1
|
Zimodro JM, Mucha M, Berthold HK, Gouni-Berthold I. Lipoprotein Metabolism, Dyslipidemia, and Lipid-Lowering Therapy in Women: A Comprehensive Review. Pharmaceuticals (Basel) 2024; 17:913. [PMID: 39065763 PMCID: PMC11279947 DOI: 10.3390/ph17070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid-lowering therapy (LLT) is a cornerstone of atherosclerotic cardiovascular disease prevention. Although LLT might lead to different reductions in low-density lipoprotein cholesterol (LDL-C) levels in women and men, LLT diminishes cardiovascular risk equally effectively in both sexes. Despite similar LLT efficacy, the use of high-intensity statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors is lower in women compared to men. Women achieve the guideline-recommended LDL-C levels less often than men. Greater cholesterol burden is particularly prominent in women with familial hypercholesterolemia. In clinical practice, women and men with dyslipidemia present with different cardiovascular risk profiles and disease manifestations. The concentrations of LDL-C, lipoprotein(a), and other blood lipids differ between women and men over a lifetime. Dissimilar levels of LLT target molecules partially result from sex-specific hormonal and genetic determinants of lipoprotein metabolism. Hence, to evaluate a potential need for sex-specific LLT, this comprehensive review (i) describes the impact of sex on lipoprotein metabolism and lipid profile, (ii) highlights sex differences in cardiovascular risk among patients with dyslipidemia, (iii) presents recent, up-to-date clinical trial and real-world data on LLT efficacy and safety in women, and (iv) discusses the diverse medical needs of women and men with dyslipidemia and increased cardiovascular risk.
Collapse
Affiliation(s)
- Jakub Michal Zimodro
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magda Mucha
- Faculty of Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Heiner K. Berthold
- Department of Internal Medicine and Geriatrics, Bethel Clinic (EvKB), 33611 Bielefeld, Germany
| | - Ioanna Gouni-Berthold
- Center for Endocrinology, Diabetes and Preventive Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
2
|
KAN Y, PENG YL, ZHAO ZH, DONG ST, XU YX, MA XT, LIU XL, LIU YY, ZHOU YJ. The impact of female sex hormones on cardiovascular disease: from mechanisms to hormone therapy. J Geriatr Cardiol 2024; 21:669-681. [PMID: 38973823 PMCID: PMC11224657 DOI: 10.26599/1671-5411.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Cardiovascular disease remains the leading cause of mortality in women, yet it has not raised the awareness from the public. The pathogenesis of cardiovascular disease differs significantly between females and males concerning the effect of sex hormones. Estrogen and progestogen impact cardiovascular system through genomic and non-genomic effects. Before menopause, cardiovascular protective effects of estrogens have been well described. Progestogens were often used in combination with estrogens in hormone therapy. Fluctuations in sex hormone levels, particularly estrogen deficiency, were considered the specific risk factor in women's cardiovascular disease. However, considerable heterogeneity in the impact of hormone therapy was observed in clinical trials. The heterogeneity is likely closely associated with factors such as the initial time, administration route, dosage, and formulation of hormone therapy. This review will delve into the pathogenesis and hormone therapy, summarizing the effect of female sex hormones on hypertension, pre-eclampsia, coronary heart disease, heart failure with preserved ejection fraction, and cardiovascular risk factors specific to women.
Collapse
Affiliation(s)
- Yi KAN
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Lu PENG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Ze-Hao ZHAO
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Shu-Tong DONG
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yin-Xiao XU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Teng MA
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Xiao-Li LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Yang LIU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| | - Yu-Jie ZHOU
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Clinical Center for Coronary Heart Disease, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ruscica M, Macchi C, Gandini S, Macis D, Guerrieri-Gonzaga A, Aristarco V, Serrano D, Lazzeroni M, Rizzuto AS, Gaeta A, Corsini A, Gulisano M, Johansson H, Bonanni B. Prognostic Value of PCSK9 Levels in Premenopausal Women at Risk of Breast Cancer-Evidence from a 17-Year Follow-Up Study. Cancers (Basel) 2024; 16:1411. [PMID: 38611089 PMCID: PMC11011028 DOI: 10.3390/cancers16071411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND AND AIM The involvement of cholesterol in cancer development remains a topic of debate, and its association with breast cancer has yet to be consistently demonstrated. Considering that circulating cholesterol levels depend on several concomitant processes, we tested the liability of plasma levels of proprotein convertase subtilisin/kexin type 9 (PCSK9), one of the key regulators of cholesterol levels, as a prognostic biomarker in the context of breast neoplastic events. METHODS Within a prospective randomized breast cancer prevention trial we measured baseline plasma levels of PCSK9. A total of 235 at-risk premenopausal women were randomized and followed up for 17 years. Participants enrolled in this placebo-controlled, phase II, double-blind trial were randomly assigned to receive either tamoxifen 5 mg/d or fenretinide 200 mg/d, both agents, or placebo for 2 years. The associations with breast cancer events were evaluated through competing risk and Cox regression survival models, adjusted for randomization strata (5-year Gail risk ≥ 1.3% vs. intraepithelial neoplasia or small invasive breast cancer of favorable prognosis), age, and treatment allocation. PCSK9 associations with biomarkers linked to breast cancer risk were assessed on blood samples collected at baseline. RESULTS The plasmatic PCSK9 median and interquartile range were 207 ng/mL and 170-252 ng/mL, respectively. Over a median follow-up period of 17 years and 89 breast neoplastic events, disease-free survival curves showed a hazard ratio of 1.002 (95% CI: 0.999-1.005, p = 0.22) for women with PCSK9 plasma levels ≥ 207 ng/mL compared to women with levels below 207 ng/mL. No differences between randomization strata were observed. We found a negative correlation between PCSK9 and estradiol (r = -0.305), maintained even after partial adjustment for BMI and age (r = -0.287). Cholesterol (r = 0.266), LDL-C (r = 0.207), non-HDL-C (r = 0.246), remnant cholesterol (r = 0.233), and triglycerides (r = 0.233) also correlated with PCSK9. CONCLUSIONS In premenopausal women at risk of early-stage breast cancer, PCSK9 did not appear to have a role as a prognostic biomarker of breast neoplastic events. Larger studies are warranted investigating patients in different settings.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
- Department of Cardio-Thoracic-Vascular Diseases, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Chiara Macchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
| | - Debora Macis
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Aliana Guerrieri-Gonzaga
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | | | - Aurora Gaeta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.G.); (A.G.)
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, 20126 Milan, Italy
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20122 Milan, Italy; (M.R.); (C.M.); (A.C.)
| | | | - Harriet Johansson
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (D.M.); (A.G.-G.); (V.A.); (D.S.); (M.L.); (B.B.)
| |
Collapse
|
4
|
Papanikolaou A, Anastasiou G, Barkas F, Tellis C, Zikopoulos K, Liberopoulos E. Effects of Serum Estradiol on Proprotein Convertase Subtilisin/Kexin Type 9 Levels and Lipid Profiles in Women Undergoing In Vitro Fertilization. J Cardiovasc Dev Dis 2024; 11:25. [PMID: 38248895 PMCID: PMC10816866 DOI: 10.3390/jcdd11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The mechanisms underlying the impact of estradiol (E2) on low-density lipoprotein cholesterol (LDL-C) levels are not completely understood, although a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) has been proposed. We aimed to investigate the association between levels of E2, PCSK9, and lipid parameters in premenopausal women undergoing in vitro fertilization (IVF). METHODS Healthy women undergoing IVF in the Department of Obstetrics and Gynecology of the University General Hospital of Ioannina were recruited. Their levels of E2, PCSK9, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), LDL-C, and triglycerides (TGs) were measured 10 days after ovarian depression (E2min) and 7 days after ovarian stimulation (E2max). RESULTS We included 34 consecutive women of median age 38 (interquartile range 26-46) years who underwent a full IVF cycle. As expected, E2 levels increased by 329.6% from E2min to E2max (108 [47-346] to 464 [241-2471] pg/mL, p < 0.05). During the same time, serum PCSK9 levels decreased by 30.8% (245 ± 80 to 170 ± 64 ng/mL, p < 0.05). TC, LDL-C, and TGs decreased by 0.4%, 3.8%, and 2.2%, respectively, while HDL-C levels increased by 5.3% (all p = NS). CONCLUSIONS The rise in endogenous E2 during an IVF cycle was related with a significant decline in serum PCSK9 levels, but no significant change in plasma lipids during a 7-day period.
Collapse
Affiliation(s)
- Anna Papanikolaou
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgia Anastasiou
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.A.); (F.B.)
| | - Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.A.); (F.B.)
- Imperial Centre for Cardiovascular Disease Prevention, Department of Public Health and Primary Care, Faculty of Medicine, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Constantinos Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Zikopoulos
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos Liberopoulos
- 1st Propedeutic Department of Medicine, School of Medicine, National and Kapodistrιan University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Minhas AS, Leucker TM, Goerlich E, Soleimani‐Fard A, Schär M, Ziogos E, Miller E, Gerstenblith G, Hays AG. Effect of Sex on Coronary Endothelial Dysfunction in People Living With HIV. J Am Heart Assoc 2022; 11:e026428. [PMID: 36382948 PMCID: PMC9851436 DOI: 10.1161/jaha.122.026428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Impaired coronary endothelial function (CEF) predicts cardiovascular events and occurs in people living with HIV (PLWH). Women compared with men living with HIV have worse cardiovascular outcomes, but prior CEF studies included few women. The authors aimed to compare CEF in women with HIV versus without HIV, investigate sex differences in CEF and PCSK9 (proprotein convertase subtilisin/kexin type 9) (a proinflammatory biomarker), and evaluate whether increased serum levels of PCSK9 are associated with CEF in PLWH. Methods and Results Magnetic resonance imaging was performed to measure CEF (as percent change in coronary cross-sectional area and coronary blood flow during isometric handgrip exercise, an endothelial-dependent stressor) and serum PCSK9 levels were measured in 106 PLWH and 76 people without HIV. CEF was significantly reduced in women with versus without HIV (cross-sectional area change -0.5%±9.7 versus 9.5%±3.2, respectively). After adjustment for age, body mass index, and menopausal status, women with HIV still had reduced CEF (percentage of cross-sectional area: ß -8.3 [-13 to -3.6], P=0.001) compared with women without HIV. PCSK9 was elevated in women living with HIV versus without (306 ng/mL [200-412 ng/mL] versus 180 ng/mL [154-223 ng/mL], P<0.001), and no sex differences in either CEF or PCSK9 were detected in PLWH. Elevated PCSK9 was associated with impaired CEF in PLWH; however, no significant sex differences in the association were detected. Conclusions Among PLWH, coronary endothelial dysfunction is present in women and comparable to men. PCSK9 is higher in women with versus without HIV and a significant inverse relationship between PCSK9 and CEF was shown. Future studies should determine whether PLWH would benefit from interventions to improve endothelial function.
Collapse
Affiliation(s)
- Anum S. Minhas
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Thorsten M. Leucker
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Erin Goerlich
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Alborz Soleimani‐Fard
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Michael Schär
- Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMD
| | - Efthymios Ziogos
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Eliza Miller
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Gary Gerstenblith
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| | - Allison G. Hays
- Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreMD
| |
Collapse
|
6
|
Jia F, Fei SF, Tong DB, Xue C, Li JJ. Sex difference in circulating PCSK9 and its clinical implications. Front Pharmacol 2022; 13:953845. [PMID: 36160427 PMCID: PMC9490038 DOI: 10.3389/fphar.2022.953845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a proprotein convertase that increases plasma low-density lipoprotein cholesterol (LDL-C) levels by triggering the degradation of LDL receptors (LDLRs). Beyond the regulation of circulating LDL-C, PCSK9 also has direct atherosclerotic effects on the vascular wall and is associated with coronary plaque inflammation. Interestingly, emerging data show that women have higher circulating PCSK9 concentrations than men, suggesting that the potential roles of PCSK9 may have different impacts according to sex. In this review, we summarize the studies concerning sex difference in circulating levels of PCSK9. In addition, we report on the sex differences in the relations of elevated circulating PCSK9 levels to the severity and prognosis of coronary artery disease, the incidence of type 2 diabetes mellitus, and neurological damage after cardiac arrest and liver injury, as well as inflammatory biomarkers and high-density lipoprotein cholesterol (HDL-C). Moreover, sex difference in the clinical efficacy of PCSK9 inhibitors application are reviewed. Finally, the underlying mechanisms of sex difference in circulating PCSK9 concentrations and the clinical implications are also discussed.
Collapse
Affiliation(s)
- Fang Jia
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Si-Fan Fei
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - De-Bing Tong
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cong Xue
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Cong Xue, ; Jian-Jun Li,
| | - Jian-Jun Li
- Cardio-Metabolic Center, Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Cong Xue, ; Jian-Jun Li,
| |
Collapse
|
7
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
8
|
Circulating PCSK9 Linked to Dyslipidemia in Lebanese Schoolchildren. Metabolites 2022; 12:metabo12060504. [PMID: 35736437 PMCID: PMC9230653 DOI: 10.3390/metabo12060504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022] Open
Abstract
In adults, elevated levels of circulating Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) have been associated with increased Low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and worse cardiovascular outcomes. However, few studies analyzed the relation between PCSK9 and lipid parameters in pediatric populations. The aim of our study is to evaluate the distribution and the correlation of serum PCSK9 levels with lipid parameters in a sample of Lebanese school children. Using an immunofluorescence assay, we measured serum PCSK9 levels in 681 school children recruited from ten public and private Lebanese schools. We analyzed the association between PCSK9 and age, sex, Body Mass Index (BMI), and lipid parameters (total cholesterol (TC), LDL-C, TG, High-density lipoprotein cholesterol (HDL-C), non-HDL-C, and lipoprotein (a) (Lp(a)). Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C (p value < 0.0001) but not with TG, HDL-C, and Lp(a). PCSK9 levels were also significantly higher in children with high TC, LDL-C, and non-HDL-C (p values = 0.0012, 0.0002, 0.001, respectively). No significant gender differences in PCSK9 were found. In addition, no significant associations between PCSK9 and both age and BMI percentiles were observed. In girls, no difference in PCSK9 values was observed according to menarche while in boys, testosterone levels were not significantly associated with PCSK9. Serum PCSK9 levels were significantly correlated with TC, LDL-C, and non-HDL-C levels. Further studies are needed to find if PCSK9 measurements have an additional value to predict future cardiovascular outcomes in pediatric populations.
Collapse
|
9
|
Increased Circulating Levels of PCSK9 and Pro-Atherogenic Lipoprotein Profile in Pregnant Women with Maternal Supraphysiological Hypercholesterolemia. Antioxidants (Basel) 2022; 11:antiox11050869. [PMID: 35624732 PMCID: PMC9137759 DOI: 10.3390/antiox11050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Maternal physiological hypercholesterolemia (MPH) occurs during pregnancy to assure fetal development. Some pregnant women develop maternal supraphysiological hypercholesterolemia (MSPH) characterized by increased levels of low-density lipoprotein (LDL). We aim to determine if proprotein convertase subtilisin/kexin type 9 (PCSK9) levels (a protein that regulate the availability of LDL receptor in the cells surface), as well as the composition and function of LDL, are modulated in MSPH women. This study included 122 pregnant women. Maternal total cholesterol (TC), LDL, triglycerides and PCSK9 increased from first (T1) to third trimester (T3) in MPH women. At T3, maternal TC, LDL, PCSK9 and placental abundances of PCSK9 were significantly higher in MPSH compared to MPH. Circulating PCSK9 levels were correlated with LDL at T3. In MSPH women, the levels of lipid peroxidation and oxidized LDL were significantly higher compared to MPH. LDL isolated from MSPH women presented significantly higher triglycerides and ApoB but lower levels of ApoAI compared to MPH. The formation of conjugated dienes was earlier in LDL from MSPH and in endothelial cells incubated with these LDLs; the levels of reactive oxygen species were significantly higher compared to LDL from MPH. We conclude that increased maternal PCSK9 would contribute to the maternal elevated levels of pro-atherogenic LDL in MSPH, which could eventually be related to maternal vascular dysfunction.
Collapse
|
10
|
Yuefeng Y, Zhiqi L, Yi C, Keyu Z, Heng W, Yuying W, Ningjian W, Yuetian Y, Xinjie G, Yihao Z, Yingli L, Fangzhen X. Testosterone Deficiency Promotes Hypercholesteremia and Attenuates Cholesterol Liver Uptake via AR/PCSK9/LDLR Pathways. Int J Endocrinol 2022; 2022:7989751. [PMID: 35599686 PMCID: PMC9122719 DOI: 10.1155/2022/7989751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Testosterone deficiency is reportedly correlated with an elevation of cholesterol in plasma, but the mechanism remains unclear. Our objective was to investigate the effects of testosterone deficiency on cholesterol metabolism and the corresponding molecular changes in vivo and in vitro. METHODS SD rats were randomized into three groups: sham-operated (SHAM), subtotal orchiectomized (SO), and orchiectomized (ORX) and fed for 8 weeks. HepG2 cells were cultured with medium containing testosterone with the final concentrations of 0, 10, 30, and 300 nM. Method of isotope tracing and fluorescence labelling was adopted to investigate cholesterol metabolism. Several key molecules of cholesterol metabolism were also analyzed. RESULTS SO and ORX rats displayed dysfunctional liver uptake of cholesterol. HepG2 cells incubated with testosterone of lower and excessive level exhibited reduced capacity of cholesterol uptake. Further investigation revealed that lack of testosterone induced increased proprotein convertase subtilisin/kexin type 9 (PCSK9) and decreased low-density lipoprotein receptor (LDLR) both in vivo and in vitro. Moreover, the androgen receptor (AR) antagonist flutamide mimicked the effects of testosterone deficiency on PCSK9 and LDLR indicating the role of AR as a mediator in triggering attenuating liver cholesterol uptake in which testosterone instead of dihydrotestosterone (DHT) is the major functional form of androgen. CONCLUSION Testosterone deficiency attenuated cholesterol liver uptake mediated by the PCSK9-LDLR pathway, in which AR and testosterone without transforming to DHT play important roles.
Collapse
Affiliation(s)
- Yu Yuefeng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Lin Zhiqi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Chen Yi
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhu Keyu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wan Heng
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wang Yuying
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Wang Ningjian
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Yu Yuetian
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Gu Xinjie
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhang Yihao
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Lu Yingli
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Xia Fangzhen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
11
|
Shi J, Li X, Zhang W, Niu Y, Lin N, Zhang H, Ning G, Fan J, Qin L, Su Q, Yang Z. Circulating Proprotein Convertase Subtilisin/Kexin Type 9 Levels and Cardiometabolic Risk Factors: A Population-Based Cohort Study. Front Cardiovasc Med 2021; 8:664583. [PMID: 34041285 PMCID: PMC8141620 DOI: 10.3389/fcvm.2021.664583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Aims: To evaluate the prospective association of circulating PCSK9 levels with the cardiometabolic risk profiles (high LDL-cholesterol, high triglycerides, low HDL-cholesterol, hypertension, type 2 diabetes, and metabolic syndrome). Methods: A population-based prospective study was conducted among 7,104 Chinese individuals (age 56.2 ± 7.5 years; 32.0% men). Circulating PCSK9 levels were measured using ELISA. Results: Circulating PCSK9 levels were higher in women than men (286.7 ± 90.1 vs. 276.1 ± 86.4 ng/ml, p < 0.001). And circulating PCSK9 was positively correlated with LDL-cholesterol, total cholesterol, and triglycerides both in men and women (all p < 0.001). The positive correlation between PCSK9 and waist circumference, fasting glucose, insulin resistance, systolic blood pressure, diastolic blood pressure and C-reactive protein (all p < 0.01) was observed in women only. According to Cox regression analysis, circulating PCSK9 was positively associated with incidence of high LDL-cholesterol both in men (HR 1.33, 95% CI 1.09–1.65, p < 0.001) and women (HR 1.36, 95% CI 1.12–1.69, p < 0.001). Moreover, PCSK9 was significantly associated with incident high triglycerides (HR 1.31, 95% CI 1.13–1.72, p < 0.001), hypertension (HR 1.28, 95% CI 1.08–1.53, p = 0.011), type 2 diabetes (HR 1.34, 95% CI 1.09–1.76, p = 0.005), and metabolic syndrome (HR 1.30, 95% CI 1.11–1.65, p = 0.009) per SD change in women only. No statistically significant association was observed between circulating PCSK9 and incidence of low HDL-cholesterol (p > 0.1). Conclusions: Elevated circulating PCSK9 was significantly associated with cardiometabolic risk factors and independently contributed to the prediction of cardiometabolic risks in women.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Institute of Endocrinology and Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Shanghai Key Laboratory of Children's Digestion and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
|
13
|
High-density lipoprotein cholesterol and arterial calcification in midlife women: the contribution of estradiol and C-reactive protein. Menopause 2020; 28:237-246. [PMID: 33350671 PMCID: PMC7887095 DOI: 10.1097/gme.0000000000001706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Studies suggest a reversal in the protective association of high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease in women traversing menopause. Decreasing estrogen levels during the transition, as well as inflammation, may explain this reversal. We tested whether either estradiol or C-reactive protein (CRP) concentrations modified the association of HDL-C with aortic (AC) or coronary artery calcification (CAC). METHODS A total of 478 participants between ages 46 to 59 from the Study of Women's Health Across the Nation Heart baseline visit were included. AC and CAC presence were defined as Agatston score of 100 or higher and 10 or higher, respectively. Logistic regression was used for analysis. RESULTS A total of 112 (23.53%) participants had AC 100 or higher and 104 (21.76%) had CAC 10 or higher. In unadjusted models, a 1-mg/dL higher in HDL-C was associated with 3% lower odds of AC (95% CI: 0.95-0.99) and 4% lower odds of CAC (95% CI: 0.95-0.98). In adjusted models, a significant interaction between HDL-C and estradiol with respect to AC but not CAC was detected, such that higher HDL-C level was protective at the highest estradiol quartile (odds ratio: 0.91, 95% CI: 0.84-0.99 per 1 mg/dL higher HDL-C, P = 0.03) but tended to associate with greater risk at the lowest quartile (odds ratio: 1.04, 95% CI: 0.98-1.10 per 1 mg/dL higher HDL-C, P = 0.16). CRP did not modify any association. CONCLUSIONS The protective cardiovascular association of higher HDL-C levels on AC was modified by estradiol but not CRP concentrations. The pathways through which estradiol might influence this association should be further investigated.
Collapse
|
14
|
Shi J, Zhang W, Niu Y, Lin N, Li X, Zhang H, Hu R, Ning G, Fan J, Qin L, Su Q, Yang Z. Association of circulating proprotein convertase subtilisin/kexin type 9 levels and the risk of incident type 2 diabetes in subjects with prediabetes: a population-based cohort study. Cardiovasc Diabetol 2020; 19:209. [PMID: 33302966 PMCID: PMC7726879 DOI: 10.1186/s12933-020-01185-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/30/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates cholesterol metabolism by targeting the low-density lipoprotein receptor. Recent studies have shown that circulating PCSK9 is associated with glucose homeostasis and insulin resistance. The aim of this study was to examine the association of circulating PCSK9 levels and risk for the development of type 2 diabetes in individuals with prediabetes. METHODS A population-based prospective study was conducted among 4205 Chinese subjects with prediabetes (average age 56.1 ± 7.5 years). Incident type 2 diabetes was diagnosed according to 2010 American Diabetes Association criteria. Circulating PCSK9 levels were measured using a commercially available enzyme-linked immunosorbent assay (ELISA). The association of circulating PCSK9 levels with the risk of incident type 2 diabetes was assessed by Cox regression analysis. RESULTS During a median follow-up period of 3.1 years, 568 subjects developed type 2 diabetes. Baseline circulating PCSK9 levels were significantly higher in female subjects developing incident type 2 diabetes than in those not developing incident type 2 diabetes (p < 0.001). In female subjects, the risk of incident type 2 diabetes was significantly higher in the highest PCSK9 quartile group (hazard ratio 2.16; 95% confidence interval 1.16-4.04) than in the lowest quartile group after adjustments for age, body mass index, waist circumference, C-reactive protein, γ-glutamyltransferase, triglycerides, low-density lipoprotein cholesterol, systolic blood pressure, and homeostatic model assessment of insulin resistance score. No significant association was observed between PCSK9 and incident type 2 diabetes in male subjects. CONCLUSION Elevated circulating PCSK9 levels are associated with an increased incidence of type 2 diabetes in female subjects with prediabetes.
Collapse
Affiliation(s)
- Jie Shi
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixin Niu
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renming Hu
- Institute of Endocrinology and Diabetology, Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, China
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiangao Fan
- Department of Gastroenterology, Shanghai Key Laboratory of Children's Digestion and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Elagolix Treatment for Up to 12 Months in Women With Heavy Menstrual Bleeding and Uterine Leiomyomas. Obstet Gynecol 2020; 135:1313-1326. [PMID: 32459423 PMCID: PMC7253187 DOI: 10.1097/aog.0000000000003869] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Up to 12 months of elagolix with add-back therapy provided sustained reduction in menstrual blood loss with an acceptable safety profile in women with uterine leiomyomas. To investigate the safety and efficacy of elagolix, an oral gonadotropin-releasing hormone antagonist, with hormonal add-back therapy for up to 12 months in women with heavy menstrual bleeding associated with uterine leiomyomas.
Collapse
|
16
|
Faustmann G, Tiran B, Trajanoski S, Obermayer-Pietsch B, Gruber HJ, Ribalta J, Roob JM, Winklhofer-Roob BM. Activation of nuclear factor-kappa B subunits c-Rel, p65 and p50 by plasma lipids and fatty acids across the menstrual cycle. Free Radic Biol Med 2020; 160:488-500. [PMID: 32846215 DOI: 10.1016/j.freeradbiomed.2020.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
This study focused on a comprehensive analysis of the canonical activation pathway of the redox-sensitive transcription factor nuclear factor-kappa B (NF-κB) in peripheral blood mononuclear cells, addressing c-Rel, p65 and p50 activation in 28 women at early (T1) and late follicular (T2) and mid (T3) and late luteal (T4) phase of the menstrual cycle, and possible relations with fasting plasma lipids and fatty acids. For the first time, strong inverse relations of c-Rel with apolipoprotein B were observed across the cycle, while those with LDL cholesterol, triglycerides as well as saturated (SFA), particularly C14-C22 SFA, monounsaturated (MUFA), and polyunsaturated fatty acids (PUFA) clustered at T2. In contrast, p65 was positively related to LDL cholesterol and total n-6 PUFA, while p50 did not show any relations. C-Rel was not directly associated with estradiol and progesterone, but data suggested an indirect C22:5n-3-mediated effect of progesterone. Strong positive relations between estradiol and individual SFA, MUFA and n-3 PUFA at T1 were confined to C18 fatty acids; C18:3n-3 was differentially associated with estradiol (positively) and progesterone (inversely). Given specific roles of c-Rel activation in immune tolerance, inhibition of c-Rel activation by higher plasma apolipoprotein B and individual fatty acid concentrations could have clinical implications for female fertility.
Collapse
Affiliation(s)
- Gernot Faustmann
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria; Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Beate Tiran
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Hans-Jürgen Gruber
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Josep Ribalta
- Unitat de Recerca en Lípids i Arteriosclerosi, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili and Institut d'Investigació Sanitària Pere Virgili, Reus, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Spain
| | - Johannes M Roob
- Clinical Division of Nephrology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Brigitte M Winklhofer-Roob
- Human Nutrition & Metabolism Research and Training Center, Institute of Molecular Biosciences, University of Graz, Graz, Austria.
| |
Collapse
|
17
|
Choi IJ, Lim S, Lee D, Lee WJ, Lee KY, Kim MJ, Jeon DS. Relation of Proprotein Convertase Subtilisin/Kexin Type 9 to Cardiovascular Outcomes in Patients Undergoing Percutaneous Coronary Intervention. Am J Cardiol 2020; 133:54-60. [PMID: 32798044 DOI: 10.1016/j.amjcard.2020.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
The pharmacological inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) has been shown to drastically affect low-density lipoprotein cholesterol levels and associated cardiovascular diseases. However, the potential effectiveness of PCSK9 serum levels as a biomarker for cardiovascular risk remains unclear. Serum PCSK9 levels in patients who underwent percutaneous coronary intervention (PCI) may predict long-term outcomes. PCSK9 levels were measured in 749 consecutive patients with coronary artery disease undergoing PCI. These patients were classified into 2 groups according to their serum levels of PCSK9. The primary end point was a composite of the major adverse cardiac events (MACE), including cardiac death, myocardial infarction, stroke, and any revascularization. The median PCSK9 level was 302.82 ng/ml. During a median follow-up of 28.4 months, a total of 38 (5.1%) MACE was recorded, and 50 (6.7%) patients died from any cause. Multivariate Cox regression analysis showed that compared with a lower serum PCSK9 level, a higher serum PCSK9 level was independently associated with a higher rate of MACE (adjusted hazard ratio 2.290, 95% confidence interval 1.040 to 5.045, p = 0.040) and all-cause death (adjusted hazard ratio 2.511, 95% confidence interval 1.220 to 5.167, p = 0.026). Results were consistent after propensity-score matching (MACE, adjusted HR 2.236, 95% CI 1.011-5.350, p = 0.047; all-cause death, adjusted HR 2.826, 95% CI 1.258-6.349, p = 0.012). Baseline serum PCSK9 levels were associated with long-term cardiovascular clinical outcomes and mortality during the long-term follow-up after PCI in patients with coronary artery disease.
Collapse
|
18
|
Feldman RD. Sex-Specific Determinants of Coronary Artery Disease and Atherosclerotic Risk Factors: Estrogen and Beyond. Can J Cardiol 2020; 36:706-711. [PMID: 32389343 DOI: 10.1016/j.cjca.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
The way we view coronary artery disease in women has changed dramatically over the past decades. From an initial perspective that coronary artery disease was a male disorder and that women were protected by estrogens, there has been the gradual appreciation that this is an equal opportunity disease. Postmenopausal women are more likely than men to be hypertensive, dyslipidemic, and have multiple risk factors. Beyond the appreciation of estrogen's global effects on cardiovascular and metabolic function, our further advances in the understanding of sex-specific risks and management will be based on a greater understanding of the diversity of estrogen-mediated receptor pathways, including appreciation of the sometimes divergent effects of estrogen when acting either via the classic estrogen receptor or the more recently appreciated G protein-coupled estrogen receptor. In addition, the importance of sex-specific regulation of cardiometabolic processes beyond the sex hormones, specifically via SRY regulation, is only beginning to be understood. Finally, the author summarizes his recent studies demonstrating sex-specific G protein-coupled estrogen receptor regulation of blood pressure and cholesterol metabolism that may serve as a paradigm for the elucidation of sex-specific determinants of cardiovascular risk and the basis for sex-specific management of those risks.
Collapse
Affiliation(s)
- Ross D Feldman
- Departments of Medicine, of Physiology & Pathophysiology, of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada; Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada.
| |
Collapse
|
19
|
Straniero S, Laskar A, Savva C, Härdfeldt J, Angelin B, Rudling M. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res 2020; 61:480-491. [PMID: 32086245 DOI: 10.1194/jlr.ra119000307] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/15/2020] [Indexed: 02/06/2023] Open
Abstract
Compared with humans, rodents have higher synthesis of cholesterol and bile acids (BAs) and faster clearance and lower levels of serum LDL-cholesterol. Paradoxically, they increase BA synthesis in response to bile duct ligation (BDL). Another difference is the production of hydrophilic 6-hydroxylated muricholic acids (MCAs), which may antagonize the activation of FXRs, in rodents versus humans. We hypothesized that the presence of MCAs is key for many of these metabolic differences between mice and humans. We thus studied the effects of genetic deletion of the Cyp2c70 gene, previously proposed to control MCA formation. Compared with WT animals, KO mice created using the CRISPR/Cas9 system completely lacked MCAs, and displayed >50% reductions in BA and cholesterol synthesis and hepatic LDL receptors, leading to a marked increase in serum LDL-cholesterol. The doubling of BA synthesis following BDL in WT animals was abolished in KO mice, despite extinguished intestinal fibroblast growth factor (Fgf)15 expression in both groups. Accumulation of cholesterol-enriched particles ("Lp-X") in serum was almost eliminated in KO mice. Livers of KO mice were increased 18% in weight, and serum markers of liver function indicated liver damage. The human-like phenotype of BA metabolism in KO mice could not be fully explained by the activation of FXR-mediated changes. In conclusion, the presence of MCAs is critical for many of the known metabolic differences between mice and humans. The Cyp2c70-KO mouse should be useful in studies exploring potential therapeutic targets for human disease.
Collapse
Affiliation(s)
- Sara Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Amit Laskar
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Christina Savva
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Jennifer Härdfeldt
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, and Integrated Cardio Metabolic Center (ICMC), Department of Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
20
|
Etheridge AS, Gallins PJ, Jima D, Broadaway KA, Ratain MJ, Schuetz E, Schadt E, Schroder A, Molony C, Zhou Y, Mohlke KL, Wright FA, Innocenti F. A New Liver Expression Quantitative Trait Locus Map From 1,183 Individuals Provides Evidence for Novel Expression Quantitative Trait Loci of Drug Response, Metabolic, and Sex-Biased Phenotypes. Clin Pharmacol Ther 2020; 107:1383-1393. [PMID: 31868224 DOI: 10.1002/cpt.1751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/05/2019] [Indexed: 12/28/2022]
Abstract
Expression quantitative trait locus (eQTL) studies in human liver are crucial for elucidating how genetic variation influences variability in disease risk and therapeutic outcomes and may help guide strategies to obtain maximal efficacy and safety of clinical interventions. Associations between expression microarray and genome-wide genotype data from four human liver eQTL studies (n = 1,183) were analyzed. More than 2.3 million cis-eQTLs for 15,668 genes were identified. When eQTLs were filtered against a list of 1,496 drug response genes, 187,829 cis-eQTLs for 1,191 genes were identified. Additionally, 1,683 sex-biased cis-eQTLs were identified, as well as 49 and 73 cis-eQTLs that colocalized with genome-wide association study signals for blood metabolite or lipid levels, respectively. Translational relevance of these results is evidenced by linking DPYD eQTLs to differences in safety of chemotherapy, linking the sex-biased regulation of PCSK9 expression to anti-lipid therapy, and identifying the G-protein coupled receptor GPR180 as a novel drug target for hypertriglyceridemia.
Collapse
Affiliation(s)
- Amy S Etheridge
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul J Gallins
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - K Alaine Broadaway
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark J Ratain
- Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Erin Schuetz
- Pharmaceutical Sciences, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian Schroder
- Center for Bioinformatics Tübingen (ZBIT), University of Tübingen, Tübingen, Germany
| | - Cliona Molony
- Computation Biomedicine, Pfizer, Inc., Boston, Massachusetts, USA
| | - Yihui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - Federico Innocenti
- Eshelman School of Pharmacy and Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Luís Â, Domingues F, Pereira L. Effects of red clover on perimenopausal and postmenopausal women's blood lipid profile: A meta-analysis. Climacteric 2019; 21:446-453. [PMID: 30269660 DOI: 10.1080/13697137.2018.1501673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The study aimed to perform a systematic review with meta-analysis of randomized controlled trials (RCTs) to access the effects of red clover isoflavones on the blood lipid profile of both perimenopausal and postmenopausal women. PubMed, Web of Science, Scopus, SciELO, and Cochrane Library were searched for the terms 'red clover', 'Trifolium pratense', and 'randomized controlled trial' during November 2017. Summary measures were reported as weighted mean differences (WMD) with 95% confidence interval (CI). Fixed or random effects models were used for meta-analyses, according to heterogeneity. Risk of bias was measured with the Cochrane tool. Twelve RCTs (totalizing 1284 perimenopausal and postmenopausal women receiving red clover isoflavones for 4 weeks-18 months) resulted in a significant decrease in total cholesterol (WMD = -12.34 mg/dl; 95% CI: -18.21, -6.48), low-density lipoprotein cholesterol (WMD = -10.61 mg/dl; 95% CI: -15.51, -5.72), and triglycerides (WMD = -10.18 mg/dl; 95% CI: -16.23, -4.13) together with a significant increase in high-density lipoprotein cholesterol (WMD = 1.60 mg/dl; 95% CI: 0.17, 3.03). In conclusion, the results demonstrate that the ingestion of red clover may have a beneficial effect on the lipid profile of perimenopausal and postmenopausal women.
Collapse
Affiliation(s)
- Â Luís
- a Centro de Investigação em Ciências da Saúde (CICS-UBI) , Universidade da Beira Interior , Covilhã , Portugal
| | - F Domingues
- a Centro de Investigação em Ciências da Saúde (CICS-UBI) , Universidade da Beira Interior , Covilhã , Portugal
| | - L Pereira
- b Centro de Matemática e Aplicações (CMA-UBI) , Universidade da Beira Interior , Covilhã , Portugal
| |
Collapse
|
22
|
Abstract
Proprotein convertase subtilisin kexin 9 (PCSK9) is a serine protease with a key role in regulating plasma low-density lipoprotein (LDL) concentration. Since its discovery via parallel molecular biology and clinical genetics studies in 2003, work to characterize PCSK9 has shed new light on the life-cycle of the low-density lipoprotein receptor and the molecular basis of familial hypercholesterolaemia. These discoveries have also led to the advent of the PCSK9 inhibitors, a new generation of low-density lipoprotein cholesterol (LDL-C) lowering drugs. Clinical trials have shown these agents to be both safe and capable of unprecedented reductions in LDL-C, and it is hoped they may herald a new era of cardiovascular disease prevention. As such, the still evolving PCSK9 story serves as a particularly successful example of translational medicine. This review provides a summary of the principal PCSK9 research findings, which underpin our current understanding of its function and clinical relevance.
Collapse
Affiliation(s)
- Jonathan Malo
- Clinical Biochemistry, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Arun Parajuli
- Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Simon W Walker
- Clinical Biochemistry, Royal Infirmary Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Jeenduang N. Circulating PCSK9 concentrations are increased in postmenopausal women with the metabolic syndrome. Clin Chim Acta 2019; 494:151-156. [DOI: 10.1016/j.cca.2019.04.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
24
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the recent findings of one of the most promising therapeutic targets in LDL cholesterol (LDL-C) management, proprotein convertase subtilisin/kexin type 9 (PCSK9). RECENT FINDINGS Endoplasmic reticulum cargo receptor, surfeit locus protein 4 interacts with PCSK9 and regulates its exit from endoplasmic reticulum and its secretion. Once secreted, PCSK9 binds to heparin sulfate proteoglycans on the hepatocyte surface and this binding is required for PCSK9-LDL receptor (LDLR) complex formation and LDLR degradation. Posttranscriptionally, recent work has shown that PCSK9 gets degraded in lysosomes by activation of the glucagon receptor signaling, providing more data on the hormonal regulation of PCSK9. Finally, human studies with PCSK9 inhibitors offered more evidence on their benefits and safe use. SUMMARY Recent work on the regulation of PCSK9 has enhanced our understanding of its biology, which may provide important information for future PCSK9-based therapies.
Collapse
Affiliation(s)
- Stefano Spolitu
- Department of Medicine, Columbia University, New York, New York, USA
| | | | | | | |
Collapse
|
25
|
Jing Y, Hu T, Lin C, Xiong Q, Liu F, Yuan J, Zhao X, Wang R. Resveratrol downregulates PCSK9 expression and attenuates steatosis through estrogen receptor α-mediated pathway in L02 cells. Eur J Pharmacol 2019; 855:216-226. [PMID: 31085239 DOI: 10.1016/j.ejphar.2019.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a promising target for treating dyslipidemia and atherosclerosis. Circulating PCSK9 levels are closely related to hepatic steatosis severity and endogenous estrogen levels. Resveratrol (RSV) is a phytoestrogens that protects against atherosclerosis and hepatic steatosis. Thus, we sought to determine whether RSV had the activities to inhibit PCSK9 expression and to attenuate lipid accumulation in free fatty acid (FFA)-induced L02 cells via ERα pathway. In this study, RSV (10, 20 μM) were cultured with L02 cells in the presence of FFA (oleate:palmitate = 2:1). RSV significantly reduced the number of lipid droplets and intracellular TG in steatotic L02 cells, and Oil red O staining and Nile red staining had the same results. Western blot analysis showed that RSV significantly reduced apoB secretion and intracellular microsomal triglyceride transporter (MTP) expression under lipid-rich conditions. Treatment with RSV reduced expression of PCSK9 while maintaining LDL receptor (LDLR) expression and LDL uptake. RSV decreased SREBP-1c expression at both mRNA and protein levels. In addition, RSV significantly reduced the expression of liver X receptor α (LXRα) mRNA in L02 cells, but did not affect the expression of liver X receptor β (LXRβ) mRNA. The luciferase reporter assays suggested that RSV inhibited SREBP-mediated transcription of PCSK9. Finally, these results could be partly reversed by Estrogen receptor α (ERα) gene silencing. These results suggest that RSV attenuates steatosis and PCSK9 expression through down-regulation of SREBP-1c expression, at least in part through ERα-mediated pathway.
Collapse
Affiliation(s)
- Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Tianhui Hu
- Department of Gynaecology and Health, Huai'an Maternal and Child Health-Care Center, Huai'an, 2230003, China
| | - Chao Lin
- School of Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qingping Xiong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Fei Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xiaojuan Zhao
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Rong Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an, 223003, China
| |
Collapse
|
26
|
Sex Differences Associated With Circulating PCSK9 in Patients Presenting With Acute Myocardial Infarction. Sci Rep 2019; 9:3113. [PMID: 30816133 PMCID: PMC6395605 DOI: 10.1038/s41598-018-35773-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
A limited number of studies have explored whether the role of circulating proprotein convertase subtilisin/kexin type 9 (PCSK9) in the pathogenesis of acute myocardial infarction (AMI) is sex specific. The purpose of the present study was to examine sex differences in plasma PCSK9 in Chinese patients with AMI. In this study, a total of 281 records from patients presenting with AMI were analyzed.We compared hospital data and plasma PCSK9 levels by sex difference for inpatients presenting with AMI. After 1 year of follow-up, major adverse cardiac events(MACE) were recorded. A Cox proportional hazards model was used to calculate hazard ratios with 95% confidence intervals. We found that, compared with male groups, PCSK9 levels were higher in female patients not only for overall patients with AMI but also for patients with ST-elevation myocardial infarction (STEMI) (median: 273.6 [215.6–366.8] vs. 325.1 [247.5–445.3] ng/ml, P = 0.0136; 273.4 [215.6–369.7] vs. 317.1 [249.6–450.1], P = 0.0275, respectively). The cumulative incidence of cardiac death and 1-year MACE were significantly higher in the female group compared with male group (10% vs. 2.74%, P = 0.025; 15% vs. 4.11%, P = 0.0054, respectively). On multivariate Cox regression analysis, female sex, total triglyceride, glycosylated hemoglobin A, and homocysteic acid were independent risk factors of 1-year MACE. There was no significant correlation between PCSK9 and 1-year MACE in total AMI patients. In conclusion, PCSK9 levels and 1-year MACE were higher in women with AMI than in men with AMI, however, female sex but not PCSK9 were significant correlated with the 1-year MACE. The clinical implications of this finding are worthy of further investigations and must be confirmed in larger cohorts.
Collapse
|
27
|
Briet C, Ilie MD, Kuhn E, Maione L, Brailly-Tabard S, Salenave S, Cariou B, Chanson P. Changes in metabolic parameters and cardiovascular risk factors after therapeutic control of acromegaly vary with the treatment modality. Data from the Bicêtre cohort, and review of the literature. Endocrine 2019; 63:348-360. [PMID: 30397873 DOI: 10.1007/s12020-018-1797-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
CONTEXT Untreated acromegaly is associated with increased morbidity and mortality due to malignant, cardiovascular, and cerebrovascular disorders. Effective treatment of acromegaly reduces excess mortality, but its impact on cardiovascular risk factors and metabolic parameters are poorly documented. AIM We analyzed changes in cardiovascular risk factors and metabolic parameters in patients receiving various treatment modalities. PATIENTS AND METHODS We retrospectively studied 96 patients with acromegaly, both at diagnosis and after IGF-I normalization following surgery alone (n = 51) or medical therapy with first generation somatostatin analogues (SSA, n = 23), or pegvisomant (n = 22). Duration of follow-up was 77 (42-161) months, 75 (42-112) months, and 62 (31-93) months, in patients treated with surgery alone, SSA, and pegvisomant, respectively. In all the cases except four, patients treated medically had underwent previous unsuccessful surgery. RESULTS IGF-I normalization was associated with increased body weight, decreased systolic blood pressure (SBP) in hypertensive patients, decreased fasting plasma glucose (FPG) and HOMA-IR and HOMA-B levels, increased HDL cholesterol (HDLc); whereas, LDL cholesterol (LDLc) was not significantly different. Plasma PCSK9 levels were unchanged in patients with available values. Cardiovascular and metabolic changes varied with the treatment modality: surgery, but not pegvisomant, had a beneficial effect on SBP; FPG decreased after surgery but increased after SSA; the decline in HOMA-IR was only significant after surgery; pegvisomant significantly increased LDLc and total cholesterol; whereas SA increased HDLc and had no effect on LDLc levels. CONCLUSION Treatments used to normalize IGF-I levels in patients with acromegaly could have differential effects on cardiovascular risk factors and metabolic parameters.
Collapse
Affiliation(s)
- Claire Briet
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France
- Institut MITOVASC, INSERM U1083, Université d'Angers, Département d'Endocrinologie, Diabétologie et Nutrition, Centre Hospitalier Universitaire d'Angers, F-49933, Angers, France
| | - Mirela Diana Ilie
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France
| | - Emmanuelle Kuhn
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France
- Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin Bicêtre, France
- Unité Mixte de Recherche-S1185, F-94276, Le Kremlin Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1185, F-94276, Le Kremlin Bicêtre, France
| | - Luigi Maione
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France
- Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin Bicêtre, France
- Unité Mixte de Recherche-S1185, F-94276, Le Kremlin Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1185, F-94276, Le Kremlin Bicêtre, France
| | - Sylvie Brailly-Tabard
- Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin Bicêtre, France
- Unité Mixte de Recherche-S1185, F-94276, Le Kremlin Bicêtre, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1185, F-94276, Le Kremlin Bicêtre, France
| | - Sylvie Salenave
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France
| | - Bertrand Cariou
- l'Institut du Thorax, INSERM, CNRS, Univ Nantes, CHU Nantes, F-44000, Nantes, France
| | - Philippe Chanson
- Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, F-94275, Le Kremlin Bicêtre, France.
- Univ Paris-Sud, Faculté de Médecine Paris-Sud, F-94276, Le Kremlin Bicêtre, France.
- Unité Mixte de Recherche-S1185, F-94276, Le Kremlin Bicêtre, France.
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1185, F-94276, Le Kremlin Bicêtre, France.
| |
Collapse
|
28
|
PCSK9 inhibition 2018: riding a new wave of coronary prevention. Clin Sci (Lond) 2019; 133:205-224. [DOI: 10.1042/cs20171300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
AbstractProprotein convertase subtilisin/kexin type 9 (PCSK9) is a hepatic enzyme that regulates the low-density lipoprotein cholesterol (LDL-c) receptor and thus circulating LDL-c levels. With overwhelming evidence now supporting the reduction in LDL-c to lower the risk of cardiovascular disease, PCSK9 inhibitors represent an important therapeutic target, particularly in high-risk populations. Here, we summarise and update the science of PCSK9, including its discovery and the development of various inhibitors, including the now approved monoclonal antibodies. In addition, we summarise the clinical applications of PCSK9 inhibitors in a range of patient populations, as well as the major randomised controlled trials investigating their use in coronary prevention.
Collapse
|
29
|
Abstract
Clinical trials have unequivocally shown that inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) efficaciously and safely prevents cardiovascular events by lowering levels of LDL cholesterol. PCSK9 in the circulation is derived mainly from the liver, but the protein is also expressed in the pancreas, the kidney, the intestine and the central nervous system. Although PCSK9 modulates cholesterol metabolism by regulating LDL receptor expression in the liver, in vitro and in vivo studies have suggested that PCSK9 is involved in various other physiological processes. Although therapeutic PCSK9 inhibition could theoretically have undesired effects by interfering with these non-cholesterol-related processes, studies of individuals with genetically determined reduced PCSK9 function and clinical trials of PCSK9 inhibitors have not revealed clinically meaningful adverse consequences of almost completely eradicating PCSK9 from the circulation. The clinical implications of PCSK9 functions beyond lipid metabolism in terms of wanted or unwanted effects of therapeutic PCSK9 inhibition therefore appear to be limited. The objective of this Review is to describe the physiological role of PCSK9 beyond the LDL receptor to provide a rational basis for monitoring the effects of PCSK9 inhibition as these drugs gain traction in the clinic.
Collapse
Affiliation(s)
| | - Gilles Lambert
- Inserm UMR 1188 DéTROI, Université de La Réunion, Saint-Denis de La Réunion, France
| | - Bertrand Cariou
- L'institut du thorax, INSERM, CNRS, Université de Nantes, CHU Nantes, Nantes, France
| | - G Kees Hovingh
- Department of Vascular Medicine, Academisch Medisch Centrum, Amsterdam, Netherlands.
| |
Collapse
|
30
|
Al-Khaifi A, Straniero S, Voronova V, Chernikova D, Sokolov V, Kumar C, Angelin B, Rudling M. Asynchronous rhythms of circulating conjugated and unconjugated bile acids in the modulation of human metabolism. J Intern Med 2018; 284:546-559. [PMID: 29964306 DOI: 10.1111/joim.12811] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Bile acids (BAs) traversing the enterohepatic circulation (EHC) influence important metabolic pathways. By determining individual serum BAs in relation to markers of metabolic activity, we explored how diurnal variations in their EHC relate to hepatic metabolism in normal humans. METHODS Serum BAs, fibroblast growth factor 19 (FGF19), lipoproteins, glucose/insulin and markers of cholesterol and BA syntheses were monitored for 32 h in 8 healthy males. Studies were conducted at basal state and during initiation of cholestyramine treatment, with and without atorvastatin pretreatment. Time series cross-correlation analysis, Bayesian structural model and Granger causality test were applied. RESULTS Bile acids synthesis dominated daytime, and cholesterol production at night. Conjugated BAs peaked after food intake, with subsequent FGF19 elevations. BA synthesis was reduced following conjugated BA and FGF19 peaks. Cholestyramine reduced conjugated BAs and FGF19, and increased BA and cholesterol production; the latter effects attenuated by atorvastatin. The relative importance of FGF19 vs. conjugated BAs in this feedback inhibition could not be discriminated. Unconjugated BAs displayed one major peak late at night/early morning that was unrelated to FGF19 and BA synthesis, and abolished by cholestyramine. The normal suppression of serum triglycerides, glucose and insulin observed at night was attenuated by cholestyramine. CONCLUSIONS Conjugated and unconjugated BAs have asynchronous rhythms of EHC in humans. Postprandial transintestinal flux of conjugated BAs increases circulating FGF19 levels and suppresses BA synthesis. Unconjugated BAs peak late at night, indicating a non-postprandial diurnal change in human gut microflora, the physiological implications of which warrants further study.
Collapse
Affiliation(s)
- A Al-Khaifi
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Novum, Stockholm, Sweden.,Department of Biochemistry, College of Medicine, Sultan Qaboos University, Muscat 123, Oman
| | - S Straniero
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Novum, Stockholm, Sweden
| | | | | | | | - C Kumar
- Department of Medicine, Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Novum, Stockholm, Sweden.,Translational Sciences, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - B Angelin
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Novum, Stockholm, Sweden
| | - M Rudling
- Metabolism Unit, Endocrinology, Metabolism and Diabetes, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet/AstraZeneca Integrated CardioMetabolic Center (KI/AZ ICMC), Novum, Stockholm, Sweden
| |
Collapse
|
31
|
Lin XL, Xiao LL, Tang ZH, Jiang ZS, Liu MH. Role of PCSK9 in lipid metabolism and atherosclerosis. Biomed Pharmacother 2018; 104:36-44. [PMID: 29758414 DOI: 10.1016/j.biopha.2018.05.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022] Open
Abstract
Elevated plasma low-density lipoprotein cholesterol (LDL-C) is an important risk factor for cardiovascular diseases. Statins are the most widely used therapy for patients with hyperlipidemia. However, a significant residual cardiovascular risk remains in some patients even after maximally tolerated statin therapy. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a new pharmacologically therapeutic target for decreasing LDL-C. PCSK9 reduces LDL intake from circulation by enhancing LDLR degradation and preventing LDLR recirculation to the cell surface. Moreover, PCSK9 inhibitors have been approved for patients with either familial hypercholesterolemia or atherosclerotic cardiovascular disease, who require additional reduction of LDL-C. In addition, PCSK9 inhibition combined with statins has been used as a new approach to help reduce LDL-C levels in patients with either statin intolerance or unattainable LDL goal. This review will discuss the emerging anti-PCSK9 therapies in the regulation of cholesterol metabolism and atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Long Lin
- Department of Pathology, Hui Zhou Third People's Hospital, Guangzhou Medical University, Huizhou City, Guangdong Province, 516002, China
| | - Le-Le Xiao
- Huzhou University, Huzhou City, Zhejiang Province, 313000, China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China
| | - Mi-Hua Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, 421001, China; Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
32
|
Batulan Z, Maarouf N, Shrivastava V, O'Brien E. Prophylactic salpingo-oophorectomy & surgical menopause for inherited risks of cancer: the need to identify biomarkers to assess the theoretical risk of premature coronary artery disease. Womens Midlife Health 2018; 4:7. [PMID: 30766717 PMCID: PMC6297996 DOI: 10.1186/s40695-018-0037-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Some women with genetic risk of breast and/or ovarian cancer (e.g., BRCA1/2) opt to undergo prophylactic salpingo-oophorectomy (PSO, or surgical removal of the ovaries & fallopian tubes) in order to reduce their risk of cancer. As a consequence, these women experience “surgical menopause” – accompanied by more severe climacteric symptoms that occur in a much shorter time frame. While the risk of coronary artery disease (CAD) rises with menopause, little is known about how the sudden loss of ovarian function from PSO alters the whole-body physiology, and whether it predisposes women to premature CAD. Methods/Design To manage CAD risk there is a prerequisite for reliable biomarkers that can help guide risk assessment and therapeutic interventions. To address these needs, this prospective, observational cohort study will evaluate surrogate markers reflective of CAD health in women experiencing surgical menopause after PSO. Twenty women representing each of the following groups will be enrolled over 3 years (total participants = 240): (i) pre-menopausal PSO, (ii) post-menopausal PSO, (iii) pre-menopausal women undergoing other pelvic surgery, and (iv) pre-menopausal controls (no surgery). All participants will provide blood plasma samples pre- and 1, 3, 6, & 12 months post-operatively, with serial samples collectively assessed for measurements of the study’s primary endpoints of interest. These include a hormone profile (estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), and progesterone) and both conventional (lipid profile) and novel biomarkers (Heat Shock Protein 27 (HSP27), HSP27-antibodies (HSP27 Ab), proprotein convertase subtilisin/kexin 9 (PCSK9), inflammatory cytokines) of CAD. Another aspect of this study is the measurement and analysis of retinal vessel diameters – an emerging physiological parameter reflective of CAD risk. Finally, a patient engagement exercise will result in the drafting of patient-generated questionnaires that address the well-being and health concerns of these women as they transition through premature menopause and work with our research team to identify and discuss their health priorities. Discussion The protocol of our planned study investigating the effects of PSO on CAD is described herein. Characterization of novel CAD markers in women experiencing surgical menopause will yield new insights into the role of the functional ovary in modulating lipid parameters and other CAD risk factors such as HSP27 and HSP27 Ab.
Collapse
Affiliation(s)
- Zarah Batulan
- 1Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Research Innovation Centre, GB42, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6 Canada
| | - Nadia Maarouf
- 1Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Research Innovation Centre, GB42, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6 Canada
| | - Vipul Shrivastava
- 1Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Research Innovation Centre, GB42, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6 Canada
| | - Edward O'Brien
- 1Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Health Research Innovation Centre, GB42, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6 Canada.,Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Health Research Innovation Centre, Room GAA16, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6 Canada
| |
Collapse
|
33
|
Levenson AE, Shah AS, Khoury PR, Kimball TR, Urbina EM, de Ferranti SD, Maahs DM, Dolan LM, Wadwa RP, Biddinger SB. Obesity and type 2 diabetes are associated with elevated PCSK9 levels in young women. Pediatr Diabetes 2017; 18:755-760. [PMID: 28093849 PMCID: PMC5513789 DOI: 10.1111/pedi.12490] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of low-density lipoprotein cholesterol and cardiovascular disease risk, and is an emerging therapeutic target. OBJECTIVE We compared serum PCSK9 levels in young adults, with and without type 2 diabetes. SUBJECTS AND METHODS Cross-sectional analysis was conducted in a cohort, aged 15 to 26 years, in Cincinnati, OH, from 2005 to 2010. Serum PCSK9 levels were measured in 94 youth with type 2 diabetes, 93 obese control subjects, and 99 lean control subjects. Correlative analyses were conducted to determine significant covariates of PCSK9 by group and sex, and multivariate linear regression models were used to study the independent determinants of PCSK9. RESULTS In females, PCSK9 levels were significantly increased in the obese and type 2 diabetes subjects relative to the lean controls (P < .01). Moreover, PCSK9 was positively correlated with multiple metabolic parameters in females: body mass index, systolic blood pressure, fasting glucose, fasting insulin, and C-reactive protein levels (P ≤ .02). In males, PCSK9 levels were decreased overall compared with females (P = .03), and did not differ between the lean, obese, or type 2 diabetes groups. CONCLUSIONS Obesity and type 2 diabetes were associated with significantly higher levels of PCSK9 in young women, but not in young men. These data suggest that sex could modify the effects of obesity and diabetes on PCSK9 in young adults.
Collapse
Affiliation(s)
- Amy E. Levenson
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Amy S. Shah
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Philip R. Khoury
- Division of Cardiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Thomas R. Kimball
- Division of Cardiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Elaine M. Urbina
- Division of Cardiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - David M. Maahs
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Lawrence M. Dolan
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, Ohio 45229, United States
| | - R. Paul Wadwa
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| | - Sudha B. Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Sjöberg BG, Straniero S, Angelin B, Rudling M. Cholestyramine treatment of healthy humans rapidly induces transient hypertriglyceridemia when treatment is initiated. Am J Physiol Endocrinol Metab 2017; 313:E167-E174. [PMID: 28487440 DOI: 10.1152/ajpendo.00416.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/11/2023]
Abstract
Bile acid (BA) production in mice is regulated by hepatic farnesoid X receptors and by intestinal fibroblast growth factor (FGF)-15 (in humans, FGF-19), a suppressor of BA synthesis that also reduces serum triglycerides and glucose. Cholestyramine treatment reduces FGF-19 and induces BA synthesis, whereas plasma triglycerides may increase from unclear reasons. We explored whether FGF-19 may suppress BA synthesis and plasma triglycerides in humans by modulation of FGF-19 levels through long-term cholestyramine treatment at increasing doses. In a second acute experiment, metabolic responses from 1 day of cholestyramine treatment were monitored. Long-term treatment reduced serum FGF-19 by >90%; BA synthesis increased up to 17-fold, whereas serum BAs, triglycerides, glucose, and insulin were stable. After long-term treatment, serum BAs and FGF-19 displayed rebound increases above baseline levels, and BA and cholesterol syntheses normalized after 1 wk without rebound reductions. Acute cholestyramine treatment decreased FGF-19 by 95% overnight and serum BAs by 60%, while BA synthesis increased fourfold and triglycerides doubled. The results support that FGF-19 represses BA synthesis but not serum triglycerides. However, after cessation of both long-term and 1-day cholestyramine treatment, circulating FGF-19 levels were normalized within 2 days, whereas BA synthesis remained significantly induced in both situations, indicating that also other mechanisms than the FGF-19 pathway are responsible for stimulation of BA synthesis elicited by cholestyramine. Several of the responses during cholestyramine treatment persisted at least 6 days after treatment, highlighting the importance of removing such treatment well before evaluating dynamics of the enterohepatic circulation in humans.
Collapse
Affiliation(s)
- Beatrice G Sjöberg
- Metabolism Unit C2:94 and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sara Straniero
- Metabolism Unit C2:94 and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit C2:94 and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit C2:94 and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
35
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
36
|
Burke AC, Dron JS, Hegele RA, Huff MW. PCSK9: Regulation and Target for Drug Development for Dyslipidemia. Annu Rev Pharmacol Toxicol 2017; 57:223-244. [DOI: 10.1146/annurev-pharmtox-010716-104944] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy C. Burke
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
| | - Jacqueline S. Dron
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
| | - Robert A. Hegele
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Murray W. Huff
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
37
|
Ferri N, Ruscica M. Proprotein convertase subtilisin/kexin type 9 (PCSK9) and metabolic syndrome: insights on insulin resistance, inflammation, and atherogenic dyslipidemia. Endocrine 2016; 54:588-601. [PMID: 27038318 DOI: 10.1007/s12020-016-0939-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Low-density lipoprotein (LDL) cholesterol plays a pivotal role in the pathogenesis of atherosclerotic cardiovascular disease (CVD). The discovery that proprotein convertase subtilisin/kexin type 9 (PCSK9) represents a key regulator pathway for hepatic LDL receptor (LDLR) degradation sheds light on new uncovered issues regarding LDL-C homeostasis. Indeed, as confirmed by phase II and III clinical trials with monoclonal antibodies, targeting PCSK9 represents the newest and most promising pharmacological tool for the treatment of hypercholesterolemia and related CVD. However, clinical, genetic, and experimental evidence indicates that PCSK9 may be either a cause or an effect in the context of metabolic syndrome (MetS), a condition comprising a cluster of risk factors including insulin resistance, obesity, hypertension, and atherogenic dyslipidemia. The latter is characterized by a triad of hypertriglyceridemia, low plasma concentrations of high-density lipoproteins, and qualitative changes in LDLs. PCSK9 levels seem to correlate with many of these lipid parameters as well as with the insulin sensitivity indices, although the molecular mechanisms behind this association are still unknown or not completely elucidated. Nevertheless, this area of research represents an important starting point for a better understanding of the physiological role of PCSK9, also considering the recent approval of new therapies involving anti-PCSK9. Thus, in the present review, we will discuss the current knowledge on the role of PCSK9 in the context of MetS, alteration of lipids, glucose homeostasis, and inflammation.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Largo Meneghetti 2, 35131, Padua, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
38
|
Elewa U, Fernández-Fernández B, Mahillo-Fernández I, Martin-Cleary C, Sanz AB, Sanchez-Niño MD, Ortiz A. PCSK9 in diabetic kidney disease. Eur J Clin Invest 2016; 46:779-86. [PMID: 27438893 DOI: 10.1111/eci.12661] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 07/18/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and, specifically, diabetic kidney disease (DKD)+, is among the fastest increasing causes of death worldwide. A better understanding of the factors contributing to the high mortality may help design novel monitoring and therapeutic approaches, since protection offered by statins in CKD patients is not satisfactory. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) promotes hypercholesterolemia and may be targeted therapeutically. Adding anti-PCSK9 agents to standard lipid lowering therapy further reduces the incidence of cardiovascular events. DESIGN We studied plasma PCSK9 in a cross-sectional study of 134 diabetic kidney disease patients with estimated glomerular filtration rate (eGFR) categories G1-G4 and albuminuria categories A1-A3, in order to identify factors influencing plasma PCSK9 in this population. RESULTS Mean±SD plasma PCSK9 levels were 309.8±113.9 ng/ml. Plasma PCSK9 was not influenced by eGFR or albuminuria, but was higher in patients on lipid lowering therapy. In univariate analysis, plasma PCSK9 showed a significant positive correlation with serum total iron binding capacity, vitamin E, plasma renin and phosphaturia, and there was a trend towards a positive correlation with total serum cholesterol. In multivariate models, only therapy with fibrate and statin, and renin remained independently correlated with plasma PCSK9. However, multivariate models explained very little of the PCSK9 variability. CONCLUSIONS In DKD, therapy with lipid lowering drugs and specially the fibrate/statin combination were independently associated with higher PCSK9 levels. The biomarker potential of PCSK9 levels to identify DKD patients that may benefit from anti-PCSK9 strategies should be studied.
Collapse
Affiliation(s)
- Usama Elewa
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Beatriz Fernández-Fernández
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | | | - Catalina Martin-Cleary
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belen Sanz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
39
|
Feldman RD. Heart Disease in Women: Unappreciated Challenges, GPER as a New Target. Int J Mol Sci 2016; 17:ijms17050760. [PMID: 27213340 PMCID: PMC4881581 DOI: 10.3390/ijms17050760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
Heart disease in women remains underappreciated, underdiagnosed and undertreated. Further, although we are starting to understand some of the social and behavioral determinants for this, the biological basis for the increased rate of rise in atherosclerosis risk in women after menopause remains very poorly understand. In this review we will outline the scope of the clinical issues related to heart disease in women, the emerging findings regarding the biological basis underlying the increased prevalence of atherosclerotic risk factors in postmenopausal women (vs. men) and the role of the G protein-coupled estrogen receptor (GPER) and its genetic regulation as a determinant of these sex-specific risks. GPER is a recently appreciated GPCR that mediates the rapid effects of estrogen and aldosterone. Recent studies have identified that GPER activation regulates both blood pressure. We have shown that regulation of GPER function via expression of a hypofunctional GPER genetic variant is an important determinant of blood pressure and risk of hypertension in women. Further, our most recent studies have identified that GPER activation is an important regulator of low density lipoprotein (LDL) receptor metabolism and that expression of the hypofunctional GPER genetic variant is an important contributor to the development of hypercholesterolemia in women. GPER appears to be an important determinant of the two major risk factors for coronary artery disease-blood pressure and LDL cholesterol. Further, the importance of this mechanism appears to be greater in women. Thus, the appreciation of the role of GPER function as a determinant of the progression of atherosclerotic disease may be important both in our understanding of cardiometabolic function but also in opening the way to greater appreciation of the sex-specific regulation of atherosclerotic risk factors.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
40
|
Walley KR, Francis GA, Opal SM, Stein EA, Russell JA, Boyd JH. The Central Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Septic Pathogen Lipid Transport and Clearance. Am J Respir Crit Care Med 2016; 192:1275-86. [PMID: 26252194 DOI: 10.1164/rccm.201505-0876ci] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial cell walls contain pathogenic lipids, including LPS in gram-negative bacteria, lipoteichoic acid in gram-positive bacteria, and phospholipomannan in fungi. These pathogen lipids are major ligands for innate immune receptors and figure prominently in triggering the septic inflammatory response. Alternatively, pathogen lipids can be cleared and inactivated, thus limiting the inflammatory response. Accordingly, biological mechanisms for sequestering and clearing pathogen lipids from the circulation have evolved. Pathogen lipids released into the circulation are initially bound by transfer proteins, notably LPS binding protein and phospholipid transfer protein, and incorporated into high-density lipoprotein particles. Next, LPS binding protein, phospholipid transfer protein, and other transfer proteins transfer these lipids to ApoB-containing lipoproteins, including low-density (LDL) and very-low-density lipoproteins and chylomicrons. Pathogen lipids within these lipoproteins and their remnants are then cleared from the circulation by the liver. Hepatic clearance involves the LDL receptor (LDLR) and possibly other receptors. Once absorbed by the liver, these lipids are then excreted in the bile. Recent evidence suggests pathogen lipid clearance can be modulated. Importantly, reduced proprotein convertase subtilisin/kexin type 9 activity increases recycling of the LDLR and thereby increases LDLR on the surface of hepatocytes, which increases clearance by the liver of pathogen lipids transported in LDL. Increased pathogen lipid clearance, which can be achieved by inhibiting proprotein convertase subtilisin/kexin type 9, may decrease the systemic inflammatory response to sepsis and improve clinical outcomes.
Collapse
Affiliation(s)
- Keith R Walley
- 1 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon A Francis
- 1 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven M Opal
- 2 Infectious Disease Division, Memorial Hospital of Rhode Island and Alpert Medical School of Brown University, Providence, Rhode Island; and
| | - Evan A Stein
- 3 Metabolic and Atherosclerosis Research Center, Cincinnati, Ohio
| | - James A Russell
- 1 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - John H Boyd
- 1 Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Levenson AE, Haas ME, Miao J, Brown RJ, de Ferranti SD, Muniyappa R, Biddinger SB. Effect of Leptin Replacement on PCSK9 in ob/ob Mice and Female Lipodystrophic Patients. Endocrinology 2016; 157:1421-9. [PMID: 26824363 PMCID: PMC4816729 DOI: 10.1210/en.2015-1624] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Leptin treatment has beneficial effects on plasma lipids in patients with lipodystrophy, but the underlying mechanism is unknown. Proprotein convertase subtilisin/kexin type 9 (PCSK9) decreases low-density lipoprotein (LDL) clearance, promotes hypercholesterolemia, and has recently emerged as a novel therapeutic target. To determine the effect of leptin on PCSK9, we treated male and female ob/ob mice with leptin for 4 days via sc osmotic pumps (∼24 μg/d). Leptin reduced body weight and food intake in all mice, but the effects of leptin on plasma PCSK9 and lipids differed markedly between the sexes. In male mice, leptin suppressed PCSK9 but had no effect on plasma triglycerides or cholesterol. In female mice, leptin suppressed plasma triglycerides and cholesterol but had no effect on plasma PCSK9. In parallel, we treated female lipodystrophic patients (8 females, ages 5-23 y) with sc metreleptin injections (∼4.4 mg/d) for 4-6 months. In this case, leptin reduced plasma PCSK9 by 26% (298 ± 109 vs 221 ± 102 ng/mL; n = 8; P = .008), and the change in PCSK9 was correlated with a decrease in LDL cholesterol (r(2) = 0.564, P = .03). In summary, in leptin-deficient ob/ob mice, the effects of leptin on PCSK9 and plasma lipids appeared to be independent of one another and strongly modified by sex. On the other hand, in lipodystrophic females, leptin treatment reduced plasma PCSK9 in parallel with LDL cholesterol.
Collapse
Affiliation(s)
- Amy E Levenson
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mary E Haas
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ji Miao
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rebecca J Brown
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Sarah D de Ferranti
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ranganath Muniyappa
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Sudha B Biddinger
- Division of Endocrinology (A.E.L., M.E.H., J.M., S.B.B.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Diabetes, Endocrinology, and Obesity Branch (R.J.B., R.M.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Department of Cardiology (S.D.d.F.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Golden NH, Jacobson MS. Oestradiol, amenorrhoea and lipids in adolescent girls with eating disorders: do they affect long-term cardiovascular risk? Acta Paediatr 2016; 105:232-3. [PMID: 26859419 DOI: 10.1111/apa.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Neville H Golden
- Division of Adolescent Medicine, Stanford University School of Medicine - Pediatrics, Palo Alto, CA, USA.
| | - Marc S Jacobson
- Nassau University Medical Center - Pediatrics, Center for Lipid Disorders and Weight Management, East Meadow, NY, USA
| |
Collapse
|
43
|
Lehtihet M, Bonde Y, Beckman L, Berinder K, Hoybye C, Rudling M, Sloan JH, Konrad RJ, Angelin B. Circulating Hepcidin-25 Is Reduced by Endogenous Estrogen in Humans. PLoS One 2016; 11:e0148802. [PMID: 26866603 PMCID: PMC4750915 DOI: 10.1371/journal.pone.0148802] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Hepcidin reduces iron absorption by binding to the intestinal iron transporter ferroportin, thereby causing its degradation. Although short-term administration of testosterone or growth hormone (GH) has been reported to decrease circulating hepcidin levels, little is known about how hepcidin is influenced in human endocrine conditions associated with anemia. RESEARCH DESIGN AND METHODS We used a sensitive and specific dual-monoclonal antibody sandwich immunoassay to measure hepcidin-25 in patients (a) during initiation of in vitro fertilization when endogenous estrogens were elevated vs. suppressed, (b) with GH deficiency before and after 12 months substitution treatment, (c) with hyperthyroidism before and after normalization, and (d) with hyperprolactinemia before and after six months of treatment with a dopamine agonist. RESULTS In response to a marked stimulation of endogenous estrogen production, median hepcidin levels decreased from 4.85 to 1.43 ng/mL (p < 0.01). Hyperthyroidism, hyperprolactinemia, or GH substitution to GH-deficient patients did not influence serum hepcidin-25 levels. CONCLUSIONS In humans, gonadotropin-stimulated endogenous estrogen markedly decreases circulating hepcidin-25 levels. No clear and stable correlation between iron biomarkers and hepcidin-25 was seen before or after treatment of hyperthyroidism, hyperprolactinemia or growth hormone deficiency.
Collapse
Affiliation(s)
- Mikael Lehtihet
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
- * E-mail:
| | - Ylva Bonde
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
- Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Lena Beckman
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
- Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Katarina Berinder
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Charlotte Hoybye
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
- Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | - John H. Sloan
- Lilly Research Laboratories, Eli Lilly & Co, Indianapolis, Indiana, United States of America
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly & Co, Indianapolis, Indiana, United States of America
| | - Bo Angelin
- Department of Endocrinology, Metabolism and Diabetes, Departments of Medicine and Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
- Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| |
Collapse
|
44
|
Turola E, Petta S, Vanni E, Milosa F, Valenti L, Critelli R, Miele L, Maccio L, Calvaruso V, Fracanzani AL, Bianchini M, Raos N, Bugianesi E, Mercorella S, Di Giovanni M, Craxì A, Fargion S, Grieco A, Cammà C, Cotelli F, Villa E. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis. Dis Model Mech 2015; 8:1037-46. [PMID: 26183212 PMCID: PMC4582103 DOI: 10.1242/dmm.019950] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD). Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported); liver biopsy was scored according to 'The Pathology Committee of the NASH Clinical Research Network'. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI), histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR): 1.408, 95% confidence interval (95% CI): 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06). In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04) was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl) and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males), whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis.
Collapse
Affiliation(s)
- Elena Turola
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Salvatore Petta
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Ester Vanni
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Fabiola Milosa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Rosina Critelli
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Luca Miele
- Institute of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Livia Maccio
- Department of Pathology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Vincenza Calvaruso
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Anna L Fracanzani
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Marcello Bianchini
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Nazarena Raos
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Serena Mercorella
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Marisa Di Giovanni
- Department of Pathology, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Antonio Craxì
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Silvia Fargion
- Department of Pathophysiology and Transplantation, Section Internal Medicine, Fondazione Ca' Granda IRCCS Ospedale Maggiore Policlinico, 20122 Milano, Italy
| | - Antonio Grieco
- Institute of Internal Medicine, School of Medicine, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Calogero Cammà
- Division of Gastroenterology, DiBiMIS, University of Palermo, 90128 Palermo, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Erica Villa
- Gastroenterology Unit, Department of Internal Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy
| |
Collapse
|
45
|
Slusher AL, Whitehurst M, Zoeller RF, Mock JT, Maharaj M, Huang CJ. Attenuated fibroblast growth factor 21 response to acute aerobic exercise in obese individuals. Nutr Metab Cardiovasc Dis 2015; 25:839-845. [PMID: 26141939 DOI: 10.1016/j.numecd.2015.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIM Fibroblast growth factor 21 (FGF21) is positively associated with body mass index, potentially as a compensatory mechanism to mediate obesity related metabolic and inflammatory insult due to chronic low-grade elevations of the pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Therefore, FGF21 response in obese subjects and the associations with increased pro-inflammatory cytokines, insulin resistance, and energy utilization warrants investigation. METHODS AND RESULTS Twenty four untrained subjects (12 obese and 12 normal-weight) performed 30 min of continuous submaximal aerobic exercise. Following exercise, obese subjects exhibited a blunted FGF21 response to exercise compared to normal-weight subjects as indicated by area-under-the-curves "with respect to increase" (AUCi) analyses (p = 0.005). Furthermore, while exercise-induced plasma FGF21 was not associated with any inflammatory cytokine (IL-6 and TNF-α) response, FGF21 AUCi was positively correlated with glucose AUCi (r = 0.495, p = 0.014), total relative energy expenditure (r = 0.562, p = 0.004), and relative maximal oxygen consumption (VO2max; r = 0.646, p = 0.001) in all subjects. CONCLUSION Impaired cardiorespiratory fitness may influence the sensitivity of FGF21 response to acute exercise in obese individuals, potentially contributing to the attenuated metabolic response (e.g., glucose) and total exercise energy expenditure. Therefore, exercise training aimed at improving cardiorespiratory fitness and/or body composition may augment cardioprotective properties against obesity-associated CVD through enhanced FGF21 flux.
Collapse
Affiliation(s)
- A L Slusher
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA; Department of Kinesiology and Health Sciences, Virginia Commonwealth University, VA, USA.
| | - M Whitehurst
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - R F Zoeller
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - J T Mock
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - M Maharaj
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| | - C-J Huang
- Exercise Biochemistry Laboratory, Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
46
|
Walton TA, Nishtar S, Lumb PJ, Crook MA, Marber MS, Gill J, Wierzbicki AS. Pro-protein convertase subtilisin/kexin 9 concentrations correlate with coronary artery disease atheroma burden in a Pakistani cohort with chronic chest pain. Int J Clin Pract 2015; 69:738-42. [PMID: 25707773 DOI: 10.1111/ijcp.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE To determine the relationship between proprotein convertase subtilisin kexin 9 (PCSK9) levels and atheroma burden in Pakistanis presenting to an ambulatory centre with chest pain. METHODS A prospective matched case-control study of 400 patients selected for presence/absence of angiographic disease referred between 2001 and 2003. A comprehensive cardiovascular disease risk factor profile was assessed including demographics, environmental and biochemical risk factors including insulin resistance and PCSK-9 levels. Coronary atheroma burden was quantified by Gensini score. RESULTS In this population, PCSK-9 levels were weakly correlated (r = 0.23) with male gender (p = 0.06) and number of diabetes years (p = 0.09), and inversely with log10 of lipoprotein (a) concentration (p = 0.07) but not LDL-C. In multiple regression analysis, Gensini score was associated with age (p = 0.002), established angina (p = 0.001), duration of diabetes (p = 0.05), low HDL-C (p < 0.001), lipoprotein (a) (p = 0.01), creatinine (p < 0.001), C-Reactive Protein (p = 0.02) and PSCK-9 (p = 0.05) concentrations. PCSK9 added to the regression model. Neither total cholesterol nor LDL-C were significant risk factors in this study. CONCLUSIONS Proprotein convertase subtilisin kexin 9 concentrations are correlated with atheroma burden in Indian Asian populations from the sub-continent, not taking statin therapy, independent of LDL-C or other CVD risk factors.
Collapse
Affiliation(s)
- T A Walton
- Viapath Pathology, Guy's & St. Thomas' Hospitals, London, UK
| | | | - P J Lumb
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St. Thomas' Hospitals, London, UK
| | - M A Crook
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St. Thomas' Hospitals, London, UK
| | - M S Marber
- Department of Cardiology, Guy's & St. Thomas' Hospitals, London, UK
| | - J Gill
- Department of Cardiology, Guy's & St. Thomas' Hospitals, London, UK
| | - A S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology, Guy's & St. Thomas' Hospitals, London, UK
| |
Collapse
|
47
|
Rosqvist F, Smedman A, Lindmark-Månsson H, Paulsson M, Petrus P, Straniero S, Rudling M, Dahlman I, Risérus U. Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study. Am J Clin Nutr 2015; 102:20-30. [PMID: 26016870 DOI: 10.3945/ajcn.115.107045] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Butter is rich in saturated fat [saturated fatty acids (SFAs)] and can increase plasma low density lipoprotein (LDL) cholesterol, which is a major risk factor for cardiovascular disease. However, compared with other dairy foods, butter is low in milk fat globule membrane (MFGM) content, which encloses the fat. We hypothesized that different dairy foods may have distinct effects on plasma lipids because of a varying content of MFGM. OBJECTIVE We aimed to investigate whether the effects of milk fat on plasma lipids and cardiometabolic risk markers are modulated by the MFGM content. DESIGN The study was an 8-wk, single-blind, randomized, controlled isocaloric trial with 2 parallel groups including overweight men and women (n = 57 randomly assigned). For the intervention, subjects consumed 40 g milk fat/d as either whipping cream (MFGM diet) or butter oil (control diet). Intervention foods were matched for total fat, protein, carbohydrates, and calcium. Subjects were discouraged from consuming any other dairy products during the study. Plasma markers of cholesterol absorption and hepatic cholesterol metabolism were assessed together with global gene-expression analyses in peripheral blood mononuclear cells. RESULTS As expected, the control diet increased plasma lipids, whereas the MFGM diet did not [total cholesterol (±SD): +0.30 ± 0.49 compared with -0.04 ± 0.49 mmol/L, respectively (P = 0.024); LDL cholesterol: +0.36 ± 0.50 compared with +0.04 ± 0.36 mmol/L, respectively (P = 0.024); apolipoprotein B:apolipoprotein A-I ratio: +0.03 ± 0.09 compared with -0.05 ± 0.10 mmol/L, respectively (P = 0.007); and non-HDL cholesterol: +0.24 ± 0.49 compared with -0.14 ± 0.51 mmol/L, respectively (P = 0.013)]. HDL-cholesterol, triglyceride, sitosterol, lathosterol, campesterol, and proprotein convertase subtilisin/kexin type 9 plasma concentrations and fatty acid compositions did not differ between groups. Nineteen genes were differentially regulated between groups, and these genes were mostly correlated with lipid changes. CONCLUSIONS In contrast to milk fat without MFGM, milk fat enclosed by MFGM does not impair the lipoprotein profile. The mechanism is not clear although suppressed gene expression by MFGM correlated inversely with plasma lipids. The food matrix should be considered when evaluating cardiovascular aspects of different dairy foods. This trial was registered at clinicaltrials.gov as NCT01767077.
Collapse
Affiliation(s)
- Fredrik Rosqvist
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Annika Smedman
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden; Dairy Sweden, Stockholm, Sweden
| | - Helena Lindmark-Månsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden; Dairy Sweden, Stockholm, Sweden
| | - Marie Paulsson
- Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden
| | - Paul Petrus
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Sara Straniero
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; and
| | - Mats Rudling
- Metabolism Unit, Department of Endocrinology, Metabolism and Diabetes, and KI/AZ Integrated CardioMetabolic Center, Department of Medicine, and Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; and
| | - Ingrid Dahlman
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Ulf Risérus
- Clinical Nutrition and Metabolism, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
48
|
Thatcher SE, Zhang X, Woody S, Wang Y, Alsiraj Y, Charnigo R, Daugherty A, Cassis LA. Exogenous 17-β estradiol administration blunts progression of established angiotensin II-induced abdominal aortic aneurysms in female ovariectomized mice. Biol Sex Differ 2015; 6:12. [PMID: 26131353 PMCID: PMC4485333 DOI: 10.1186/s13293-015-0030-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/15/2015] [Indexed: 11/24/2022] Open
Abstract
Background Abdominal aortic aneurysms (AAAs) occur predominately in males. However, AAAs in females have rapid growth rates and rupture at smaller sizes. Mechanisms contributing to AAA progression in females are undefined. We defined effects of ovariectomy, with and without 17-β estradiol (E2), on progression of established angiotensin II (AngII)-induced AAAs in female mice. Methods We used neonatal testosterone exposures at 1 day of age to promote susceptibility to AngII-induced AAAs in adult female Ldlr−/− mice. Females were infused with AngII for 28 days to induce AAAs, and then stratified into groups that were sham, ovariectomized (Ovx, vehicle), or Ovx with E2 administration for 2 months of continued AngII infusions. Aortic lumen diameters were quantified by ultrasound and analyzed by linear mixed model, and maximal AAA diameters were analyzed by one-way ANOVA. Atherosclerosis was quantified en face in the aortic arch. AAA tissue sections were analyzed for cellular composition. We quantified effects of E2 on abdominal aortic smooth muscle cell (SMC) growth, α-actin and transforming growth factor-beta (TGF-β) production, and wound healing. Results Serum E2 concentrations were increased significantly by E2. Aortic lumen diameters increased over time in sham-operated and Ovx (vehicle) females, but not in Ovx females administered E2. At day 70, E2 administration decreased significantly aortic lumen diameters compared to Ovx vehicle and sham-operated females. Compared to Ovx females (vehicle), maximal AAA diameters were reduced significantly by E2. AAA tissue sections from Ovx females administered E2 exhibited significant increases in α-actin and decreases in neutrophils compared to Ovx females administered vehicle. In abdominal aortic SMCs, E2 resulted in a concentration-dependent increase in α-actin, elevated TGF-β, and more rapid wound healing. E2 administration to Ovx females also significantly reduced atherosclerotic lesions compared to sham-operated females. This effect was accompanied by significant reductions in serum cholesterol concentrations. Conclusions E2 administration to Ovx females abolished progressive growth and decreased severity of AngII-induced AAAs. These effects were accompanied by increased SMC α-actin, elevated TGF-β, and reduced neutrophils. Similarly, E2 administration reduced AngII-induced atherosclerosis. These results suggest that loss of E2 in post-menopausal females may contribute to progressive growth of AAAs. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0030-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sean E Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| | - Xuan Zhang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| | - Shannon Woody
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| | - Yu Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| | - Yasir Alsiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| | - Richard Charnigo
- Department of Statistics, University of Kentucky, Lexington, KY 40536 USA
| | - Alan Daugherty
- Saha Cardiovascular Center, University of Kentucky, Lexington, KY 40536 USA ; Department of Physiology, University of Kentucky, Lexington, KY 40536 USA
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Room 521b, Charles T. Wethington Bldg, Lexington, KY 40536-0200 USA
| |
Collapse
|
49
|
Living the PCSK9 adventure: from the identification of a new gene in familial hypercholesterolemia towards a potential new class of anticholesterol drugs. Curr Atheroscler Rep 2015; 16:439. [PMID: 25052769 DOI: 10.1007/s11883-014-0439-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A decade after our discovery of the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in cholesterol metabolism through the identification of the first mutations leading to hypercholesterolemia, PCSK9 has become one of the most promising targets in cholesterol and cardiovascular diseases. This challenging work in the genetics of hypercholesterolemia paved the way for a plethora of studies around the world allowing the characterization of PCSK9, its expression, its impact on reducing the abundance of LDL receptor, and the identification of loss-of-function mutations in hypocholesterolemia. We highlight the different steps of this adventure and review the published clinical trials especially those with the anti-PCSK9 antibodies evolocumab (AMG 145) and alirocumab (SAR236553/REGN727), which are in phase III trials. The promising results in lowering LDL cholesterol levels raise hope that the PCSK9 adventure will lead, after the large and long-term ongoing phase III studies evaluating efficacy and safety, to a new anticholesterol pharmacological class.
Collapse
|
50
|
Ooi TC, Raymond A, Cousins M, Favreau C, Taljaard M, Gavin C, Jolly EE, Malone S, Eapen L, Chretien M, Mbikay M, Mayne J. Relationship between testosterone, estradiol and circulating PCSK9: Cross-sectional and interventional studies in humans. Clin Chim Acta 2015; 446:97-104. [PMID: 25858546 DOI: 10.1016/j.cca.2015.03.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/25/2015] [Accepted: 03/28/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Circulating PCSK9 levels are higher in women than men, in postmenopausal than premenopausal women, and in pregnant than non-pregnant women, suggesting that sex hormones may be related to PCSK9 levels. We have examined the relationship between serum estradiol (E2) and testosterone (T) and PCSK9, and the impact of E2 replacement therapy in women and T replacement and ablation therapy in men on circulating PCSK9. METHODS We conducted a cross-sectional study to examine the correlation between serum T (in males) and E2 (in females) and serum PCSK9. We also conducted interventional studies to examine the effect of hormonal therapy on serum PCSK9 levels. RESULTS In men, (1) serum T does not correlate with circulating PCSK9 or with LDLC in the basal state, (2) T replacement therapy does not have any effect on circulating PCSK9, and (3) T ablation therapy has mixed results. In women, (1) E2 correlates inversely with circulating PCSK9 and directly with serum LDLC, but (2) E2 replacement therapy does not have any effect on circulating PCSK9. CONCLUSIONS We demonstrate differences between men and women in the relationship of their major sex hormones with circulating PCSK9. In men, circulating PCSK9 is not related to or affected by T except for a possible effect during T ablation therapy. In women, E2 is inversely related to circulating PCSK9 but the lack of effect of E2 therapy on circulating PCSK9 suggests that the E2-related differences in PCSK9 levels may be the result of differences in receptor-mediated PCSK9 clearance through E2-induced changes rather than production of PCSK9. The studies were registered with ClinicalTrials.gov NCT00848276.
Collapse
Affiliation(s)
- T C Ooi
- Clinical Research Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada.
| | - A Raymond
- Clinical Research Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - M Cousins
- Clinical Research Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - C Favreau
- Clinical Research Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - M Taljaard
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - C Gavin
- Clinical Research Laboratory, Division of Endocrinology and Metabolism, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - E E Jolly
- The Menopause Clinic, Shirley E. Greenberg Women's Health Centre, The Ottawa Hospital, Department of Obstetrics and Gynecology, University of Ottawa, Canada
| | - S Malone
- Division of Radiation Oncology, Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - L Eapen
- Division of Radiation Oncology, Ottawa Hospital Research Institute, The Ottawa Hospital, University of Ottawa, Ottawa, Ontario, Canada
| | - M Chretien
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - M Mbikay
- Chronic Disease Program, Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, Ontario, Canada; Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Quebec, Canada
| | - J Mayne
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|