1
|
Boen HM, Cherubin M, Franssen C, Gevaert AB, Witvrouwen I, Bosman M, Guns PJ, Heidbuchel H, Loeys B, Alaerts M, Van Craenenbroeck EM. Circulating MicroRNA as Biomarkers of Anthracycline-Induced Cardiotoxicity: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:183-199. [PMID: 38774014 PMCID: PMC11103047 DOI: 10.1016/j.jaccao.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/24/2024] Open
Abstract
Close monitoring for cardiotoxicity during anthracycline chemotherapy is crucial for early diagnosis and therapy guidance. Currently, monitoring relies on cardiac imaging and serial measurement of cardiac biomarkers like cardiac troponin and natriuretic peptides. However, these conventional biomarkers are nonspecific indicators of cardiac damage. Exploring new, more specific biomarkers with a clear link to the underlying pathomechanism of cardiotoxicity holds promise for increased specificity and sensitivity in detecting early anthracycline-induced cardiotoxicity. miRNAs (microRNAs), small single-stranded, noncoding RNA sequences involved in epigenetic regulation, influence various physiological and pathological processes by targeting expression and translation. Emerging as new biomarker candidates, circulating miRNAs exhibit resistance to degradation and offer a direct pathomechanistic link. This review comprehensively outlines their potential as early biomarkers for cardiotoxicity and their pathomechanistic link.
Collapse
Affiliation(s)
- Hanne M. Boen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Martina Cherubin
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Constantijn Franssen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Isabel Witvrouwen
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthias Bosman
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Maaike Alaerts
- Centrum of Medical Genetics, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
2
|
Nappi F, Avtaar Singh SS, Jitendra V, Alzamil A, Schoell T. The Roles of microRNAs in the Cardiovascular System. Int J Mol Sci 2023; 24:14277. [PMID: 37762578 PMCID: PMC10531750 DOI: 10.3390/ijms241814277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The discovery of miRNAs and their role in disease represent a significant breakthrough that has stimulated and propelled research on miRNAs as targets for diagnosis and therapy. Cardiovascular disease is an area where the restrictions of early diagnosis and conventional pharmacotherapy are evident and deserve attention. Therefore, miRNA-based drugs have significant potential for development. Research and its application can make considerable progress, as seen in preclinical and clinical trials. The use of miRNAs is still experimental but has a promising role in diagnosing and predicting a variety of acute coronary syndrome presentations. Its use, either alone or in combination with currently available biomarkers, might be adopted soon, particularly if there is diagnostic ambiguity. In this review, we examine the current understanding of miRNAs as possible targets for diagnosis and treatment in the cardiovascular system. We report on recent advances in recognising and characterising miRNAs with a focus on clinical translation. The latest challenges and perspectives towards clinical application are discussed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | | | - Vikram Jitendra
- Department of Cardiothoracic Surgery, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK;
| | - Almothana Alzamil
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| | - Thibaut Schoell
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France; (A.A.); (T.S.)
| |
Collapse
|
3
|
Cabrera D, Thompson K, Thomas JD, Peacock C, Antonio J, Tartar JL, Tartar A. Dysregulation of miR-155 Expression in Professional Mixed Martial Arts (MMA) Fighters. Cureus 2023; 15:e34944. [PMID: 36938205 PMCID: PMC10017279 DOI: 10.7759/cureus.34944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Psychological and physical stress can induce dysregulation of gene expression via changes in DNA methylation and microRNA (miRNA) expression. Such epigenetic modifications are yet to be investigated in professional Mixed Martial Arts (MMA) fighters subject to highly stressful training involving repetitive head impacts. This study examined differences in DNA methylation and miRNA expression in elite MMA fighters compared to active controls. Global methylation differences between groups were assessed via a LINE-1 assay. At the same time, PCR arrays were used to estimate differential expression in samples of 21 fighters and 15 controls for 192 different miRNAs associated with inflammatory diseases. An Independent-Samples t-Test found no significant difference in LINE-1 methylation between groups. However, an Independent-Samples Mann-Whitney U Test revealed a significant upregulation in the expression of miR-155 in MMA fighter plasma. Since miR-155 has been recognized as an important regulator of neuroinflammation, this dysregulation suggests a possible epigenetic mechanism responsible for chronic inflammation associated with professional-level MMA training. Consistent with other published works, this study highlights the potential of miR-155 not only as a biomarker for monitoring long-term health risks linked to head trauma but also as a target to remediate the impact of chronic neuroinflammation.
Collapse
Affiliation(s)
- Dominick Cabrera
- Psychology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | | | | | - Corey Peacock
- College of Health Care Sciences, Nova Southeastern University, Davie, USA
| | - Jose Antonio
- College of Health Care Sciences, Nova Southeastern University, Davie, USA
| | | | - Aurelien Tartar
- Biological Sciences, Nova Southeastern University, Davie, USA
| |
Collapse
|
4
|
De Wispelaere K, Freson K. The Analysis of the Human Megakaryocyte and Platelet Coding Transcriptome in Healthy and Diseased Subjects. Int J Mol Sci 2022; 23:ijms23147647. [PMID: 35886993 PMCID: PMC9317744 DOI: 10.3390/ijms23147647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Platelets are generated and released into the bloodstream from their precursor cells, megakaryocytes that reside in the bone marrow. Though platelets have no nucleus or DNA, they contain a full transcriptome that, during platelet formation, is transported from the megakaryocyte to the platelet. It has been described that transcripts in platelets can be translated into proteins that influence platelet response. The platelet transcriptome is highly dynamic and has been extensively studied using microarrays and, more recently, RNA sequencing (RNA-seq) in relation to diverse conditions (inflammation, obesity, cancer, pathogens and others). In this review, we focus on bulk and single-cell RNA-seq studies that have aimed to characterize the coding transcriptome of healthy megakaryocytes and platelets in humans. It has been noted that bulk RNA-seq has limitations when studying in vitro-generated megakaryocyte cultures that are highly heterogeneous, while single-cell RNA-seq has not yet been applied to platelets due to their very limited RNA content. Next, we illustrate how these methods can be applied in the field of inherited platelet disorders for gene discovery and for unraveling novel disease mechanisms using RNA from platelets and megakaryocytes and rare disease bioinformatics. Next, future perspectives are discussed on how this field of coding transcriptomics can be integrated with other next-generation technologies to decipher unexplained inherited platelet disorders in a multiomics approach.
Collapse
|
5
|
MicroRNAs in Pulmonary Hypertension, from Pathogenesis to Diagnosis and Treatment. Biomolecules 2022; 12:biom12040496. [PMID: 35454085 PMCID: PMC9031307 DOI: 10.3390/biom12040496] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary hypertension (PH) is a fatal and untreatable disease, ultimately leading to right heart failure and eventually death. microRNAs are small, non-coding endogenous RNA molecules that can regulate gene expression and influence various biological processes. Changes in microRNA expression levels contribute to various cardiovascular disorders, and microRNAs have been shown to play a critical role in PH pathogenesis. In recent years, numerous studies have explored the role of microRNAs in PH, focusing on the expression profiles of microRNAs and their signaling pathways in pulmonary artery smooth muscle cells (PASMCs) or pulmonary artery endothelial cells (PAECs), PH models, and PH patients. Moreover, certain microRNAs, such as miR-150 and miR-26a, have been identified as good candidates of diagnosis biomarkers for PH. However, there are still several challenges for microRNAs as biomarkers, including difficulty in normalization, specificity in PH, and a lack of longitudinal and big sample-sized studies. Furthermore, microRNA target drugs are potential therapeutic agents for PH treatment, which have been demonstrated in PH models and in humans. Nonetheless, synthetic microRNA mimics or antagonists are susceptible to several common defects, such as low drug efficacy, inefficient drug delivery, potential toxicity and especially, off-target effects. Therefore, finding clinically safe and effective microRNA drugs remains a great challenge, and further breakthrough is urgently needed.
Collapse
|
6
|
Morales MA, Piacenti M, Nesti M, Solarino G, Pieragnoli P, Zucchelli G, Del Ry S, Cabiati M, Vozzi F. The BrAID study protocol: integration of machine learning and transcriptomics for brugada syndrome recognition. BMC Cardiovasc Disord 2021; 21:494. [PMID: 34645390 PMCID: PMC8513180 DOI: 10.1186/s12872-021-02280-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Type 1 Brugada syndrome (BrS) is a hereditary arrhythmogenic disease showing peculiar electrocardiographic (ECG) patterns, characterized by ST-segment elevation in the right precordial leads, and risk of Sudden Cardiac Death (SCD). Furthermore, although various ECG patterns are described in the literature, different individual ECG may show high-grade variability, making the diagnosis problematic. The study aims to develop an innovative system for an accurate diagnosis of Type 1 BrS based on ECG pattern recognition by Machine Learning (ML) models and blood markers analysis trough transcriptomic techniques. METHODS The study is structured in 3 parts: (a) a retrospective study, with the first cohort of 300 anonymized ECG obtained in already diagnosed Type 1 BrS (75 spontaneous, 150 suspected) and 75 from control patients, which will be processed by ML analysis for pattern recognition; (b) a prospective study, with a cohort of 11 patients with spontaneous Type 1 BrS, 11 with drug-induced Type 1 BrS, 11 suspected BrS but negative to Na + channel blockers administration, and 11 controls, enrolled for ECG ML analysis and blood collection for transcriptomics and microvesicles analysis; (c) a validation study, with the third cohort of 100 patients (35 spontaneous and 35 drug-induced BrS, 30 controls) for ML algorithm and biomarkers testing. DISCUSSION The BrAID system will help clinicians improve the diagnosis of Type 1 BrS by using multiple information, reducing the time between ECG recording and final diagnosis, integrating clinical, biochemical and ECG information thus favoring a more effective use of available resources. Trial registration Clinical Trial.gov, NCT04641585. Registered 17 November 2020, https://clinicaltrials.gov/ct2/show/NCT04641585.
Collapse
Affiliation(s)
- M A Morales
- CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - M Piacenti
- Fondazione Toscana Gabriele Monasterio, Via G. Moruzzi 1, Pisa, Italy
| | - M Nesti
- U.O.C. Cardiologia Ospedale San Donato, Via Pietro Nenni 20, Arezzo, Italy
| | - G Solarino
- Azienda Usl Toscana Nord Ovest U.O.C. Cardiologia Ospedale Versilia, SS1 Via Aurelia 335, Lido di Camaiore, Italy
| | - P Pieragnoli
- Azienda Ospedaliera Universitaria Careggi SOD Aritmologia, Largo Brambilla, 3, Firenze, Italy
| | - G Zucchelli
- Azienda Ospedaliero Universitaria Pisana Cardiologia 2 U.O.C. Cisanello, Via Paradisa, 2, Pisa, Italy
| | - S Del Ry
- CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - M Cabiati
- CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy
| | - F Vozzi
- CNR Institute of Clinical Physiology, Via Giuseppe Moruzzi 1, 56124, Pisa, Italy.
| |
Collapse
|
7
|
Gutmann C, Joshi A, Zampetaki A, Mayr M. The Landscape of Coding and Noncoding RNAs in Platelets. Antioxid Redox Signal 2021; 34:1200-1216. [PMID: 32460515 DOI: 10.1089/ars.2020.8139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Levels of platelet noncoding RNAs (ncRNAs) are altered by disease, and ncRNAs may exert functions inside and outside of platelets. Their role in physiologic hemostasis and pathologic thrombosis remains to be explored. Recent Advances: The number of RNA classes identified in platelets has been growing since the past decade. Apart from coding messenger RNAs, the RNA landscape in platelets comprises ncRNAs such as microRNAs, circular RNAs, long ncRNAs, YRNAs, and potentially environmentally derived exogenous ncRNAs. Recent research has focused on the function of platelet RNAs beyond platelets, mediated through protective RNA shuttles or even cellular uptake of entire platelets. Multiple studies have also explored the potential of platelet RNAs as novel biomarkers. Critical Issues: Platelet preparations can contain contaminating leukocytes. Even few leukocytes may contribute a substantial amount of RNA. As biomarkers, platelet RNAs have shown associations with platelet activation, but it remains to be seen whether their measurements could improve diagnostics. It also needs to be clarified whether platelet RNAs influence processes beyond platelets. Future Directions: Technological advances such as single-cell RNA-sequencing might help to identify hyperreactive platelet subpopulations on a single-platelet level, avoid the common problem of leukocyte contamination in platelet preparations, and allow simultaneous profiling of native megakaryocytes and their platelet progeny to clarify to what extent the platelet RNA content reflects their megakaryocyte precursors or changes in the circulation. Antioxid. Redox Signal. 34, 1200-1216.
Collapse
Affiliation(s)
- Clemens Gutmann
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Abhishek Joshi
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| |
Collapse
|
8
|
Qian F, Wang J, Wang Y, Gao Q, Yan W, Lin Y, Shen L, Xie Y, Jiang X, Shen B. MiR-378a-3p as a putative biomarker for hepatocellular carcinoma diagnosis and prognosis: Computational screening with experimental validation. Clin Transl Med 2021; 11:e307. [PMID: 33634974 PMCID: PMC7882078 DOI: 10.1002/ctm2.307] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant disease with high morbidity and mortality, and the molecular mechanism for the genesis and progression is complex and heterogeneous. Biomarker discovery is crucial for the personalized and precision treatment of HCC. The accumulation of reported microRNA biomarkers makes it possible to combine computational identification with experimental validation to accelerate the discovery of novel biomarker. RESULTS In the present work, we applied a rational computer-aided biomarker discovery model to screen for the HCC diagnosis biomarker. Two HCC-associated networks were constructed based on the microRNA and mRNA expression profiles, and the potential microRNA biomarkers were identified based on their unique regulatory and influential power in the network. These putative biomarkers were then experimentally validated. One prominent example among these identified biomarkers is MiR-378a-3p: It was shown to independently regulate several important transcription factors such as PLAGL2 and β-catenin, affecting the β-catenin signaling. Such mechanism may indicate a potential tumor suppressor role of MiR-378a-3p and the impact of its abnormal expression on the cell growth and invasion of HCC. CONCLUSIONS A bioinformatics model with network topological and functional characterization was successfully applied to the identification of HCC biomarkers. The predicted microRNA biomarkers were than validated with experiments using human HCC cell lines, model animal, and clinical specimens. The results confirmed the prediction by our proposed model that miR-378a-3p was a putative biomarker for diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Fuliang Qian
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Jinghan Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Ying Wang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Qian Gao
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Wenying Yan
- Center for Systems BiologySoochow UniversitySuzhouChina
| | - Yuxin Lin
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yufeng Xie
- Center for Systems BiologySoochow UniversitySuzhouChina
- Department of OncologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Xiaoqing Jiang
- Department of the First Biliary Surgery, Shanghai Eastern Hepatobiliary Surgery HospitalNavy Military Medical UniversityShanghaiChina
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease‐related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Pinilla L, Barbé F, de Gonzalo-Calvo D. MicroRNAs to guide medical decision-making in obstructive sleep apnea: A review. Sleep Med Rev 2021; 59:101458. [PMID: 33582532 DOI: 10.1016/j.smrv.2021.101458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Obstructive sleep apnea (OSA) is a common and frequently underdiagnosed sleep disorder tightly associated with a wide range of morbidities and an elevated risk of the main causes of mortality. This condition represents a major public health concern due to its increasing worldwide prevalence and its serious pathological consequences. Current clinical guidelines support the importance of effective diagnosis and treatment of OSA and emphasize the unmet need for biomarkers to guide medical decision-making. In recent years, the noncoding transcriptome has emerged as a new opportunity for biomarker discovery. In this review, we provide a brief overview of the current understanding of noncoding RNAs, specifically microRNAs (miRNAs). Then, we carefully address the potential role of miRNAs as novel indicators for the management of both pediatric and adult OSA, highlighting their translational applicability, particularly for diagnosis and therapy allocation. Finally, we identify the gaps in the research state-of-art, discuss current methodological and conceptual limitations and propose future key steps and perspectives for the incorporation of miRNAs into routine clinical practice.
Collapse
Affiliation(s)
- Lucía Pinilla
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
de Gonzalo-Calvo D, Vea A, Bär C, Fiedler J, Couch LS, Brotons C, Llorente-Cortes V, Thum T. Circulating non-coding RNAs in biomarker-guided cardiovascular therapy: a novel tool for personalized medicine? Eur Heart J 2020; 40:1643-1650. [PMID: 29688487 PMCID: PMC6528150 DOI: 10.1093/eurheartj/ehy234] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/22/2017] [Accepted: 04/06/2018] [Indexed: 02/06/2023] Open
Abstract
Current clinical guidelines emphasize the unmet need for technological innovations to guide physician decision-making and to transit from conventional care to personalized cardiovascular medicine. Biomarker-guided cardiovascular therapy represents an interesting approach to inform tailored treatment selection and monitor ongoing efficacy. However, results from previous publications cast some doubts about the clinical applicability of biomarkers to direct individualized treatment. In recent years, the non-coding human transcriptome has emerged as a new opportunity for the development of novel therapeutic strategies and biomarker discovery. Non-coding RNA (ncRNA) signatures may provide an accurate molecular fingerprint of patient phenotypes and capture levels of information that could complement traditional markers and established clinical variables. Importantly, ncRNAs have been identified in body fluids and their concentrations change with physiology and pathology, thus representing promising non-invasive biomarkers. Previous publications highlight the translational applicability of circulating ncRNAs for diagnosis and prognostic stratification within cardiology. Numerous independent studies have also evaluated the potential of the circulating non-coding transcriptome to predict and monitor response to cardiovascular treatment. However, this field has not been reviewed in detail. Here, we discuss the state-of-the-art research into circulating ncRNAs, specifically microRNAs and long non-coding RNAs, to support clinical decision-making in cardiovascular therapy. Furthermore, we summarize current methodological and conceptual limitations and propose future steps for their incorporation into personalized cardiology. Despite the lack of robust population-based studies and technical barriers, circulating ncRNAs emerge as a promising tool for biomarker-guided therapy.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Av. Sant Antoni Maria Claret 167, Pavelló del Convent, Barcelona, Spain.,Institute of Health Carlos III, CIBERCV, Av. Monforte de Lemos 5, Madrid, Spain.,Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), C/ Rosselló 161, Barcelona, Spain
| | - Angela Vea
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Av. Sant Antoni Maria Claret 167, Pavelló del Convent, Barcelona, Spain
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Liam S Couch
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK
| | - Carlos Brotons
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sardenya Primary Health Care Center, C/ Sardenya 466, Barcelona, Spain
| | - Vicenta Llorente-Cortes
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Av. Sant Antoni Maria Claret 167, Pavelló del Convent, Barcelona, Spain.,Institute of Health Carlos III, CIBERCV, Av. Monforte de Lemos 5, Madrid, Spain.,Institute of Biomedical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), C/ Rosselló 161, Barcelona, Spain
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, Dovehouse Street, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, Germany
| |
Collapse
|
11
|
Huang SP, Jiang YF, Yang LJ, Yang J, Liang MT, Zhou HF, Luo J, Yang DP, Mo WJ, Chen G, Shi L, Gan TQ. Downregulation of miR-125b-5p and Its Prospective Molecular Mechanism in Lung Squamous Cell Carcinoma. Cancer Biother Radiopharm 2020; 37:125-140. [PMID: 32614608 DOI: 10.1089/cbr.2020.3657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: To explore the clinical significance of miR-125b-5p and its potential mechanisms in lung squamous cell carcinoma (LUSC). Materials and Methods: An integrated analysis of data from in-house quantitative real-time polymerase chain reaction (qRT-PCR), microRNA-sequencing, and microarray assays to appraise the expression level of miR-125b-5p in LUSC tissues compared to adjacent noncancerous controls. The authors identified the candidate targets of miR-125b-5p and conducted functional analysis using computational biology strategies from gene ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, disease ontology (DO), and protein-protein interaction (PPI) network analyses to investigate the prospective mechanisms. Results: According to qRT-PCR results, the expression level of miR-125b-5p was markedly decreased in LUSC tissues compared to noncancerous control tissues. Receiver operating characteristic and summary receiver operating characteristic analyses showed that miR-125b-5p had good specificity and sensitivity for distinguishing LUSC tissue from noncancerous lung tissue. The standard mean difference revealed that men and women with lower expression levels of miR-125b-5p may have a higher risk for LUSC. KEGG analysis and DO analysis intimated that target genes were evidently enriched in pyrimidine metabolism and pancreatic carcinoma. The PPI network of the top assembled KEGG pathway indicated that RRM2, UMPS, UCK2, and CTPS1 were regarded as crucial target genes for miR-125b-5p, and RRM2 was eventually deemed a key target. Conclusions: The authors' findings implicate a low expression level of miR-125b-5p in LUSC. A tumor-suppressive role of miR-125b-5p is proposed, based on its effects on LUSC tumor growth, clinical stage progression, and lymph node metastasis.
Collapse
Affiliation(s)
- Shu-Ping Huang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yi-Fan Jiang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin-Jie Yang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, People's Republic of China
| | - Mei-Ting Liang
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jiao Luo
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Da-Ping Yang
- Department of Pathology, Guigang People's Hospital of Guangxi/The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, People's Republic of China
| | - Wei-Jia Mo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Lin Shi
- Department of Pathology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Ting-Qing Gan
- Department of Medical Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
12
|
Zhao Q, Gu Y, Wei Y, Liu Y, Yu X, Qiao H. Screening and identification of circulating miRNA molecular markers in T2DM based on molecular network. J Diabetes Complications 2020; 34:107443. [PMID: 32253156 DOI: 10.1016/j.jdiacomp.2019.107443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023]
Abstract
Type 2 diabetes has become one of the most serious diseases impairing people's life. Circulating miRNAs, involved in the development and progression of type 2 diabetes via different mechanisms, are considered a molecular marker for patients with type 2 diabetes. Based on the expression data of miRNAs in type 2 diabetes from the GEO database, our study screen out 5 differentially expressed candidate miRNAs through the interaction network between miRNAs and target genes and the protein interaction network (PPI) with random walk algorithm. Clinical newly diagnosed diabetic blood was recruited for further PCR experiments. Finally, miR-543 was significantly different, and its expression was up-regulated. miR-543 may become a new marker to bring forth innovation in individualized treatment of diabetes.
Collapse
Affiliation(s)
- Qingsong Zhao
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; The Forth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yang Liu
- The Forth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaoguang Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin 150081, China
| | - Hong Qiao
- The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
13
|
Parker WAE, Schulte C, Barwari T, Phoenix F, Pearson SM, Mayr M, Grant PJ, Storey RF, Ajjan RA. Aspirin, clopidogrel and prasugrel monotherapy in patients with type 2 diabetes mellitus: a double-blind randomised controlled trial of the effects on thrombotic markers and microRNA levels. Cardiovasc Diabetol 2020; 19:3. [PMID: 31910903 PMCID: PMC6945631 DOI: 10.1186/s12933-019-0981-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Despite increased atherothrombotic risk in type 2 diabetes mellitus, (T2DM) the best preventative antithrombotic strategy remains undetermined. We defined the effects of three antiplatelet agents on functional readout and biomarker kinetics in platelet activation and coagulation in patients with T2DM. MATERIALS AND METHODS 56 patients with T2DM were randomised to antiplatelet monotherapy with aspirin 75 mg once daily (OD), clopidogrel 75 mg OD or prasugrel 10 mg OD during three periods of a crossover study. Platelet aggregation (PA) was determined by light-transmittance aggregometry and P-selectin expression by flow cytometry. Markers of fibrin clot dynamics, inflammation and coagulation were measured. Plasma levels of 14 miRNA were assessed by quantitative polymerase chain reactions. RESULTS Of the 56 patients, 24 (43%) were receiving aspirin for primary prevention of ischaemic events and 32 (57%) for secondary prevention. Prasugrel was the strongest inhibitor of ADP-induced PA (mean ± SD maximum response to 20μmol/L ADP 77.6 ± 8.4% [aspirin] vs. 57.7 ± 17.6% [clopidogrel] vs. 34.1 ± 14.1% [prasugrel], p < 0.001), P-selectin expression (30 μmol/L ADP; 45.1 ± 21.4% vs. 27.1 ± 19.0% vs. 14.1 ± 14.9%, p < 0.001) and collagen-induced PA (2 μg/mL; 62.1 ± 19.4% vs. 72.3 ± 18.2% vs. 60.2 ± 18.5%, p < 0.001). Fibrin clot dynamics and levels of coagulation and inflammatory proteins were similar. Lower levels of miR-24 (p = 0.004), miR-191 (p = 0.019), miR-197 (p = 0.009) and miR-223 (p = 0.014) were demonstrated during prasugrel-therapy vs. aspirin. Circulating miR-197 was lower in those cardiovascular disease during therapy with aspirin (p = 0.039) or prasugrel (p = 0.0083). CONCLUSIONS Prasugrel monotherapy in T2DM provided potent platelet inhibition and reduced levels of a number of platelet-associated miRNAs. miR-197 is a potential marker of cardiovascular disease in this population. Clinical outcome studies investigating prasugrel monotherapy are warranted in individuals with T2DM. Trial registration EudraCT, 2009-011907-22. Registered 15 March 2010, https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-011907-22/GB.
Collapse
Affiliation(s)
- William A E Parker
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Christian Schulte
- King's British Heart Foundation Centre, King's College London, London, UK.,Department of General and Interventional Cardiology, University Heart Centre Hamburg Eppendorf, Hamburg, Germany
| | - Temo Barwari
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Fladia Phoenix
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sam M Pearson
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Peter J Grant
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robert F Storey
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
14
|
Liu S, Guo X, Zhong W, Weng R, Liu J, Gu X, Zhong Z. Circulating MicroRNA Expression Profiles in Patients with Stable and Unstable Angina. Clinics (Sao Paulo) 2020; 75:e1546. [PMID: 32667489 PMCID: PMC7337223 DOI: 10.6061/clinics/2020/e1546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES High incidence and case fatality of unstable angina (UA) is, to a large extent, a consequence of the lack of highly sensitive and specific non-invasive markers. Circulating microRNAs (miRNAs) have been widely recommended as potential biomarkers for numerous diseases. In the present study, we characterized distinctive miRNA expression profiles in patients with stable angina (SA), UA, and normal coronary arteries (NCA), and identified promising candidates for UA diagnosis. METHODS Serum was collected from patients with SA, UA, and NCA who visited the Department of Cardiovascular Diseases of the Meizhou People's Hospital. Small RNA sequencing was carried out on an Illumina HiSeq 2500 platform. miRNA expression in different groups of patients was profiled and then confirmed based on that in an independent set of patients. Functions of differentially expressed miRNAs were predicted using gene ontology classification and Kyoto Encyclopedia of Genes and Genomes pathway analysis. RESULTS Our results indicated that circulating miRNA expression profiles differed between SA, UA, and NCA patients. A total of 36 and 161 miRNAs were dysregulated in SA and UA patients, respectively. miRNA expression was validated by reverse transcription quantitative polymerase chain reaction. CONCLUSION The results suggest that circulating miRNAs are potential biomarkers of UA.
Collapse
Affiliation(s)
- Sudong Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xuemin Guo
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
| | - Ruiqiang Weng
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Jing Liu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Xiaodong Gu
- Research Experimental Center, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, P. R. China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University, Meizhou 514031, P. R. China
- *Corresponding author. E-mail:
| |
Collapse
|
15
|
Pulignani S, Borghini A, Andreassi MG. microRNAs in bicuspid aortic valve associated aortopathy: Recent advances and future perspectives. J Cardiol 2019; 74:297-303. [PMID: 31230901 DOI: 10.1016/j.jjcc.2019.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Accepted: 03/06/2019] [Indexed: 02/08/2023]
Abstract
The risk of acute aortic events in patients with bicuspid aortic valve (BAV) constitutes a medical concern in terms of timing and surgical decision. During the past years, there has been a growing interest in the potential of microRNAs (miRNAs) as crucial epigenetic factors in multiple cellular processes associated with BAV aortopathy. Nevertheless, there are still challenges that need to be overcome before miRNAs could enter clinical practice, and further validation studies in larger and well-defined BAV cohorts are now required. This review aims at providing a comprehensive overview of the available data on the expression profiles and function of specific miRNAs in BAV aortopathy, evaluating miRNA signatures as potential molecular markers of disease. We also discuss the role of other novel classes of non-coding RNAs, including long non-coding RNAs and circular RNAs, in BAV-associated aortopathy, mainly regarding their possible implementation as diagnostic and prognostic markers.
Collapse
|
16
|
Ziegler M, Wang X, Peter K. Platelets in cardiac ischaemia/reperfusion injury: a promising therapeutic target. Cardiovasc Res 2019; 115:1178-1188. [PMID: 30906948 PMCID: PMC6529900 DOI: 10.1093/cvr/cvz070] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/01/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Acute myocardial infarction (AMI) is the single leading cause of mortality and morbidity worldwide. A key component of AMI therapy is the timely reopening of occluded vessels to prevent further ischaemic damage to the myocardium. However, reperfusion of the ischaemic myocardium can itself trigger reperfusion injury causing up to 50% of the overall infarct size. In recent years, considerable research has been devoted to understanding the pathogenesis of ischaemia/reperfusion (I/R) injury and platelets have emerged as a major contributing factor. This review summarizes the role of platelets in the pathogenesis of I/R injury and highlights the potential of platelet-directed therapeutics to minimize cardiac I/R injury. Activated platelets infiltrate specifically into the ischaemic/reperfused myocardium and contribute to I/R injury by the formation of microthrombi, enhanced platelet-leucocyte aggregation, and the release of potent vasoconstrictor and pro-inflammatory molecules. This review demonstrates the benefits of platelet inhibition beyond their well-described anti-thrombotic effect and highlights the direct cardioprotective role of anti-platelet drugs. In particular, the inhibition of COX, the P2Y12 receptor and the GPIIb/IIIa receptor has demonstrated the potential to attenuate I/R injury. Moreover, targeting of drug candidates or regenerative cells to the activated platelets accumulated within the ischaemic/reperfused myocardium shows remarkable potential to protect the myocardium from I/R injury. Overall, activated platelets play a key role in the pathogenesis of I/R injury. Their direct inhibition as well as their use as epitopes for site-directed therapy is a unique and promising therapeutic approach for the prevention of I/R injury and ultimately the preservation of cardiac function.
Collapse
Affiliation(s)
- Melanie Ziegler
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Commercial Road 75, Melbourne, Australia
| |
Collapse
|
17
|
Fung EC, Butt AN, Eastwood J, Swaminathan R, Sodi R. Circulating microRNA in cardiovascular disease. Adv Clin Chem 2019; 91:99-122. [PMID: 31331491 DOI: 10.1016/bs.acc.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute myocardial infarction (AMI) and heart failure (HF) are two major causes of cardiovascular mortality and morbidity. Early diagnosis of these conditions is essential to instigate immediate treatment that may result in improved outcomes. Traditional biomarkers of AMI include cardiac troponins and other proteins released from the injured myocardium but there are a number of limitations with these biomarkers especially with regard to specificity. In the past few years circulating nucleic acids, notably microRNA that are small non-coding RNAs that regulate various cellular processes, have been investigated as biomarkers of disease offering improved sensitivity and specificity in the diagnosis and prognostication of various conditions. In this review, the role of microRNAs as biomarkers used in the diagnosis of AMI and HF is discussed, their advantage over traditional biomarkers is outlined and the potential for their implementation in clinical practice is critically assessed.
Collapse
Affiliation(s)
- En C Fung
- Department of Laboratory Services, Raja Isteri Pengiran Anak Saleha (RIPAS) Hospital, Bandar Seri Begawan, Brunei Darussalam
| | - Asif N Butt
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jarlath Eastwood
- Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, United Kingdom
| | - Ramasamyiyer Swaminathan
- Department of Clinical Biochemistry, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ravinder Sodi
- Department of Blood Sciences, University Hospitals of Morecambe Bay NHS Foundation Trust, Lancaster, United Kingdom; Lancaster Medical School, Lancaster University, Lancaster, United Kingdom.
| |
Collapse
|
18
|
Santovito D, Weber C. Zooming in on microRNAs for refining cardiovascular risk prediction in secondary prevention. Eur Heart J 2018; 38:524-528. [PMID: 27371715 DOI: 10.1093/eurheartj/ehw259] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
19
|
Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M, Leistner DM, Jakob P, Nakagawa S, Blankenberg S, Engelhardt S, Thum T, Weber C, Meder B, Hajjar R, Landmesser U. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J 2018; 39:2704-2716. [PMID: 28430919 PMCID: PMC6454570 DOI: 10.1093/eurheartj/ehx165] [Citation(s) in RCA: 273] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/14/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Center of Molecular Medicine, Johann Wolfgang Goethe Universität, Theodor-Stern-Kai 7, Frankfurt am Main, Germany
- DZHK, Site Rhein-Main, Frankfurt, Germany
| | - Stephane Heymans
- Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Mahir Karakas
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - David-Manuel Leistner
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Philipp Jakob
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
| | - Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN Advanced Research Institute, Wako, Saitama, Japan
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo, Japan
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Martinistrasse 52, Hamburg, Germany
- DZHK, Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Engelhardt
- Institute for Pharmacology and Toxikology, Technische Universität München, Biedersteiner Strasse 29, München, Germany
- DZHK, Site Munich, Munich, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Christian Weber
- DZHK, Site Munich, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität, Pettenkoferstrasse 8a/9, Munich, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Universitätsklinikum Heidelberg, Im Neuenheimer Feld 669, Heidelberg, Germany
- DZHK, Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Hajjar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ulf Landmesser
- Department of Cardiology, CBF, CC11, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Charite Centrum 11 (Cardiovascular Medicine), Hindenburgdamm 20, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, Berlin, Germany
- Berlin Institute of Health, Kapelle-Ufer 2, Berlin, Germany
| |
Collapse
|
20
|
Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy. J Mol Med (Berl) 2018; 96:845-856. [PMID: 30008018 DOI: 10.1007/s00109-018-1666-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/21/2022]
|
21
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
22
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Biomarcadores epigenéticos y enfermedad cardiovascular: los microARN circulantes. Rev Esp Cardiol 2017. [DOI: 10.1016/j.recesp.2017.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci Rep 2017; 7:8585. [PMID: 28819307 PMCID: PMC5561095 DOI: 10.1038/s41598-017-09268-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/18/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators of diverse physiological and pathophysiological processes. MiRNA families and clusters are two key features in miRNA biology. Here we explore the use of CRISPR/Cas9 as a powerful tool to delineate the function and regulation of miRNA families and clusters. We focused on four miRNA clusters composed of miRNA members of the same family, homo-clusters or different families, hetero-clusters. Our results highlight different regulatory mechanisms in miRNA cluster expression. In the case of the miR-497~195 cluster, editing of miR-195 led to a significant decrease in the expression of the other miRNA in the cluster, miR-497a. Although no gene editing was detected in the miR-497a genomic locus, computational simulation revealed alteration in the three dimensional structure of the pri-miR-497~195 that may affect its processing. In cluster miR-143~145 our results imply a feed-forward regulation, although structural changes cannot be ruled out. Furthermore, in the miR-17~92 and miR-106~25 clusters no interdependency in miRNA expression was observed. Our findings suggest that CRISPR/Cas9 is a powerful gene editing tool that can uncover novel mechanisms of clustered miRNA regulation and function.
Collapse
|
24
|
Tiedt S, Prestel M, Malik R, Schieferdecker N, Duering M, Kautzky V, Stoycheva I, Böck J, Northoff BH, Klein M, Dorn F, Krohn K, Teupser D, Liesz A, Plesnila N, Holdt LM, Dichgans M. RNA-Seq Identifies Circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential Biomarkers for Acute Ischemic Stroke. Circ Res 2017; 121:970-980. [PMID: 28724745 DOI: 10.1161/circresaha.117.311572] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 01/22/2023]
Abstract
RATIONALE Currently, there are no blood-based biomarkers with clinical utility for acute ischemic stroke (IS). MicroRNAs show promise as disease markers because of their cell type-specific expression patterns and stability in peripheral blood. OBJECTIVE To identify circulating microRNAs associated with acute IS, determine their temporal course up to 90 days post-stroke, and explore their utility as an early diagnostic marker. METHODS AND RESULTS We used RNA sequencing to study expression changes of circulating microRNAs in a discovery sample of 20 patients with IS and 20 matched healthy control subjects. We further applied quantitative real-time polymerase chain reaction in independent samples for validation (40 patients with IS and 40 matched controls), replication (200 patients with IS, 100 healthy control subjects), and in 72 patients with transient ischemic attacks. Sampling of patient plasma was done immediately upon hospital arrival. We identified, validated, and replicated 3 differentially expressed microRNAs, which were upregulated in patients with IS compared with both healthy control subjects (miR-125a-5p [1.8-fold; P=1.5×10-6], miR-125b-5p [2.5-fold; P=5.6×10-6], and miR-143-3p [4.8-fold; P=7.8×10-9]) and patients with transient ischemic attack (miR-125a-5p: P=0.003; miR-125b-5p: P=0.003; miR-143-3p: P=0.005). Longitudinal analysis of expression levels up to 90 days after stroke revealed a normalization to control levels for miR-125b-5p and miR-143-3p starting at day 2 while miR-125a-5p remained elevated. Levels of all 3 microRNAs depended on platelet numbers in a platelet spike-in experiment but were unaffected by chemical hypoxia in Neuro2a cells and in experimental stroke models. In a random forest classification, miR-125a-5p, miR-125b-5p, and miR-143-3p differentiated between healthy control subjects and patients with IS with an area under the curve of 0.90 (sensitivity: 85.6%; specificity: 76.3%), which was superior to multimodal cranial computed tomography obtained for routine diagnostics (sensitivity: 72.5%) and previously reported biomarkers of acute IS (neuron-specific enolase: area under the curve=0.69; interleukin 6: area under the curve=0.82). CONCLUSIONS A set of circulating microRNAs (miR-125a-5p, miR-125b-5p, and miR-143-3p) associates with acute IS and might have clinical utility as an early diagnostic marker.
Collapse
Affiliation(s)
- Steffen Tiedt
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Matthias Prestel
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Rainer Malik
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Nicola Schieferdecker
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Marco Duering
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Veronika Kautzky
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Ivelina Stoycheva
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Julia Böck
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Bernd H Northoff
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Matthias Klein
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Franziska Dorn
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Knut Krohn
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Daniel Teupser
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Arthur Liesz
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Nikolaus Plesnila
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Lesca Miriam Holdt
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.)
| | - Martin Dichgans
- From the Institute for Stroke and Dementia Research, Klinikum der Universität München (S.T., M.P., R.M., N.S., M.D., V.K., I.S., J.B., A.L., N.P., M.D.), Graduate School of Systemic Neurosciences (S.T.), Institute of Laboratory Medicine, Klinikum der Universität München (B.H.N., D.T., L.M.H.), Department of Neurology, Klinikum der Universität München (M.K.), and Department of Neuroradiology, Klinikum der Universität München (F.D.), Ludwig-Maximilians-Universität LMU, Germany; Munich Cluster for Systems Neurology (SyNergy), Germany (S.T., A.L., N.P., M.D.); and Interdisciplinary Center for Clinical Research (IZKF), University of Leipzig, Germany (K.K.).
| |
Collapse
|
25
|
Epigenetic regulation of TGF-β1 signalling in dilative aortopathy of the thoracic ascending aorta. Clin Sci (Lond) 2017; 130:1389-405. [PMID: 27389586 DOI: 10.1042/cs20160222] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 01/21/2023]
Abstract
The term 'epigenetics' refers to heritable, reversible DNA or histone modifications that affect gene expression without modifying the DNA sequence. Epigenetic modulation of gene expression also includes the RNA interference mechanism. Epigenetic regulation of gene expression is fundamental during development and throughout life, also playing a central role in disease progression. The transforming growth factor β1 (TGF-β1) and its downstream effectors are key players in tissue repair and fibrosis, extracellular matrix remodelling, inflammation, cell proliferation and migration. TGF-β1 can also induce cell switch in epithelial-to-mesenchymal transition, leading to myofibroblast transdifferentiation. Cellular pathways triggered by TGF-β1 in thoracic ascending aorta dilatation have relevant roles to play in remodelling of the vascular wall by virtue of their association with monogenic syndromes that implicate an aortic aneurysm, including Loeys-Dietz and Marfan's syndromes. Several studies and reviews have focused on the progression of aneurysms in the abdominal aorta, but research efforts are now increasingly being focused on pathogenic mechanisms of thoracic ascending aorta dilatation. The present review summarizes the most recent findings concerning the epigenetic regulation of effectors of TGF-β1 pathways, triggered by sporadic dilative aortopathy of the thoracic ascending aorta in the presence of a tricuspid or bicuspid aortic valve, a congenital malformation occurring in 0.5-2% of the general population. A more in-depth comprehension of the epigenetic alterations associated with TGF-β1 canonical and non-canonical pathways in dilatation of the ascending aorta could be helpful to clarify its pathogenesis, identify early potential biomarkers of disease, and, possibly, develop preventive and therapeutic strategies.
Collapse
|
26
|
de Gonzalo-Calvo D, Iglesias-Gutiérrez E, Llorente-Cortés V. Epigenetic Biomarkers and Cardiovascular Disease: Circulating MicroRNAs. ACTA ACUST UNITED AC 2017. [PMID: 28623159 DOI: 10.1016/j.rec.2017.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA (20-25 nucleotides) involved in gene regulation. In recent years, miRNAs have emerged as a key epigenetic mechanism in the development and physiology of the cardiovascular system. These molecular species regulate basic functions in virtually all cell types, and are therefore directly associated with the pathophysiology of a large number of cardiovascular diseases. Since their relatively recent discovery in extracellular fluids, miRNAs have been studied as potential biomarkers of disease. A wide array of studies have proposed miRNAs as circulating biomarkers of different cardiovascular pathologies (eg, myocardial infarction, coronary heart disease, and heart failure, among others), which may have superior physicochemical and biochemical properties than the conventional protein indicators currently used in clinical practice. In the present review, we provide a brief introduction to the field of miRNAs, paying special attention to their potential clinical application. This includes their possible role as new diagnostic or prognostic biomarkers in cardiovascular disease.
Collapse
Affiliation(s)
- David de Gonzalo-Calvo
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | | | - Vicenta Llorente-Cortés
- Grupo de Lípidos y Patología Cardiovascular, Instituto de Investigación Biomédica Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas de Barcelona (IibB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
27
|
Sunderland N, Skroblin P, Barwari T, Huntley RP, Lu R, Joshi A, Lovering RC, Mayr M. MicroRNA Biomarkers and Platelet Reactivity: The Clot Thickens. Circ Res 2017; 120:418-435. [PMID: 28104774 DOI: 10.1161/circresaha.116.309303] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022]
Abstract
Over the last few years, several groups have evaluated the potential of microRNAs (miRNAs) as biomarkers for cardiometabolic disease. In this review, we discuss the emerging literature on the role of miRNAs and other small noncoding RNAs in platelets and in the circulation, and the potential use of miRNAs as biomarkers for platelet activation. Platelets are a major source of miRNAs, YRNAs, and circular RNAs. By harnessing multiomics approaches, we may gain valuable insights into their potential function. Because not all miRNAs are detectable in the circulation, we also created a gene ontology annotation for circulating miRNAs using the gene ontology term extracellular space as part of blood plasma. Finally, we share key insights for measuring circulating miRNAs. We propose ways to standardize miRNA measurements, in particular by using platelet-poor plasma to avoid confounding caused by residual platelets in plasma or by adding RNase inhibitors to serum to reduce degradation. This should enhance comparability of miRNA measurements across different cohorts. We provide recommendations for future miRNA biomarker studies, emphasizing the need for accurate interpretation within a biological and methodological context.
Collapse
Affiliation(s)
- Nicholas Sunderland
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Philipp Skroblin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Rachael P Huntley
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Ruth C Lovering
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (N.S., P.S., T.B., R.L., A.J., M.M.); and Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, United Kingdom (R.P.H., R.C.L.).
| |
Collapse
|
28
|
Scrutinio D, Conserva F, Passantino A, Iacoviello M, Lagioia R, Gesualdo L. Circulating microRNA-150-5p as a novel biomarker for advanced heart failure: A genome-wide prospective study. J Heart Lung Transplant 2017; 36:616-624. [PMID: 28259597 DOI: 10.1016/j.healun.2017.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Circulating microRNAs (miRs) are promising biomarkers for heart failure (HF). Previous studies have provided inconsistent miR "signatures." The phenotypic and pathophysiologic heterogeneity of HF may have contributed to this inconsistency. In this study we assessed whether advanced HF (AHF) patients present a distinct miR signature compared with healthy subjects (HS) and mild to moderate HF (MHF) patients. METHODS The study consisted of 2 phases: a screening phase and a validation phase. In the screening phase, 752 miRs were profiled in HS and MHF and AHF patients (N = 15), using the real-time quantitative polymerase chain reaction (RT-qPCR) technique and global mean normalization. In the validation phase, the miRs found to be significantly dysregulated in AHF patients compared with both HS and MHF patients were validated in 15 HS, 25 patients with MHF and 29 with AHF, using RT-qPCR, and normalizing to exogenous (cel-miR-39) and endogenous controls. RESULTS In the screening phase, 5 miRs were found to be significantly dysregulated: -26a-5p; -145-3p; -150-5p; -485-3p; and -487b-3p. In the validation phase, miR-150-5p was confirmed to be significantly downregulated in AHF patients when compared with both HS and MHF patients, irrespective of the normalization method used. miR-26a-5p was confirmed to be significantly dysregulated only when normalized to cell-miR-39. Dysregulation of the other miRs could not be confirmed. miR-150-5p was significantly associated with maladaptive remodeling, disease severity and outcome. CONCLUSIONS Our data suggest miR-150-5p as a novel circulating biomarker for AHF. The association of miR-150-5p with maladaptive remodeling, disease severity and outcome supports the pathophysiologic relevance of downregulated miR-150-5p expression to AHF.
Collapse
Affiliation(s)
- Domenico Scrutinio
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy.
| | - Francesca Conserva
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy; Division of Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Andrea Passantino
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rocco Lagioia
- Department of Cardiology and Cardiac Rehabilitation. Scientific Clinical Institutes Maugeri, IRCCS Institute of Cassano Murge, Bari, Italy
| | - Loreto Gesualdo
- Division of Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| |
Collapse
|
29
|
Willeit P, Skroblin P, Kiechl S, Fernández-Hernando C, Mayr M. Liver microRNAs: potential mediators and biomarkers for metabolic and cardiovascular disease? Eur Heart J 2016; 37:3260-3266. [PMID: 27099265 PMCID: PMC5146692 DOI: 10.1093/eurheartj/ehw146] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/18/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
Recent discoveries have revealed that microRNAs (miRNAs) play a key role in the regulation of gene expression. In this review, we summarize the rapidly evolving knowledge about liver miRNAs (including miR-33, -33*, miR-223, -30c, -144, -148a, -24, -29, and -122) and their link to hepatic lipid metabolism, atherosclerosis and cardiovascular disease, non-alcoholic fatty liver disease, metabolic syndrome, and type-2 diabetes. With regards to its biomarker potential, the main focus is on miR-122 as the most abundant liver miRNA with exquisite tissue specificity. MiR-122 has been proposed to play a central role in the maintenance of lipid and glucose homeostasis and is consistently detectable in serum and plasma. This miRNA may therefore constitute a novel biomarker for cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Peter Willeit
- King's British Heart Foundation Centre, King's College London, London, UK
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Philipp Skroblin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| |
Collapse
|
30
|
Affiliation(s)
- Raimund Pechlaner
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.)
| | - Stefan Kiechl
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.)
| | - Manuel Mayr
- From Department of Neurology, Medical University of Innsbruck, Austria (R.P., S.K.); and King's British Heart Foundation Centre, King's College London, United Kingdom (M.M.).
| |
Collapse
|
31
|
Feistritzer HJ, Klug G, Reinstadler SJ, Reindl M, Mayr A, Mair J, Metzler B. Novel biomarkers predicting cardiac function after acute myocardial infarction. Br Med Bull 2016; 119:63-74. [PMID: 27418651 DOI: 10.1093/bmb/ldw027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Measurement of biomarkers provides a cost-effective and widely available method to estimate cardiac dysfunction and clinical outcome of patients with acute myocardial infarction (AMI). SOURCES OF DATA PubMed entries with terms 'myocardial infarction' and the respective biomarker. AREAS OF AGREEMENT Cardiac troponins and natriuretic peptides are closely related to left ventricular dysfunction and the occurrence of adverse clinical events following AMI. AREAS OF CONTENTION The incremental value of novel biomarkers is controversial. FUTURE DIRECTIONS The combination of traditional and novel biomarkers might further improve risk stratification of patients with AMI. SEARCH STRATEGY We searched all entries on the PubMed database with the MeSH terms 'myocardial infarction' and 'cardiac troponins', 'natriuretic peptides', 'copeptin', galectin-3', 'corin', 'fetuin-A', 'adiponectin' and 'microRNA'.
Collapse
Affiliation(s)
- Hans-Josef Feistritzer
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Gert Klug
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Martin Reindl
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Agnes Mayr
- Department of Radiology, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Johannes Mair
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| | - Bernhard Metzler
- Department of Cardiology and Angiology, University Clinic of Internal Medicine III, Medical University of Innsbruck, Anichstraße 35, A-6020 Innsbruck, Austria
| |
Collapse
|
32
|
Busch A, Eken SM, Maegdefessel L. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:236. [PMID: 27429962 DOI: 10.21037/atm.2016.06.06] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates. The myomirs miRNA-1, -133a/b, -208a, -499 with well-defined cellular functions have proven equal to classic protein biomarkers for disease detection in MI. Other microRNAs (miRNAs) were reproducibly found to correlate with disease, disease severity and outcome in heart failure, stroke, coronary artery disease (CAD) and aortic aneurysm. An additional utilization has been discovered for therapeutic monitoring. The function of long non-coding transcripts is only about to be unraveled, yet shows great potential for outcome prediction. ncRNA biomarkers have a distinct role if no alternative test is available or has is performing poorly. With increasing mechanistic understanding, circulating miRNA and long non-coding transcripts will provide useful disease information with high predictive power.
Collapse
Affiliation(s)
- Albert Busch
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Suzanne M Eken
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| | - Lars Maegdefessel
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institute, Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
33
|
Kimura Y, Tamasawa N, Matsumura K, Murakami H, Yamashita M, Matsuki K, Tanabe J, Murakami H, Matsui J, Daimon M. Clinical Significance of Determining Plasma MicroRNA33b in Type 2 Diabetic Patients with Dyslipidemia. J Atheroscler Thromb 2016; 23:1276-1285. [PMID: 27301461 PMCID: PMC5113745 DOI: 10.5551/jat.33670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Sterol regulatory element-binding protein (SREBP)-1c is the dominant liver insulin-stimulated isoform and strongly correlates with diabetic dyslipidemia characterized by hyperinsulinemia [i.e., high-density lipoprotein cholesterol (HDL-C) levels and hypertriglyceridemia]. MicroRNA (miRNA) 33b is harbored in the intron of SREBP-1c and represses ATP-binding cassette, sub-family A, and member 1 (ABCA1) expression, essential for HDL formation. We measured plasma miRNA33b levels as possible biomarkers for diabetic dyslipidemia in patients with type 2 diabetes mellitus (T2DM) showing insulin resistance. Methods: The participants included 50 patients with T2DM (M/F 31/19) enrolled in an educational program for controlling blood glucose levels at Hirosaki University Hospital. HbA1c, fasting plasma glucose, insulin, and lipid levels were determined. Plasma miRNA33b, miRNA33a and miRNA148a were quantified using a TaqMan® MicroRNA Assay, and values were corrected with reference to miRNA16. Results: Mean BMI of participants were 28.2 ± 6.6 (kg/m2) and the Homeostasis Model Assessment of Insulin Resistance was 4.3 ± 2.7. Patients' laboratory findings indicated diabetic dyslipidemia with insulin resistance. Plasma miRNA33b/16 levels revealed a positive correlation with plasma insulin level (r = 0.326, P = 0.021), serum C-peptide (r = 0.280, P = 0.049), and triglyceride (r = 0.351, P = 0.012), but no association with HDL-C (r = −0.210, P = 0.143). The blood level of miRNA33a was approximately 1/150th of that of miRNA33b and was not correlated with the above parameters. Conclusion: We postulated that plasma miRNA33b may be useful as a new metabolic biomarker of dyslipidemia in patients with T2DM as well as metabolic syndrome via an insulin/SREBP-1c/miRNA33b/ABCA1 pathway.
Collapse
Affiliation(s)
- Yuki Kimura
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ahlin F, Arfvidsson J, Vargas KG, Stojkovic S, Huber K, Wojta J. MicroRNAs as circulating biomarkers in acute coronary syndromes: A review. Vascul Pharmacol 2016; 81:15-21. [PMID: 27084396 DOI: 10.1016/j.vph.2016.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/02/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022]
Abstract
Coronary artery disease (CAD) and its complications remain the most common cause of death worldwide. Cardiac troponins (cTn) are standard biomarkers used today for diagnosis and risk stratification of myocardial infarction (MI). Increasing efforts are made to develop additional, new biomarkers for more effective and safe rule-in and rule-out of MI patients at the emergency department. During the past decade, microRNAs (miRNAs) have emerged as new, potential diagnostic biomarkers in several diseases, including MI. In this review, we aimed to summarize some of the prominent studies in the field, and discuss the potential value of miRNAs in the diagnosis of MI.
Collapse
Affiliation(s)
- Fredrik Ahlin
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - John Arfvidsson
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Kris G Vargas
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria
| | - Stefan Stojkovic
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminen hospital, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Sigmund Freud University, Medical Faculty, Vienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria; Core Facilities, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
35
|
Marí-Alexandre J, Barceló-Molina M, Olcina-Guillem M, García-Oms J, Braza-Boïls A, Gilabert-Estellés J. MicroRNAs: New players in endometriosis. World J Obstet Gynecol 2016; 5:28-38. [DOI: 10.5317/wjog.v5.i1.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/14/2015] [Accepted: 01/07/2016] [Indexed: 02/05/2023] Open
Abstract
Endometriosis is an estrogen-dependent inflammatory disorder that limits the quality of life of affected women. This pathology affects 10% of reproductive-age women, although the prevalence in those patients experiencing pain, infertility or both is as high as 35%-50%. Endometriosis is characterized by endometrial-like tissue outside the uterus, primarily on the pelvic peritoneum, ovaries and the pouch of Douglas. Despite extensive research endeavours, a unifying theory regarding the exact etiopathogenic mechanism of this high prevalent and incapacitating condition is still lacking, although it has been suggested that epigenetics could be involved. MicroRNAs (miRNAs), one of the epigenetic players, are small non-coding RNAs that can act as post-transcriptional regulators of gene expression, reducing the expression of their target mRNAs either inhibiting its translation or promoting its degradation. MiRNA expression profiles are specific of tissue and cell type. Abnormal miRNA expression has been described in different pathological conditions, such as a myriad of oncological, cardiovascular and inflammatory diseases and gynecological pathologies. In endometriosis, miRNA expression patterns of eutopic endometrium from patients and control women and from different endometriotic lesions have been described. These small non-coding molecules have become attractive candidates as novel biomarkers for an early non-invasive diagnosis of the disease, which could suppose a valuable benefit to the patients in terms of improvement of prognosis and reduction of the ratio of recurrence. In this systematic review we will focus on the role of miRNAs in the pathophisiology of endometriosis.
Collapse
|
36
|
Calcagno C, Mulder WJM, Nahrendorf M, Fayad ZA. Systems Biology and Noninvasive Imaging of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:e1-8. [PMID: 26819466 PMCID: PMC4861402 DOI: 10.1161/atvbaha.115.306350] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Claudia Calcagno
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.).
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Matthias Nahrendorf
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.C., W.J.M.M., Z.A.F.); Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.); and Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA (M.N.)
| |
Collapse
|
37
|
Marí-Alexandre J, Sánchez-Izquierdo D, Gilabert-Estellés J, Barceló-Molina M, Braza-Boïls A, Sandoval J. miRNAs Regulation and Its Role as Biomarkers in Endometriosis. Int J Mol Sci 2016; 17:ijms17010093. [PMID: 26771608 PMCID: PMC4730335 DOI: 10.3390/ijms17010093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-22 nt) that function as modulators of gene expression. Since their discovery in 1993 in C. elegans, our knowledge about their biogenesis, function, and mechanism of action has increased enormously, especially in recent years, with the development of deep-sequencing technologies. New biogenesis pathways and sources of miRNAs are changing our concept about these molecules. The study of the miRNA contribution to pathological states is a field of great interest in research. Different groups have reported the implication of miRNAs in pathologies such as cancer, diabetes, cardiovascular, and gynecological diseases. It is also well-known that miRNAs are present in biofluids (plasma, serum, urine, semen, and menstrual blood) and have been proposed as ideal candidates as disease biomarkers. The goal of this review is to highlight the current knowledge in the field of miRNAs with a special emphasis to their role in endometriosis and the newest investigations addressing the use of miRNAs as biomarkers for this gynecological disease.
Collapse
Affiliation(s)
- Josep Marí-Alexandre
- Unit of Hemostasia, Thrombosis, Atherosclerosis and Vascular Biology, Health Research Institute La Fe, Valencia 46026, Spain.
| | | | | | - Moisés Barceló-Molina
- Unit of Hemostasia, Thrombosis, Atherosclerosis and Vascular Biology, Health Research Institute La Fe, Valencia 46026, Spain.
| | - Aitana Braza-Boïls
- Unit of Hemostasia, Thrombosis, Atherosclerosis and Vascular Biology, Health Research Institute La Fe, Valencia 46026, Spain.
| | - Juan Sandoval
- Epigomics Unit, Health Research Institute La Fe, Valencia 46026, Spain.
| |
Collapse
|
38
|
Zampetaki A, Willeit P, Burr S, Yin X, Langley SR, Kiechl S, Klein R, Rossing P, Chaturvedi N, Mayr M. Angiogenic microRNAs Linked to Incidence and Progression of Diabetic Retinopathy in Type 1 Diabetes. Diabetes 2016; 65:216-27. [PMID: 26395742 DOI: 10.2337/db15-0389] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
Abstract
Circulating microRNAs (miRNAs) have emerged as novel biomarkers of diabetes. The current study focuses on the role of circulating miRNAs in patients with type 1 diabetes and their association with diabetic retinopathy. A total of 29 miRNAs were quantified in serum samples (n = 300) using a nested case-control study design in two prospective cohorts of the DIabetic REtinopathy Candesartan Trial (DIRECT): PROTECT-1 and PREVENT-1. The PREVENT-1 trial included patients without retinopathy at baseline; the PROTECT-1 trial included patients with nonproliferative retinopathy at baseline. Two miRNAs previously implicated in angiogenesis, miR-27b and miR-320a, were associated with incidence and with progression of retinopathy: the odds ratio per SD higher miR-27b was 0.57 (95% CI 0.40, 0.82; P = 0.002) in PREVENT-1, 0.78 (0.57, 1.07; P = 0.124) in PROTECT-1, and 0.67 (0.50, 0.92; P = 0.012) combined. The respective odds ratios for higher miR-320a were 1.57 (1.07, 2.31; P = 0.020), 1.43 (1.05, 1.94; P = 0.021), and 1.48 (1.17, 1.88; P = 0.001). Proteomics analyses in endothelial cells returned the antiangiogenic protein thrombospondin-1 as a common target of both miRNAs. Our study identifies two angiogenic miRNAs, miR-320a and miR-27b, as potential biomarkers for diabetic retinopathy.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Peter Willeit
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K. Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K. Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Simon Burr
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Xiaoke Yin
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Sarah R Langley
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K
| | - Stefan Kiechl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI
| | - Peter Rossing
- Steno Diabetes Centre, University of Copenhagen, Copenhagen, Denmark
| | - Nishi Chaturvedi
- Institute of Cardiovascular Science, University College London, London, U.K.
| | - Manuel Mayr
- King's British Heart Foundation Centre of Research Excellence, King's College London, London, U.K.
| |
Collapse
|
39
|
Cabrera-Fuentes HA, Alba-Alba C, Aragones J, Bernhagen J, Boisvert WA, Bøtker HE, Cesarman-Maus G, Fleming I, Garcia-Dorado D, Lecour S, Liehn E, Marber MS, Marina N, Mayr M, Perez-Mendez O, Miura T, Ruiz-Meana M, Salinas-Estefanon EM, Ong SB, Schnittler HJ, Sanchez-Vega JT, Sumoza-Toledo A, Vogel CW, Yarullina D, Yellon DM, Preissner KT, Hausenloy DJ. Meeting report from the 2nd International Symposium on New Frontiers in Cardiovascular Research. Protecting the cardiovascular system from ischemia: between bench and bedside. Basic Res Cardiol 2016; 111:7. [PMID: 26667317 PMCID: PMC4679108 DOI: 10.1007/s00395-015-0527-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 12/17/2022]
Abstract
Recent advances in basic cardiovascular research as well as their translation into the clinical situation were the focus at the last "New Frontiers in Cardiovascular Research meeting". Major topics included the characterization of new targets and procedures in cardioprotection, deciphering new players and inflammatory mechanisms in ischemic heart disease as well as uncovering microRNAs and other biomarkers as versatile and possibly causal factors in cardiovascular pathogenesis. Although a number of pathological situations such as ischemia-reperfusion injury or atherosclerosis can be simulated and manipulated in diverse animal models, also to challenge new drugs for intervention, patient studies are the ultimate litmus test to obtain unequivocal information about the validity of biomedical concepts and their application in the clinics. Thus, the open and bidirectional exchange between bench and bedside is crucial to advance the field of ischemic heart disease with a particular emphasis of understanding long-lasting approaches in cardioprotection.
Collapse
Affiliation(s)
- Hector A Cabrera-Fuentes
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, NL, México
| | - Corina Alba-Alba
- Institute of Genetics, Univeristy of the Sea. Puerto Escondido Campus, Oaxaca Oaxacan System of State Universities (SUNEO), Oaxaca, México
| | - Julian Aragones
- Research Unit, Hospital of Santa Cristina, Research Institute Princesa (IP), Autonomous University of Madrid, Madrid, Spain
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University, Aachen, Germany
| | - William A Boisvert
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Skejby, Aarhus N, Denmark
| | | | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe-University, Frankfurt, Germany
| | | | - Sandrine Lecour
- Hatter Institute and MRC Inter-University Cape Heart Unit, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Elisa Liehn
- Institute for Molecular Cardiovascular Research, RWTH University Hospital Aachen, Aachen, Germany
| | - Michael S Marber
- Department of Cardiology, The Rayne Institute, St Thomas' Campus, King's College London, London, UK
| | - Nephtali Marina
- Department of Clinical Pharmacology, University College London, London, UK
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Oscar Perez-Mendez
- Department of Molecular Biology, National Institute of Cardiology, Mexico City, Mexico
| | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marisol Ruiz-Meana
- Valld'Hebron University Hospital and Research Institute, Barcelona, Spain
| | | | - Sang-Bing Ong
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| | - Hans J Schnittler
- Institute of Anatomy and Vascular Biology, Westfalian-Wilhelms-University, Münster, Germany
| | - Jose T Sanchez-Vega
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adriana Sumoza-Toledo
- Laboratorio Multidisciplinario de Ciencias Biomédicas, Instituto de Investigaciones Medico-Biológicas, Universidad Veracruzana campus Veracruz, Veracruz, Mexico
| | - Carl-Wilhelm Vogel
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| | - Dina Yarullina
- Department of Microbiology, Kazan Federal University, Kazan, Russian Federation
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Klaus T Preissner
- Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore, Singapore.
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.
- The Hatter Cardiovascular Institute, University College London, London, UK.
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.
| |
Collapse
|
40
|
Kaudewitz D, Skroblin P, Bender LH, Barwari T, Willeit P, Pechlaner R, Sunderland NP, Willeit K, Morton AC, Armstrong PC, Chan MV, Lu R, Yin X, Gracio F, Dudek K, Langley SR, Zampetaki A, de Rinaldis E, Ye S, Warner TD, Saxena A, Kiechl S, Storey RF, Mayr M. Association of MicroRNAs and YRNAs With Platelet Function. Circ Res 2015; 118:420-432. [PMID: 26646931 DOI: 10.1161/circresaha.114.305663] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE Platelets shed microRNAs (miRNAs). Plasma miRNAs change on platelet inhibition. It is unclear whether plasma miRNA levels correlate with platelet function. OBJECTIVE To link small RNAs to platelet reactivity. METHODS AND RESULTS Next-generation sequencing of small RNAs in plasma revealed 2 peaks at 22 to 23 and 32 to 33 nucleotides corresponding to miRNAs and YRNAs, respectively. Among YRNAs, predominantly, fragments of RNY4 and RNY5 were detected. Plasma miRNAs and YRNAs were measured in 125 patients with a history of acute coronary syndrome who had undergone detailed assessment of platelet function 30 days after the acute event. Using quantitative real-time polymerase chain reactions, 92 miRNAs were assessed in patients with acute coronary syndrome on different antiplatelet therapies. Key platelet-related miRNAs and YRNAs were correlated with platelet function tests. MiR-223 (rp=0.28; n=121; P=0.002), miR-126 (rp=0.22; n=121; P=0.016), and other abundant platelet miRNAs and YRNAs showed significant positive correlations with the vasodilator-stimulated phosphoprotein phosphorylation assay. YRNAs, miR-126, and miR-223 were also among the small RNAs showing the greatest dependency on platelets and strongly correlated with plasma levels of P-selectin, platelet factor 4, and platelet basic protein in the population-based Bruneck study (n=669). A single-nucleotide polymorphism that facilitates processing of pri-miR-126 to mature miR-126 accounted for a rise in circulating platelet activation markers. Inhibition of miR-126 in mice reduced platelet aggregation. MiR-126 directly and indirectly affects ADAM9 and P2Y12 receptor expression. CONCLUSIONS Levels of platelet-related plasma miRNAs and YRNAs correlate with platelet function tests in patients with acute coronary syndrome and platelet activation markers in the general population. Alterations in miR-126 affect platelet reactivity.
Collapse
Affiliation(s)
| | - Philipp Skroblin
- King's British Heart Foundation Centre, King's College London, UK
| | - Lukas H Bender
- King's British Heart Foundation Centre, King's College London, UK
| | - Temo Barwari
- King's British Heart Foundation Centre, King's College London, UK
| | - Peter Willeit
- Department of Public Health and Primary Care, University of Cambridge, UK.,Department of Neurology, Medical University Innsbruck, Austria
| | | | | | - Karin Willeit
- Department of Neurology, Medical University Innsbruck, Austria
| | - Allison C Morton
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul C Armstrong
- William Harvey Research Institute, Queen Mary University of London, UK
| | - Melissa V Chan
- William Harvey Research Institute, Queen Mary University of London, UK
| | - Ruifang Lu
- King's British Heart Foundation Centre, King's College London, UK
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, UK
| | - Filipe Gracio
- Biomedical Research Centre, King's College London, UK
| | - Katarzyna Dudek
- King's British Heart Foundation Centre, King's College London, UK
| | - Sarah R Langley
- King's British Heart Foundation Centre, King's College London, UK
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, UK
| | | | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, UK
| | - Timothy D Warner
- William Harvey Research Institute, Queen Mary University of London, UK
| | - Alka Saxena
- Biomedical Research Centre, King's College London, UK
| | - Stefan Kiechl
- Department of Neurology, Medical University Innsbruck, Austria
| | - Robert F Storey
- Department of Cardiovascular Science, University of Sheffield, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, UK
| |
Collapse
|
41
|
Abstract
MicroRNA (miRNA, miR) measurements in patients with coronary heart disease are hampered by the confounding effects of medication commonly used in cardiovascular patients such as statins, antiplatelet drugs, and heparin administration. Statins reduce the circulating levels of liver-derived miR-122. Antiplatelet medication attenuates the release of platelet-derived miRNAs. Heparin inhibits the polymerase chain reactions, in particular the amplification of the exogenous Caenorhabditis elegans spike-in control, thereby resulting in an artefactual rise of endogenous miRNAs. As these limitations have not been previously recognised, a reevaluation of the current miRNA literature, in particular of case-control studies in patients with cardiovascular disease or coronary interventions, is required.
Collapse
Affiliation(s)
- Dorothee Kaudewitz
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK
| | - Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London, SE59NU, UK.
| |
Collapse
|
42
|
|
43
|
Machado MT, Navega S, Dias F, de Sousa MJC, Teixeira AL, Medeiros R. microRNAs for peripheral blood fraction identification: Origin, pathways and forensic relevance. Life Sci 2015; 143:98-104. [PMID: 26522049 DOI: 10.1016/j.lfs.2015.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs, with a length of 18 to 24 nucleotides that play a regulatory role in several cellular processes. Since their discovery, they have been identified in cells, tissues, organs, and body fluids and their potential as molecular biomarkers for the diagnosis of various pathologic conditions has been explored. However, little is known about the origin of the extracellular miRNAs and what factors influence the levels of circulating miRNAs. This information could help the refinement of miRNAs as more effective biomarkers. Additionally, the identification of the origin of miRNAs may prove to be very useful in the association of particular miRNAs with specific pathologies. This review aims to gather information concerning the origin of miRNAs in plasma and serum, as well as to assess their potential to be use as biomarkers for these peripheral blood fractions.
Collapse
Affiliation(s)
- Maria Teresa Machado
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal; Molecular Oncology & Viral Pathology Group, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal
| | - Sílvia Navega
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal; Molecular Oncology & Viral Pathology Group, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal
| | - Francisca Dias
- Molecular Oncology & Viral Pathology Group, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Maria José Carneiro de Sousa
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal; National Institute of Legal Medicine and Forensic Sciences, North Branch, 4050-167 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology & Viral Pathology Group, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal
| | - Rui Medeiros
- ICBAS, Abel Salazar Biomedical Sciences Institute, University of Porto, 4050-313 Porto, Portugal; Molecular Oncology & Viral Pathology Group, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal; Research Department, Portuguese League Against Cancer (NRNorte), Porto, Portugal; Faculty of Health Sciences of Fernando Pessoa University, Porto, Portugal.
| |
Collapse
|
44
|
Repetto E, Lichtenstein L, Hizir Z, Tekaya N, Benahmed M, Ruidavets JB, Zaragosi LE, Perret B, Bouchareychas L, Genoux A, Lotte R, Ruimy R, Ferrières J, Barbry P, Martinez LO, Trabucchi M. RNY-derived small RNAs as a signature of coronary artery disease. BMC Med 2015; 13:259. [PMID: 26449324 PMCID: PMC4599655 DOI: 10.1186/s12916-015-0489-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/16/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Data from next generation sequencing technologies uncovered the existence of many classes of small RNAs. Recent studies reported that small RNAs are released by cells and can be detected in the blood. In this report, we aimed to discover the occurrence of novel circulating small RNAs in coronary artery disease (CAD). METHODS We used high-throughput sequencing of small RNAs from human and mouse apoptotic primary macrophages, and analyzed the data by empirical Bayes moderated t-statistics to assess differential expression and the Benjamini and Hochberg method to control the false discovery rate. Results were then confirmed by Northern blot and RT-qPCR in foam cells and in two animal models for atherosclerosis, namely ApoE(-/-) and Ldlr(-/-) mouse lines. Quantitative RT-PCR to detect identified small RNAs, the RNY-derived small RNAs, was performed using sera of 263 patients with CAD compared to 514 matched healthy controls; the Student t-test was applied to statistically assess differences. Associations of small RNAs with clinical characteristics and biological markers were tested using Spearman's rank correlations, while multivariate logistic regressions were performed to test the statistical association of small RNA levels with CAD. RESULTS Here, we report that, in macrophages stimulated with pro-apoptotic or pro-atherogenic stimuli, the Ro-associated non-coding RNAs, called RNYs or Y-RNAs, are processed into small RNAs (~24-34 nt) referred to as small-RNYs (s-RNYs), including s-RNY1-5p processed from RNY1. A significant upregulation of s-RNY expression was found in aortic arches and blood plasma from ApoE(-/-) and Ldlr(-/-) mice and in serum from CAD patients (P <0.001). Biostatistical analysis revealed a positive association of s-RNY1-5p with hs-CRP and ApoB levels; however, no statistical interaction was found between either of these two markers and s-RNY1-5p in relation to the CAD status. Levels of s-RNY1-5p were also independent from statin and fibrate therapies. CONCLUSION Our results position the s-RNY1-5p as a relevant novel independent diagnostic biomarker for atherosclerosis-related diseases. Measurement of circulating s-RNY expression would be a valuable companion diagnostic to monitor foam cell apoptosis during atherosclerosis pathogenesis and to evaluate patient's responsiveness to future therapeutic strategies aiming to attenuate apoptosis in foam cells in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Emanuela Repetto
- INSERM U1065 and University of Nice Sophia Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10 "Control of Gene Expression", F-06204, Nice, France.
| | - Laeticia Lichtenstein
- INSERM UMR 1048, Toulouse, 31000, France.,Université de Toulouse III, UMR 1048, Toulouse, 31300, France
| | - Zoheir Hizir
- INSERM U1065 and University of Nice Sophia Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10 "Control of Gene Expression", F-06204, Nice, France
| | - Nedra Tekaya
- INSERM U1065 and University of Nice Sophia Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10 "Control of Gene Expression", F-06204, Nice, France
| | | | | | | | - Bertrand Perret
- INSERM UMR 1048, Toulouse, 31000, France.,Université de Toulouse III, UMR 1048, Toulouse, 31300, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Laura Bouchareychas
- Sorbonne Universités, UPMC Université Paris 06, UMR_S 1166, ICAN, Integrative Biology of Atherosclerosis Team, Paris, F-75005, France
| | - Annelise Genoux
- INSERM UMR 1048, Toulouse, 31000, France.,Université de Toulouse III, UMR 1048, Toulouse, 31300, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | | | | | - Jean Ferrières
- INSERM U1027, Faculté de Médecine, Toulouse, 31073, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Pascal Barbry
- CNRS and University of Nice Sophia Antipolis, IPMC, Sophia Antipolis, Nice, France
| | - Laurent O Martinez
- INSERM UMR 1048, Toulouse, 31000, France.,Université de Toulouse III, UMR 1048, Toulouse, 31300, France.,CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Michele Trabucchi
- INSERM U1065 and University of Nice Sophia Antipolis, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 10 "Control of Gene Expression", F-06204, Nice, France.
| |
Collapse
|
45
|
Affiliation(s)
- Anna Zampetaki
- From the Cardiovascular Division, King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Manuel Mayr
- From the Cardiovascular Division, King's British Heart Foundation Centre, King's College London, London, United Kingdom.
| |
Collapse
|
46
|
Starikova I, Jamaly S, Sorrentino A, Blondal T, Latysheva N, Sovershaev M, Hansen JB. Differential expression of plasma miRNAs in patients with unprovoked venous thromboembolism and healthy control individuals. Thromb Res 2015; 136:566-72. [PMID: 26235746 DOI: 10.1016/j.thromres.2015.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/16/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Venous thromboembolism (VTE) remains the third most common cardiovascular disease with a vague pathogenesis. Circulating miRNAs are small regulatory RNAs found in plasma, serum and other body fluids in an apparently stable form. Although circulating miRNAs, a novel family of regulatory molecules, emerge as a promising class of biomarkers in many cardiovascular diseases and malignancies, knowledge on plasma miRNA levels in VTE remains sparse. AIMS The present work was conducted as a pilot study in order to estimate the plasma levels of miRNAs in patients with unprovoked VTE and to assess miRNAs as potential novel biomarkers of VTE. METHODS Twenty patients with a history of unprovoked VTE 1-5 years prior to inclusion in the study and twenty age- and sex-matched healthy control participants were enrolled in a case-control study (Tromsø IV). Plasma levels of 742 miRNAs were assessed after RNA extraction and reverse transcription. Profiling of miRNA was conducted on the Universal RT microRNA PCR Human panels I and II (Exiqon, Denmark). For normalization of the data, the average of the assays detected in all samples (n=40 samples) was applied. RESULTS Ninety-seven miRNAs were detected throughout all samples. Of these, miR-10b-5p, -320a, -320b, -424-5p, and -423-5p were upregulated, whereas miR-103a-3p, -191-5p, -301a-3p, and 199b-3p were downregulated in plasmas of VTE patients versus controls (P≤0.05). These miRNAs were confined to the extracellular vesicles-depleted plasma fraction, and yielded clear clustering distinguishing samples from the VTE and control groups. CONCLUSIONS The results of this pilot study indicate that plasma miRNAs profiling can provide novel biomarkers of unprovoked VTE.
Collapse
Affiliation(s)
- Irina Starikova
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
| | - Simin Jamaly
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | - Nadezhda Latysheva
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Mikhail Sovershaev
- Section for Medical Biochemistry, Department of Laboratory Medicine, University Hospital of Northern Norway, N-9037, Tromsø, Norway
| | - John-Bjarne Hansen
- K. G. Jebsen - Thrombosis Research and Expertise Center (TREC), Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway; Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
47
|
Fox CS, Hall JL, Arnett DK, Ashley EA, Delles C, Engler MB, Freeman MW, Johnson JA, Lanfear DE, Liggett SB, Lusis AJ, Loscalzo J, MacRae CA, Musunuru K, Newby LK, O'Donnell CJ, Rich SS, Terzic A. Future translational applications from the contemporary genomics era: a scientific statement from the American Heart Association. Circulation 2015; 131:1715-36. [PMID: 25882488 DOI: 10.1161/cir.0000000000000211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The field of genetics and genomics has advanced considerably with the achievement of recent milestones encompassing the identification of many loci for cardiovascular disease and variable drug responses. Despite this achievement, a gap exists in the understanding and advancement to meaningful translation that directly affects disease prevention and clinical care. The purpose of this scientific statement is to address the gap between genetic discoveries and their practical application to cardiovascular clinical care. In brief, this scientific statement assesses the current timeline for effective translation of basic discoveries to clinical advances, highlighting past successes. Current discoveries in the area of genetics and genomics are covered next, followed by future expectations, tools, and competencies for achieving the goal of improving clinical care.
Collapse
|
48
|
Watson CJ, Gupta SK, O'Connell E, Thum S, Glezeva N, Fendrich J, Gallagher J, Ledwidge M, Grote-Levi L, McDonald K, Thum T. MicroRNA signatures differentiate preserved from reduced ejection fraction heart failure. Eur J Heart Fail 2015; 17:405-15. [PMID: 25739750 PMCID: PMC4418397 DOI: 10.1002/ejhf.244] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/22/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
Aims Differentiation of heart failure with reduced (HFrEF) or preserved (HFpEF) ejection fraction independent of echocardiography is challenging in the community. Diagnostic strategies based on monitoring circulating microRNA (miRNA) levels may prove to be of clinical value in the near future. The aim of this study was to identify a novel miRNA signature that could be a useful HF diagnostic tool and provide valuable clinical information on whether a patient has HFrEF or HFpEF. Methods and results MiRNA biomarker discovery was carried out on three patient cohorts, no heart failure (no-HF), HFrEF, and HFpEF, using Taqman miRNA arrays. The top five miRNA candidates were selected based on differential expression in HFpEF and HFrEF (miR-30c, −146a, −221, −328, and −375), and their expression levels were also different between HF and no-HF. These selected miRNAs were further verified and validated in an independent cohort consisting of 225 patients. The discriminative value of BNP as a HF diagnostic could be improved by use in combination with any of the miRNA candidates alone or in a panel. Combinations of two or more miRNA candidates with BNP had the ability to improve significantly predictive models to distinguish HFpEF from HFrEF compared with using BNP alone (area under the receiver operating characteristic curve >0.82). Conclusion This study has shown for the first time that various miRNA combinations are useful biomarkers for HF, and also in the differentiation of HFpEF from HFrEF. The utility of these biomarker combinations can be altered by inclusion of natriuretic peptide. MiRNA biomarkers may support diagnostic strategies in subpopulations of patients with HF.
Collapse
Affiliation(s)
- Chris J Watson
- Experimental & Clinical Cardiology Group, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland; Chronic Cardiovascular Disease Management Group, St Vincent's Healthcare Group/St Michael's Hospital, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Epidemiologic studies have revealed that modification of the levels of individual components of the hemostatic system may have effects on the development of thrombosis or hemorrhage. To maintain the necessary equilibrium, the hemostatic system is finely regulated. It is known that acquired factors and/or alterations in genes (single-nucleotide polymorphisms or mutations) may be the cause of interindividual differences or exacerbated levels of hemostatic proteins in plasma, but there are still many non-characterized factors that provoke such variations. The search for new elements, such as microRNAs (miRNAs), a family of small non-coding RNAs that are novel regulators of protein expression, may reveal an additional layer at which to investigate the causes of hemostatic diseases. In this review, we discuss the latest developments in research into the role of miRNAs in the regulation of several hemostatic factors, and the potential use of miRNAs as prognostic or diagnostic tools in hemostasis and thrombosis.
Collapse
Affiliation(s)
- R Teruel-Montoya
- Centro Regional de Hemodonación, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | | | | |
Collapse
|
50
|
Djokovic D, Calhaz-Jorge C. Somatic stem cells and their dysfunction in endometriosis. Front Surg 2015; 1:51. [PMID: 25593975 PMCID: PMC4286966 DOI: 10.3389/fsurg.2014.00051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/14/2014] [Indexed: 01/05/2023] Open
Abstract
Emerging evidence indicates that somatic stem cells (SSCs) of different types prominently contribute to endometrium-associated disorders such as endometriosis. We reviewed the pertinent studies available on PubMed, published in English language until December 2014 and focused on the involvement of SSCs in the pathogenesis of this common gynecological disease. A concise summary of the data obtained from in vitro experiments, animal models, and human tissue analyses provides insights into the SSC dysregulation in endometriotic lesions. In addition, a set of research results is presented supporting that SSC-targeting, in combination with hormonal therapy, may result in improved control of the disease, while a more in-depth characterization of endometriosis SSCs may contribute to the development of early-disease diagnostic tests with increased sensitivity and specificity. Key message: Seemingly essential for the establishment and progression of endometriotic lesions, dysregulated SSCs, and associated molecular alterations hold a promise as potential endometriosis markers and therapeutic targets.
Collapse
Affiliation(s)
- Dusan Djokovic
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal ; Serviço de Obstetrícia e Ginecologia, Centro Hospitalar de Lisboa Ocidental, Hospital de São Francisco Xavier , Lisbon , Portugal
| | - Carlos Calhaz-Jorge
- Clínica Universitária de Obstetrícia e Ginecologia, Faculdade de Medicina, Universidade de Lisboa , Lisbon , Portugal ; Departamento de Obstetrícia, Ginecologia e Medicina da Reprodução, Centro Hospitalar de Lisboa Norte , Lisbon , Portugal
| |
Collapse
|