1
|
Johnson TA, Mukhopadhyay S, Buzza MS, Brooks JA, Sarkar R, Antalis TM. Regulation of macrophage fibrinolysis during venous thrombus resolution. Thromb Res 2024; 243:109149. [PMID: 39317013 PMCID: PMC11486561 DOI: 10.1016/j.thromres.2024.109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Venous thromboembolism (VTE), which includes pulmonary embolism (PE) and deep vein thrombosis (DVT), is a serious cardiovascular disease with significant mortality and morbidity. Clinically, patients with faster resolution of a venous thrombi have improved prognosis. Urokinase-plasminogen activator (uPA), produced by macrophages, is a key mediator of fibrinolysis required for resolving venous thrombi and restoring vascular integrity. The major macrophage protein, plasminogen activator inhibitor type-2 (PAI-2), was originally identified as an inhibitor of uPA and is implicated in the modulation of pathways affecting fibrinolytic uPA activity, however its direct role in blocking uPA-mediated clot lysis is not known. OBJECTIVE To determine the contribution of macrophage PAI-2 in inhibiting uPA-mediated fibrinolysis during resolution of DVT. METHODS Using a murine model of venous thrombosis and resolution, we determined histological changes and molecular features of fibrin degradation in venous thrombi from WT mice and mice genetically deficient in PAI-2 and PAI-1, and determined the fibrinolytic activities of macrophages from these genotypes ex vivo. RESULTS Acceleration of venous thrombus resolution by PAI-2-/- mice increases fibrin degradation in venous thrombi showing a pattern similar to genetic deficiency of PAI-1, the major attenuator of fibrinolysis. PAI-2 deficiency was not associated with increased macrophage infiltration into thrombi or changes in macrophage PAI-1 expression. uPA-initiated fibrinolysis by macrophages in vitro could be accelerated by PAI-1 deficiency, but not PAI-2 deficiency. CONCLUSION PAI-2 has an alternate anti-fibrinolytic activity that is macrophage uPA independent, where PAI-1 is the dominant uPA inhibitor during DVT resolution.
Collapse
Affiliation(s)
- Tierra A Johnson
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Subhradip Mukhopadhyay
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jacob A Brooks
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rajabrata Sarkar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Research & Development Service, VA Maryland Health Care System, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Liu CH, Rethi L, Weng PW, Trung Nguyen H, Chuang AEY. Cutting-edge advances in nano/biomedicine: A review on transforming thrombolytic therapy. Biochem Pharmacol 2024; 229:116523. [PMID: 39251141 DOI: 10.1016/j.bcp.2024.116523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Thrombotic blockages within blood vessels give rise to critical cardiovascular disorders, including ischemic stroke, venous thromboembolism, and myocardial infarction. The current approach to the therapy of thrombolysis involves administering Plasminogen Activators (PA), but it is hindered by fast drug elimination, narrow treatment window, and the potential for bleeding complications. Leveraging nanomedicine to encapsulate and deliver PA offers a solution by improving the efficacy of therapy, safeguarding the medicine from proteinase biodegradation, and reducing unwanted effects in in vivo trials. In this review, we delve into the underlying venous as well as arterial thrombus pathophysiology and provide an overview of clinically approved PA used to address acute thrombotic conditions. We explore the existing challenges and potential directions within recent pivotal research on a variety of targeted nanocarriers, such as lipid, polymeric, inorganic, and biological carriers, designed for precise delivery of PA to specific sites. We also discuss the promising role of microbubbles and ultrasound-assisted Sono thrombolysis, which have exhibited enhanced thrombolysis in clinical studies. Furthermore, our review delves into approaches for the strategic development of nano-based carriers tailored for targeting thrombolytic action and efficient encapsulation of PA, considering the intricate interaction in biology systems as well as nanomaterials. In conclusion, the field of nanomedicine offers a valuable method for the exact and effective therapy of severe thrombus conditions, presenting a pathway toward improved patient outcomes and reduced complications.
Collapse
Affiliation(s)
- Chia-Hung Liu
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, 250 Wu-Hsing Street, Taipei 11031, Taiwan; Department of Urology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Road, Zhonghe District, New Taipei City 23561, Taiwan
| | - Lekshmi Rethi
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pei-Wei Weng
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam
| | - Andrew E-Y Chuang
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
3
|
Pu J, Zhuang X, Li M, Zhang X, Su Y, He G, Hao X, Wen F. Analyzing Formation and Absorption of Avascular Subretinal Hyperreflective Material in nAMD From OCTA-Based Insights. Am J Ophthalmol 2024; 267:192-203. [PMID: 38914153 DOI: 10.1016/j.ajo.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE To investigate the formation and absorption of avascular subretinal hyperreflective material (avSHRM) in neovascular age-related macular degeneration (nAMD) based on optical coherence tomography angiography (OCTA) characteristics. DESIGN Prospective cohort study. METHODS This study included patients with treatment-naive nAMD who were followed up for 3 months. Subjects were classified into an avSHRM group and a non-avSHRM group based on the presence of avSHRM at baseline. Quantitative OCTA characteristics including explant area, perimeter, vessel area, density, length, junctions, endpoints, lacunarity, maximum vessel caliber, vessel dispersion, and fractal dimension were assessed, and 3-dimensional volume and optical density ratio (ODR) of avSHRM were measured. Comparison analyses, correlation coefficients, and regression models were applied to explore factors associated with avSHRM formation and absorption. RESULTS A total of 88 eyes from 88 patients (39 female) were enrolled. Compared to the non-avSHRM group, the avSHRM group exhibited a more intricate vasculature, characterized by higher values of macular neovascularization (MNV) perimeter, vessel area, total vessel length, total number of junctions, and total number of endpoints (all P < .05), as well as the maximum vessel caliber (P < .001). In the multivariate model, which was adjusted for age, sex, and types of medications, avSHRM absorption was correlated with baseline average vessel length, maximum vessel caliber, and avSHRM ODR (standardized β = 0.274, -0.367, and -0.334; P = .049, .010, and .018, respectively), with an adjusted R² of 0.453. CONCLUSIONS Quantitative OCTA measurements can be used for assessing the dynamics of avSHRM in nAMD. Patients with more complex vasculature are at higher risk for avSHRM formation. Average vessel length, maximum vessel diameter, and avSHRM ODR play a role in its absorption.
Collapse
Affiliation(s)
- Jiaxin Pu
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xuenan Zhuang
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China; Department of Ophthalmology (X.Z.), Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Miaoling Li
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xiongze Zhang
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Yongyue Su
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Guiqin He
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Xinlei Hao
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China
| | - Feng Wen
- From the State Key Laboratory of Ophthalmology (J.P., X.Z., M.L., X.Z., Y.S., G.H., X.H., F.W.), Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, China.
| |
Collapse
|
4
|
Sun Z, Zhao T, Bai X, Li H, Gao J, Hao Y, Li Y, Xie Y, Hu A, Huang Q, Liu X, Zhang Y. Berberine Targets PKM2 to Activate the t-PA-Induced Fibrinolytic System and Improves Thrombosis. Pharmaceuticals (Basel) 2024; 17:1219. [PMID: 39338381 PMCID: PMC11434879 DOI: 10.3390/ph17091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Arterial thrombosis, a condition in which thrombi form in arteries, can lead to various acute cardiovascular diseases and impact the quality of life and survival of patients. Berberine (BBR), a quaternary ammonium alkaloid, has been shown to treat these diseases. However, further exploration is needed to understand underlying mechanisms of BBR. METHODS AND RESULTS Rats were administered BBR via intramuscular injection. Then, an FeCl3-coated filter paper was applied to a carotid artery to induce thrombosis. The size of the thrombus and the blood flow velocity were evaluated by carotid ultrasound. The shape of the thrombus was observed using staining and microscopy. The expression levels of mRNA and proteins were verified. Additionally, mass spectrometry and single-cell RNA sequencing analysis were conducted. The administration of BBR resulted in a significant reduction in the thrombus area and an extension of the thrombus-clogging time. Furthermore, BBR administration effectively reversed the decreasing tissue-plasminogen activator (t-PA) expression and alterations in fibrinolysis system of model group. Additionally, the expression of PKM2 was suppressed following BBR administration, and the overexpression of PKM2 inhibited t-PA expression. CONCLUSIONS BBR ameliorates thrombosis by modulating expression of PKM2, subsequently impacting the expression of t-PA within fibrinolytic system. These preliminary findings suggest that BBR could be a potential preventive and therapeutic strategy for arterial thromboembolic diseases.
Collapse
Affiliation(s)
- Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Tong Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xue Bai
- College of Pharmacy, Hainan University, Haikou 570228, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Jin Gao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yutong Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yiyang Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yanli Xie
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Ange Hu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Qiang Huang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
5
|
Tenopoulou M. Fibrinogen post-translational modifications are biochemical determinants of fibrin clot properties and interactions. FEBS J 2024. [PMID: 39180244 DOI: 10.1111/febs.17236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/31/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
The structure of fibrinogen and resulting fibrin formed during the coagulation process have important biological functions in human physiology and pathology. Fibrinogen post-translational modifications (PTMs) increase the complexity of the protein structure and many studies have emphasized the potential associations of post-translationally altered fibrinogen with the formation of a fibrin clot with a prothrombotic phenotype. However, the mechanisms by which PTMs exert their action on fibrinogen, and their causal association with disease pathogenesis are relatively unexplored. Moreover, the significance of fibrinogen PTMs in health has yet to be appreciated. In this review, the impact of fibrinogen PTMs on fibrinogen functionality is discussed from a biochemical perspective, emphasizing the potential mechanisms by which PTMs mediate the acquisition of altered fibrinogen properties. A brief discussion on dysfibrinogenemias of genetic origin, attributed to single point variations of the fibrinogen molecule is also provided, highlighting the influence that amino acid properties have on fibrinogen structure, properties, and molecular interactions that arise during thrombus formation.
Collapse
Affiliation(s)
- Margarita Tenopoulou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, Greece
| |
Collapse
|
6
|
Yu S, Zhang M, Guo Y, Zhang L. Serum Leucine Aminopeptidase Activity Patterns Across Various Disease States: Potential Implications for Bleeding and Thrombosis Risk. Thromb Haemost 2024. [PMID: 39009008 DOI: 10.1055/a-2365-8601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Disruptions in the pathways for activating and deactivating proteases in the bloodstream can lead to thrombosis and bleeding issues. Leucine aminopeptidases (LAPs), which are exopeptidases essential for regulating protein and peptide activities, are recognized as clinical biomarkers for liver diseases. However, the relationship between serum LAP activity and the risks of bleeding or thrombosis, as well as the identification of the specific tissues or organs that control LAP levels, is not well understood. METHODS We performed a retrospective study to evaluate serum LAP activities in 149,360 patients with 47 different diseases and 9,449 healthy individuals. The analysis was conducted using SPSS V2.6, RStudio V.1.3.1073, and libraries in Python 3.8. RESULTS Our research revealed that 21 of the 47 diseases studied showed increased median serum LAP activities, while 26 diseases were associated with significantly lower activities, especially those related to thrombosis. Furthermore, most diseases were found to have an increased risk of bleeding and thrombosis, indicated by higher Q25 and lower Q75 LAP activities compared to the control group. Receiver operating characteristic curve analysis confirmed the effectiveness of LAP activities as biomarkers for specific conditions like hepatic encephalopathy, liver cancer, pancreatitis, and pancreatic cancer. Diseases were categorized into clusters with similar bleeding or thrombotic tendencies through principal component analysis. CONCLUSION This study highlighted regulatory influence of the liver and pancreas on LAP levels. The established link between serum LAP concentrations and the risk of bleeding or thrombosis paved the way for the development of diagnostic and preventative approaches for various medical conditions.
Collapse
Affiliation(s)
- Sha Yu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yachong Guo
- Nanjing Drum Tower Hospital, Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Diagnosis, American Institute of Translational Medicine and Therapeutics, Missouri, United States
| |
Collapse
|
7
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
8
|
Słaboszewski M, Kolec R, Paszek E, Baran M, Undas A. Prothrombotic plasma fibrin clot phenotype is associated with spontaneous echo contrast in atrial fibrillation: The role of protein carbonylation. Thromb Res 2024; 240:109065. [PMID: 38908317 DOI: 10.1016/j.thromres.2024.109065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Spontaneous echo contrast (SEC) and left atrial appendage thrombus (LAAT) increase the risk of stroke and its severity in patients with atrial fibrillation (AF). Formation of denser fibrin networks and impaired fibrinolysis are associated with stroke risk in AF. This study investigated whether the prothrombotic fibrin clot phenotype characterizes patients with SEC/LAAT. METHODS We studied 139 anticoagulated patients with AF (median age, 70 years), who underwent transesophageal echocardiography (TEE). SEC and LAAT were recorded. We assessed plasma fibrin clot properties, i.e. permeability (Ks) and clot lysis time (CLT), von Willebrand Factor (vWF) antigen, endogenous thrombin potential (ETP), proteins involved in thrombosis and fibrinolysis, as well as plasma carbonylated protein content (PC). RESULTS SEC/LAAT was identified in 36 subjects (25.9 %) and was associated with heart failure (HF), AF duration, higher CHA2DS2VASc score, N-terminal prohormone of brain natriuretic peptide, and growth differentiation factor 15. Patients with SEC/LAAT had lower Ks (-15 %) and prolonged CLT (+19 %), along with higher fibrinogen (+24 %), ETP (+3 %), and plasminogen activator inhibitor-1 antigen (+16 %) compared with the remainder. Thrombin-activatable fibrinolysis inhibitor antigen, plasminogen, α2 - antiplasmin, and tissue plasminogen activator antigen were similar between the two groups. PC content was 50 % higher in SEC/LAAT and correlated with Ks (r = -0.47, p < 0.001) and CLT (r = 0.40, p < 0.001). On multivariate analysis, Ks, CLT, and PC levels, along with HF, remained independently associated with SEC/LAAT. CONCLUSIONS We demonstrated a formation of denser and poorly lysable fibrin networks in AF patients with SEC/LAAT despite anticoagulation. We suggest that this phenomenon is in part related to enhanced oxidative stress.
Collapse
Affiliation(s)
| | - Rafał Kolec
- Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Elżbieta Paszek
- Clinical Department of Interventional Cardiology, St. John Paul II Hospital, 31-202 Krakow, Poland; Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | | | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, 31-202 Krakow, Poland; Krakow Center for Medical Research and Technologies, St. John Paul II Hospital, 31-202 Krakow, Poland.
| |
Collapse
|
9
|
Yan J, Liao L, Deng D, Zhou W, Cheng P, Xiang L, Luo M, Lin F. Guideline for diagnosis and management of congenital dysfibrinogenemia. Clin Chim Acta 2024; 561:119680. [PMID: 38642629 DOI: 10.1016/j.cca.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
INTRODUCTION Congenital dysfibrinogenemia (CD) is characterized by dysfunction induced by an abnormal fibrinogen molecule structure that results in blood coagulation dysfunction. The clinical manifestations of CD patients are asymptomatic, bleeding and thrombosis. The majority of patient are asymptomatic. However, the single fibrinogen detection method is easy to cause missed diagnosis or misdiagnosis of CD patients. The treatment strategies of CD patients with different clinical manifestations are also different. METHODS Combing the existing experimental diagnosis technology, literature and our research results, a simple and practical CD diagnostic criteria was proposed. And based on the relevant literature and existing treatment guidelines, more comprehensive treatment recommendations are summarized. RESULTS In this new criteria, combination Clauss method and PT derived method was proposed to detect fibrinogen and its ratio was used to diagnose for CD. Diagnosis also needs to be combined the clinical manifestations, family investigation and genetic testing. According to different clinical manifestation (bleeding, thrombosis or asymptomatic), treatment methods and strategies are different. The treatment of CD patients should consider the patient's personal and family history of bleeding or thrombosis. Treatment of thrombosis and pregnancy may be more challenging. The risk of bleeding and thrombosis should be evaluated and balanced at all times during clinical treatment. These detailed treatment recommendations can provide reference for patients with different clinical manifestations of CD. CONCLUSIONS The new CD diagnosis criteria and comprehensive treatment recommendations can effectively improve the diagnosis and treatment of CD.
Collapse
Affiliation(s)
- Jie Yan
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Lin Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China
| | - Donghong Deng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijie Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China; Clinical Laboratory, Baise People's Hospital, Baise, China
| | - Peng Cheng
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liqun Xiang
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Meiling Luo
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China
| | - Faquan Lin
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China; Key Laboratory of Clinical Laboratory Medicine of Guangxi, Department of Education, China; Guangxi Medical Doctor Association-Laboratory Medicine, China.
| |
Collapse
|
10
|
Liu KT, Wang PW, Hsieh HY, Pan HC, Chin HJ, Lin CW, Huang YJ, Liao YC, Tsai YC, Liu SR, Su IC, Song YF, Yin GC, Wu KC, Chuang EY, Fan YJR, Yu J. Site-specific thrombus formation: advancements in photothrombosis-on-a-chip technology. LAB ON A CHIP 2024; 24:3422-3433. [PMID: 38860416 DOI: 10.1039/d4lc00216d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Thrombosis, characterized by blood clot formation within vessels, poses a significant medical challenge. Despite extensive research, the development of effective thrombosis therapies is hindered by substantial costs, lengthy development times, and high failure rates in medication commercialization. Conventional pre-clinical models often oversimplify cardiovascular disease, leading to a disparity between experimental results and human physiological responses. In response, we have engineered a photothrombosis-on-a-chip system. This microfluidic model integrates human endothelium, human whole blood, and blood flow dynamics and employs the photothrombotic method. It enables precise, site-specific thrombus induction through controlled laser irradiation, effectively mimicking both normal and thrombotic physiological conditions on a single chip. Additionally, the system allows for the fine-tuning of thrombus occlusion levels via laser parameter adjustments, offering a flexible thrombus model with varying degrees of obstruction. Additionally, the formation and progression of thrombosis noted on the chip closely resemble the thrombotic conditions observed in mice in previous studies. In the experiments, we perfused recalcified whole blood with Rose Bengal into an endothelialized microchannel and initiated photothrombosis using green laser irradiation. Various imaging methods verified the model's ability to precisely control thrombus formation and occlusion levels. The effectiveness of clinical drugs, including heparin and rt-PA, was assessed, confirming the chip's potential in drug screening applications. In summary, the photothrombosis-on-a-chip system significantly advances human thrombosis modeling. Its precise control over thrombus formation, flexibility in the thrombus severity levels, and capability to simulate dual physiological states on a single platform make it an invaluable tool for targeted drug testing, furthering the development of organ-on-a-chip drug screening techniques.
Collapse
Affiliation(s)
- Kuan-Ting Liu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Pai-Wen Wang
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yun Hsieh
- Department of Biochemical and Molecular Medical Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Han-Chi Pan
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115021, Taiwan
| | - Hsian-Jean Chin
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115021, Taiwan
| | - Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Jen Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Yung-Chieh Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Ya-Chun Tsai
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Shang-Ru Liu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - I-Chang Su
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurosurgery, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, 23561, Taiwan
| | - Yen-Fang Song
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu 300092, Taiwan
| | - Kuang-Chong Wu
- Institute of Applied Mechanics, National Taiwan University, Taipei 10617, Taiwan
| | - Er-Yuan Chuang
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yu-Jui Ray Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
11
|
Stanton K, Philippou H, Ariëns RA. Ischaemic Stroke, Thromboembolism and Clot Structure. Neuroscience 2024; 550:3-10. [PMID: 38453129 DOI: 10.1016/j.neuroscience.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Ischaemic stroke is a major cause of morbidity and mortality worldwide. Blood clotting and thromboembolism play a central role in the pathogenesis of ischaemic stroke. An increasing number of recent studies indicate changes in blood clot structure and composition in patients with ischaemic stroke. In this review, we aim to summarise and discuss clot structure, function and composition in ischaemic stroke, including its relationships with clinical diagnosis and treatment options such as thrombolysis and thrombectomy. Studies are summarised in which clot structure and composition is analysed both in vitro from patients' plasma samples and ex vivo in thrombi obtained through interventional catheter-mediated thrombectomy. Mechanisms that drive clot composition and architecture such as neutrophil extracellular traps and clot contraction are also discussed. We find that, while in vitro clot structure in plasma samples from ischaemic stroke patients are consistently altered, showing denser clots that are more resistant to fibrinolysis, current data on the composition and architecture of ex vivo clots obtained by thrombectomy are more variable. With the potential of advances in technologies underpinning both the imaging and retrieving of clots, we expect that future studies in this area will generate new data that is of interest for the diagnosis, optimal treatment strategies and clinical management of patients with ischaemic stroke.
Collapse
Affiliation(s)
- Katherine Stanton
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Helen Philippou
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robert As Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
12
|
Xie C, Zheng N, Li M, Zhang Z, Huang D, Xiao M, Chen D, He C, Zuo Z, Chen X. Comparative Analysis of Therapeutic Efficacy and Adverse Reactions among Various Thrombolytic Agents. TOXICS 2024; 12:458. [PMID: 39058110 PMCID: PMC11280831 DOI: 10.3390/toxics12070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Thrombosis is a major health concern that contributes to the development of several cardiovascular diseases and a significant number of fatalities worldwide. While stent surgery is the current recommended treatment according to the guidelines, percutaneous coronary intervention (PCI) is the optimal approach for acute myocardial infarction (AMI). However, in remote areas with limited resources, PCI procedures may not be feasible, leading to a delay in treatment and irreversible outcomes. In such cases, preoperative thrombolysis becomes the primary choice for managing AMI in remote settings. The market for thrombolytic drugs is continuously evolving, and identifying a safe and effective thrombolytic agent for treating AMI is crucial. This study evaluated Urokinase, Alteplase, and Recombinant Human TNK Tissue-type Plasminogen Activator for Injection (rhTNK) as representatives of first-, second-, and third-generation thrombolytic drugs, respectively. The research included in vitro thrombolysis experiments, exposure of human cardiomyocytes, zebrafish tail vein injections, and vascular endothelial transgenic zebrafish models. The findings revealed that rhTNK is the most effective thrombolytic drug with the least adverse effects and lowest bleeding rate, highlighting its potential as the preferred treatment option for AMI. The order of thrombolytic effectiveness was Urokinase < Alteplase < rhTNK, with adverse effects on cardiomyocytes post-thrombolytic therapy ranking similarly as Urokinase < Alteplase < rhTNK, while the bleeding rate after thrombolysis followed the order of Urokinase > Alteplase > rhTNK.
Collapse
Affiliation(s)
- Chenxi Xie
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; (N.Z.); (C.H.)
| | - Mingmei Li
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Zhiyang Zhang
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Dongqin Huang
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Meizhu Xiao
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Dongdong Chen
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; (N.Z.); (C.H.)
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; (N.Z.); (C.H.)
| | - Xintan Chen
- Chest Pain Center, Anxi County Hospital, Quanzhou 362300, China; (C.X.); (M.L.); (Z.Z.); (D.H.); (M.X.); (D.C.)
| |
Collapse
|
13
|
Iding AFJ, Alkarithi G, Cate HT, Ariëns RAS, ten Cate-Hoek AJ. Fibrinogen levels and clot properties identify patients who benefit from catheter-directed thrombolysis after DVT. Blood Adv 2024; 8:2924-2932. [PMID: 38547453 PMCID: PMC11176944 DOI: 10.1182/bloodadvances.2023012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/19/2024] [Indexed: 06/04/2024] Open
Abstract
ABSTRACT Ultrasound-accelerated catheter-directed thrombolysis (UA-CDT) to improve patency after deep vein thrombosis (DVT) has not conclusively been shown to prevent postthrombotic syndrome (PTS) but might benefit patients who are unlikely to obtain patency with standard treatment. We hypothesized that these patients could be selected based on their fibrin clot properties. To study this, patients with acute iliofemoral DVT from the CAVA (Ultrasound-Accelerated Catheter-Directed Thrombolysis Versus Anticoagulation for the Prevention of Post-thrombotic Syndrome) trial had blood samples taken at inclusion. Fibrin clot properties in plasma were determined by turbidimetric clotting (lag time and maximal turbidity) and lysis assays (time to 50% lysis and lysis rate), permeation assay, and confocal microscopy (fiber density), as well as levels of fibrin clot modifiers fibrinogen and C-reactive protein (CRP). Patency was defined as >90% iliofemoral vein compressibility at 12-month ultrasound. PTS was defined as ≥5 Villalta score at 6 or 12 months. In total, 91 of 152 patients were included, including 43 with additional UA-CDT and 48 with standard treatment. Patients with additional UA-CDT more often obtained patency (55.8 vs 27.1%) Patients who obtained patency had longer lag times and lower maximal turbidity, fibrinogen, and CRP; only maximal turbidity and fibrinogen remained associated when adjusting for treatment, thrombus load, and body mass index. Fibrinogen levels had an optimal cutoff at 4.85 g/L. Low fibrinogen levels best predicted patency. Additional UA-CDT decreased the risk of PTS only in patients with high fibrinogen. Therefore, additional UA-CDT might prevent PTS in selected patients based on routinely measured fibrinogen levels. This study was registered at www.ClinicalTrials.gov as #NCT00970619.
Collapse
Affiliation(s)
- Aaron F. J. Iding
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart + Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Ghadir Alkarithi
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart + Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Robert A. S. Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Arina J. ten Cate-Hoek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Thrombosis Expertise Center, Heart + Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
14
|
Landi E, Mugnaini M, Vatansever T, Fort A, Vignoli V, Giurranna E, Argento FR, Fini E, Emmi G, Fiorillo C, Becatti M. Advancing Thrombosis Research: A Novel Device for Measuring Clot Permeability. SENSORS (BASEL, SWITZERLAND) 2024; 24:3764. [PMID: 38931548 PMCID: PMC11207702 DOI: 10.3390/s24123764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Thromboembolism, a global leading cause of mortality, needs accurate risk assessment for effective prophylaxis and treatment. Current stratification methods fall short in predicting thrombotic events, emphasizing the need for a deeper understanding of clot properties. Fibrin clot permeability, a crucial parameter in hypercoagulable states, impacts clot structure and resistance to lysis. Current clot permeability measurement limitations propel the need for standardized methods. Prior findings underscore the importance of clot permeability in various thrombotic conditions but call for improvements and more precise, repeatable, and standardized methods. Addressing these challenges, our study presents an upgraded, portable, and cost-effective system for measuring blood clot permeability, which utilizes a pressure-based approach that adheres to Darcy's law. By enhancing precision and sensitivity in discerning clot characteristics, this innovation provides a valuable tool for assessing thrombotic risk and associated pathological conditions. In this paper, the authors present a device that is able to automatically perform the permeability measurements on plasma or fibrinogen in vitro-induced clots on specific holders (filters). The proposed device has been tailored to distinguish clot permeability, with high precision and sensitivity, between healthy subjects and high cardiovascular-risk patients. The precise measure of clot permeability represents an excellent indicator of thrombotic risk, thus allowing the clinician, also on the basis of other anamnestic and laboratory data, to attribute a risk score to the subject. The proposed instrument was characterized by performing permeability measurements in plasma and purified fibrinogen clots derived from 17 Behcet patients and 15 sex- and age-matched controls. As expected, our results clearly indicate a significant difference in plasma clot permeability in Behcet patients with respect to controls (0.0533 ± 0.0199 d vs. 0.0976 ± 0.0160 d, p < 0.001). This difference was confirmed in the patient's vs. control fibrin clots (0.0487 ± 0.0170 d vs. 0.1167 ± 0.0487 d, p < 0.001). In conclusion, our study demonstrates the feasibility, efficacy, portability, and cost-effectiveness of a novel device for measuring clot permeability, allowing healthcare providers to better stratify thrombotic risk and tailor interventions, thereby improving patient outcomes and reducing healthcare costs, which could significantly improve the management of thromboembolic diseases.
Collapse
Affiliation(s)
- Elia Landi
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (M.M.); (T.V.); (A.F.); (V.V.)
| | - Marco Mugnaini
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (M.M.); (T.V.); (A.F.); (V.V.)
| | - Tunahan Vatansever
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (M.M.); (T.V.); (A.F.); (V.V.)
| | - Ada Fort
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (M.M.); (T.V.); (A.F.); (V.V.)
| | - Valerio Vignoli
- Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy; (M.M.); (T.V.); (A.F.); (V.V.)
| | - Elvira Giurranna
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50121 Florence, Italy; (E.G.); (F.R.A.); (E.F.); (C.F.); (M.B.)
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50121 Florence, Italy; (E.G.); (F.R.A.); (E.F.); (C.F.); (M.B.)
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50121 Florence, Italy; (E.G.); (F.R.A.); (E.F.); (C.F.); (M.B.)
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50121 Florence, Italy; (E.G.); (F.R.A.); (E.F.); (C.F.); (M.B.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Firenze, 50121 Florence, Italy; (E.G.); (F.R.A.); (E.F.); (C.F.); (M.B.)
| |
Collapse
|
15
|
Pretorius E, Kell DB. A Perspective on How Fibrinaloid Microclots and Platelet Pathology May be Applied in Clinical Investigations. Semin Thromb Hemost 2024; 50:537-551. [PMID: 37748515 PMCID: PMC11105946 DOI: 10.1055/s-0043-1774796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Microscopy imaging has enabled us to establish the presence of fibrin(ogen) amyloid (fibrinaloid) microclots in a range of chronic, inflammatory diseases. Microclots may also be induced by a variety of purified substances, often at very low concentrations. These molecules include bacterial inflammagens, serum amyloid A, and the S1 spike protein of severe acute respiratory syndrome coronavirus 2. Here, we explore which of the properties of these microclots might be used to contribute to differential clinical diagnoses and prognoses of the various diseases with which they may be associated. Such properties include distributions in their size and number before and after the addition of exogenous thrombin, their spectral properties, the diameter of the fibers of which they are made, their resistance to proteolysis by various proteases, their cross-seeding ability, and the concentration dependence of their ability to bind small molecules including fluorogenic amyloid stains. Measuring these microclot parameters, together with microscopy imaging itself, along with methodologies like proteomics and imaging flow cytometry, as well as more conventional assays such as those for cytokines, might open up the possibility of a much finer use of these microclot properties in generative methods for a future where personalized medicine will be standard procedures in all clotting pathology disease diagnoses.
Collapse
Affiliation(s)
- Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Matieland, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
16
|
Ramanujam RK, Garyfallogiannis K, Litvinov RI, Bassani JL, Weisel JW, Purohit PK, Tutwiler V. Mechanics and microstructure of blood plasma clots in shear driven rupture. SOFT MATTER 2024; 20:4184-4196. [PMID: 38686609 PMCID: PMC11135145 DOI: 10.1039/d4sm00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Intravascular blood clots are subject to hydrodynamic shear and other forces that cause clot deformation and rupture (embolization). A portion of the ruptured clot can block blood flow in downstream vessels. The mechanical stability of blood clots is determined primarily by the 3D polymeric fibrin network that forms a gel. Previous studies have primarily focused on the rupture of blood plasma clots under tensile loading (Mode I), our current study investigates the rupture of fibrin induced by shear loading (Mode II), dominating under physiological conditions induced by blood flow. Using experimental and theoretical approaches, we show that fracture toughness, i.e. the critical energy release rate, is relatively independent of the type of loading and is therefore a fundamental property of the gel. Ultrastructural studies and finite element simulations demonstrate that cracks propagate perpendicular to the direction of maximum stretch at the crack tip. These observations indicate that locally, the mechanism of rupture is predominantly tensile. Knowledge gained from this study will aid in the development of methods for prediction/prevention of thrombotic embolization.
Collapse
Affiliation(s)
- Ranjini K Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| | | | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - John L Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
17
|
Sikora M, Bretes E, Perła-Kaján J, Utyro O, Borowczyk K, Piechocka J, Głowacki R, Wojtasz I, Kaźmierski R, Jakubowski H. Homocysteine thiolactone and other sulfur-containing amino acid metabolites are associated with fibrin clot properties and the risk of ischemic stroke. Sci Rep 2024; 14:11222. [PMID: 38755170 PMCID: PMC11099160 DOI: 10.1038/s41598-024-60706-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Homocysteine (Hcy) and Hcy-thiolactone (HTL) affect fibrin clot properties and are linked to cardiovascular disease. Factors that influence fibrin clot properties and stroke are not fully understood. To study sulfur-containing amino acid metabolites, fibrin clot lysis time (CLT) and maximum absorbance (Absmax) in relation to stroke, we analyzed plasma and urine from 191 stroke patients (45.0% women, age 68 ± 12 years) and 291 healthy individuals (59.7% women, age 50 ± 17 years). Plasma and urinary levels of sulfur-containing amino acid metabolites and fibrin clot properties were significantly different in stroke patients compared to healthy individuals. Fibrin CLT correlated with fibrin Absmax in healthy males (R2 = 0.439, P = 0.000), females (R2 = 0.245, P = 0.000), female stroke patients (R2 = 0.187, P = 0.000), but not in male stroke patients (R2 = 0.008, P = ns). Fibrin CLT correlated with age in healthy females but not males while fibrin Absmax correlated with age in both sexes; these correlations were absent in stroke patients. In multiple regression analysis in stroke patients, plasma (p)CysGly, pMet, and MTHFR A1298C polymorphism were associated with fibrin Absmax, while urinary (u)HTL, uCysGly, and pCysGly were significantly associated with fibrin CLT. In healthy individuals, uHTL and uGSH were significantly associated with fibrin Absmax, while pGSH, and CBS T833C 844ins68 polymorphism were associated with fibrin CLT. In logistic regression, uHTL, uHcy, pCysGly, pGSH, MTHFR C677T polymorphism, and Absmax were independently associated with stroke. Our findings suggest that HTL and other sulfur-containing amino acid metabolites influence fibrin clot properties and the risk of stroke.
Collapse
Affiliation(s)
- Marta Sikora
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, 61-704, Poznań, Poland
| | - Ewa Bretes
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland
| | - Kamila Borowczyk
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | - Justyna Piechocka
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | - Rafał Głowacki
- Faculty of Chemistry, Department of Environmental Chemistry, University of Łódź, 90-236, Łódź, Poland
| | | | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Góra, 65-046, Zielona Góra, Poland
- Department of Neurology, Poznań University of Medical Sciences, 60-355, Poznań, Poland
| | - Hieronim Jakubowski
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632, Poznań, Poland.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
18
|
Jakubowski H, Sikora M, Bretes E, Perła-Kaján J, Utyro O, Wojtasz I, Kaźmierski R, Frankowski M, Zioła-Frankowska A. Association of Metallic and Nonmetallic Elements with Fibrin Clot Properties and Ischemic Stroke. Life (Basel) 2024; 14:634. [PMID: 38792655 PMCID: PMC11122299 DOI: 10.3390/life14050634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Objectives-Metallic elements and fibrin clot properties have been linked to stroke. We examined metallic and nonmetallic elements, fibrin clot lysis time (CLT), and maximum absorbance (Absmax) in relation to ischemic stroke. Design-A case-control study of ischemic stroke patients vs. healthy individuals. Subjects and Methods-Plasma and serum were collected from 260 ischemic stroke patients (45.0% women; age, 68 ± 12 years) and 291 healthy controls (59.7% women; age, 50 ± 17 years). Fibrin CLT and Absmax were measured using a validated turbidimetric assay. Serum elements were quantified by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). Data were analyzed by bivariate correlations and multiple or logistic regression. Results-In female stroke patients, copper, lithium, and aluminum were significantly lower compared with controls; in male stroke patients, potassium was lower, and beryllium was elevated. In female and male stroke patients, iron, zinc, nickel, calcium, magnesium, sodium, and silicon were significantly lower, while strontium was elevated. Positive correlations between fibrin clot properties and metals, observed in healthy controls, were lost in ischemic stroke patients. In multivariate regression analysis, fibrin CLT and/or Absmax was associated with zinc, calcium, potassium, beryllium, and silicon in stroke patients and with sodium, potassium, beryllium, and aluminum in controls. In logistic regression analysis, stroke was independently associated with lithium, nickel, beryllium, strontium, boron, and silicon and with sodium, potassium, calcium, and aluminum but not with fibrin CLT/Absmax. Conclusions-Various elements were associated with fibrin clot properties and the risk of ischemic stroke. Lithium, sodium, calcium, and aluminum abrogated the association of fibrin clot properties with ischemic stroke.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry & Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, 225 Warren Street, Newark, NJ 07103, USA
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Marta Sikora
- European Center for Bioinformatics and Genomics, Institute of Bioorganic Chemistry, 61-704 Poznań, Poland;
| | - Ewa Bretes
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Joanna Perła-Kaján
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | - Olga Utyro
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland; (E.B.); (J.P.-K.); (O.U.)
| | | | - Radosław Kaźmierski
- Department of Neurology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
- Department of Neurology, Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Marcin Frankowski
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland; (M.F.); (A.Z.-F.)
| | | |
Collapse
|
19
|
Ząbczyk M, Undas A. Fibrin Clot Properties in Cancer: Impact on Cancer-Associated Thrombosis. Semin Thromb Hemost 2024; 50:402-412. [PMID: 37353045 DOI: 10.1055/s-0043-1770364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Cancer is associated with a high risk of venous thromboembolism (VTE) and its recurrence. There is evidence that the prothrombotic fibrin clot phenotype, involving the formation of denser and stiffer clots relatively resistant to lysis, occurs in cancer patients, which is in part related to enhanced inflammation, oxidative stress, and coagulation activation, along with the release of neutrophil extracellular traps, indicating that fibrin-related mechanisms might contribute to cancer-associated thrombosis (CAT). Multiple myeloma and its therapy have been most widely explored in terms of altered fibrin characteristics, but prothrombotic fibrin clot features have also been reported in patients with active solid cancer, including lung cancer and gastrointestinal cancer. Patient-related factors such as advanced age, smoking, and comorbidities might also affect fibrin clot characteristics and the risk of CAT. Prothrombotic fibrin clot features have been shown to predict the detection of cancer in patients following VTE during follow-up. Cancer-specific therapies and anticoagulation can favorably modify the phenotype of a fibrin clot, which may alter the course of CAT. It is unclear whether the fibrin clot phenotype might help identify patients with CAT who are more likely to experience recurrent events. This narrative review summarizes the current knowledge on the role of fibrin clot structure and function in cancer patients in the context of CAT.
Collapse
Affiliation(s)
- Michał Ząbczyk
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
20
|
Molina JJ, Kohler KN, Gager C, Andersen MJ, Wongso E, Lucas ER, Paik A, Xu W, Donahue DL, Bergeron K, Klim A, Caparon MG, Hultgren SJ, Desai A, Ploplis VA, Flick MJ, Castellino FJ, Flores-Mireles AL. Fibrinolytic-deficiencies predispose hosts to septicemia from a catheter-associated UTI. Nat Commun 2024; 15:2704. [PMID: 38538626 PMCID: PMC10973455 DOI: 10.1038/s41467-024-46974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) are amongst the most common nosocomial infections worldwide and are difficult to treat partly due to development of multidrug-resistance from CAUTI-related pathogens. Importantly, CAUTI often leads to secondary bloodstream infections and death. A major challenge is to predict when patients will develop CAUTIs and which populations are at-risk for bloodstream infections. Catheter-induced inflammation promotes fibrinogen (Fg) and fibrin accumulation in the bladder which are exploited as a biofilm formation platform by CAUTI pathogens. Using our established mouse model of CAUTI, here we identified that host populations exhibiting either genetic or acquired fibrinolytic-deficiencies, inducing fibrin deposition in the catheterized bladder, are predisposed to severe CAUTI and septicemia by diverse uropathogens in mono- and poly-microbial infections. Furthermore, here we found that Enterococcus faecalis, a prevalent CAUTI pathogen, uses the secreted protease, SprE, to induce fibrin accumulation and create a niche ideal for growth, biofilm formation, and persistence during CAUTI.
Collapse
Affiliation(s)
- Jonathan J Molina
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kurt N Kohler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Christopher Gager
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Marissa J Andersen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ellsa Wongso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Elizabeth R Lucas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Andrew Paik
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wei Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Deborah L Donahue
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Karla Bergeron
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aleksandra Klim
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alana Desai
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Urology, University of Washington Medical Center, Seattle, WA, 98133-9733, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ana L Flores-Mireles
- Integrated Biomedical Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
21
|
Feldman RM, O'Reilly-Shah V, Dahl JP, Siu J, Newby M, Sutherland TN, Parikh SR, Jiang T, Franz A. Impact of Ketorolac on Reoperation for Hemorrhage After Pediatric Tonsillectomy: A Single-Center Retrospective Propensity-Matched Study. Otolaryngol Head Neck Surg 2024; 170:928-936. [PMID: 37925621 DOI: 10.1002/ohn.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/20/2023] [Accepted: 10/07/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE To determine if perioperative ketorolac is associated with an increased rate of reoperation for hemorrhage after pediatric tonsillectomy at 30 days and 48 hours. STUDY DESIGN Single-center retrospective propensity-matched study. SETTING Quaternary pediatric hospital and ambulatory surgery center. METHODS Patients less than 18 years old undergoing tonsillectomy or adenotonsillectomy between January 1, 2015 and October 1, 2020 were included. Hemorrhage rates between exposed (K+) and unexposed (K-) patients were calculated for the total cohort and a 1:1 propensity-matched cohort. Additional analyses included: multivariable logistic regression, subgroup analysis of ASA 1 and 2 patients, subgroup analysis comparing children with teenagers. RESULTS There were 5873 patients (42.1% K+) in the full cohort and 4694 patients in the propensity-matched cohort. Reoperation for hemorrhage within 30 days occurred in 1.9% of K+ patients and 1.6% of K- patients (P = 0.455) in the full cohort and 1.9% of K+ patients and 1.7% of K- patients (odds ratio [OR] 1.10, 95% confidence interval [CI] 0.72-1.69, P = 0.662) in the propensity-matched cohort. Reoperation within 48 hours occurred in 0.65% of K+ patients and 0.53% of K- patients (P = 0.679) in the full cohort and 0.68% of K+ patients and 0.51% of K- patients (OR 1.33, 95% CI 0.63-2.81, P = 0.451) in the propensity-matched cohort. There was no association between perioperative ketorolac administration and reoperation for hemorrhage in any of the other analyses. CONCLUSION Ketorolac at end of surgery should be considered as part of the nonopioid analgesic regimen for pediatric tonsillectomy.
Collapse
Affiliation(s)
- Rachel M Feldman
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Vikas O'Reilly-Shah
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
| | - John P Dahl
- Department of Otolaryngology Head & Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Jennifer Siu
- Department of Otolaryngology Head & Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Maxwell Newby
- Department of Otolaryngology Head & Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Tori N Sutherland
- Department of Anesthesiology & Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjay R Parikh
- Department of Otolaryngology Head & Neck Surgery, University of Washington, Seattle, Washington, USA
| | - Teresa Jiang
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Amber Franz
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
22
|
Sacchetti S, Puricelli C, Mennuni M, Zanotti V, Giacomini L, Giordano M, Dianzani U, Patti G, Rolla R. Research into New Molecular Mechanisms in Thrombotic Diseases Paves the Way for Innovative Therapeutic Approaches. Int J Mol Sci 2024; 25:2523. [PMID: 38473772 DOI: 10.3390/ijms25052523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Thrombosis is a multifaceted process involving various molecular components, including the coagulation cascade, platelet activation, platelet-endothelial interaction, anticoagulant signaling pathways, inflammatory mediators, genetic factors and the involvement of various cells such as endothelial cells, platelets and leukocytes. A comprehensive understanding of the molecular signaling pathways and cell interactions that play a role in thrombosis is essential for the development of precise therapeutic strategies for the treatment and prevention of thrombotic diseases. Ongoing research in this field is constantly uncovering new molecular players and pathways that offer opportunities for more precise interventions in the clinical setting. These molecular insights into thrombosis form the basis for the development of targeted therapeutic approaches for the treatment and prevention of thrombotic disease. The aim of this review is to provide an overview of the pathogenesis of thrombosis and to explore new therapeutic options.
Collapse
Affiliation(s)
- Sara Sacchetti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Chiara Puricelli
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Marco Mennuni
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Valentina Zanotti
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Luca Giacomini
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Mara Giordano
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| | - Giuseppe Patti
- Division of Cardiology, "Maggiore della Carità" University Hospital, Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy
| | - Roberta Rolla
- Clinical Chemistry Laboratory, "Maggiore della Carità" University Hospital, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy
| |
Collapse
|
23
|
Risman RA, Belcher HA, Ramanujam RK, Weisel JW, Hudson NE, Tutwiler V. Comprehensive Analysis of the Role of Fibrinogen and Thrombin in Clot Formation and Structure for Plasma and Purified Fibrinogen. Biomolecules 2024; 14:230. [PMID: 38397467 PMCID: PMC10886591 DOI: 10.3390/biom14020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Altered properties of fibrin clots have been associated with bleeding and thrombotic disorders, including hemophilia or trauma and heart attack or stroke. Clotting factors, such as thrombin and tissue factor, or blood plasma proteins, such as fibrinogen, play critical roles in fibrin network polymerization. The concentrations and combinations of these proteins affect the structure and stability of clots, which can lead to downstream complications. The present work includes clots made from plasma and purified fibrinogen and shows how varying fibrinogen and activation factor concentrations affect the fibrin properties under both conditions. We used a combination of scanning electron microscopy, confocal microscopy, and turbidimetry to analyze clot/fiber structure and polymerization. We quantified the structural and polymerization features and found similar trends with increasing/decreasing fibrinogen and thrombin concentrations for both purified fibrinogen and plasma clots. Using our compiled results, we were able to generate multiple linear regressions that predict structural and polymerization features using various fibrinogen and clotting agent concentrations. This study provides an analysis of structural and polymerization features of clots made with purified fibrinogen or plasma at various fibrinogen and clotting agent concentrations. Our results could be utilized to aid in interpreting results, designing future experiments, or developing relevant mathematical models.
Collapse
Affiliation(s)
- Rebecca A. Risman
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Ranjini K. Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA; (H.A.B.); (N.E.H.)
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 08854, USA; (R.A.R.); (R.K.R.)
| |
Collapse
|
24
|
Bahar A, Sabur H. Effects of injectable platelet-rich fibrin (i-PRF) on pterygium surgery with conjunctival autograft. Int Ophthalmol 2024; 44:65. [PMID: 38347311 DOI: 10.1007/s10792-024-02920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/24/2023] [Indexed: 02/15/2024]
Abstract
OBJECTIVES To investigate the effects of subconjunctival injectable platelet-rich fibrin (i-PRF) injection on healing and complication rates after pterygium surgery with conjunctival autograft. METHODS This retrospective and comparative study evaluated 31 eyes that received i-PRF injections under the donor and graft conjunctiva following pterygium surgery, while 34 eyes did not receive i-PRF after the pterygium surgery. The patients' follow-up period was for 12 months. Postoperative recurrence, epithelial healing time, postoperative pain score, graft edema, and sliding of the graft (need for re-suturation) data were evaluated. RESULTS For the 12 months after surgery, one eye (3.2%) in the i-PRF group had developed corneal recurrence, and five eyes (14.7%) in the non-i-PRF group had developed recurrence. The mean corneal epithelial healing time was 2.96 ± 0.70 days in the i-PRF group and 3.58 ± 0.70 days in the non-i-PRF group (p = 0.001). The mean healing time of the donor conjunctiva epithelium was 3.84 ± 0.70 days in the i-PRF group, whereas it was 4.44 ± 0.74 days in the non-i-PRF group (p = 0.006). The mean postoperative pain score was 4.45 ± 1.52 in the i-PRF group and 5.08 ± 1.40 in the non-i-PRF group. In the non-i-PRF group, three cases (8.8%) required re-suturation, whereas, in the i-PRF group, no one required re-suturation. CONCLUSIONS Thanks to its platelets-derived growth factors, i-PRF can be a safe and effective adjuvant therapy for faster healing of conjunctival autograft and in the prevention of recurrence.
Collapse
Affiliation(s)
- Alperen Bahar
- Department of Ophtalmology, Diskapi Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey.
| | - Huri Sabur
- Department of Ophtalmology, Diskapi Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Zhang AY, Dong YX, Tan YD, Dian-Shen, Heng-Sun, Nie ST, Shao YY, Feng-Xian, Hu WS, Li XY, Tao-Xu, Li AN, Liang-Xu, Chang-Zhou. Ultrasound elastography predicts anticoagulation in lower extremity deep vein thrombosis. Clin Hemorheol Microcirc 2024; 87:171-185. [PMID: 38607754 DOI: 10.3233/ch-232031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
OBJECTIVE To investigate predictors of anticoagulation efficacy in deep venous thrombosis (DVT) by ultrasound elastography (UE). METHODS The basic clinical, laboratory and ultrasound treatment data of fifty-eight patients with DVT were collected and analyzed. Then the results of ultrasound after 3-month anticoagulation treatment were compared among different groups. Multiple logistic regression analysis was used to identify independent risk factors that affected anticoagulation efficacy. The predictive efficacy of each independent risk factor was accessed by drawing operating characteristic (ROC) curves. RESULTS According to the regression analysis, the elastic modulus (OR = 0.631, P = 0.001) and strain rate ratio (OR = 0.332, P = 0.006) were identified as independent risk factors for the effectiveness of anticoagulation therapy in patients with DVT. According to the ROC curves, elastic modulus and strain rate ratio could predict effective anticoagulation therapy for DVT, and the optimal threshold values were 22.10 kPa and 1.80 respectively. The corresponding AUC values were 0.879 and 0.854, with a sensitivity of 71.4% and 59.5%, a specificity of 93.7%, and a Youden index of 65.1% and 62.7%, respectively. CONCLUSIONS The elastic modulus (≤22.10 kPa) or strain rate ratio (≤1.80) of the thrombus were independent predictors for the effectiveness of anticoagulation therapy.
Collapse
Affiliation(s)
- Ao-Yi Zhang
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Ya-Xin Dong
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Yan-Di Tan
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Dian-Shen
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Heng-Sun
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Shu-Ting Nie
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Yuan-Yuan Shao
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Feng-Xian
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Wen-Shu Hu
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Xin-Yi Li
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Tao-Xu
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - An-Ni Li
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Liang-Xu
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| | - Chang-Zhou
- Department of Ultrasound, the First Clinical Medical Science College of China Three Gorges University and Yichang Central People's Hospital, Yi chang, Hubei, China
| |
Collapse
|
26
|
Mao Y, Ren J, Yang L. Advances of nanomedicine in treatment of atherosclerosis and thrombosis. ENVIRONMENTAL RESEARCH 2023; 238:116637. [PMID: 37482129 DOI: 10.1016/j.envres.2023.116637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Myocardial ischemia originated from AS is the main cause of cardiovascular diseases, one of the major factors contributing to the global disease burden. AS is typically quiescent until occurrence of plaque rupture and thrombosis, leading to acute coronary syndrome and sudden death. Currently, clinical diagnostic techniques suffer from major pitfalls including lack of accuracy and specificity, which makes it rather difficult for drugs to directly target plaques to achieve therapeutic effect. Therefore, how to accurately diagnose and effectively intervene vulnerable AS plaques to achieve accurate delivery of drugs has become an urgent and evolving clinical problem. With the rapid development of nanomedicine and nanomaterials, nanotechnology has shown unique advantages in monitoring vulnerable plaques and thrombus and improving drug efficacy. Recent studies have shown that application of nanoparticle drug delivery system can booster the safety and effectiveness of drug therapy, and molecular imaging technology and nanomedicine also exhibit high clinical application potentials in disease diagnosis. Therefore, nanotechnology provides another promising avenue for diagnosis and treatment of AS and thrombosis, and has shown excellent performance in the development of targeted drug therapy and biomaterials. In this review, the research progress, challenges and prospects of nanotechnology in AS and thrombosis are discussed, expecting to provide new ideas for the prevention, diagnosis and treatment of AS and thrombosis.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.
| |
Collapse
|
27
|
Patrocinio D, Galván-Chacón V, Gómez-Blanco JC, Miguel SP, Loureiro J, Ribeiro MP, Coutinho P, Pagador JB, Sanchez-Margallo FM. Biopolymers for Tissue Engineering: Crosslinking, Printing Techniques, and Applications. Gels 2023; 9:890. [PMID: 37998980 PMCID: PMC10670821 DOI: 10.3390/gels9110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
Currently, tissue engineering has been dedicated to the development of 3D structures through bioprinting techniques that aim to obtain personalized, dynamic, and complex hydrogel 3D structures. Among the different materials used for the fabrication of such structures, proteins and polysaccharides are the main biological compounds (biopolymers) selected for the bioink formulation. These biomaterials obtained from natural sources are commonly compatible with tissues and cells (biocompatibility), friendly with biological digestion processes (biodegradability), and provide specific macromolecular structural and mechanical properties (biomimicry). However, the rheological behaviors of these natural-based bioinks constitute the main challenge of the cell-laden printing process (bioprinting). For this reason, bioprinting usually requires chemical modifications and/or inter-macromolecular crosslinking. In this sense, a comprehensive analysis describing these biopolymers (natural proteins and polysaccharides)-based bioinks, their modifications, and their stimuli-responsive nature is performed. This manuscript is organized into three sections: (1) tissue engineering application, (2) crosslinking, and (3) bioprinting techniques, analyzing the current challenges and strengths of biopolymers in bioprinting. In conclusion, all hydrogels try to resemble extracellular matrix properties for bioprinted structures while maintaining good printability and stability during the printing process.
Collapse
Affiliation(s)
- David Patrocinio
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Victor Galván-Chacón
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - J. Carlos Gómez-Blanco
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
| | - Sonia P. Miguel
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Jorge Loureiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
| | - Maximiano P. Ribeiro
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG, Center of Potential and Innovation of Natural Resources, Polytechnic of Guarda, 6300-559 Guarda, Portugal (M.P.R.)
- CICS-UBI, Health Science Research Center, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - J. Blas Pagador
- CCMIJU, Bioengineering and Health Technologies, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain; (D.P.); (V.G.-C.); (J.B.P.)
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
| | - Francisco M. Sanchez-Margallo
- CIBER CV, Centro de Investigación Biomédica en Red—Enfermedades Cardiovasculares, 28029 Madrid, Spain;
- Scientific Direction, Jesus Usón Minimally Invasive Surgery Center, 10071 Cáceres, Spain
- TERAV/ISCIII, Red Española de Terapias Avanzadas, Instituto de Salud Carlos III (RICORS, RD21/0017/0029), 28029 Madrid, Spain
| |
Collapse
|
28
|
Hymczak H, Gołąb A, Kosiński S, Podsiadło P, Sobczyk D, Drwiła R, Kapelak B, Darocha T, Plicner D. The Role of Extracorporeal Membrane Oxygenation ECMO in Accidental Hypothermia and Rewarming in Out-of-Hospital Cardiac Arrest Patients-A Literature Review. J Clin Med 2023; 12:6730. [PMID: 37959196 PMCID: PMC10649291 DOI: 10.3390/jcm12216730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Accidental hypothermia, defined as an unintentional drop of the body core temperature below 35 °C, is one of the causes of cardiocirculatory instability and reversible cardiac arrest. Currently, extracorporeal life support (ECLS) rewarming is recommended as a first-line treatment for hypothermic cardiac arrest patients. The aim of the ECLS rewarming is not only rapid normalization of core temperature but also maintenance of adequate organ perfusion. Veno-arterial extracorporeal membrane oxygenation (ECMO) is a preferred technique due to its lower anticoagulation requirements and potential to prolong circulatory support. Although highly efficient, ECMO is acknowledged as an invasive treatment option, requiring experienced medical personnel and is associated with the risk of serious complications. In this review, we aimed to discuss the clinical aspects of ECMO management in severely hypothermic cardiac arrest patients.
Collapse
Affiliation(s)
- Hubert Hymczak
- Department of Anesthesiology and Intensive Care, St. John Paul II Hospital, 31-202 Krakow, Poland; (H.H.); (R.D.)
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
| | - Aleksandra Gołąb
- Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
- Center for Research and Innovative Technology, John Paul II Hospital, 31-202 Krakow, Poland
| | - Sylweriusz Kosiński
- Department of Interdisciplinary Intensive Care, Jagiellonian University Medical College, 31-008 Krakow, Poland;
| | - Paweł Podsiadło
- Institute of Medical Sciences, Jan Kochanowski University, 25-369 Kielce, Poland;
| | - Dorota Sobczyk
- Department of Cardiovascular Diseases, John Paul II Hospital, 31-202 Krakow, Poland;
- Department of Cardiovascular Surgery and Transplantation, John Paul II Hospital, 31-202 Krakow, Poland; (B.K.); (D.P.)
| | - Rafał Drwiła
- Department of Anesthesiology and Intensive Care, St. John Paul II Hospital, 31-202 Krakow, Poland; (H.H.); (R.D.)
| | - Bogusław Kapelak
- Department of Anesthesiology and Intensive Care, St. John Paul II Hospital, 31-202 Krakow, Poland; (H.H.); (R.D.)
- Department of Cardiovascular Surgery and Transplantation, John Paul II Hospital, 31-202 Krakow, Poland; (B.K.); (D.P.)
| | - Tomasz Darocha
- Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Dariusz Plicner
- Department of Cardiovascular Surgery and Transplantation, John Paul II Hospital, 31-202 Krakow, Poland; (B.K.); (D.P.)
- Department of Anesthesiology and Intensive Care, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
29
|
Bettiol A, Argento FR, Fini E, Bello F, Di Scala G, Taddei N, Emmi G, Prisco D, Becatti M, Fiorillo C. ROS-driven structural and functional fibrinogen modifications are reverted by interleukin-6 inhibition in Giant Cell Arteritis. Thromb Res 2023; 230:1-10. [PMID: 37598635 DOI: 10.1016/j.thromres.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Cranial and extra-cranial vascular events are among the major determinants of morbidity and mortality in Giant Cell Arteritis (GCA). Vascular events seem mostly of inflammatory nature, although the precise pathogenetic mechanisms are still unclear. We investigated the role of oxidation-induced structural and functional fibrinogen modifications in GCA. The effects of the anti-IL6R tocilizumab in counteracting these mechanisms were also assessed. MATERIALS AND METHODS A cross-sectional study was conducted on 65 GCA patients and 65 matched controls. Leucocyte reactive oxygen species (ROS) production, redox state, and fibrinogen structural and functional features were compared between patients and controls. In 19 patients receiving tocilizumab, pre vs post treatment variations were assessed. RESULTS GCA patients displayed enhanced blood lymphocyte, monocyte and neutrophil ROS production compared to controls, with an increased plasma lipid peroxidation and a reduced total antioxidant capacity. This oxidative impairment resulted in a sustained fibrinogen oxidation (i.e. dityrosine content 320 (204-410) vs 136 (120-176) Relative Fluorescence Units (RFU), p < 0.0001), with marked alterations in fibrinogen secondary and tertiary structure [intrinsic fluorescence: 134 (101-227) vs 400 (366-433) RFU, p < 0.001]. Structural alterations paralleled a remarkable fibrinogen functional impairment, with a reduced ability to polymerize into fibrin and a lower fibrin susceptibility to plasmin-induced lysis. In patients receiving tocilizumab, a significant improvement in redox status was observed, accompanied by a significant improvement in fibrinogen structural and functional features (p < 0.001). CONCLUSIONS An impaired redox status accounts for structural and functional fibrinogen modifications in GCA, suggesting a potential role of tocilizumab for cardiovascular prevention in GCA.
Collapse
Affiliation(s)
- Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Eleonora Fini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Federica Bello
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Gerardo Di Scala
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Australia
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Largo Brambilla 3, 50134, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy.
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze; viale Pieraccini, 6 - 50139 Firenze, Italy
| |
Collapse
|
30
|
Wang P, Peng C, Xie X, Deng X, Weng M. Research progress on the fibrinolytic enzymes produced from traditional fermented foods. Food Sci Nutr 2023; 11:5675-5688. [PMID: 37823145 PMCID: PMC10563737 DOI: 10.1002/fsn3.3601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a global health problem and leading cause of death worldwide. Thrombus formation, one of the CVDs, is essentially the formation of fibrin clots. The existing thrombolytic agents have the disadvantages of high price, short half-life, and high bleeding risk; hence, there is an urgent need to find the alternative thrombolytic agents. In recent years, traditional fermented foods have been widely investigated for their outstanding effects in the prevention and treatment of thrombus formation. In this review, we have focused on fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods and their potential use for treating CVDs. First, we discussed about the sources of fibrinolytic enzymes and microbial strains that produce those enzymes followed by the optimization of fermentation process, purification, and physicochemical properties of fibrinolytic enzymes. Finally, we have summarized the thrombolytic effects of fibrinolytic enzymes in humans and mice. Fibrinolytic enzymes produced by microorganisms during the fermentation of traditional fermented foods not only lyse thrombi but also acts as anti-atherosclerotic, anti-hyperlipidemia, and neuroprotection agents. Therefore, fibrinolytic enzymes from traditional fermented foods have great potential for the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Panpan Wang
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative MedicineJiangxi University of Chinese MedicineNanchangChina
| | - Cuiying Peng
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative MedicineJiangxi University of Chinese MedicineNanchangChina
| | - Xiaomei Xie
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative MedicineJiangxi University of Chinese MedicineNanchangChina
| | - Xiongwei Deng
- Nanchang Hongdu Hospital of TCM Affiliated to Jiangxi University of Chinese MedicineNanchangChina
| | - Meizhi Weng
- Top Discipline of Jiangxi Province, Discipline of Chinese and Western Integrative MedicineJiangxi University of Chinese MedicineNanchangChina
| |
Collapse
|
31
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
32
|
Alnima T, Meijer RI, Spronk HMH, Warlé M, Cate HT. Diabetes- versus smoking-related thrombo-inflammation in peripheral artery disease. Cardiovasc Diabetol 2023; 22:257. [PMID: 37735399 PMCID: PMC10514957 DOI: 10.1186/s12933-023-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Peripheral artery disease (PAD) is a major health problem with increased cardiovascular mortality, morbidity and disabling critical limb threatening ischemia (CLTI) and amputation. Diabetes mellitus (DM) and cigarette smoke are the main risk factors for the development of PAD. Although diabetes related PAD shows an accelerated course with worse outcome regarding complications, mortality and amputations compared with non-diabetic patients, current medical treatment does not make this distinction and includes standard antiplatelet and lipid lowering drugs for all patients with PAD. In this review we discuss the pathophysiologic mechanisms of PAD, with focus on differences in thrombo-inflammatory processes between diabetes-related and smoking-related PAD, and hypothesize on possible mechanisms for the progressive course of PAD in DM. Furthermore, we comment on current medical treatment and speculate on alternative medical drug options for patients with PAD and DM.
Collapse
Affiliation(s)
- T Alnima
- Department of Internal Medicine, Section of Vascular Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - R I Meijer
- Department of Internal Medicine, Section of Diabetology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H M H Spronk
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - M Warlé
- Department of Vascular Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - H Ten Cate
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
33
|
Gao C, Bao B, Bao C, Wu W. Fungi Fibrinolytic Compound 1 Plays a Core Role in Modulating Fibrinolysis, Altering Plasma Clot Structure, and Promoting Susceptibility to Lysis. Pharmaceutics 2023; 15:2320. [PMID: 37765289 PMCID: PMC10536852 DOI: 10.3390/pharmaceutics15092320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fibrin clot structure and function are major determinants of venous and arterial thromboembolic diseases, as well as the key determinants of the efficiency of clot lysis. Studies have revealed that fungi fibrinolytic compound 1 (FGFC1) is a novel marine pyranisoindolone natural product with fibrinolytic activity. Here, we explore the impacts of FGFC1 on clot structure, lysis, and plasminogen activation in vitro using turbidimetric, enzyme-linked immunosorbent assay, confocal and electron microscopy, urokinase, or plasmin chromogenic substrate. Clots formed in the presence of FGFC1 expressed reduced fibrin polymerization rate and maximum turbidity; however, they did not influence the lag phase of fibrin polymerization. In the absence of scu-PA (single-chain urokinase plasminogen activator), microscopy revealed that FGFC1 increased the number of protofibrils within fibrin fiber and the pore diameter between protofibrils, inducing clots to form a region of thinner and looser networks separated by large pores. The effects of FGFC1 on scu-PA-mediated plasma clot structure were similar to those in the absence of scu-PA. In addition, FGFC1 promoted the lysis of clots and increased the D-dimer concentration in lysate. FGFC1 increased the generation rate of p-nitroaniline in plasma. These results show that FGFC1 has fibrinolytic activity in plasma, leading to interference with the release of fibrinopeptide B to affect lateral aggregation of protofibrils and increase clot susceptibility to fibrinolysis by altering its structure.
Collapse
Affiliation(s)
- Chunli Gao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
| | - Bin Bao
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
- Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Chunling Bao
- The Sixth People’s Hospital Affiliated, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (C.G.)
- Putuo Sub-Center of International Joint Research Center for Marine Biological Sciences, Zhongke Road, Putuo District, Zhoushan 316104, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| |
Collapse
|
34
|
Hughes MDG, Cussons S, Hanson BS, Cook KR, Feller T, Mahmoudi N, Baker DL, Ariëns R, Head DA, Brockwell DJ, Dougan L. Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks. Nat Commun 2023; 14:5593. [PMID: 37696784 PMCID: PMC10495373 DOI: 10.1038/s41467-023-40921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Tímea Feller
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - Daniel L Baker
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Robert Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David A Head
- School of Computing, Faculty of Engineering and Physical Science, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
35
|
Kong C, Chen S, Wang X, Hu C, Li B, Fu R, Zhang J. Hemoadhican, a Tissue Adhesion Hemostatic Material Independent of Blood Coagulation. Adv Healthc Mater 2023; 12:e2300705. [PMID: 37029455 DOI: 10.1002/adhm.202300705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Uncontrolled hemorrhage is a leading cause of death, emphasizing the need for novel hemostatic agents. Here, a novel hemostatic polysaccharide hemoadhican (HD) is screened out by analyzing the rheological properties of screened material mixed blood sludges, which is prepared by mixing polysaccharide granules and whole blood to mimic the coagulation in vitro. HD is produced by a bacterial isolate Paenibacillus sp.1229, and the repeating units of HD are →)-α-L-Rhap-(1→3)-β-D-Glcp-(1→4)[4,6-ethylidene-α-D-Galp-(1→4)-α-D-Glcp-(1→3)]-α-D-Manp-(1→. Compared to chitosan and celox, HD achieves more effective hemostasis in animal models with mouse and rat femoral arteries, rat carotid arteries, and rabbit femoral arteries. Especially, HD maintains an excellent hemostatic capability in animals with heparin-induced hemorrhage diathesis. In vitro experiments show HD granules can quickly absorb a small amount of blood component to create a hemophobic blood sludge resistant to high pressure. The blood sludge firmly adheres to damaged tissue and efficiently repels blood. In vitro experiments show that HD does not actively trigger blood coagulation cascade and is independent of blood conditions including heparin treatment. In addition, HD moisturizes wounds and accelerates wound healing, exhibiting excellent biodegradability, and hemocompatibility. The results indicate that HD is a promising hemostatic material for treating traumatic hemorrhages and uncontrollable surgical bleeding.
Collapse
Affiliation(s)
- Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Xianjin Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Chengtao Hu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing, 211899, China
| | - Renjie Fu
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing, 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, 210094, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Beijing, 210094, China
| |
Collapse
|
36
|
Wahlstrøm KL, Ekeloef S, Gögenur I, Münster AMB. Myocardial injury after non-cardiac surgery and per operative fibrin metabolism in patients undergoing hip-fracture surgery: an observational study. Scand J Clin Lab Invest 2023; 83:299-308. [PMID: 37584362 DOI: 10.1080/00365513.2023.2220970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 08/17/2023]
Abstract
Myocardial injury after non-cardiac surgery (MINS) is associated with a 2-3-fold increased risk of subsequent major cardiovascular events and postoperative mortality. The pathological mechanism behind MINS is not fully uncovered. We hypothesized that patients with MINS following hip fracture surgery would have an altered haemostatic balance pre- and postoperative compared with patients without MINS. This was investigated in a prospective single-centre observational study including patients consecutively. The outcomes were changes in thrombin generation, fibrinogen/fibrin turnover, tissue plasminogen activator, plasminogen activator inhibitor-1 and fibrin structure measurements in patients developing MINS and patients who did not. Outcomes were measured preoperatively and two hours postoperatively. Seventy-two patients were included whereof 26 (36%) patients developed MINS. D-dimer delta values were significantly higher in patients developing MINS than in patients who did not (p = 0.01). After adjusting for age, sex, smoking, alcohol abuse, atrial fibrillation, anticoagulant medication preoperative CRP, preoperative creatinine and duration of surgery, the association remained significant (p = 0.04). There were no significant changes in thrombin generation, in markers of fibrinogen/fibrin turnover besides D-dimer, or in fibrin structure measurements pre- and postoperatively between patients with and without MINS. As such, a relationship between the coagulative and fibrinolytic activity and MINS cannot be ruled out in patients with MINS after hip fracture surgery. Registration: The study was an observational sub-study to a multicentre randomised clinical trial registered at ClinicalTrials.gov (NCT02344797).
Collapse
Affiliation(s)
- Kirsten L Wahlstrøm
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Sarah Ekeloef
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Department of Surgery, Zealand University Hospital, Køge, Denmark
- Institute for Clinical Medicine, Copenhagen University, Denmark
| | - Anna-Marie B Münster
- Unit for Thrombosis Research, Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Biochemistry, Regional Hospital West Jutland, Holstebro, Denmark
| |
Collapse
|
37
|
Richter DM, Ku JC, Keckler KE, Burke LR, Abd GM, Li Y. Autologous blood clots: a natural biomaterial for wound healing. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1250013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Repair after injury in mammalian tissue involves a complex cascade of events, with the formation of local blood clots being essential for the initial phases of wound healing. As a result, emerging research has sought to harness this biological activity to generate a pro-regenerative biomaterial to speed up wound healing. According to recent studies, “blood clots” created in vitro can be employed as an orthobiologic-based biomaterial for promoting tissue regeneration. Even though such research is still in its early phases, numerous studies show encouraging results that suggest autologous blood clots created in vitro might be a valuable treatment for soft tissue and orthopedic injuries. In this article, we discuss the function of blood clots in physiologic healing, how exogenous material can affect this process, and the most recent clinical research that proposes the use of autologous blood clots as a therapeutically beneficial biomaterial.
Collapse
|
38
|
Hermsen J, Hambley B. The Coagulopathy of Acute Promyelocytic Leukemia: An Updated Review of Pathophysiology, Risk Stratification, and Clinical Management. Cancers (Basel) 2023; 15:3477. [PMID: 37444587 DOI: 10.3390/cancers15133477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Acute promyelocytic leukemia (APL) has a well-established mechanism and a long-term prognosis that exceeds that of any other acute leukemia. These improving outcomes are due, in part, to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), two targeted and highly active agents in this disease. However, there remains a considerable morbidity and mortality risk in APL secondary to clinically significant hemorrhagic and/or thrombotic events. Prevention and treatment of these coagulopathic complications remain significant impediments to further progress in optimizing outcomes for patients with APL. Moreover, the relative rarity of APL hinders adequately powered randomized controlled trials for evaluating APL coagulopathy management strategies. This review draws from peer-reviewed works falling between initial descriptions of APL in 1957 and work published prior to January 2023 and provides an updated overview of the pathophysiology of hemorrhagic and thrombotic complications in APL, outlines risk stratification parameters, and compiles current clinical best practices. An improved understanding of the pathophysiologic mechanisms driving hemorrhage and thrombosis along with the completion of well-designed trials of management strategies will assist clinicians in developing interventions that mitigate these devastating complications in an otherwise largely curable disease.
Collapse
Affiliation(s)
- Jack Hermsen
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Bryan Hambley
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, 3125 Eden Ave, Cincinnati, OH 45267, USA
| |
Collapse
|
39
|
Klajmon A, Głowacki R, Piechocka J, Kopiński P, Ząbczyk M, Natorska J. Plasma thiol levels and methylenetetrahydrofolate reductase gene c.665C > T and c.1286A > C variants affect fibrin clot properties in Polish venous thromboembolic patients. Mol Genet Metab 2023; 139:107623. [PMID: 37302269 DOI: 10.1016/j.ymgme.2023.107623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Aminothiols, including cysteine (Cys) and glutathione (GSH) in relation to fibrin clot phenotype were not investigated in patients with venous thromboembolism (VTE) and 5,10-methylenetetrahydrofolate reductase (MTHFR) gene variants. We aimed to explore the associations between MTHFR variants and plasma oxidative stress indicators including aminothiols as well as fibrin clot properties with plasma oxidative status and fibrin clot properties in this group of patients. METHODS In 387 VTE patients the MTHFR c.665C > T and c.1286A > C variants were genotyped, together with chromatographic separation of plasma thiols. We also determined nitrotyrosine levels and fibrin clot properties, including clot permeability (Ks), lysis time (CLT), and fibrin fibers thickness. RESULTS There were 193 patients with MTHFR c.665C > T (49.9%) and 214 (55.3%) with c.1286A > C variants. Both allele carriers with total homocysteine (tHcy) levels >15 μM (n = 71, 18.3%), compared to patients with tHcy ≤15 μM had 11.5% and 12.5% higher Cys levels, 20.6% and 34.3% higher GSH levels as well as 28.1% and 57.4% increased nitrotyrosine levels, respectively (all P < 0.05). The MTHFR c.665C > T carriers with tHcy levels >15 μM compared to tHcy ≤15 μM had 39.4% reduced Ks and 9% reduced fibrin fibers thickness (both P < 0.05) with no differences in CLT. In the MTHFR c.1286A > C carriers with tHcy levels >15 μM, Ks was decreased by 44.5%, CLT prolonged by 46.1%, and fibrin fibers thickness was reduced by 14.5% compared to patients with tHcy ≤15 μM (all P < 0.05). Nitrotyrosine levels in MTHFR variants carriers correlated with Ks (r = -0.38, P < 0.05) and fibrin fibers diameter (r = -0.50, P < 0.05). CONCLUSIONS Our study indicates that patients with MTHFR variants and tHcy >15 μM are characterized by elevated Cys and nitrotyrosine levels associated with prothrombotic fibrin clot properties.
Collapse
Affiliation(s)
| | - Rafał Głowacki
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, 163 Pomorska St., 90-236 Łódź, Poland
| | - Justyna Piechocka
- Faculty of Chemistry, Department of Environmental Chemistry, University of Lodz, 163 Pomorska St., 90-236 Łódź, Poland
| | - Piotr Kopiński
- John Paul II Hospital, 80 Prądnicka St., 31-202 Kraków, Poland; Department of Lung Diseases, Cancer and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University, 13/15 Jagiellońska St., 85-067 Bydgoszcz, Poland
| | - Michał Ząbczyk
- John Paul II Hospital, 80 Prądnicka St., 31-202 Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Kraków, Poland
| | - Joanna Natorska
- John Paul II Hospital, 80 Prądnicka St., 31-202 Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St., 31-202 Kraków, Poland.
| |
Collapse
|
40
|
Belcher HA, Guthold M, Hudson NE. What is the diameter of a fibrin fiber? Res Pract Thromb Haemost 2023; 7:100285. [PMID: 37601015 PMCID: PMC10439396 DOI: 10.1016/j.rpth.2023.100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
Background Altered fibrin fiber structure is linked to pathologic states, including coronary heart disease, ischemic stroke, and atherosclerosis. However, several different techniques are commonly utilized for studying fibrin structures, and comparison of results obtained using different techniques can be challenging due to lack of standardization. Objectives This study provides a path toward standardization by comparing fibrin fiber diameters for a range of physiologic fibrinogen and thrombin concentrations using multiple different complementary experimental methods. Methods We determined fiber diameter using scanning electron microscopy (SEM), superresolution (stochastic optical reconstruction microscopy) fluorescence microscopy, and 4 commonly utilized turbidimetric approaches to determine the congruence between the results and the conditions under which each should be used. Results We found that diameter values obtained using SEM and superresolution imaging agree within 10% for nearly all conditions tested. We also found that when a wavelength range of 500 to 800 nm was used for measurements and accounting for the wavelength dependence of the refractive index and specific refractive index increment, diameters obtained using the corrected Yeromonahos turbidimetric approach agree with SEM within 20% for most conditions. Conclusion We performed a systematic, multitechnique survey assessing fibrin fiber diameters under a range of biochemical conditions. The similarity in the diameter values obtained using SEM and superresolution imaging suggests that drying and fixation during SEM sample preparation do not dramatically alter fiber cross-sections. Congruence, under certain conditions, between diameter values obtained using SEM, superresolution fluorescence imaging, and turbidimetry demonstrates the feasibility of a fibrin diameter standardization project.
Collapse
Affiliation(s)
- Heather A. Belcher
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Nathan E. Hudson
- Department of Physics, East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
41
|
Bodera FJ, McVey MJ, Sathiyamoorthy K, Kolios MC. Detection of clot formation & lysis In-Vitro using high frequency photoacoustic imaging & frequency analysis. PHOTOACOUSTICS 2023; 30:100487. [PMID: 37095887 PMCID: PMC10122060 DOI: 10.1016/j.pacs.2023.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/17/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023]
Abstract
Clotting is a physiological process that prevents blood loss after injury. An imbalance in clotting factors can lead to lethal consequences such as exsanguination or inappropriate thrombosis. Clinical methods to monitor clotting and fibrinolysis typically measure the viscoelasticity of whole blood or optical density of plasma over time. Though these methods provide insights into clotting and fibrinolysis, they require milliliters of blood which can worsen anemia or only provide partial information. To overcome these limitations, a high-frequency photoacoustic (HFPA) imaging system was developed to detect clotting and lysis in blood. Clotting was initiated in vitro in reconstituted blood using thrombin and lysed with urokinase plasminogen activator. Frequency spectra measured using HFPA signals (10-40 MHz) between non-clotted blood and clotted blood differed markedly, allowing tracking of clot initiation and lysis in volumes of blood as low as 25 µL/test. HFPA imaging shows potential as a point-of-care examination of coagulation and fibrinolysis.
Collapse
Affiliation(s)
- Filip J. Bodera
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
- SickKids Hospital for Sick Children, Toronto, Canada
- Correspondence to: Department of Physics Toronto Metropolitan University, 350 Victoria St, Toronto, ON M5B2K3, Canada.
| | - Mark J. McVey
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- SickKids Hospital for Sick Children, Toronto, Canada
- Department of Anesthesia, University of Toronto, Toronto, Canada
| | - Krishnan Sathiyamoorthy
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
| | - Michael C. Kolios
- Department of Physics, Toronto Metropolitan University, Toronto, Canada
- Institute for Biomedical Engineering, Science and Technology, Li Ka Shing Knowledge Institute, Keenan Research Centre, St. Michael’s Hospital, Toronto, Canada
| |
Collapse
|
42
|
Ząbczyk M, Ariëns RAS, Undas A. Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovasc Res 2023; 119:94-111. [PMID: 36662542 PMCID: PMC10377755 DOI: 10.1093/cvr/cvad017] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 01/21/2023] Open
Abstract
Fibrinogen conversion into insoluble fibrin and the formation of a stable clot is the final step of the coagulation cascade. Fibrin clot porosity and its susceptibility to plasmin-mediated lysis are the key fibrin measures, describing the properties of clots prepared ex vivo from citrated plasma. Cardiovascular disease (CVD), referring to coronary heart disease, heart failure, stroke, and hypertension, has been shown to be associated with the formation of dense fibrin networks that are relatively resistant to lysis. Denser fibrin mesh characterized acute patients at the onset of myocardial infarction or ischaemic stroke, while hypofibrinolysis has been identified as a persistent fibrin feature in patients following thrombotic events or in those with stable coronary artery disease. Traditional cardiovascular risk factors, such as smoking, diabetes mellitus, hyperlipidaemia, obesity, and hypertension, have also been linked with unfavourably altered fibrin clot properties, while some lifestyle modifications and pharmacological treatment, in particular statins and anticoagulants, may improve fibrin structure and function. Prospective studies have suggested that prothrombotic fibrin clot phenotype can predict cardiovascular events in short- and long-term follow-ups. Mutations and splice variants of the fibrinogen molecule that have been proved to be associated with thrombophilia or increased cardiovascular risk, along with fibrinogen post-translational modifications, prothrombotic state, inflammation, platelet activation, and neutrophil extracellular traps formation, contribute also to prothrombotic fibrin clot phenotype. Moreover, about 500 clot-bound proteins have been identified within plasma fibrin clots, including fibronectin, α2-antiplasmin, factor XIII, complement component C3, and histidine-rich glycoprotein. This review summarizes the current knowledge on the mechanisms underlying unfavourable fibrin clot properties and their implications in CVD and its thrombo-embolic manifestations.
Collapse
Affiliation(s)
- Michał Ząbczyk
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Krakow, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Robert A S Ariëns
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Anetta Undas
- Thromboembolic Disorders Department, Institute of Cardiology, Jagiellonian University Medical College, 80 Pradnicka St, 31-202 Krakow, Poland
- Krakow Center for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
43
|
Garyfallogiannis K, Ramanujam RK, Litvinov RI, Yu T, Nagaswami C, Bassani JL, Weisel JW, Purohit PK, Tutwiler V. Fracture toughness of fibrin gels as a function of protein volume fraction: Mechanical origins. Acta Biomater 2023; 159:49-62. [PMID: 36642339 DOI: 10.1016/j.actbio.2022.12.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The mechanical stability of blood clots necessary for their functions is provided by fibrin, a fibrous gel. Rupture of clots leads to life-threatening thrombotic embolization, which is little understood. Here, we combine experiments and simulations to determine the toughness of plasma clots as a function of fibrin content and correlate toughness with fibrin network structure characterized by confocal and scanning electron microscopy. We develop fibrin constitutive laws that scale with fibrin concentration and capture the force-stretch response of cracked clot specimens using only a few material parameters. Toughness is calculated from the path-independent J* integral that includes dissipative effects due to fluid flow and uses only the constitutive model and overall stretch at crack propagation as input. We show that internal fluid motion, which is not directly measurable, contributes significantly to clot toughness, with its effect increasing as fibrin content increases, because the reduced gel porosity at higher density results in greater expense of energy in fluid motion. Increasing fibrin content (1→10mg/mL) results in a significant increase in clot toughness (3→15 N/m) in accordance with a power law relation reminiscent of cellular solids and elastomeric gels. These results provide a basis for understanding and predicting the tendency for thrombotic embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the major determinant of the structural and mechanical integrity of blood clots. We determined that increasing the fibrin content in clots, as in some thrombi and fibrin-based anti-bleeding sealants, results in an increase in clot toughness. Toughness corresponds to the ability to resist rupturing in the presence of a defect. We couple bulk mechanical testing, microstructural measurements, and finite element modeling to capture the force-stretch response of fibrin clots and compute toughness. We show that increased fibrin content in clots reduces porosity and limits fluid motion and that fluid motion drastically alters the clot toughness. These results provide a fundamental understanding of blood clot rupture and could help in rational design of fibrin-containing biomaterials.
Collapse
Affiliation(s)
| | - Ranjini K Ramanujam
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tony Yu
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | | | - John L Bassani
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Prashant K Purohit
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
44
|
de Vries JJ, Laan DM, Frey F, Koenderink GH, de Maat MPM. A systematic review and comparison of automated tools for quantification of fibrous networks. Acta Biomater 2023; 157:263-274. [PMID: 36509400 DOI: 10.1016/j.actbio.2022.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Fibrous networks are essential structural components of biological and engineered materials. Accordingly, many approaches have been developed to quantify their structural properties, which define their material properties. However, a comprehensive overview and comparison of methods is lacking. Therefore, we systematically searched for automated tools quantifying network characteristics in confocal, stimulated emission depletion (STED) or scanning electron microscopy (SEM) images and compared these tools by applying them to fibrin, a prototypical fibrous network in thrombi. Structural properties of fibrin such as fiber diameter and alignment are clinically relevant, since they influence the risk of thrombosis. Based on a systematic comparison of the automated tools with each other, manual measurements, and simulated networks, we provide guidance to choose appropriate tools for fibrous network quantification depending on imaging modality and structural parameter. These tools are often able to reliably measure relative changes in network characteristics, but absolute numbers should be interpreted with care. STATEMENT OF SIGNIFICANCE: Structural properties of fibrous networks define material properties of many biological and engineered materials. Many methods exist to automatically quantify structural properties, but an overview and comparison is lacking. In this work, we systematically searched for all publicly available automated analysis tools that can quantify structural properties of fibrous networks. Next, we compared them by applying them to microscopy images of fibrin networks. We also benchmarked the automated tools against manual measurements or synthetic images. As a result, we give advice on which automated analysis tools to use for specific structural properties. We anticipate that researchers from a large variety of fields, ranging from thrombosis and hemostasis to cancer research, and materials science, can benefit from our work.
Collapse
Affiliation(s)
- Judith J de Vries
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne M Laan
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Felix Frey
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands
| | - Moniek P M de Maat
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Driever EG, Lisman T. Fibrin clot properties and thrombus composition in cirrhosis. Res Pract Thromb Haemost 2023; 7:100055. [PMID: 36798901 PMCID: PMC9925609 DOI: 10.1016/j.rpth.2023.100055] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/21/2023] Open
Abstract
Patients with cirrhosis frequently acquire profound hemostatic alterations, which may affect thrombus quality and composition-factors that determine the susceptibility to embolization and fibrinolysis. In this narrative review, we describe in vitro studies on fibrin clot formation and quantitative and qualitative changes in fibrinogen in patients with cirrhosis, and describe recent findings on the composition of portal vein thrombi in patients with cirrhosis. Patients with mild cirrhosis have increased thrombin generation capacity and plasma fibrinogen levels, which may be balanced by delayed fibrin polymerization and decreased factor XIII levels. With progressing illness, plasma fibrinogen levels decrease, but thrombin generation capacity remains elevated. Fibrinogen is susceptible to posttranslational protein modifications and is, for example, hypersialylated and carbonylated in patients with cirrhosis. Despite changes in thrombin generation, factor XIII levels and the fibrinogen molecule, fibrin fiber thickness, and density are normal in patients with cirrhosis. Paradoxically, fibrin clot permeability in patients with cirrhosis is decreased, possibly because of posttranslational protein modifications. Most patients have normal fibrinolytic potential. We have recently demonstrated that portal vein thrombosis is likely a misnomer as the material that may obstruct the cirrhotic portal vein frequently consists of a thickened portal vein wall, rather than a true thrombus. Patients with cirrhosis often have thrombocytopenia and anemia, which may also affect clot stability and composition, but the role of cellular components in clot quality in cirrhosis has not been extensively studied. Finally, we summarize abstracts on fibrin formation and clot quality that were presented at the ISTH 2022 meeting in London.
Collapse
Affiliation(s)
| | - Ton Lisman
- Correspondence Ton Lisman, University Medical Center Groningen, Department of Surgery, BA33, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
46
|
Narwal A, Whyte CS, Mutch NJ. Location, location, location: Fibrin, cells, and fibrinolytic factors in thrombi. Front Cardiovasc Med 2023; 9:1070502. [PMID: 36741833 PMCID: PMC9889369 DOI: 10.3389/fcvm.2022.1070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/16/2022] [Indexed: 01/20/2023] Open
Abstract
Thrombi are heterogenous in nature with composition and structure being dictated by the site of formation, initiating stimuli, shear stress, and cellular influences. Arterial thrombi are historically associated with high platelet content and more tightly packed fibrin, reflecting the shear stress in these vessels. In contrast, venous thrombi are generally erythrocyte and fibrin-rich with reduced platelet contribution. However, these conventional views on the composition of thrombi in divergent vascular beds have shifted in recent years, largely due to recent advances in thromboectomy and high-resolution imaging. Interestingly, the distribution of fibrinolytic proteins within thrombi is directly influenced by the cellular composition and vascular bed. This in turn influences the susceptibility of thrombi to proteolytic degradation. Our current knowledge of thrombus composition and its impact on resistance to thrombolytic therapy and success of thrombectomy is advancing, but nonetheless in its infancy. We require a deeper understanding of thrombus architecture and the downstream influence on fibrinolytic susceptibility. Ultimately, this will aid in a stratified and targeted approach to tailored antithrombotic strategies in patients with various thromboembolic diseases.
Collapse
|
47
|
Direct delivery of plasmin using clot-anchoring thrombin-responsive nanoparticles for targeted fibrinolytic therapy. J Thromb Haemost 2022; 21:983-994. [PMID: 36696210 PMCID: PMC10148984 DOI: 10.1016/j.jtha.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrin-rich clot formation in thrombo-occlusive pathologies is currently treated by systemic administration of plasminogen activators (e.g. tPA), to convert fibrin-associated plasminogen to plasmin for fibrinolytic action. However, this conversion is not restricted to clot site only but also occurs on circulating plasminogen, causing systemic fibrinogenolysis and bleeding risks. To address this, past research has explored tPA delivery using clot-targeted nanoparticles. OBJECTIVES We designed a nanomedicine system that can (1) target clots via binding to activated platelets and fibrin, (2) package plasmin instead of tPA as a direct fibrinolytic agent, and (3) release this plasmin triggered by thrombin for clot-localized action. METHODS Clot-targeted thrombin-cleavable nanoparticles (CTNPs) were manufactured using self-assembly of peptide-lipid conjugates. Plasmin loading and its thrombin-triggered release from CTNPs were characterized by UV-visible spectroscopy. CTNP-targeting to clots under flow was studied using microfluidics. Fibrinolytic effect of CTNP-delivered plasmin was studied in vitro using BioFlux imaging and D-dimer analysis and in vivo in a zebrafish thrombosis model. RESULTS Plasmin-loaded CTNPs significantly bound to clots under shear flow and showed thrombin-triggered enhanced release of plasmin. BioFlux studies confirmed that thrombin-triggered plasmin released from CTNPs rendered fibrinolysis similar to free plasmin, further corroborated by D-dimer analysis. In the zebrafish model, CTNP-delivered plasmin accelerated time-to-recanalization, or completely prevented occlusion when infused before thrombus formation. CONCLUSION Considering that the very short circulation half-life (<1 second) of plasmin prevents its systemic use but also makes it safer without off-target drug effects, clot-targeted delivery of plasmin using CTNPs can enable safer and more efficacious fibrinolytic therapy.
Collapse
|
48
|
Xulu KR, Augustine TN. Targeting Platelet Activation Pathways to Limit Tumour Progression: Current State of Affairs. Pharmaceuticals (Basel) 2022; 15:1532. [PMID: 36558983 PMCID: PMC9784118 DOI: 10.3390/ph15121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
The association between cancer and a hypercoagulatory environment is well described. Thrombotic complications serve not only as a major mortality risk but the underlying molecular structure and function play significant roles in enhancing tumour progression, which is defined as the tumour's capacity to survive, invade and metastasise, amongst other hallmarks of the disease. The use of anticoagulant or antiplatelet drugs in cardiovascular disease lessens thrombotic effects, but the consequences on tumour progression require interrogation. Therefore, this review considered developments in the management of platelet activation pathways (thromboxane, ADP and thrombin), focusing on the use of Aspirin, Clopidogrel and Atopaxar, and their potential impacts on tumour progression. Published data suggested a cautionary tale in ensuring we adequately investigate not only drug-drug interactions but also those unforeseen reciprocal interactions between drugs and their targets within the tumour microenvironment that may act as selective pressures, enhancing tumour survival and progression.
Collapse
Affiliation(s)
- Kutlwano R. Xulu
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Tanya N. Augustine
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
49
|
Feasibility study of positronium application for blood clots structural characteristics. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Positron-electron annihilation in living organisms occurs in about 30% via the formation of a metastable ortho-positronium atom that annihilates into two 511 keV photons in tissues because of the pick-off and conversion processes. Positronium (Ps) annihilation lifetime and intensities can be used to determine the size and quantity of defects in a material’s microstructure, such as voids or pores in the range of nanometers. This is particularly true for blood clots. Here we present pilot investigations of positronium properties in fibrin clots. The studies are complemented by the use of SEM Edax and micro-computed tomography (µCT) to evaluate the extracted thrombotic material’s properties. µCT is a versatile characterization method offering in situ and in operando possibilities and is a qualitative diagnostic tool. With µCT the presence of pores, cracks, and structural errors can be verified, and hence the 3D inner structure of samples can be investigated.
Collapse
|
50
|
Varjú I, Tóth E, Farkas ÁZ, Farkas VJ, Komorowicz E, Feller T, Kiss B, Kellermayer MZ, Szabó L, Wacha A, Bóta A, Longstaff C, Kolev K. Citrullinated fibrinogen forms densely packed clots with decreased permeability. J Thromb Haemost 2022; 20:2862-2872. [PMID: 36083779 PMCID: PMC9828116 DOI: 10.1111/jth.15875] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/17/2022] [Accepted: 09/07/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Fibrin, the main scaffold of thrombi, is susceptible to citrullination by PAD (peptidyl arginine deiminase) 4, secreted from neutrophils during the formation of neutrophil extracellular traps. Citrullinated fibrinogen (citFg) has been detected in human plasma as well as in murine venous thrombi, and it decreases the lysability and mechanical resistance of fibrin clots. OBJECTIVE To investigate the effect of fibrinogen citrullination on the structure of fibrin clots. METHODS Fibrinogen was citrullinated with PAD4 and clotted with thrombin. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to measure fiber thickness, fiber height/width ratio, and fiber persistence length in clots containing citFg. Fiber density was measured with laser scanning microscopy (LSM) and permeability measurements were carried out to estimate the porosity of the clots. The intra-fiber structure of fibrin was analyzed with small-angle X-ray scattering (SAXS). RESULTS SEM images revealed a decrease in the median fiber diameter that correlated with the fraction of citFg in the clot, while the fiber width/length ratio remained unchanged according to AFM. With SAXS we observed that citrullination resulted in the formation of denser clots in line with increased fiber density shown by LSM. The permeability constant of citrullinated fibrin decreased more than 3-fold indicating significantly decreased porosity. SAXS also showed largely preserved periodicity in the longitudinal assembly of fibrin monomers. CONCLUSION The current observations of thin fibers combined with dense packing and low porosity in the presence of citFg can provide a structural framework for the mechanical fragility and lytic resistance of citrullinated fibrin.
Collapse
Affiliation(s)
- Imre Varjú
- Program in Cellular and Molecular MedicineBoston Children's HospitalBostonMassachusettsUSA
- Department of PediatricsHarvard Medical SchoolBostonMassachusettsUSA
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
- Department of Sociomedical Sciences, Mailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Erzsébet Tóth
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Ádám Z. Farkas
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Veronika J. Farkas
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Erzsébet Komorowicz
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Tímea Feller
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Balázs Kiss
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | | | - László Szabó
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
- Department of Functional and Structural Materials, Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - András Wacha
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Attila Bóta
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
| | - Colin Longstaff
- National Institute for Biological Standards and ControlSouth MimmsUK
| | - Krasimir Kolev
- Department of Biochemistry, Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|