1
|
Soloviev A, Sydorenko V. Oxidative and Nitrous Stress Underlies Vascular Malfunction Induced by Ionizing Radiation and Diabetes. Cardiovasc Toxicol 2024; 24:776-788. [PMID: 38916845 DOI: 10.1007/s12012-024-09878-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
Oxidative stress results from the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in quantities exceeding the potential activity of the body's antioxidant system and is one of the risk factors for the development of vascular dysfunction in diabetes and exposure to ionizing radiation. Being the secondary products of normal aerobic metabolism in living organisms, ROS and RNS act as signaling molecules that play an important role in the regulation of vital organism functions. Meanwhile, in high concentrations, these compounds are toxic and disrupt various metabolic pathways. The various stress factors (hyperglycemia, gamma-irradiation, etc.) trigger free oxygen and nitrogen radicals accumulation in cells that are capable to damage almost all cellular components including ion channels and transporters such as Na+/K+-ATPase, BKCa, and TRP channels. Vascular dysfunctions are governed by interaction of ROS and RNS. For example, the reaction of ROS with NO produces peroxynitrite (ONOO-), which not only oxidizes DNA, cellular proteins, and lipids, but also disrupts important signaling pathways that regulate the cation channel functions in the vascular endothelium. Further increasing in ROS levels and formation of ONOO- leads to reduced NO bioavailability and causes endothelial dysfunction. Thus, imbalance of ROS and RNS and their affect on membrane ion channels plays an important role in the pathogenesis of vascular dysfunction associated with various disorders.
Collapse
Affiliation(s)
- Anatoly Soloviev
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine.
| | - Vadym Sydorenko
- Department for Pharmacology of Cellular Signaling Systems and Experimental Therapeutics, Institute of Pharmacology and Toxicology, National Academy of Medical Science, Kyiv, Ukraine
| |
Collapse
|
2
|
Qian Z, Zhang M, Lu T, Yu J, Yin S, Wang H, Wang J. Propolis alleviates ulcerative colitis injury by inhibiting the protein kinase C - transient receptor potential cation channel subfamily V member 1 - calcitonin gene-related peptide/substance P (PKC-TRPV1-CGRP/SP) signaling axis. PLoS One 2024; 19:e0294169. [PMID: 38206948 PMCID: PMC10783729 DOI: 10.1371/journal.pone.0294169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024] Open
Abstract
This study investigated the protective effect of water-soluble propolis (WSP) on colonic tissues in ulcerative colitis (UC) and the role of the protein kinase C - transient receptor potential cation channel subfamily V member 1 - calcitonin gene-related peptide/substance P (PKC-TRPV1-CGRP/SP) signaling pathway. Male SD rats were divided into a control group, a UC model group, various WSP groups (Low-WSP, Medium-WSP, and High-WSP) with UC, and a salazosulfapyridine (SASP) positive control group with UC. After UC was established, the WSP and SASP groups were treated with WSP or SASP, respectively, for 7 d. Each day, body weight measurements were obtained, and the disease activity index (DAI) was recorded by observing fecal characteristics and blood in the stool. After the experiment, hematoxylin and eosin (HE) colonic tissue staining was performed to observe pathological changes, western blotting and immunohistochemistry were performed to detect PKC, TRPV1, CGRP, and SP expression in colonic tissues, and laser confocal microscopy was performed to observe the fluorescence colocalization of PKC/TRPV1, TRPV1/CGRP, and TRPV1/SP. HE staining showed significant colonic tissue structure disruption and inflammatory infiltration in the UC group. Western blotting and immunohistochemistry showed that the expression of PKC, TRPV1, CGRP, and SP in the colonic tissues of the UC group increased significantly compared with that of the control group. Compared with the UC group, the expression of PKC, TRPV1, CGRP, and SP in colonic tissues was significantly reduced in the High-WSP, Medium-WSP, and SASP groups. Immunofluorescence showed the colocalized expression of PKC/TRPV1, TRPV1/CGRP, and TRPV1/SP proteins in the colon tissue of the UC group was significantly reduced after WSP and SASP interventions compared with that of the control group. The results suggest that the mechanism of UC alleviation by propolis may inhibit the PKC-TRPV1-CGRP/SP signaling pathway and the release of inflammatory mediators, thus alleviating inflammation.
Collapse
Affiliation(s)
- Zhen Qian
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Mengjie Zhang
- Graduate School, Wannan Medical College, Wuhu, Anhui province, China
| | - Taiyu Lu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Jiayi Yu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui province, China
| | - Siyuan Yin
- School of Medical Imageology, Wannan Medical College, Wuhu, Anhui province, China
| | - Haihua Wang
- Department of Physiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui province, China
| | - Jing Wang
- Department of Physiology, School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui province, China
| |
Collapse
|
3
|
Wang Y, Liu Z, Song S, Wang J, Jin C, Jia L, Ma Y, Yuan T, Cai Z, Xiang M. IRF5 governs macrophage adventitial infiltration to fuel abdominal aortic aneurysm formation. JCI Insight 2024; 9:e171488. [PMID: 38175709 PMCID: PMC11143966 DOI: 10.1172/jci.insight.171488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic inflammatory disease characterized by the expansion of the aortic wall. One of the most significant features is the infiltration of macrophages in the adventitia, which drives vasculature remodeling. The role of macrophage-derived interferon regulatory factor 5 (IRF5) in macrophage infiltration and AAA formation remains unknown. RNA sequencing of AAA adventitia identified Irf5 as the top significantly increased transcription factor that is predominantly expressed in macrophages. Global and myeloid cell-specific deficiency of Irf5 reduced AAA progression, with a marked reduction in macrophage infiltration. Further cellular investigations indicated that IRF5 promotes macrophage migration by direct regulation of downstream phosphoinositide 3-kinase γ (PI3Kγ, Pik3cg). Pik3cg ablation hindered AAA progression, and myeloid cell-specific salvage of Pik3cg restored AAA progression and macrophage infiltration derived from Irf5 deficiency. Finally, we found that IRF5 and PI3Kγ expression in the adventitia is significantly increased in patients with AAA. These findings reveal that the IRF5-dependent regulation of PI3Kγ is essential for AAA formation.
Collapse
Affiliation(s)
- Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhenjie Liu
- Department of Vascular Surgery, The second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfang Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Chunna Jin
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Liangliang Jia
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Yuankun Ma
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Tan Yuan
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Zhejun Cai
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| | - Meixiang Xiang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, Provincial Key Laboratory of Cardiovascular Research, and
| |
Collapse
|
4
|
Ruan P, Gao L, Jiang H, Chu T, Ge J, Kong X. Identification of PTPN22 as a potential genetic biomarker for abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1061771. [PMID: 36588574 PMCID: PMC9797128 DOI: 10.3389/fcvm.2022.1061771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a severe life-threatening disease that is generally asymptomatic and is diagnosed at a very late stage. The genetic component underpinning AAA is considerable, with an estimated heritability of up to 70%. Therefore, identifying genetic biomarkers for AAA is valuable for predicting high-risk populations. We used integrative bioinformatics and cellular AAA model-based validation to reveal that the gene encoding protein tyrosine phosphatase non-receptor type 22 (PTPN22) may be a potentially useful diagnostic biomarker for AAA. Integrative bioinformatics analyses of clinical specimens showed that PTPN22 expression was consistently upregulated in aortic tissues and peripheral blood mononuclear cells (PBMCs) derived from patients with AAA. Moreover, transcriptomics data revealed that PTPN22 is a potential biomarker for AAA with limited diagnostic value in patients with thoracic aortic aneurysm/dissection. Single-cell RNA sequencing-based findings further highlight PTPN22 expression in aortic immune cells and vascular smooth muscle cells (VSMCs) is consistently upregulated in patients with AAA. A cellular AAA model was eventually employed to verify the increase in PTPN22 expression. Collectively, the results indicate that PTPN22 could be a potentially useful diagnostic biomarker for AAA.
Collapse
|
5
|
Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022; 21:2339-2364. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathogenesis of abdominal aortic aneurysm (AAA) includes inflammatory responses, matrix metalloproteinases (MMPs) degradation, VSMC apoptosis, oxidative stress, and angiogenesis, among which the inflammatory response plays a key role. At present, surgery is the only curing treatment, and no effective drug can delay AAA progression in clinical practice. Therefore, searching for a signaling pathway related to the immune-inflammatory response is an essential direction for developing drugs targeting AAA. Recent studies have confirmed that the PI3K family plays an important role in many inflammatory diseases and is involved in regulating various cellular functions, especially in the immune-inflammatory response. This review focuses on the role of each isoform of PI3K in each stage of AAA immune-inflammatory response, making available explorations for a deeper understanding of the mechanism of inflammation and immune response during the formation and development of AAA.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Shuai Liu
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wang
- Department of General &vascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Exploring the Effect and Mechanism of Si-Miao-Yong-An Decoction on Abdominal Aortic Aneurysm Based on Mice Experiment and Bioinformatics Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4766987. [PMID: 35685724 PMCID: PMC9173986 DOI: 10.1155/2022/4766987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/26/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is a fatal disease characterized by high morbidity and mortality in old population. Globally, effective drugs for AAA are still limited. Si-Miao-Yong-An decoction (SMYAD), a traditional Chinese medicine (TCM) formula with a high medical value, was reported to be successfully used in an old AAA patient. Thus, we reason that SMYAD may serve as a potential anti-AAA regime. Objective The exact effects and detailed mechanisms of SMYAD on AAA were explored by using the experimental study and bioinformatics analysis. Methods Firstly, C57BL/6N mice induced by Bap and Ang II were utilized to reproduce the AAA model, and the effects of SMYAD were systematically assessed according to histology, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). Then, network pharmacology was applied to identify the biological processes, pathways, and hub targets of SMYAD against AAA; moreover, molecular docking was utilized to identify the binding ability and action targets. Results In an animal experiment, SMYAD was found to effectively alleviate the degree of pathological expansion of abdominal aorta and reduce the incidence of Bap/Ang II-induced AAA, along with reducing the damage to elastic lamella, attenuating infiltration of macrophage, and lowering the circulating IL-6 level corresponding to the animal study, and network pharmacology revealed the detailed mechanisms of SMYAD on AAA that were related to pathways of inflammatory response, defense response, apoptotic, cell migration and adhesion, and reactive oxygen species metabolic process. Then, seven targets, IL-6, TNF, HSP90AA1, RELA, PTGS2, ESR1, and MMP9, were identified as hub targets of SMYAD against AAA. Furthermore, molecular docking verification revealed that the active compounds of SMYAD had good binding ability and clear binding site with core targets related to AAA formation. Conclusion SMYAD can suppress AAA development through multicompound, multitarget, and multipathway, which provides a research direction for further study.
Collapse
|
7
|
Rombouts KB, van Merrienboer TAR, Ket JCF, Bogunovic N, van der Velden J, Yeung KK. The role of vascular smooth muscle cells in the development of aortic aneurysms and dissections. Eur J Clin Invest 2022; 52:e13697. [PMID: 34698377 PMCID: PMC9285394 DOI: 10.1111/eci.13697] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/12/2021] [Accepted: 10/11/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Aortic aneurysms (AA) are pathological dilations of the aorta, associated with an overall mortality rate up to 90% in case of rupture. In addition to dilation, the aortic layers can separate by a tear within the layers, defined as aortic dissections (AD). Vascular smooth muscle cells (vSMC) are the predominant cell type within the aortic wall and dysregulation of vSMC functions contributes to AA and AD development and progression. However, since the exact underlying mechanism is poorly understood, finding potential therapeutic targets for AA and AD is challenging and surgery remains the only treatment option. METHODS In this review, we summarize current knowledge about vSMC functions within the aortic wall and give an overview of how vSMC functions are altered in AA and AD pathogenesis, organized per anatomical location (abdominal or thoracic aorta). RESULTS Important functions of vSMC in healthy or diseased conditions are apoptosis, phenotypic switch, extracellular matrix regeneration and degradation, proliferation and contractility. Stressors within the aortic wall, including inflammatory cell infiltration and (epi)genetic changes, modulate vSMC functions and cause disturbance of processes within vSMC, such as changes in TGF-β signalling and regulatory RNA expression. CONCLUSION This review underscores a central role of vSMC dysfunction in abdominal and thoracic AA and AD development and progression. Further research focused on vSMC dysfunction in the aortic wall is necessary to find potential targets for noninvasive AA and AD treatment options.
Collapse
Affiliation(s)
- Karlijn B Rombouts
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Tara A R van Merrienboer
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | | | - Natalija Bogunovic
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center and AMC, Amsterdam, The Netherlands.,Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, Location VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Kessler V, Klopf J, Eilenberg W, Neumayer C, Brostjan C. AAA Revisited: A Comprehensive Review of Risk Factors, Management, and Hallmarks of Pathogenesis. Biomedicines 2022; 10:94. [PMID: 35052774 PMCID: PMC8773452 DOI: 10.3390/biomedicines10010094] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Despite declining incidence and mortality rates in many countries, the abdominal aortic aneurysm (AAA) continues to represent a life-threatening cardiovascular condition with an overall prevalence of about 2-3% in the industrialized world. While the risk of AAA development is considerably higher for men of advanced age with a history of smoking, screening programs serve to detect the often asymptomatic condition and prevent aortic rupture with an associated death rate of up to 80%. This review summarizes the current knowledge on identified risk factors, the multifactorial process of pathogenesis, as well as the latest advances in medical treatment and surgical repair to provide a perspective for AAA management.
Collapse
Affiliation(s)
| | | | | | | | - Christine Brostjan
- Department of General Surgery, Division of Vascular Surgery, Medical University of Vienna, Vienna General Hospital, 1090 Vienna, Austria; (V.K.); (J.K.); (W.E.); (C.N.)
| |
Collapse
|
9
|
Yin H, Shi A, Wu J. Platelet-Activating Factor Promotes the Development of Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2022; 15:2003-2030. [PMID: 35837578 PMCID: PMC9275506 DOI: 10.2147/dmso.s367483] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted clinicopathological syndrome characterised by excessive hepatic lipid accumulation that causes steatosis, excluding alcoholic factors. Platelet-activating factor (PAF), a biologically active lipid transmitter, induces platelet activation upon binding to the PAF receptor. Recent studies have found that PAF is associated with gamma-glutamyl transferase, which is an indicator of liver disease. Moreover, PAF can stimulate hepatic lipid synthesis and cause hypertriglyceridaemia. Furthermore, the knockdown of the PAF receptor gene in the animal models of NAFLD helped reduce the inflammatory response, improve glucose homeostasis and delay the development of NAFLD. These findings suggest that PAF is associated with NAFLD development. According to reports, patients with NAFLD or animal models have marked platelet activation abnormalities, mainly manifested as enhanced platelet adhesion and aggregation and altered blood rheology. Pharmacological interventions were accompanied by remission of abnormal platelet activation and significant improvement in liver function and lipids in the animal model of NAFLD. These confirm that platelet activation may accompany a critical importance in NAFLD development and progression. However, how PAFs are involved in the NAFLD signalling pathway needs further investigation. In this paper, we review the relevant literature in recent years and discuss the role played by PAF in NAFLD development. It is important to elucidate the pathogenesis of NAFLD and to find effective interventions for treatment.
Collapse
Affiliation(s)
- Hang Yin
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Anhua Shi
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
| | - Junzi Wu
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China
- Correspondence: Junzi Wu; Anhua Shi, Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, People’s Republic of China, Tel/Fax +86 187 8855 7524; +86 138 8885 0813, Email ;
| |
Collapse
|
10
|
Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE -/- Mice. JOURNAL OF ONCOLOGY 2021; 2021:6629204. [PMID: 33953746 PMCID: PMC8068550 DOI: 10.1155/2021/6629204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation plays an essential role in the pathogenesis of abdominal aortic aneurysm (AAA), a progressive segmental abdominal aortic dilation. Chemerin, a multifunctional adipocytokine, is mainly generated in the liver and adipose tissue. The combination of chemerin and chemokine-like receptor 1 (CMKLR1) has been demonstrated to promote the progression of atherosclerosis, arthritis diseases, and Crohn's disease. However, chemerin-9 acts as an analog of chemerin to exert an anti-inflammatory effect by binding to CMKLR1. Here, we first demonstrated that AAA exhibited higher levels of chemerin and CMKLR1 expression compared with the normal aortic tissues. Hence, we hypothesized that the chemerin/CMKLR1 axis might be involved in AAA progression. Moreover, we found that chemerin-9 treatment markedly suppressed inflammatory cell infiltration, neovascularization, and matrix metalloproteinase (MMP) expression, while increasing the elastic fibers and smooth muscle cells (SMCs) in Ang II-induced AAA in ApoE-/- mice. This demonstrated that chemerin-9 could inhibit AAA formation. Collectively, our findings indicate a potential mechanism underlying AAA progression and suggest that chemerin-9 can be used therapeutically.
Collapse
|
11
|
XIST knockdown suppresses vascular smooth muscle cell proliferation and induces apoptosis by regulating miR-1264/WNT5A/β-catenin signaling in aneurysm. Biosci Rep 2021; 41:227680. [PMID: 33501488 PMCID: PMC7960886 DOI: 10.1042/bsr20201810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been ascertained as vital modulators in abdominal aortic aneurysm (AAA) development. In this research, the function and molecular mechanisms of the lncRNA X-inactive specific transcript (XIST) in the evolution of vascular smooth muscle cells (VSMCs) were assessed. Results showed that XIST expression was increased but miR-1264 expression level was reduced in the serum of AAA patients. XIST depletion impeded human aorta VSMCs (HA-VSMCs’) ability to proliferate and stimulate apoptosis, while repressing miR-1264 expression through an unmediated interaction. Additionally, the influence of XIST knockdown on apoptosis and proliferation could be rescued by an miR-1264 inhibitor. Subsequent molecular investigations indicated that WNT5A was miR-1264’s target, and XIST functioned as a competing endogenous RNA (ceRNA) of miR-1264 to raise WNT5A expression. Further, an miR-1264 inhibitor stimulated the proliferation and suppressed the apoptosis of HA-VSMCs through the activation of WNT/β-catenin signaling. Taken together, XIST impeded the apoptosis and stimulated the proliferation of HA-VSMCs via the WNT/β-catenin signaling pathway through miR-1264, demonstrating XIST’s underlying role in AAA.
Collapse
|
12
|
Endoplasmic reticulum stress and mitochondrial biogenesis are potential therapeutic targets for abdominal aortic aneurysm. Clin Sci (Lond) 2020; 133:2023-2028. [PMID: 31654572 DOI: 10.1042/cs20190648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria are crucial organelles for cell homeostasis and alterations of these organelles have been implicated in cardiovascular disease. However, their roles in abdominal aortic aneurysm (AAA) pathogenesis remain largely unknown. In a recent issue of Clinical Science, Navas-Madronal et al. ((2019), 133(13), 1421-1438) reported that enhanced ER stress and dysregulation of mitochondrial biogenesis are associated with AAA pathogenesis in humans. The authors also proposed that disruption in oxysterols network such as an elevated concentration of 7-ketocholestyerol in plasma is a causative factor for AAA progression. Their findings highlight new insights into the underlying mechanism of AAA progression through ER stress and dysregulation of mitochondrial biogenesis. Here, we will discuss the background, significance of the study, and future directions.
Collapse
|
13
|
Liu Z, Fitzgerald M, Meisinger T, Batra R, Suh M, Greene H, Penrice AJ, Sun L, Baxter BT, Xiong W. CD95-ligand contributes to abdominal aortic aneurysm progression by modulating inflammation. Cardiovasc Res 2020; 115:807-818. [PMID: 30428004 DOI: 10.1093/cvr/cvy264] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 07/18/2018] [Accepted: 11/10/2018] [Indexed: 01/12/2023] Open
Abstract
AIMS Abdominal aortic aneurysm (AAA) is one of the number of diseases associated with a prominent inflammatory cell infiltration, matrix protein degradation, and smooth muscle cell apoptosis. CD95 is an inflammatory mediator and an apoptosis inducer. Previous studies have shown elevated expression of CD95 or CD95L in the aortic tissue of AAA patients. However, how the CD95L/CD95 contributes to aneurysm degeneration and whether blocking its signalling would be beneficial to disease progression remains largely unknown. In the present study, we sought to determine the role of CD95L and its downstream target, caspase 8, in AAA progression. METHODS AND RESULTS By using the CaCl2 murine model of AAA, abdominal aortic aneurysms were induced in C57BL/6 mice. We found that both mRNA and protein levels of CD95L were increased in aneurysm tissue compared with NaCl-treated normal aortic tissue. To determine whether CD95L contributes directly to aneurysm formation, we used CD95L null (CD95L-/-) mice to examine their response to CaCl2 aneurysm induction. Six weeks after periaortic application of CaCl2, aortic diameters of CD95L-/- mice were significantly smaller compared to CaCl2-treated wild-type controls. Connective tissue staining of aortic sections from CaCl2-treated CD95L-/- mice showed minimal damage of medial elastic lamellae which was indistinguishable from the NaCl-treated sham control. Furthermore, CD95L deficiency attenuates macrophage and T cell infiltration into the aortic tissue. To study the role of CD95L in the myelogeous cells in AAA formation, we created chimaeric mice by infusing CD95L-/- bone marrow into sub-leathally irradiated wild-type mice (WT/CD95L-/-BM). As controls, wild-type bone marrow were infused into sub-leathally irradiated CD95L-/- mice (CD95L-/-/WTBM). WT/CD95L-/-BM mice were resistant to aneurysm formation compared to their controls. Inflammatory cell infiltration was blocked by the deletion of CD95L on myeloid cells. Western blot analysis showed the levels of caspase 8 in the aortas of CaCl2-treated wild-type mice were increased compared to NaCl-treated controls. CD95L deletion inhibited caspase 8 expression. Furthermore, a caspase 8-specific inhibitor was able to partially block aneurysm development in CaCl2-treated aneurysm models. CONCLUSION These studies demonstrated that inflammatory cell infiltration during AAA formation is dependent on CD95L from myelogeous cells. Aneurysm inhibition by deletion of CD95L is mediated in part by down-regulation of caspase 8.
Collapse
Affiliation(s)
- Zhibo Liu
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA.,Department of Cardiothoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Matthew Fitzgerald
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Trevor Meisinger
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Rishi Batra
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Melissa Suh
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Harrison Greene
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Alexander J Penrice
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Lijun Sun
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - B Timothy Baxter
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| | - Wanfen Xiong
- Department of Surgery, 987690 University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Liu B, Granville DJ, Golledge J, Kassiri Z. Pathogenic mechanisms and the potential of drug therapies for aortic aneurysm. Am J Physiol Heart Circ Physiol 2020; 318:H652-H670. [PMID: 32083977 PMCID: PMC7099451 DOI: 10.1152/ajpheart.00621.2019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Aortic aneurysm is a permanent focal dilation of the aorta. It is usually an asymptomatic disease but can lead to sudden death due to aortic rupture. Aortic aneurysm-related mortalities are estimated at ∼200,000 deaths per year worldwide. Because no pharmacological treatment has been found to be effective so far, surgical repair remains the only treatment for aortic aneurysm. Aortic aneurysm results from changes in the aortic wall structure due to loss of smooth muscle cells and degradation of the extracellular matrix and can form in different regions of the aorta. Research over the past decade has identified novel contributors to aneurysm formation and progression. The present review provides an overview of cellular and noncellular factors as well as enzymes that process extracellular matrix and regulate cellular functions (e.g., matrix metalloproteinases, granzymes, and cathepsins) in the context of aneurysm pathogenesis. An update of clinical trials focusing on therapeutic strategies to slow abdominal aortic aneurysm growth and efforts underway to develop effective pharmacological treatments is also provided.
Collapse
Affiliation(s)
- Bo Liu
- University of Wisconsin, Madison, Department of Surgery, Madison Wisconsin
| | - David J Granville
- International Collaboration on Repair Discoveries Centre and University of British Columbia Centre for Heart Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Department of Vascular and Endovascular Surgery, Townsville Hospital and Health Services, Townsville, Queensland, Australia
| | - Zamaneh Kassiri
- University of Alberta, Department of Physiology, Cardiovascular Research Center, Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Targeting vascular smooth muscle cell dysfunction with xanthine derivative KMUP-3 inhibits abdominal aortic aneurysm in mice. Atherosclerosis 2020; 297:16-24. [PMID: 32059119 DOI: 10.1016/j.atherosclerosis.2020.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 01/15/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND AND AIMS Inflammation, oxidative stress, matrix degradation, medial calcification and vascular smooth muscle cell (VSMC) loss are prominent features in abdominal aortic aneurysm (AAA). VSMC phenotypic switch to a proinflammatory state and VSMC apoptosis could be targetable mechanisms implicated in the pathogenesis of AAA formation. Herein, we investigated the hypothesis that a xanthine derivative (KMUP-3) might suppress AAA through inhibition of VSMC phenotypic switch and apoptosis. METHODS In vitro, VSMC calcification was induced using β-glycerophosphate. In vivo, AAA was induced using angiotensin II (1000 ng/kg per minute) infusion for 4 weeks in apolipoprotein E-deficient mice. RESULTS As determined by alizarin red S staining and calcium content measurements, KMUP-3 suppressed VSMC calcification. During VSMC calcification, KMUP-3 inhibited mTOR and β-catenin upregulation, essential for VSMC phenotypic switch, while it enhanced AMP-activated protein kinase (AMPK) activation that protects against VSMC phenotypic switch. Moreover, KMUP-3 attenuated VSMC apoptosis with an increased Bcl-2/Bax ratio and reduced activated caspase-3 expression. During AAA formation, treatment with KMUP-3 inhibited phosphorylated mTOR expression and increased phosphorylated AMPK expression in the medial layer. In addition, KMUP-3 treatment suppressed aortic dilatation together with reduction in proinflammatory cytokines and infiltrating macrophages, attenuation of medial VSMC apoptosis and mitigation of reactive oxygen species generation, matrix-degrading proteinase activities, elastin breakdown and vascular calcification. CONCLUSIONS Treatment with KMUP-3 inhibits aneurysm growth possibly through its interference with signaling pathways involved in VSMC phenotypic switch and apoptosis. These findings provide a proof-of-concept validation for VSMC dysfunction as a potential therapeutic target in AAA.
Collapse
|
16
|
PKCδ Mediates NF-κB Inflammatory Response and Downregulates SIRT1 Expression in Liver Fibrosis. Int J Mol Sci 2019; 20:ijms20184607. [PMID: 31533364 PMCID: PMC6770793 DOI: 10.3390/ijms20184607] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/29/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023] Open
Abstract
The precise mechanism of hepatic cirrhosis remains largely unclear. In particular, a potential regulatory mechanism by which protein kinase C-delta (PKCδ ) affects profibrogenic gene expression involved in hepatic cirrhosis has never been explored. In the present study, we investigated whether PKCδ activation is involved in liver inflammatory fibrosis in both lipopolysaccharide (LPS)-treated RAW 264.7 and CCl4-treated mice. PKCδ was strongly activated by LPS or CCl4 treatment and consequently stimulated nuclear factor (NF)-κB inflammatory response. Interestingly, the activation of PKCδ negatively regulated sirtuin-1 (SIRT1) expression, whereas PKCδ suppression by PKCδ peptide inhibitor V1-1 or siRNA dramatically increased SIRT1 expression. Furthermore, we showed that the negative regulation of PKCδ leads to a decrease in SIRT1 expression. To our knowledge, these results are the first demonstration of the involvement of PKCδ in modulating NF-κB through SIRT1 signaling in fibrosis in mice, suggesting a novel role of PKCδ in inflammatory fibrosis. The level of NF-κB p65 in the nucleus was also negatively regulated by SIRT1 activity. We showed that the inhibition of PKCδ promoted SIRT1 expression and decreased p65 levels in the nucleus through deacetylation. Moreover, the inactivation of PKCδ with V1-1 dramatically suppressed the inflammatory fibrosis, indicating that PKCδ represents a promising target for treating fibrotic diseases like hepatic cirrhosis.
Collapse
|
17
|
Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis 2019; 289:64-72. [PMID: 31479773 DOI: 10.1016/j.atherosclerosis.2019.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Abdominal aortic aneurysm (AAA) is characterized by infiltration of inflammatory cells, extracellular matrix (ECM) degradation, and dysfunction of vascular smooth muscle cells (VSMCs). Recent studies reported that exosomes mediate intercellular communication and are involved in different diseases. Whether exosomes play a role in AAA is poorly understood. Hence, this study evaluated the function of exosomes in AAA development. METHODS The presence of exosomes in human and calcium phosphate (CaPO4)-induced AAA tissues was determined by immunofluorescence staining of CD63 and Alix. GW4869, an inhibitor of exosome biogenesis, was intraperitoneally injected into CaPO4-induced AAA tissues to evaluate the effects of exosomal inhibition on AAA development. To explore the underlying mechanisms, the human monocytic cell line THP-1 was differentiated into macrophages, and exosomes were collected from macrophages. VSMCs were treated with macrophage-derived exosomes, and the expression of matrix metalloproteinase-2 (MMP-2) was evaluated. The activation of mitogen-activated protein kinases (MAPKs) pathways was also investigated in vitro and in vivo. RESULTS Exosomes were detected in the adventitia of aneurysmal tissues obtained from humans and mice. They were mainly expressed in clusters of macrophages. Intraperitoneal injection of GW4869 for two weeks significantly attenuated the progression of CaPO4-induced AAA, preserved elastin integrity and decreased MMP-2 expression. Similarly, administration of GW4869 suppressed the systemic and aneurysmal exosome generation. In vitro, treatment with macrophage-derived exosomes elevated MMP-2 expression in human VSMCs, while pre-treatment with GW4869 abolished these effects. It was also found that JNK and p38 pathways mediated the production of MMP-2 in VSMCs following treatment with macrophage-derived exosomes. CONCLUSIONS This study suggests that exosomes derived from macrophages are involved in the pathogenesis of AAA. Macrophage-derived exosomes trigger MMP-2 expression in VSMC via JNK and p38 pathways. GW4869 supplementation attenuates CaPO4-induced AAA in mice.
Collapse
|
18
|
He X, Wang S, Li M, Zhong L, Zheng H, Sun Y, Lai Y, Chen X, Wei G, Si X, Han Y, Huang S, Li X, Liao W, Liao Y, Bin J. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis. Am J Cancer Res 2019; 9:5558-5576. [PMID: 31534503 PMCID: PMC6735383 DOI: 10.7150/thno.34463] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Objective: Long noncoding RNAs (lncRNAs) may serve as specific targets for the treatment of abdominal aortic aneurysms (AAAs). LncRNA GAS5, functionally associated with smooth muscle cell (SMC) apoptosis and proliferation, is likely involved in AAA formation, but the exact role of GAS5 in AAA is unknown. We thus explored the contribution of GAS5 to SMC-regulated AAA formation and its underlying mechanisms. Methods: Human specimens were used to verify the diverse expression of GAS5 in normal and AAA tissues. The angiotensin II (Ang II)-induced AAA model in ApoE-/- mice and the CaCl2-induced AAA model in wild-type C57BL/6 mice were used. RNA pull-down and luciferase reporter gene assays were performed in human aortic SMCs to detect the interaction between GAS5 and its downstream targets of protein or microRNA (miR). Results: GAS5 expression was significantly upregulated in human AAA specimens and two murine AAA models compared to human normal aortas and murine sham-operated controls. GAS5 overexpression induced SMC apoptosis and repressed its proliferation, thereby promoting AAA formation in two murine AAA models. Y-box-binding protein 1 (YBX1) was identified as a direct target of GAS5 while it also formed a positive feedback loop with GAS5 to regulate the downstream target p21. Furthermore, GAS5 acted as a miR-21 sponge to release phosphatase and tensin homolog from repression, which blocked the activation and phosphorylation of Akt to inhibit proliferation and promote apoptosis in SMCs. Conclusion: The LncRNA GAS5 contributes to SMC survival during AAA formation. Thus, GAS5 might serve as a novel target against AAA.
Collapse
|
19
|
Park YS, Lee JE, Park JI, Myung CH, Lim YH, Park CK, Hwang JS. Inhibitory mechanism of ginsenoside Rh3 on granulocyte-macrophage colony-stimulating factor expression in UV-B-irradiated murine SP-1 keratinocytes. J Ginseng Res 2018; 44:274-281. [PMID: 32148409 PMCID: PMC7031754 DOI: 10.1016/j.jgr.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Ultraviolet (UV) goes through the epidermis and promotes release of inflammatory cytokines in keratinocytes. Granulocyte–macrophage colony-stimulating factor (GM-CSF), one of the keratinocyte-derived cytokines, regulates proliferation and differentiation of melanocytes. Extracellular signal–regulated kinase (ERK1/2) and protein kinase C (PKC) signaling pathways regulate expression of GM-CSF. Based on these results, we found that ginsenoside Rh3 prevented GM-CSF production and release in UV-B–exposed SP-1 keratinocytes and that this inhibitory effect resulted from the reduction of PKCδ and ERK phosphorylation. Methods We investigated the mechanism by which ginsenoside Rh3 from Panax ginseng inhibited GM-CSF release from UV-B–irradiated keratinocytes. Results Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or UV-B induced release of GM-CSF in the SP-1 keratinocytes. To elucidate whether the change in GM-CSF expression could be related to PKC signaling, the cells were pretreated with H7, an inhibitor of PKC, and irradiated with UV-B. GM-CSF was decreased by H7 in a dose-dependent manner. When we analyzed which ginsenosides repressed GM-CSF expression among 15 ginsenosides, ginsenoside Rh3 showed the largest decline to 40% of GM-CSF expression in enzyme-linked immunosorbent assay. Western blot analysis showed that TPA enhanced the phosphorylation of PKCδ and ERK in the keratinocytes. When we examined the effect of ginsenoside Rh3, we identified that ginsenoside Rh3 inhibited the TPA-induced phosphorylation levels of PKCδ and ERK. Conclusion In summary, we found that ginsenoside Rh3 impeded UV-B–induced GM-CSF production through repression of PKCδ and ERK phosphorylation in SP-1 keratinocytes.
Collapse
Affiliation(s)
- Young Sun Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Young-Ho Lim
- KGC R&D Headquarters, Daejeon, Republic of Korea
| | | | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
20
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Abdominal/epidemiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/physiopathology
- Aortic Aneurysm, Thoracic/epidemiology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Disease Models, Animal
- Humans
- Risk Factors
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Hong Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
21
|
Inhibition of Receptor-Interacting Protein Kinase 1 with Necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep 2017; 7:42159. [PMID: 28186202 PMCID: PMC5301478 DOI: 10.1038/srep42159] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 01/09/2017] [Indexed: 01/30/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a common aortic disease with a progressive nature. There is no approved pharmacological treatment to effectively slow aneurysm growth or prevent rupture. Necroptosis is a form of programmed necrosis that is regulated by receptor-interacting protein kinases (RIPs). We have recently demonstrated that the lack of RIP3 in mice prevented aneurysm formation. The goal of the current study is to test whether perturbing necroptosis affects progression of existing aneurysm using the RIP1 inhibitors Necrostatin-1 (Nec-1) and an optimized form of Nec-1, 7-Cl-O-Nec-1 (Nec-1s). Seven days after aneurysm induction by elastase perfusion, mice were randomly administered DMSO, Nec-1 (3.2 mg/kg/day) and Nec-1s (1.6 mg/kg/day) via intraperitoneal injection. Upon sacrifice on day 14 postaneurysm induction, the aortic expansion in the Nec-1s group (64.12 ± 4.80%) was significantly smaller than that of the DMSO group (172.80 ± 13.68%) (P < 0.05). The mean aortic diameter of Nec-1 treated mice appeared to be smaller (121.60 ± 10.40%) than the DMSO group, though the difference was not statistically significant (P = 0.1). Histologically, the aortic structure of Nec-1s-treated mice appeared normal, with continuous and organized elastin laminae and abundant αActin-expressing SMCs. Moreover, Nect-1s treatment diminished macrophage infiltration and MMP9 accumulation and increased aortic levels of tropoelastin and lysyl oxidase. Together, our data suggest that pharmacological inhibition of necroptosis with Nec-1s stabilizes pre-existing aneurysms by diminishing inflammation and promoting connective tissue repair.
Collapse
|
22
|
Shen YH, LeMaire SA. Molecular pathogenesis of genetic and sporadic aortic aneurysms and dissections. Curr Probl Surg 2017; 54:95-155. [PMID: 28521856 DOI: 10.1067/j.cpsurg.2017.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Ying H Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX.
| | - Scott A LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX; Department of Cardiovascular Surgery, Texas Heart Institute, Houston, TX; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
23
|
Qin Y, Wang Y, Liu O, Jia L, Fang W, Du J, Wei Y. Tauroursodeoxycholic Acid Attenuates Angiotensin II Induced Abdominal Aortic Aneurysm Formation in Apolipoprotein E-deficient Mice by Inhibiting Endoplasmic Reticulum Stress. Eur J Vasc Endovasc Surg 2016; 53:337-345. [PMID: 27889204 DOI: 10.1016/j.ejvs.2016.10.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/27/2016] [Indexed: 12/14/2022]
Abstract
OBJECTIVE/BACKGROUND Abdominal aortic aneurysm (AAA) is characterised by the infiltration of smooth muscle cell (SMC) apoptosis, inflammatory cells, neovascularisation, and degradation of the extracellular matrix. Previous work has shown that endoplasmic reticulum (ER) stress and SMC apoptosis were increased both in a mouse model and human thoracic aortic aneurysm. However, whether the ER stress is activated in AAA formation and whether suppressing ER stress attenuates AAA is unknown. METHODS Human AAA and control aorta samples were collected. Expression of ER stress chaperones glucose-regulated protein (GRP)-78 and GRP-94 was detected by immunohistochemical staining. The effect of ER stress inhibitor tauroursodeoxycholic acid (TUDCA) on AAA formation in angiotensin (Ang) II induced apolipoprotein E-/- mice was explored. Elastin staining was used to observe the rupture of elastic fragmentation. Immunohistochemistry and Western blot analysis were performed, to detect the protein expression of ER stress chaperones and apoptosis molecules. RESULTS There was significant upregulation of GRP-78 and GRP-94 in aneurysmal areas of human AAA and Ang II induced ApoE-/- mice (p < .05). TUDCA significantly attenuated the maximum diameters of abdominal aortas in Ang II induced ApoE-/- mice (p < .05). TUDCA significantly reduced expression of ER stress chaperones and the apoptotic cell numbers (p < .05). Furthermore, TUDCA significantly reduced expression of apoptosis molecules, such as caspase-3, caspase-12, C/EBP homologous protein, c-Jun N-terminal kinase activating transcription factor 4, X-box binding protein, and eukaryotic initiation factor 2α in Ang II induced ApoE-/- mice (p < .05). CONCLUSION The results suggest that ER stress is involved in human and Ang II induced AAA formation in ApoE-/- mice. TUDCA attenuates Ang II induced AAA formation in ApoE-/- mice by inhibiting ER stress mediated apoptosis.
Collapse
Affiliation(s)
- Y Qin
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Y Wang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China; The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - O Liu
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - L Jia
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - W Fang
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - J Du
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Y Wei
- The Key Laboratory of Upper Airway Dysfunction-related Cardiovascular Diseases, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
24
|
Ringvold HC, Khalil RA. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 78:203-301. [PMID: 28212798 PMCID: PMC5319769 DOI: 10.1016/bs.apha.2016.06.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca2+-dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca2+-dependent α, β, and γ, novel Ca2+-independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease.
Collapse
Affiliation(s)
- H C Ringvold
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - R A Khalil
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
25
|
Distinctive roles of PKC delta isozyme in platelet function. Curr Res Transl Med 2016; 64:135-139. [PMID: 27765273 DOI: 10.1016/j.retram.2016.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 12/15/2022]
Abstract
Platelet activation is a complex balance of positive and negative signaling pathways. Several protein kinase C (PKC) isoforms are expressed in human platelets. They are a major regulator of platelet granule secretion, activation and aggregation activity. One of those isoforms is the PKCδ isozyme, it has a central yet complex role in platelets such as opposite signaling functions depending on the nature of the agonist, it concentration and pathway. In fact, it has been shown that PKCδ has an overall negative influence on platelet function in response to collagen, while, following PAR stimulation, PKCδ has a positive effect on platelet function. Understanding the crucial role of PKCδ in platelet functions is recently emerging in the literature, therefore, further investigations should shed light into its specific role in hemostasis. In this review, we focus on the different roles of PKCδ in platelet activation, aggregation and thrombus formation.
Collapse
|
26
|
Lai CH, Wang KC, Lee FT, Tsai HW, Ma CY, Cheng TL, Chang BI, Yang YJ, Shi GY, Wu HL. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS One 2016; 11:e0146565. [PMID: 26741694 PMCID: PMC4711799 DOI: 10.1371/journal.pone.0146565] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor (TLR) family plays a key role in innate immunity and various inflammatory responses. TLR4, one of the well-characterized pattern-recognition receptors, can be activated by endogenous damage-associated molecular pattern molecules such as high mobility group box 1 (HMGB1) to sustain sterile inflammation. Evidence suggested that blockade of TLR4 signaling may confer protection against abdominal aortic aneurysm (AAA). Herein we aimed to obtain further insight into the mechanism by which TLR4 might promote aneurysm formation. Characterization of the CaCl2-induced AAA model in mice revealed that upregulation of TLR4 expression, localized predominantly to vascular smooth muscle cells (VSMCs), was followed by a late decline during a 28-day period of AAA development. In vitro, TLR4 expression was increased in VSMCs treated with HMGB1. Knockdown of TLR4 by siRNA attenuated HMGB1-enhanced production of proinflammatory cytokines, specifically interleukin-6 and monocyte chemoattractant protein-1 (MCP-1), and matrix-degrading matrix metalloproteinase (MMP)-2 from VSMCs. In vivo, two different strains of TLR4-deficient (C57BL/10ScNJ and C3H/HeJ) mice were resistant to CaCl2-induced AAA formation compared to their respective controls (C57BL/10ScSnJ and C3H/HeN). Knockout of TLR4 reduced interleukin-6 and MCP-1 levels and HMGB1 expression, attenuated macrophage accumulation, and eventually suppressed MMP production, elastin destruction and VSMC loss. Finally, human AAA exhibited higher TLR4 expression that was localized to VSMCs. These data suggest that TLR4 signaling contributes to AAA formation by promoting a proinflammatory status of VSMCs and by inducing proteinase release from VSMCs during aneurysm initiation and development.
Collapse
Affiliation(s)
- Chao-Han Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Chieh Wang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fang-Tzu Lee
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yuan Ma
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Lin Cheng
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Ing Chang
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Jen Yang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Yueh Shi
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| | - Hua-Lin Wu
- Cardiovascular Research Center, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (HLW); (GYS)
| |
Collapse
|
27
|
Chung MY, Jung SK, Lee HJ, Shon DH, Kim HK. Ethanol Extract of Sarcodon asparatus Mitigates Inflammatory Responses in Lipopolysaccharide-Challenged Mice and Murine Macrophages. J Med Food 2015; 18:1198-206. [DOI: 10.1089/jmf.2014.3422] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
| | | | - Hye-Jin Lee
- Korea Food Research Institute, Gyeonggi, Korea
| | | | - Hyun-Ku Kim
- Department of Marine Life Science, Jeju National University, Jeju, Korea
| |
Collapse
|
28
|
Predicting Abdominal Aortic Aneurysm Target Genes by Level-2 Protein-Protein Interaction. PLoS One 2015; 10:e0140888. [PMID: 26496478 PMCID: PMC4619739 DOI: 10.1371/journal.pone.0140888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 12/22/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is frequently lethal and has no effective pharmaceutical treatment, posing a great threat to human health. Previous bioinformatics studies of the mechanisms underlying AAA relied largely on the detection of direct protein-protein interactions (level-1 PPI) between the products of reported AAA-related genes. Thus, some proteins not suspected to be directly linked to previously reported genes of pivotal importance to AAA might have been missed. In this study, we constructed an indirect protein-protein interaction (level-2 PPI) network based on common interacting proteins encoded by known AAA-related genes and successfully predicted previously unreported AAA-related genes using this network. We used four methods to test and verify the performance of this level-2 PPI network: cross validation, human AAA mRNA chip array comparison, literature mining, and verification in a mouse CaPO4 AAA model. We confirmed that the new level-2 PPI network is superior to the original level-1 PPI network and proved that the top 100 candidate genes predicted by the level-2 PPI network shared similar GO functions and KEGG pathways compared with positive genes.
Collapse
|
29
|
Malavez Y, Voss OH, Gonzalez-Mejia ME, Parihar A, Doseff AI. Distinct contribution of protein kinase Cδ and protein kinase Cε in the lifespan and immune response of human blood monocyte subpopulations. Immunology 2015; 144:611-20. [PMID: 25322815 DOI: 10.1111/imm.12412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Monocytes, key components of the immune system, are a heterogeneous population comprised of classical monocytes (CD16(-) ) and non-classical monocytes (CD16(+) ). Monocytes are short lived and undergo spontaneous apoptosis, unless stimulated. Dysregulation of monocyte numbers contribute to the pathophysiology of inflammatory diseases, yet the contribution of each subset remains poorly characterized. Protein kinase C (PKC) family members are central to monocyte biology; however, their role in regulating lifespan and immune function of CD16(-) and CD16(+) monocytes has not been studied. Here, we evaluated the contribution of PKCδ and PKCε in the lifespan and immune response of both monocyte subsets. We showed that CD16(+) monocytes are more susceptible to spontaneous apoptosis because of the increased caspase-3, -8 and -9 activities accompanied by higher kinase activity of PKCδ. Silencing of PKCδ reduced apoptosis in both CD16(+) and CD16(-) monocytes. CD16(+) monocytes express significantly higher levels of PKCε and produce more tumour necrosis factor-α in CD16(+) compared with CD16(-) monocytes. Silencing of PKCε affected the survival and tumour necrosis factor-α production. These findings demonstrate a complex network with similar topography, yet unique regulatory characteristics controlling lifespan and immune response in each monocyte subset, helping define subset-specific coordination programmes controlling monocyte function.
Collapse
Affiliation(s)
- Yadira Malavez
- Department of Molecular Genetics, Department of Internal Medicine, Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
30
|
Liu Z, Morgan S, Ren J, Wang Q, Annis DS, Mosher DF, Zhang J, Sorenson CM, Sheibani N, Liu B. Thrombospondin-1 (TSP1) contributes to the development of vascular inflammation by regulating monocytic cell motility in mouse models of abdominal aortic aneurysm. Circ Res 2015; 117:129-41. [PMID: 25940549 DOI: 10.1161/circresaha.117.305262] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 05/04/2015] [Indexed: 01/12/2023]
Abstract
RATIONALE Histological examination of abdominal aortic aneurysm (AAA) tissues demonstrates extracellular matrix destruction and infiltration of inflammatory cells. Previous work with mouse models of AAA has shown that anti-inflammatory strategies can effectively attenuate aneurysm formation. Thrombospondin-1 is a matricellular protein involved in the maintenance of vascular structure and homeostasis through the regulation of biological functions, such as cell proliferation, apoptosis, and adhesion. Expression levels of thrombospondin-1 correlate with vascular disease conditions. OBJECTIVE To use thrombospondin-1-deficient (Thbs1(-/-)) mice to test the hypothesis that thrombospondin-1 contributes to pathogenesis of AAAs. METHODS AND RESULTS Mouse experimental AAA was induced through perivascular treatment with calcium phosphate, intraluminal perfusion with porcine elastase, or systemic administration of angiotensin II. Induction of AAA increased thrombospondin-1 expression in aortas of C57BL/6 or apoE-/- mice. Compared with Thbs1(+/+) mice, Thbs1(-/-) mice developed significantly smaller aortic expansion when subjected to AAA inductions, which was associated with diminished infiltration of macrophages. Thbs1(-/-) monocytic cells had reduced adhesion and migratory capacity in vitro compared with wild-type counterparts. Adoptive transfer of Thbs1(+/+) monocytic cells or bone marrow reconstitution rescued aneurysm development in Thbs1(-/-) mice. CONCLUSIONS Thrombospondin-1 expression plays a significant role in regulation of migration and adhesion of mononuclear cells, contributing to vascular inflammation during AAA development.
Collapse
Affiliation(s)
- Zhenjie Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Stephanie Morgan
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jun Ren
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Qiwei Wang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Douglas S Annis
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Deane F Mosher
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Jing Zhang
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Christine M Sorenson
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Nader Sheibani
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.)
| | - Bo Liu
- From the Departments of Surgery (Z.L., S.M., J.R., Q.W., B.L.), Pathology and Laboratory Medicine (B.L.), Biomolecular Chemistry and Medicine (D.S.A., D.F.M.), McArdle Laboratory for Cancer Research (J.Z.), Pediatrics (C.M.S.), and Ophthalmology and Visual Sciences (N.S.), University of Wisconsin School of Medicine and Public Health, Madison; and Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (Z.L.).
| |
Collapse
|
31
|
Wang Q, Shu C, Su J, Li X. A crosstalk triggered by hypoxia and maintained by MCP-1/miR-98/IL-6/p38 regulatory loop between human aortic smooth muscle cells and macrophages leads to aortic smooth muscle cells apoptosis via Stat1 activation. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2670-2679. [PMID: 26045772 PMCID: PMC4440081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Hypoxia and inflammation are central characteristics of the abdominal aortic aneurysm (AAA), but the mechanisms for their relationship and actual role remain far from full understood. Here, we showed MCP-1 (monocyte chemotactic protein-1) induced by hypoxia in primary human Aortic Smooth Muscle Cells (hASMCs) increased the chemotaxis of THP-1 macrophages and MCP-1 induced IL-6 expression in THP-1 cells via downregulating miR-98 which directly targets IL-6. In addition, IL-6 positively feedback regulated MCP-1 expression in hASMCs via p38 signal that is independent on hypoxia, and inhibition of p38 signal blocked the effect of IL-6 on MCP-1 expression regulation. Moreover, IL-6 exposure time-dependently induces phASMCs apoptosis via Stat1 activation. Collectively, our data provide compelling evidence on the association between hypoxia and inflammation triggered by hypoxia and then mediated by MCP-1/miR-98/IL-6/p38 regulatory loop, which leads to hASMCs apoptosis via Stat1 activation to contribute to AAA formation and progression.
Collapse
MESH Headings
- Aorta/metabolism
- Aorta/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apoptosis/physiology
- Blotting, Western
- Cell Hypoxia
- Cells, Cultured
- Chemokine CCL2/metabolism
- Enzyme-Linked Immunosorbent Assay
- Humans
- Interleukin-6/metabolism
- MAP Kinase Signaling System/physiology
- Macrophages/metabolism
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Real-Time Polymerase Chain Reaction
- Receptor Cross-Talk/physiology
- STAT1 Transcription Factor/metabolism
- Transfection
Collapse
Affiliation(s)
- Qing Wang
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| | - Chang Shu
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| | - Jing Su
- Hunan Tumor HospitalChangsha, Hunan, People’s Republic of China
| | - Xin Li
- Department of Vascular Surgery, The 2 Xiangya Hospital, Central South University139 Renmin Middle Road, Changsha 410011, Hunan, People’s Republic of China
| |
Collapse
|
32
|
Wang Q, Liu Z, Ren J, Morgan S, Assa C, Liu B. Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ Res 2015; 116:600-11. [PMID: 25563840 DOI: 10.1161/circresaha.116.304899] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RATIONALE Depletion of medial smooth muscle cell (SMC) is a major pathological characteristic of abdominal aortic aneurysm (AAA), although the mechanism by which these cells are eliminated remains incompletely understood. We reasoned that necroptosis, a recently described form of necrosis mediated by receptor-interacting protein kinase 3 (RIP3), may contribute to AAA pathology through the induction of SMC death and the significant production of inflammatory cytokines. OBJECTIVE To test the hypothesis that RIP3-mediated necroptosis is actively involved in aneurysm pathogenesis. METHODS AND RESULTS RIP3 and RIP1 levels were found to be elevated in human AAAs, most noticeably in SMCs. Elevations of RIP3 and SMC necrosis were also observed in the elastase-induced mouse model of AAAs. Deletion of one or both copies of Rip3 prevented AAA formation. By transplanting Rip3(+/-) aortae to Rip3(+/+) mice, we demonstrated that reduced Rip3 expression in arterial wall was the primary cause of aneurysm resistance. In vitro, adenoviral overexpression of RIP3 was sufficient to trigger SMC necroptosis. Protein kinase C-delta contributed to tumor necrosis factor-α-induced SMC necroptosis by regulating Rip3 expression. Furthermore, Rip3 deficiency impaired tumor necrosis factor-α-induced inflammatory gene expression in aortic SMCs, which was at least in part because of attenuation of p65 Ser536 phosphorylation. In vivo, the lack of RIP3 diminished activation of p65 in SMCs, implicating a necrosis independent function of RIP3 in aneurysms. CONCLUSIONS Enhanced RIP3 signaling in aneurysmal tissues contributes to AAA progression by causing SMC necroptosis, as well as stimulating vascular inflammation, and therefore may serve as a novel therapeutic target for AAA treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Zhenjie Liu
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Jun Ren
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Stephanie Morgan
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Carmel Assa
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.)
| | - Bo Liu
- From the Department of Surgery (Q.W., Z.L., J.R., S.M., C.A., B.L.), Department of Pathology and Laboratory Medicine, School of Medicine and Public Health (Q.W., B.L.), and Cellular and Molecular Pathology Training Program, University of Wisconsin-Madison (Q.W., B.L.); and Department of Vascular Surgery, the Second Affiliated Hospital School of Medicine, Zhejiang University, China (Z.L.).
| |
Collapse
|
33
|
Maegdefessel L, Rayner KJ, Leeper NJ. MicroRNA Regulation of Vascular Smooth Muscle Function and Phenotype. Arterioscler Thromb Vasc Biol 2015; 35:2-6. [DOI: 10.1161/atvbaha.114.304877] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lars Maegdefessel
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| | - Katey J. Rayner
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| | - Nicholas J. Leeper
- From the Department of Medicine, Center for Molecular Medicine (L8:03), Karolinska Institute, 17176 Stockholm, Sweden (L.M.); Cardiometabolic microRNA Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada (K.J.R.); and Division of Vascular Surgery, Stanford University, CA (N.J.L.)
| |
Collapse
|
34
|
Murine abdominal aortic aneurysm model by orthotopic allograft transplantation of elastase-treated abdominal aorta. J Vasc Surg 2014; 62:1607-14.e2. [PMID: 24974783 DOI: 10.1016/j.jvs.2014.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/06/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Murine models have proved instrumental in studying various aspects of abdominal aortic aneurysm (AAA), from identification of underlying pathophysiologic changes to the development of novel therapeutic strategies. In the current study, we describe a new model in which an elastase-treated donor aorta is transplanted to a recipient mouse and allowed to progress to aneurysm. We hypothesized that by transplanting an elastase-treated abdominal aorta of one genotype to a recipient mouse of a different genotype, one can differentiate pathophysiologic factors that are intrinsic to the aortic wall from those stemming from circulation and other organs. METHODS Elastase-treated aorta was transplanted to the infrarenal abdominal aorta of recipient mice by end-to-side microsurgical anastomosis. Heat-inactivated elastase-treated aorta was used as a control. Syngeneic transplants were performed with use of 12-week-old C57BL/6 littermates. Transplant grafts were harvested from recipient mice on day 7 or day 14 after surgery. The aneurysm outcome was measured by aortic expansion, elastin degradation, proinflammatory cytokine expression, and inflammatory cell infiltration and compared with that produced with the established, conventional elastase infusion model. RESULTS The surgical technique success rate was 75.6%, and the 14-day survival rate was 51.1%. By day 14 after surgery, all of the elastase-treated transplanted abdominal aortas had dilated and progressed to AAAs, defined as 100% or more increase in the maximal external diameter compared with that measured before elastase perfusion, whereas none of the transplanted aortas pretreated with inactive elastase became aneurysmal (percentage increase in maximum aortic diameter: 159.36% ± 23.27%, transplanted elastase, vs 41.46% ± 9.34%, transplanted inactive elastase). Aneurysm parameters, including elastin degradation and infiltration of macrophages and T lymphocytes, were found to be identical to those observed in the conventional elastase model. Quantitative polymerase chain reaction analysis revealed similarly increased levels of proinflammatory cytokines (relative changes of mRNA in the conventional elastase model vs transplant model: tumor necrosis factor α, 1.71 ± 0.27 vs 2.93 ± 0.86; monocyte chemoattractant protein 1, 2.36 ± 0.58 vs 2.87 ± 0.51; chemokine (C-C motif) ligand 5, 3.37 ± 0.92 vs 3.46 ± 0.83; and interferon γ, 3.09 ± 0.83 vs 5.30 ± 1.69). Using green fluorescent protein transgenic mice as donors or recipients, we demonstrated that a small quantity of mononuclear leukocytes in the transplant grafts bared the genotype of the donors. CONCLUSIONS Transplanted elastase-treated abdominal aorta could develop to aneurysm in recipient mice. This AAA transplant model can be used to examine how the microenvironment of a transplanted aneurysmal aorta may be altered by the contributions of the "global" environment of the recipient.
Collapse
|
35
|
Affiliation(s)
- Alan Daugherty
- From the Saha Cardiovascular Research Center, University of Kentucky, Lexington (A.D.); and Department of Surgery and Cancer, Imperial College, London, United Kingdom (J.T.P.)
| | | |
Collapse
|
36
|
Wang Q, Ren J, Morgan S, Liu Z, Dou C, Liu B. Monocyte chemoattractant protein-1 (MCP-1) regulates macrophage cytotoxicity in abdominal aortic aneurysm. PLoS One 2014; 9:e92053. [PMID: 24632850 PMCID: PMC3954911 DOI: 10.1371/journal.pone.0092053] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/17/2014] [Indexed: 11/18/2022] Open
Abstract
Aims In abdominal aortic aneurysm (AAA), macrophages are detected in the proximity of aortic smooth muscle cells (SMCs). We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. Methods and Results Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL) mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1)/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68+/FasL+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. Conclusion Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.
Collapse
Affiliation(s)
- Qiwei Wang
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Jun Ren
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Stephanie Morgan
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | - Zhenjie Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
| | | | - Bo Liu
- Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
37
|
Ren J, Wang Q, Morgan S, Si Y, Ravichander A, Dou C, Kent KC, Liu B. Protein kinase C-δ (PKCδ) regulates proinflammatory chemokine expression through cytosolic interaction with the NF-κB subunit p65 in vascular smooth muscle cells. J Biol Chem 2014; 289:9013-26. [PMID: 24519937 DOI: 10.1074/jbc.m113.515957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proinflammatory chemokines released by vascular smooth muscle cells (VSMCs) play a critical role in vascular inflammation. Protein kinase C-δ (PKCδ) has been shown to be up-regulated in VSMCs of injured arteries. PKCδ knock-out (Prkcd(-/-)) mice are resistant to inflammation as well as apoptosis in models of abdominal aortic aneurysm. However, the precise mechanism by which PKCδ modulates inflammation remains incompletely understood. In this study, we identified four inflammatory chemokines (Ccl2/Mcp-1, Ccl7, Cxcl16, and Cx3cl1) of over 45 PKCδ-regulated genes associated with inflammatory response by microarray analysis. Using CCL2 as a prototype, we demonstrated that PKCδ stimulated chemokine expression at the transcriptional level. Inhibition of the NF-κB pathway or siRNA knockdown of subunit p65, but not p50, eliminated the effect of PKCδ on Ccl2 expression. Overexpressing PKCδ followed by incubation with phorbol 12-myristate 13-acetate resulted in an increase in p65 Ser-536 phosphorylation and enhanced DNA binding affinity without affecting IκB degradation or p65 nuclear translocation. Prkcd gene deficiency impaired p65 Ser-536 phosphorylation and DNA binding affinity in response to TNFα. Results from in situ proximity ligation analysis and co-immunoprecipitation performed on cultured VSMCs and aneurysmal aorta demonstrated physical interaction between PKCδ and p65 that took place largely outside the nucleus. Promoting nuclear translocation of PKCδ with peptide ψδRACK diminished Ccl2 production, whereas inhibition of PKCδ translocation with peptide δV1-1 enhanced Ccl2 expression. Together, these results suggest that PKCδ modulates inflammation at least in part through the NF-κB-mediated chemokines. Mechanistically, PKCδ activates NF-κB through an IκB-independent cytosolic interaction, which subsequently leads to enhanced p65 phosphorylation and DNA binding affinity.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin, Madison, Wisconsin 53705 and
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Klymenko K, Novokhatska T, Kizub I, Parshikov A, Dosenko V, Soloviev A. PKC-δ isozyme gene silencing restores vascular function in diabetic rat. J Basic Clin Physiol Pharmacol 2014; 25:1-9. [PMID: 24468620 DOI: 10.1515/jbcpp-2013-0147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/11/2013] [Indexed: 11/15/2022]
Abstract
Abstract Background: Endothelium and K+ channel functionality in smooth muscle cells (SMCs) regulates vascular function and is exposed to damage in diabetes. The regulatory enzyme protein kinase C (PKC) is known to play a key role in vascular tone regulation in health and disease. In this study, we evaluated the effect of PKC-δ gene silencing using small interfering RNAs (siRNAs) on endothelial dysfunction and acquired potassium channelopathy in vascular SMCs in diabetes. Methods: The experimental design comprised diabetes induction by streptozotocin (65 mg/kg) in rats, RNA interference, isolated aortic ring contractile recordings, whole-cell patch-clamp technique, measurements of reactive oxygen species (ROS), and real-time polymerase chain reaction technique. Animals were killed by cervical dislocation following ketamine (45 mg/kg, i.p.) and xylazine (10 mg/kg, i.p.) anesthesia administration on the third month of diabetes and on the seventh day after intravenous injection of siRNAs. Results: The aortas of diabetic rats demonstrated depressed endothelium-dependent relaxation and integral SMCs outward K+ currents as compared with those of controls. On the seventh day, PKC-δ gene silencing effectively restored K+ currents and increased the amplitude of vascular relaxation up to control levels. An increased level of PKC-δ mRNA in diabetic aortas appeared to be reduced after targeted PKC-δ gene silencing. Similarly, the level of ROS production that was increased in diabetes came back to control values after siRNAs administration. Conclusions: The silencing of PKC-δ gene expression using siRNAs led to restoration of vasodilator potential in rats with diabetes mellitus. It is likely that the siRNA technique can be a good therapeutic tool to normalize vascular function in diabetes.
Collapse
|
39
|
Moxon JV, Liu D, Wong G, Weir JM, Behl-Gilhotra R, Bradshaw B, Kingwell BA, Meikle PJ, Golledge J. Comparison of the serum lipidome in patients with abdominal aortic aneurysm and peripheral artery disease. ACTA ACUST UNITED AC 2014; 7:71-9. [PMID: 24448739 DOI: 10.1161/circgenetics.113.000343] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Currently, the relationship between circulating lipids and abdominal aortic aneurysm (AAA) is unclear. We conducted a lipidomic analysis to identify serum lipids associated with AAA presence. Secondary analyses assessed the ability of models incorporating lipidomic features to improve stratification of patient groups with and without AAA beyond traditional risk factors. METHODS AND RESULTS Serum lipids were profiled via liquid chromatography tandem mass spectrometry analysis of serum from 161 patients with AAA and 168 controls with peripheral artery disease. Binary logistic regression was used to identify AAA-associated lipids. Classification models were created based on a combination of (1) traditional risk factors only or (2) lipidomic features and traditional risk factors. Model performance was assessed using receiver operator characteristic curves. Three diacylglycerols and 7 triacylglycerols were associated with AAA. Combining lipidomic features with traditional risk factors significantly improved stratification of AAA and peripheral artery disease groups when compared with traditional risk factors alone (mean area under the receiver operator characteristic curve [95% confidence interval], 0.760 [0.756-0.763] and 0.719 [0.716-0.723], respectively; P<0.05). CONCLUSIONS A group of linoleic acid containing triacylglycerols and diacylglycerols were significantly associated with AAA presence. Inclusion of lipidomic features in multivariate analyses significantly improved prediction of AAA presence when compared with traditional risk factors alone.
Collapse
Affiliation(s)
- Joseph V Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bhavanasi D, Kostyak JC, Swindle J, Kilpatrick LE, Kunapuli SP. CGX1037 is a novel PKC isoform delta selective inhibitor in platelets. Platelets 2014; 26:2-9. [PMID: 24433221 DOI: 10.3109/09537104.2013.868877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelets upon activation change their shape, aggregate and secrete alpha and dense granule contents among which ADP acts as a feedback activator. Different Protein Kinase C (PKC) isoforms have specific non-redundant roles in mediating platelet responses including secretion and thrombus formation. Murine platelets lacking specific PKC isoforms have been used to evaluate the isoform specific functions. Novel PKC isoform δ has been shown to play an important role in some pathological processes. Lack of specific inhibitors for PKCδ has restricted analysis of its role in various cells. The current study was carried out to evaluate a novel small molecule PKCδ inhibitor, CGX1037 in platelets. Platelet aggregation, dense granule secretion and western blotting experiments were performed to evaluate CGX1037. In human platelets, CGX1037 inhibited PAR4-mediated phosphorylation on PKD2, a PKCδ-specific substrate. Pre-treatment of human or murine platelets with CGX1037 inhibited PAR4-mediated dense granule secretion whereas it potentiated GPVI-mediated dense granule secretion similar to the responses observed in murine platelets lacking PKCδ· Furthermore, pre-treatment of platelets from PKCδ(-/-) mice with CGX1037 had no significant additive effect on platelet responses suggesting the specificity of CGX1037. Hence, we show that CGX1037 is a selective small molecule inhibitor of PKCδ in platelets.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Physiology, Temple University School of Medicine , Philadelphia, PA , USA
| | | | | | | | | |
Collapse
|