medical College, 33-332 Krakow, Poland.
| | - Magdalena Białas
- Chair of Pathomorphology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | | | - Kamila Stachyra
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Maciej Suski
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Jacek Jawień
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Ryszard Korbut
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| | - Rafał Olszanecki
- Chair of Pharmacology, Jagiellonian University Medical College, 31-531 Krakow, Poland.
| |
Collapse
|
48
|
Overexpression of CTRP9 attenuates the development of atherosclerosis in apolipoprotein E-deficient mice. Mol Cell Biochem 2018; 455:99-108. [DOI: 10.1007/s11010-018-3473-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022]
|
49
|
Zhang P, Zhang J, Zhang Y, Wang S, Pang S, Yan B. Functional variants of the ATG7 gene promoter in acute myocardial infarction. Mol Genet Genomic Med 2018; 6:1209-1219. [PMID: 30407747 PMCID: PMC6305654 DOI: 10.1002/mgg3.508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Coronary artery disease including acute myocardial infarction (AMI) is mainly caused by atherosclerosis, an inflammatory and metabolic disease. Autophagy has been demonstrated to play critical roles in lipid metabolism and inflammation. Altered autophagic activity has been reported in AMI patients. However, molecular basis for dysfunctional autophagy in AMI remains unexplained. METHODS In this study, the promoter of the ATG7 gene, encoding a core protein for autophagy, was genetically and functionally analyzed in large cohorts of AMI patients (n = 355) and ethnic-matched healthy controls (n = 363). Related molecular mechanisms were also explored. RESULTS A total of 19 DNA sequence variants (DSVs) including single-nucleotide polymorphisms (SNPs) were found in the ATG7 gene promoter. Two novel DSVs and five SNPs were only identified in AMI patients group. These DSVs and SNPs, except one SNP, significantly altered the transcriptional activity of the ATG7 gene promoter in both HEK-293 and H9c2 cells (p < 0.05). Further electrophoretic mobility shift assay revealed that the DSVs and SNPs evidently affected the binding of transcription factors. CONCLUSIONS ATG7 gene DSVs and SNPs identified in AMI patients may alter the transcriptional activity of the ATG7 gene promoter and change ATG7 level, contributing to the AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Pei Zhang
- College of Clinical MedicineXinxiang Medical UniversityXinxiangHenanChina
- Division of EmergencyJining First People's HospitalJiningShandongChina
| | - Jie Zhang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Yexin Zhang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Shuai Wang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and TreatmentAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and TreatmentAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
- The Center for Molecular Genetics of Cardiovascular DiseasesAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
- Shandong Provincial Sino‐US Cooperation Research Center for Translational MedicineAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
| |
Collapse
|
50
|
Cai X, She M, Xu M, Chen H, Li J, Chen X, Zheng D, Liu J, Chen S, Zhu J, Xu X, Li R, Li J, Chen S, Yang X, Li H. GLP-1 treatment protects endothelial cells from oxidative stress-induced autophagy and endothelial dysfunction. Int J Biol Sci 2018; 14:1696-1708. [PMID: 30416384 PMCID: PMC6216037 DOI: 10.7150/ijbs.27774] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
Endothelial dysfunction and excessively stimulated autophagy, often caused by oxidant injury or inflammation, will lead to atherosclerosis development and progression in diabetes. The aim of this study is to investigate the protective effect of glucagon-like peptide-1 (GLP-1) treatment on preventing oxidative stress-induced endothelial dysfunction and excessively stimulated autophagy. Treatment of endothelial cells with GLP-1 significantly attenuated oxidative stress-induced endothelial dysfunction and autophagy, which was associated with the reduction of intracellular reactive oxygen species (ROS) levels. These protective effects of GLP-1 were likely mediated by reducing phosphorylation of ERK1/2. We further demonstrated that GLP-1 treatment could reverse downregulation of epigenetic factor histone deacetylase 6 (HDAC6), a downstream molecular of the EKR1/2, induced by oxidant injury. In conclusion, our results suggest that GLP-1 produces a protective effect on endothelial cells from oxidant injury by preventing endothelial dysfunction and autophagy, which may be dependent on restoring HDAC6 through a GLP-1R-ERK1/2-dependent manner.
Collapse
Affiliation(s)
- Xiangsheng Cai
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Miaoqin She
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences. Guangzhou, 510660, People's Republic of China
| | - Mingyu Xu
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Huiying Chen
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jingjing Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xinglu Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Dianpeng Zheng
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Liu
- Dermatology Hospital of Southern Medical University, Guangzhou, 510091, People's Republic of China
| | - Shangliang Chen
- ShenZhen Hospital, Southern Medical University, ShenZhen 518101, People's Republic of China
| | - Jianbin Zhu
- Technology Center, Guangdong Vitalife Bio-tech Co.,LTD, FoShan, 528200, People's Republic of China
| | - Xiaosong Xu
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Ruiying Li
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Jinlong Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shaolian Chen
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Xiaorong Yang
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China
| | - Hongwei Li
- Institute of Biotherapy, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|