1
|
Mulder JWCM, Tromp TR, Al-Khnifsawi M, Blom DJ, Chlebus K, Cuchel M, D’Erasmo L, Gallo A, Hovingh GK, Kim NT, Long J, Raal FJ, Schonck WAM, Soran H, Truong TH, Boersma E, Roeters van Lennep JE. Sex Differences in Diagnosis, Treatment, and Cardiovascular Outcomes in Homozygous Familial Hypercholesterolemia. JAMA Cardiol 2024; 9:313-322. [PMID: 38353972 PMCID: PMC10867777 DOI: 10.1001/jamacardio.2023.5597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/15/2023] [Indexed: 02/17/2024]
Abstract
Importance Homozygous familial hypercholesterolemia (HoFH) is a rare genetic condition characterized by extremely increased low-density lipoprotein (LDL) cholesterol levels and premature atherosclerotic cardiovascular disease (ASCVD). Heterozygous familial hypercholesterolemia (HeFH) is more common than HoFH, and women with HeFH are diagnosed later and undertreated compared to men; it is unknown whether these sex differences also apply to HoFH. Objective To investigate sex differences in age at diagnosis, risk factors, lipid-lowering treatment, and ASCVD morbidity and mortality in patients with HoFH. Design, Setting, and Participants Sex-specific analyses for this retrospective cohort study were performed using data from the HoFH International Clinical Collaborators (HICC) registry, the largest global dataset of patients with HoFH, spanning 88 institutions across 38 countries. Patients with HoFH who were alive during or after 2010 were eligible for inclusion. Data entry occurred between February 2016 and December 2020. Data were analyzed from June 2022 to June 2023. Main Outcomes and Measures Comparison between women and men with HoFH regarding age at diagnosis, presence of risk factors, lipid-lowering treatment, prevalence, and onset and incidence of ASCVD morbidity (myocardial infarction [MI], aortic stenosis, and combined ASCVD outcomes) and mortality. Results Data from 389 women and 362 men with HoFH from 38 countries were included. Women and men had similar age at diagnosis (median [IQR], 13 [6-26] years vs 11 [5-27] years, respectively), untreated LDL cholesterol levels (mean [SD], 579 [203] vs 596 [186] mg/dL, respectively), and cardiovascular risk factor prevalence, except smoking (38 of 266 women [14.3%] vs 59 of 217 men [27.2%], respectively). Prevalence of MI was lower in women (31 of 389 [8.0%]) than men (59 of 362 [16.3%]), but age at first MI was similar (mean [SD], 39 [13] years in women vs 38 [13] years in men). Treated LDL cholesterol levels and lipid-lowering therapy were similar in both sexes, in particular statins (248 of 276 women [89.9%] vs 235 of 258 men [91.1%]) and lipoprotein apheresis (115 of 317 women [36.3%] vs 118 of 304 men [38.8%]). Sixteen years after HoFH diagnosis, women had statistically significant lower cumulative incidence of MI (5.0% in women vs 13.7% in men; subdistribution hazard ratio [SHR], 0.37; 95% CI, 0.21-0.66) and nonsignificantly lower all-cause mortality (3.0% in women vs 4.1% in men; HR, 0.76; 95% CI, 0.40-1.45) and cardiovascular mortality (2.6% in women vs 4.1% in men; SHR, 0.87; 95% CI, 0.44-1.75). Conclusions and Relevance In this cohort study of individuals with known HoFH, MI was higher in men compared with women yet age at diagnosis and at first ASCVD event were similar. These findings suggest that early diagnosis and treatment are important in attenuating the excessive cardiovascular risk in both sexes.
Collapse
Affiliation(s)
- Janneke W. C. M. Mulder
- Department of Internal Medicine, Erasmus Medical Center Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Tycho R. Tromp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Dirk J. Blom
- Department of Medicine, Division of Lipidology and Cape Heart Institute, University of Cape Town, Cape Town, South Africa
| | - Krysztof Chlebus
- 1st Department of Cardiology, Medical University of Gdańsk, Gdańsk, Poland
- National Centre of Familial Hypercholesterolaemia, Gdańsk, Poland
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Laura D’Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, Sorbonne Université, Institut national de la santé et de la recherche médicale UMR 1166, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpètriêre, Paris, France
| | - G. Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Ngoc Thanh Kim
- Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Vietnam
- Department of Cardiology, Hanoi Medical University, Hanoi, Vietnam
| | - Jiang Long
- Department of Atherosclerosis, Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling–Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Frederick J. Raal
- Carbohydrate and Lipid Metabolism Research Unit, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Willemijn A. M. Schonck
- Department of Vascular Medicine, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Handrean Soran
- Department of Diabetes, Endocrinology and Metabolism and Manchester National Institute of Health Research/Wellcome Trust Clinical Research Facility, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Thanh-Huong Truong
- Faculty of Medicine, Phenikaa University, Hanoi City, Vietnam
- Vietnam Atherosclerosis Society, Hanoi, Vietnam
| | - Eric Boersma
- Department of Cardiology, Erasmus Medical Center Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jeanine E. Roeters van Lennep
- Department of Internal Medicine, Erasmus Medical Center Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Papanikolaou A, Anastasiou G, Barkas F, Tellis C, Zikopoulos K, Liberopoulos E. Effects of Serum Estradiol on Proprotein Convertase Subtilisin/Kexin Type 9 Levels and Lipid Profiles in Women Undergoing In Vitro Fertilization. J Cardiovasc Dev Dis 2024; 11:25. [PMID: 38248895 PMCID: PMC10816866 DOI: 10.3390/jcdd11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The mechanisms underlying the impact of estradiol (E2) on low-density lipoprotein cholesterol (LDL-C) levels are not completely understood, although a role for proprotein convertase subtilisin/kexin type 9 (PCSK9) has been proposed. We aimed to investigate the association between levels of E2, PCSK9, and lipid parameters in premenopausal women undergoing in vitro fertilization (IVF). METHODS Healthy women undergoing IVF in the Department of Obstetrics and Gynecology of the University General Hospital of Ioannina were recruited. Their levels of E2, PCSK9, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), LDL-C, and triglycerides (TGs) were measured 10 days after ovarian depression (E2min) and 7 days after ovarian stimulation (E2max). RESULTS We included 34 consecutive women of median age 38 (interquartile range 26-46) years who underwent a full IVF cycle. As expected, E2 levels increased by 329.6% from E2min to E2max (108 [47-346] to 464 [241-2471] pg/mL, p < 0.05). During the same time, serum PCSK9 levels decreased by 30.8% (245 ± 80 to 170 ± 64 ng/mL, p < 0.05). TC, LDL-C, and TGs decreased by 0.4%, 3.8%, and 2.2%, respectively, while HDL-C levels increased by 5.3% (all p = NS). CONCLUSIONS The rise in endogenous E2 during an IVF cycle was related with a significant decline in serum PCSK9 levels, but no significant change in plasma lipids during a 7-day period.
Collapse
Affiliation(s)
- Anna Papanikolaou
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Georgia Anastasiou
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.A.); (F.B.)
| | - Fotios Barkas
- Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.A.); (F.B.)
- Imperial Centre for Cardiovascular Disease Prevention, Department of Public Health and Primary Care, Faculty of Medicine, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK
| | - Constantinos Tellis
- Atherothrombosis Research Centre/Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| | - Konstantinos Zikopoulos
- Genetics and IVF Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece;
| | - Evangelos Liberopoulos
- 1st Propedeutic Department of Medicine, School of Medicine, National and Kapodistrιan University of Athens, 11527 Athens, Greece
| |
Collapse
|
3
|
Haider MZ, Sahebkar A, Eid AH. Selective Activation of G Protein-coupled Estrogen Receptor 1 Attenuates Atherosclerosis. Curr Med Chem 2024; 31:4312-4319. [PMID: 37138482 DOI: 10.2174/0929867330666230501231528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 05/05/2023]
Abstract
Atherosclerosis remains a leading contributor to cardiovascular disease-associated morbidity and mortality. Interestingly, atherosclerosis-associated mortality rate is higher in men than women. This suggested a protective role for estrogen in the cardiovasculature. These effects of estrogen were initially thought to be mediated by the classic estrogen receptors, ER alpha, and beta. However, genetic knockdown of these receptors did not abolish estrogen's vasculoprotective effects suggesting that the other membranous Gprotein coupled estrogen receptor, GPER1, maybe the actual mediator. Indeed, in addition to its role in vasotone regulation, this GPER1 appears to play important roles in regulating vascular smooth cell phenotype, a critical player in the onset of atherosclerosis. Moreover, GPER1-selective agonists appear to reduce LDL levels by promoting the expression of LDL receptors as well as potentiating LDL re-uptake in liver cells. Further evidence also show that GPER1 can downregulate Proprotein Convertase Subtilisin/ Kexin type 9, leading to suppression of LDL receptor breakdown. Here, we review how selective activation of GPER1 might prevent or suppress atherosclerosis, with less side effects than those of the non-selective estrogen.
Collapse
Affiliation(s)
- Mohammad Zulqurnain Haider
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amirhossein Sahebkar
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177899191, Iran
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
5
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
6
|
Conlon DM, Welty FK, Reyes-Soffer G, Amengual J. Sex-Specific Differences in Lipoprotein Production and Clearance. Arterioscler Thromb Vasc Biol 2023; 43:1617-1625. [PMID: 37409532 PMCID: PMC10527393 DOI: 10.1161/atvbaha.122.318247] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Therapeutic approaches to reduce atherogenic lipid and lipoprotein levels remain the most effective and assessable strategies to prevent and treat cardiovascular disease. The discovery of novel research targets linked to pathways associated with cardiovascular disease development has enhanced our ability to decrease disease burden; however, residual cardiovascular disease risks remain. Advancements in genetics and personalized medicine are essential to understand some of the factors driving residual risk. Biological sex is among the most relevant factors affecting plasma lipid and lipoprotein profiles, playing a pivotal role in the development of cardiovascular disease. This minireview summarizes the most recent preclinical and clinical studies covering the effect of sex on plasma lipid and lipoprotein levels. We highlight the recent advances in the mechanisms regulating hepatic lipoprotein production and clearance as potential drivers of disease presentation. We focus on using sex as a biological variable in studying circulating lipid and lipoprotein levels.
Collapse
Affiliation(s)
| | | | - Gissette Reyes-Soffer
- Department of Medicine, Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons
| | - Jaume Amengual
- Department of Food Science and Human Nutrition and Division of Nutritional Sciences. University of Illinois Urbana Champaign
| |
Collapse
|
7
|
Medzikovic L, Azem T, Sun W, Rejali P, Esdin L, Rahman S, Dehghanitafti A, Aryan L, Eghbali M. Sex Differences in Therapies against Myocardial Ischemia-Reperfusion Injury: From Basic Science to Clinical Perspectives. Cells 2023; 12:2077. [PMID: 37626887 PMCID: PMC10453147 DOI: 10.3390/cells12162077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Mortality from myocardial infarction (MI) has declined over recent decades, which could be attributed in large part to improved treatment methods. Early reperfusion is the cornerstone of current MI treatment. However, reoxygenation via restored blood flow induces further damage to the myocardium, leading to ischemia-reperfusion injury (IRI). While experimental studies overwhelmingly demonstrate that females experience greater functional recovery from MI and decreased severity in the underlying pathophysiological mechanisms, the outcomes of MI with subsequent reperfusion therapy, which is the clinical correlate of myocardial IRI, are generally poorer for women compared with men. Distressingly, women are also reported to benefit less from current guideline-based therapies compared with men. These seemingly contradicting outcomes between experimental and clinical studies show a need for further investigation of sex-based differences in disease pathophysiology, treatment response, and a sex-specific approach in the development of novel therapeutic methods against myocardial IRI. In this literature review, we summarize the current knowledge on sex differences in the underlying pathophysiological mechanisms of myocardial IRI, including the roles of sex hormones and sex chromosomes. Furthermore, we address sex differences in pharmacokinetics, pharmacodynamics, and pharmacogenetics of current drugs prescribed to limit myocardial IRI. Lastly, we highlight ongoing clinical trials assessing novel pharmacological treatments against myocardial IRI and sex differences that may underlie the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mansoureh Eghbali
- Department of Anesthesiology & Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Ave, CHS BH-550 CHS, Los Angeles, CA 90095, USA (W.S.)
| |
Collapse
|
8
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
9
|
Jia F, Fei SF, Tong DB, Xue C, Li JJ. Sex difference in circulating PCSK9 and its clinical implications. Front Pharmacol 2022; 13:953845. [PMID: 36160427 PMCID: PMC9490038 DOI: 10.3389/fphar.2022.953845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/08/2022] [Indexed: 12/04/2022] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) is a proprotein convertase that increases plasma low-density lipoprotein cholesterol (LDL-C) levels by triggering the degradation of LDL receptors (LDLRs). Beyond the regulation of circulating LDL-C, PCSK9 also has direct atherosclerotic effects on the vascular wall and is associated with coronary plaque inflammation. Interestingly, emerging data show that women have higher circulating PCSK9 concentrations than men, suggesting that the potential roles of PCSK9 may have different impacts according to sex. In this review, we summarize the studies concerning sex difference in circulating levels of PCSK9. In addition, we report on the sex differences in the relations of elevated circulating PCSK9 levels to the severity and prognosis of coronary artery disease, the incidence of type 2 diabetes mellitus, and neurological damage after cardiac arrest and liver injury, as well as inflammatory biomarkers and high-density lipoprotein cholesterol (HDL-C). Moreover, sex difference in the clinical efficacy of PCSK9 inhibitors application are reviewed. Finally, the underlying mechanisms of sex difference in circulating PCSK9 concentrations and the clinical implications are also discussed.
Collapse
Affiliation(s)
- Fang Jia
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Si-Fan Fei
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - De-Bing Tong
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cong Xue
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
- *Correspondence: Cong Xue, ; Jian-Jun Li,
| | - Jian-Jun Li
- Cardio-Metabolic Center, Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Cong Xue, ; Jian-Jun Li,
| |
Collapse
|
10
|
DHEA Protects Human Cholangiocytes and Hepatocytes against Apoptosis and Oxidative Stress. Cells 2022; 11:cells11061038. [PMID: 35326489 PMCID: PMC8947473 DOI: 10.3390/cells11061038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a rare chronic cholestatic and immune-mediated liver disease of unknown aetiology that targets intrahepatic bile duct cells (cholangiocytes) and primarily affects postmenopausal women, when their estrogen levels sharply decrease. An impaired cholangiocyte response to estrogen characterizes the terminal stage of the disease, as this is when an inefficiency of cholangiocyte proliferation, in balancing the loss of intrahepatic bile ducts, is observed. Here, we report that the estrogen precursor dehydroepiandrosterone (DHEA) and its sulfate metabolites, DHEA-S and 17 β-estradiol, enhance the proliferation of cholangiocytes and hepatocytes in vitro. Flow cytometry analysis showed that DHEA and DHEA-S decreased glyco-chenodeoxycholic acid (GCDC)-driven apoptosis in cholangiocytes. Cell viability assay (MTT) indicated that ER-α, -β, and the G-protein-coupled estrogen receptor, are involved in the protection of DHEA against oxidative stress in cholangiocytes. Finally, immunoblot analysis showed an elevated level of steroid sulfatase and a reduced level of sulfotransferase 1E1 enzymes, involved in the desulfation/sulfation process of estrogens in cirrhotic PBC, and primary sclerosis cholangitis (PSC) liver tissues, another type of chronic cholestatic and immune-mediated liver disease. Taken together, these results suggest that DHEA can prevent the deleterious effects of certain potentially toxic bile acids and reactive oxygen species, delaying the onset of liver disease.
Collapse
|
11
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
12
|
Giommi C, Ladisa C, Carnevali O, Maradonna F, Habibi HR. Metabolomic and Transcript Analysis Revealed a Sex-Specific Effect of Glyphosate in Zebrafish Liver. Int J Mol Sci 2022; 23:2724. [PMID: 35269866 PMCID: PMC8911326 DOI: 10.3390/ijms23052724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Glyphosate is a component of commonly used herbicides for controlling weeds in crops, gardens and municipal parks. There is increasing awareness that glyphosate-based herbicides, in addition to acting on plants, may also exert toxicity in wildlife and humans. In this study, male and female adult zebrafish were exposed to 700 µg/L of glyphosate (GLY), for 28 days. We used the metabolomic approach and UHPLC-ESI-MS to analyze liver samples to investigate the adverse effects of glyphosate on hepatic metabolism. The impact of GLY was found to be sex-specific. In female, GLY exposure affected purine metabolism by decreasing the levels of AMP, GMP and inosinic acid, consequently increasing uric acid levels with respect to the control (CTRL). Exposure to GLY also caused a decrease of UMP levels in the pyrimidine metabolism pathway. In male, GLY exposure decreased the aminoadipic acid within the lysine degradation pathway. Transcript analysis of genes involved in stress response, oxidative stress and the immune system were also performed. Results demonstrated an increased stress response in both sexes, as suggested by higher nr3c1 expression. However, the hsp70.2 transcript level was increased in female but decreased in male. The results demonstrated reduced sod1, sod2, and gpx1a in male following exposure to GLY, indicating an impaired oxidative stress response. At the same time, an increase in the cat transcript level in female was observed. mRNA levels of the pro-inflammatory interleukins litaf and cxcl8b.1 were increased in female. Taken together, the results provide evidence of disrupted nucleotide hepatic metabolism, increased stress inflammatory response in female and disruption of oxidative stress response in male.
Collapse
Affiliation(s)
- Christian Giommi
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
| | - Claudia Ladisa
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Francesca Maradonna
- Dipartimento Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (C.G.); (O.C.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (C.L.); (H.R.H.)
| |
Collapse
|
13
|
Vásquez-Reyes S, Vargas-Castillo A, Noriega LG, Velázquez-Villegas LA, Pérez B, Sánchez-Tapia M, Ordaz G, Suárez-Monroy R, Ulloa-Aguirre A, Offner H, Torres N, Tovar AR. Genistein Stimulation of White Adipose Tissue Thermogenesis is Partially Dependent on GPR30 in Mice. Mol Nutr Food Res 2022; 66:e2100838. [PMID: 35142428 DOI: 10.1002/mnfr.202100838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/31/2022] [Indexed: 11/09/2022]
Abstract
SCOPE Genistein increases whole body energy expenditure by stimulating white adipose tissue (WAT) browning and thermogenesis. G-Coupled receptor GPR30 can mediate some actions of genistein, however, it is not known whether it is involved in the activation of WAT-thermogenesis. Thus, the aim of the study was to determine whether genistein activates thermogenesis coupled to an increase in WAT browning and mitochondrial activity, in GPR30+/+ and GPR30-/- mice. METHODS AND RESULTS GPR30+/+ and GPR30-/- mice were fed control or high fat sucrose diets containing or not genistein for 8 weeks. Body weight and composition, energy expenditure, glucose tolerance and browning markers in WAT, and oxygen consumption rate, 3', 5'-cyclic adenosine monophosphate (cAMP) concentration and browning markers in adipocytes were evaluated. Genistein consumption reduced body weight and fat mass gain in a different extent in both genotypes, however, energy expenditure was lower in GPR30-/- compared to GPR30+/+ mice, accompanied by a reduction in browning markers, maximal mitochondrial respiration, cAMP concentration and browning markers in cultured adipocytes from GPR30-/- mice. Genistein improved glucose tolerance in GPR30+/+ , but this was partially observed in GPR30-/- mice. CONCLUSION Our results showed that GPR30 partially mediates genistein stimulation of WAT thermogenesis and the improvement of glucose tolerance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Saraí Vásquez-Reyes
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Ariana Vargas-Castillo
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Berenice Pérez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Guillermo Ordaz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Renato Suárez-Monroy
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, CDMX, México
| | - Halina Offner
- Neuroimmunology Research, R&D-31, VA Portland Health Care System, 3710 SW U.S. Veterans Hospital Rd., Portland, OR, 97239, USA.,Department of Neurology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, CDMX, México
| |
Collapse
|
14
|
Della Torre S. Beyond the X Factor: Relevance of Sex Hormones in NAFLD Pathophysiology. Cells 2021; 10:2502. [PMID: 34572151 PMCID: PMC8470830 DOI: 10.3390/cells10092502] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, being frequently associated with obesity, unbalanced dietary regimens, and reduced physical activity. Despite their greater adiposity and reduced physical activity, women show a lower risk of developing NAFLD in comparison to men, likely a consequence of a sex-specific regulation of liver metabolism. In the liver, sex differences in the uptake, synthesis, oxidation, deposition, and mobilization of lipids, as well as in the regulation of inflammation, are associated with differences in NAFLD prevalence and progression between men and women. Given the major role of sex hormones in driving hepatic sexual dimorphism, this review will focus on the role of sex hormones and their signaling in the regulation of hepatic metabolism and in the molecular mechanisms triggering NAFLD development and progression.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
15
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
16
|
Sharma G, Prossnitz ER. Targeting the G protein-coupled estrogen receptor (GPER) in obesity and diabetes. ENDOCRINE AND METABOLIC SCIENCE 2021; 2. [PMID: 35321004 PMCID: PMC8936744 DOI: 10.1016/j.endmts.2021.100080] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Obesity has become a global epidemic in the modern world with the numbers of obese individuals having risen at alarming rates in the last decades. Obesity represents a serious medical condition that can lead to multiple complications, such as diabetes, dyslipidemia, cardiovascular disease including hypertension and atherosclerosis, stroke and increases in the risk of many types of cancer. Very few effective options exist to treat obesity, with many removed from the market due to associated complications. Obesity and metabolic syndrome display a sexual dichotomy, with (premenopausal) females displaying protection from weight gain and metabolic dysfunction compared to men. These beneficial effects are generally attributed to a class of female ovarian hormone, estrogens, which exert pleiotropic effects in multiple metabolic tissues, such as adipose, skeletal muscle, liver and pancreas. Multiple receptors mediate the actions of estrogens, including the classical nuclear estrogen receptors (ER α and ER β) and the G protein-coupled estrogen receptor (GPER). While the roles of nuclear ERs are more established, evidence of GPER function in metabolic homeostasis is still emerging. In this review, we will discuss the latest advances concerning the contributions of GPER towards obesity and metabolism utilizing GPER-selective pharmacological (agonists or antagonists) or genetic (GPER knock out mice or cells) tools. We present evidence that GPER regulates body weight, fat distribution, inflammation and glucose and lipid homeostasis via effects on metabolic tissues. Selective agonism of GPER by its agonist G-1 can alleviate symptoms of obesity and metabolic dysfunction in multiple murine models, thereby limiting weight gain, reducing insulin resistance and inflammation and improving glucose and lipid homeostasis in vivo. Thus, GPER represents a novel therapeutic target, with G-1 a first-in-class therapeutic agent, to treat obesity and its associated comorbidities, including diabetes.
Collapse
|
17
|
da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen Receptors: Therapeutic Perspectives for the Treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci 2021; 22:E525. [PMID: 33430254 PMCID: PMC7825655 DOI: 10.3390/ijms22020525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Estrogen receptors (ER) mediate functions beyond their endocrine roles, as modulation of cardiovascular, renal, and immune systems through anti-inflammatory and anti-apoptotic effects, preventing necrosis of cardiomyocytes and endothelial cells, and attenuating cardiac hypertrophy. Estradiol (E2) prevents cardiac dysfunction, increases nitric oxide synthesis, and reduces the proliferation of vascular cells, yielding protective effects, regardless of gender. Such actions are mediated by ER (ER-alpha (ERα), ER-beta (ERβ), or G protein-coupled ER (GPER)) through genomic or non-genomic pathways, which regulate cardiovascular function and prevent tissue remodeling. Despite the extensive knowledge on the cardioprotective effects of estrogen, clinical studies conducted on myocardial infarction (MI) and cardiovascular diseases still include favorable and unfavorable profiles. The purpose of this review is to provide up-to-date information regarding molecular, preclinical, and clinical aspects of cardiovascular E2 effects and ER modulation as a potential therapeutic target for the treatment of MI-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Jaqueline S. da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Tadeu L. Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Bruna S. Rocha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Matheus L. C. A. Tacco
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Sophia C. P. Marinho
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.S.d.S.); (T.L.M.); (B.S.R.); (M.L.C.A.T.); (S.C.P.M.)
- Instituto de Cardiologia Edson Saad, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
18
|
Della Torre S. Non-alcoholic Fatty Liver Disease as a Canonical Example of Metabolic Inflammatory-Based Liver Disease Showing a Sex-Specific Prevalence: Relevance of Estrogen Signaling. Front Endocrinol (Lausanne) 2020; 11:572490. [PMID: 33071979 PMCID: PMC7531579 DOI: 10.3389/fendo.2020.572490] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
There is extensive evidence supporting the interplay between metabolism and immune response, that have evolved in close relationship, sharing regulatory molecules and signaling systems, to support biological functions. Nowadays, the disruption of this interaction in the context of obesity and overnutrition underlies the increasing incidence of many inflammatory-based metabolic diseases, even in a sex-specific fashion. During evolution, the interplay between metabolism and reproduction has reached a degree of complexity particularly high in female mammals, likely to ensure reproduction only under favorable conditions. Several factors may account for differences in the incidence and progression of inflammatory-based metabolic diseases between females and males, thus contributing to age-related disease development and difference in life expectancy between the two sexes. Among these factors, estrogens, acting mainly through Estrogen Receptors (ERs), have been reported to regulate several metabolic pathways and inflammatory processes particularly in the liver, the metabolic organ showing the highest degree of sexual dimorphism. This review aims to investigate on the interaction between metabolism and inflammation in the liver, focusing on the relevance of estrogen signaling in counteracting the development and progression of non-alcoholic fatty liver disease (NAFLD), a canonical example of metabolic inflammatory-based liver disease showing a sex-specific prevalence. Understanding the role of estrogens/ERs in the regulation of hepatic metabolism and inflammation may provide the basis for the development of sex-specific therapeutic strategies for the management of such an inflammatory-based metabolic disease and its cardio-metabolic consequences.
Collapse
Affiliation(s)
- Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
20
|
Gamache J, Yun Y, Chiba-Falek O. Sex-dependent effect of APOE on Alzheimer's disease and other age-related neurodegenerative disorders. Dis Model Mech 2020; 13:dmm045211. [PMID: 32859588 PMCID: PMC7473656 DOI: 10.1242/dmm.045211] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The importance of apolipoprotein E (APOE) in late-onset Alzheimer's disease (LOAD) has been firmly established, but the mechanisms through which it exerts its pathogenic effects remain elusive. In addition, the sex-dependent effects of APOE on LOAD risk and endophenotypes have yet to be explained. In this Review, we revisit the different aspects of APOE involvement in neurodegeneration and neurological diseases, with particular attention to sex differences in the contribution of APOE to LOAD susceptibility. We discuss the role of APOE in a broader range of age-related neurodegenerative diseases, and summarize the biological factors linking APOE to sex hormones, drawing on supportive findings from rodent models to identify major mechanistic themes underlying the exacerbation of LOAD-associated neurodegeneration and pathology in the female brain. Additionally, we list sex-by-genotype interactions identified across neurodegenerative diseases, proposing APOE variants as a shared etiology for sex differences in the manifestation of these diseases. Finally, we present recent advancements in 'omics' technologies, which provide a new platform for more in-depth investigations of how dysregulation of this gene affects the development and progression of neurodegenerative diseases. Collectively, the evidence summarized in this Review highlights the interplay between APOE and sex as a key factor in the etiology of LOAD and other age-related neurodegenerative diseases. We emphasize the importance of careful examination of sex as a contributing factor in studying the underpinning genetics of neurodegenerative diseases in general, but particularly for LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Young Yun
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27708, USA
| |
Collapse
|
21
|
Kotula-Balak M, Duliban M, Pawlicki P, Tuz R, Bilinska B, Płachno BJ, Arent ZJ, Krakowska I, Tarasiuk K. The meaning of non-classical estrogen receptors and peroxisome proliferator-activated receptor for boar Leydig cell of immature testis. Acta Histochem 2020; 122:151526. [PMID: 32094002 DOI: 10.1016/j.acthis.2020.151526] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023]
Abstract
Communication in biological systems involves diverse-types of cell-cell interaction including cross-talk between receptors expressed by the target cells. Recently, novel sort of estrogen receptors (G protein - coupled estrogen receptor; GPER and estrogen-related receptor; ERR) that signal directly via estrogen binding and/or via mutual interaction-regulated estrogen signaling were reported in various organs including testis. Peroxisome proliferator - activated receptor (PPAR) is responsible for maintaining of lipid homeostasis that is critical for sex steroid production in the testis. Here, we investigated the role of interaction between GPER, ERRβ and PPARγ in steroidogenic Leydig cells of immature boar testis. Testicular fragments cultured ex vivo were treated with GPER or PPARγ antagonists. Then, cell ultrastructure, expression and localization of GPER, ERRβ, PPARγ together with the molecular receptor mechanism, through cyclic AMP and Raf/Ras/extracellular signal activated kinases (ERK), in the control of cholesterol concentration and estrogen production by Leydig cells were studied. In the ultrastructure of antagonist-treated Leydig cells, mitochondria were not branched and not bifurcated as they were found in control. Additionally, in PPARγ-blocked Leydig cells changes in the number of lipid droplets were revealed. Independent of used antagonist, western blot revealed decreased co-expression of GPER, ERRβ, PPARγ with exception of increased expression of ERRβ after PPARγ blockage. Immunohistochemistry confirmed presence of all receptors partially located in the nucleus or cytoplasm of Leydig cells of both control and treated testes. Changes in receptor expression, decreased cholesterol and increased estradiol tissue concentrations occurred through decreased cAMP level (with exception after GPER blockage) as well as Raf/Ras/ERK pathway expression. These all findings indicate that GPER-ERRβ-PPARγ interaction exists in immature boar testis and regulates Leydig cell function. Further detailed studies and considerations on GPER-ERRβ-PPARγ as possible diagnosis/therapy target in disturbances of testis steroidogenic function are needed.
Collapse
Affiliation(s)
- M Kotula-Balak
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - M Duliban
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - P Pawlicki
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - R Tuz
- Department of Swine and Small Animal Breeding, Institute of Animal Sciences, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
| | - B Bilinska
- Department of Endocrinology, Institute of Zoology, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland
| | - B J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland, Gronostajowa 9, 30-387 Krakow, Poland
| | - Z J Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - I Krakowska
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - K Tarasiuk
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
22
|
Feldman RD. Sex-Specific Determinants of Coronary Artery Disease and Atherosclerotic Risk Factors: Estrogen and Beyond. Can J Cardiol 2020; 36:706-711. [PMID: 32389343 DOI: 10.1016/j.cjca.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/18/2022] Open
Abstract
The way we view coronary artery disease in women has changed dramatically over the past decades. From an initial perspective that coronary artery disease was a male disorder and that women were protected by estrogens, there has been the gradual appreciation that this is an equal opportunity disease. Postmenopausal women are more likely than men to be hypertensive, dyslipidemic, and have multiple risk factors. Beyond the appreciation of estrogen's global effects on cardiovascular and metabolic function, our further advances in the understanding of sex-specific risks and management will be based on a greater understanding of the diversity of estrogen-mediated receptor pathways, including appreciation of the sometimes divergent effects of estrogen when acting either via the classic estrogen receptor or the more recently appreciated G protein-coupled estrogen receptor. In addition, the importance of sex-specific regulation of cardiometabolic processes beyond the sex hormones, specifically via SRY regulation, is only beginning to be understood. Finally, the author summarizes his recent studies demonstrating sex-specific G protein-coupled estrogen receptor regulation of blood pressure and cholesterol metabolism that may serve as a paradigm for the elucidation of sex-specific determinants of cardiovascular risk and the basis for sex-specific management of those risks.
Collapse
Affiliation(s)
- Ross D Feldman
- Departments of Medicine, of Physiology & Pathophysiology, of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada; Cardiac Sciences Program, Winnipeg Regional Health Authority, Winnipeg, Manitoba, Canada.
| |
Collapse
|
23
|
Liu M, Pan J, Dong Z, Cheng Y, Gong J, Wu X. Comparative transcriptome reveals the potential modulation mechanisms of estradiol affecting ovarian development of female Portunus trituberculatus. PLoS One 2019; 14:e0226698. [PMID: 31856263 PMCID: PMC6922394 DOI: 10.1371/journal.pone.0226698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Estradiol is an important sex steroid hormone that is involved in the regulation of crustacean ovarian development. However, the molecular regulatory mechanisms of estradiol on ovarian development are largely unknown. This study performed transcriptome sequencing of ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ of crabs after estradiol treatment (0.1μg g-1 crab weight). A total of 23, 806 genes were annotated, and 316, 1300, 669, 142, 383 genes were expressed differently in ovary, hepatopancreas, brain ganglion, eyestalk, and mandibular organ respectively. Differentially expressed gene enrichment analysis revealed several crucial pathways including protein digestion and absorption, pancreatic secretion, insect hormone biosynthesis, drug metabolism-cytochrome P450 and signal transduction pathway. Through this study, some key genes in correlation with the ovarian development and nutrition metabolism were significantly affected by estradiol, such as vitelline membrane outer layer 1-like protein, heat shock protein 70, Wnt5, JHE-like carboxylesterase 1, cytochrome P302a1, crustacean hyperglycemic hormone, neuropeptide F2, trypsin, carboxypeptidase B, pancreatic triacylglycerol lipase-like, and lipid storage droplet protein. Moreover, RT-qPCR validation demonstrated that expression of transcripts related to ovarian development (vitelline membrane outer layer 1-like protein and cytochrome P302a1) and nutrition metabolism (trypsin, glucose dehydrogenase and lipid storage droplet protein) were significantly affected by estradiol treatment. This study not only has identified relevant genes and several pathways that are involved in estradiol regulation on ovarian development of P. trituberculatus, but also provided new insight into the understanding of the molecular function mechanisms of estradiol in crustacean.
Collapse
Affiliation(s)
- Meimei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Jie Pan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Zhiguo Dong
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Huaihai Institute of Technology, Lianyungang, China
| | - Yongxu Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Jie Gong
- School of Life Sciences, Nantong University, Nantong, China
- * E-mail: (X.Wu); (J. Gong)
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (X.Wu); (J. Gong)
| |
Collapse
|
24
|
Liu M, Wang L, Cheng Y, Gong J, Zeng C, Wu X. Effect of estradiol on hepatopancreatic lipid metabolism in the swimming crab, Portunus trituberculatus. Gen Comp Endocrinol 2019; 280:115-122. [PMID: 31002828 DOI: 10.1016/j.ygcen.2019.04.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/18/2019] [Accepted: 04/16/2019] [Indexed: 11/25/2022]
Abstract
Estradiol is an important sex steroid hormone that involved in regulation of animal lipid metabolism. However, the effect of estradiol on lipid metabolism in swimming crab (Portunus trituberculatus) is unclear. The present study investigated the effect of four concentrations of exogenous estradiol (0, 0.01, 0.1 and 1 μg g-1 crab weight) on the expression levels of lipid metabolism-related genes, lipid composition and histology of hepatopancreas in the P. trituberculatus. The results showed that the mRNA levels of carnitine palmitoyltransferase I and II (CPT-I and CPT-II) increased significantly at the low concentrations (0.01 μg g-1 and 0.1 μg g-1), while decreased significantly in the highest concentration (1 μg g-1). The mRNA levels of acyl-CoA oxidase (ACOX), fatty acid transport protein (FATP), fatty acid-binding protein (FABP), diacylglycerol acyltransferase 1 (DGAT1) and acetyl-CoA carboxylase (ACC) were significantly down-regulated. The transcripts of fatty acid synthase (FAS) and fatty acyl desaturase (FAD) decreased significantly only in 1 μg g-1 treatment. All estradiol treatments (0.01, 0.1 and 1 μg g-1) had significantly higher percentages of 20:4n6, 20:5n3 and 22:6n3, but lower percentages of total monounsaturated fatty acids and polar lipids than the control treatment (0 μg g-1). Histological observations indicated the size of B cell became larger under estradiol treatment. The results indicated that estradiol promoted lipid catabolism in the hepatopancreas of P. trituberculatus.
Collapse
Affiliation(s)
- Meimei Liu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Lin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yongxu Cheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Gong
- School of Life Sciences, Nantong University, Nantong 226000, China
| | - Chaoshu Zeng
- College of Science & Engineering, James Cook University, Townsville, Queensland, Australia.
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Centre for Research on Environmental Ecology and Fish Nutrition of Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
25
|
Fu W, Gao XP, Zhang S, Dai YP, Zou WJ, Yue LM. 17β-Estradiol Inhibits PCSK9-Mediated LDLR Degradation Through GPER/PLC Activation in HepG2 Cells. Front Endocrinol (Lausanne) 2019; 10:930. [PMID: 32082252 PMCID: PMC7002320 DOI: 10.3389/fendo.2019.00930] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Plasma levels of PCSK9 are significantly higher in postmenopausal women. Pharmacologically increased estrogen levels have been shown to lower PCSK9 and LDL-C levels in animals and humans. The action of estrogen suggests that it has the ability to prevent PCSK9-mediated LDLR degradation in liver cells. However, little is known about how estrogen alters PCSK9-mediated LDLR degradation. Here, we report that 17β-estradiol (βE2) reduces PCSK9-mediated LDLR degradation by a mechanism that involves activation of the G protein-coupled estrogen receptor (GPER). In cultured HepG2 cells, βE2 prevented the internalization of PCSK9, which subsequently lead to PCSK9-mediated LDLR degradation. The altered LDLR levels also resulted in an increase in LDL uptake that was not observed in the absence of PCSK9. In addition, we showed that clathrin was rapidly increased in the presence of PCSK9, and this increase was blocked by βE2 incubation, suggesting rapid recruitment of clathrin in HepG2 cells. PLCγ activation and intracellular Ca2+ release were both increased due to the rapid effect of estrogen. By using a GPER antagonist G15, we demonstrated that the GPER mediates the action of estrogen. Together, the data from this in vitro study demonstrate that estrogen can regulate LDLR levels mainly through GPER activation, which prevents PCSK9-dependent LDLR degradation in HepG2 cells.
Collapse
Affiliation(s)
- Wei Fu
- Department of Physiology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiao-Ping Gao
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng Zhang
- Department of Physiology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yan-Ping Dai
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Jun Zou
- College of Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Min Yue
- Department of Physiology, West China School of Basic Medical and Forensic Medicine, Sichuan University, Chengdu, China
- *Correspondence: Li-Min Yue
| |
Collapse
|
26
|
Zhang H, de Aguiar Vallim TQ, Martel C. Translational and Therapeutic Approaches to the Understanding and Treatment of Dyslipidemia. Arterioscler Thromb Vasc Biol 2018; 36:e56-61. [PMID: 27335468 DOI: 10.1161/atvbaha.116.307808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Thomas Q de Aguiar Vallim
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Catherine Martel
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | | |
Collapse
|
27
|
Sharma G, Prossnitz ER. G-Protein-Coupled Estrogen Receptor (GPER) and Sex-Specific Metabolic Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1043:427-453. [PMID: 29224106 DOI: 10.1007/978-3-319-70178-3_20] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Obesity and metabolic syndrome display disparate prevalence and regulation between males and females. Human, as well as rodent, females with regular menstrual/estrous cycles exhibit protection from weight gain and associated chronic diseases. These beneficial effects are predominantly attributed to the female hormone estrogen, specifically 17β-estradiol (E2). E2 exerts its actions via multiple receptors, nuclear and extranuclear estrogen receptor (ER) α and ERβ, and the G-protein-coupled estrogen receptor (GPER, previously termed GPR30). The roles of GPER in metabolic homeostasis are beginning to emerge but are complex and remain unclear. The discovery of GPER-selective pharmacological agents (agonists and antagonists) and the availability of GPER knockout mice have significantly enhanced our understanding of the functions of GPER in normal physiology and disease. GPER action manifests pleiotropic effects in metabolically active tissues such as the pancreas, adipose, liver, and skeletal muscle. Cellular and animal studies have established that GPER is involved in the regulation of body weight, feeding behavior, inflammation, as well as glucose and lipid homeostasis. GPER deficiency leads to increased adiposity, insulin resistance, and metabolic dysfunction in mice. In contrast, pharmacologic stimulation of GPER in vivo limits weight gain and improves metabolic output, revealing a promising novel therapeutic potential for the treatment of obesity and diabetes.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, and Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| |
Collapse
|
28
|
Pupo M, Bodmer A, Berto M, Maggiolini M, Dietrich PY, Picard D. A genetic polymorphism repurposes the G-protein coupled and membrane-associated estrogen receptor GPER to a transcription factor-like molecule promoting paracrine signaling between stroma and breast carcinoma cells. Oncotarget 2018; 8:46728-46744. [PMID: 28596490 PMCID: PMC5564519 DOI: 10.18632/oncotarget.18156] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/10/2017] [Indexed: 01/08/2023] Open
Abstract
GPER is a membrane-associated estrogen receptor of the family of G-protein coupled receptors. For breast cancer, the contribution of GPER to promoting the proliferation and migration of both carcinoma cells and cancer-associated fibroblasts (CAFs) in response to estrogen and other agonists has extensively been investigated. Intriguingly, GPER was previously found to be localized to the nucleus in one isolate of breast CAFs. Moreover, this nuclear GPER was shown to bind regulatory sequences of cancer-relevant target genes and to induce their expression. We decided to find out what induces the nuclear localization of GPER, how general this phenomenon is, and what its functional significance is. We discovered that interfering with N-linked glycosylation of GPER, either by mutation of the predicted glycosylation sites or pharmacologically with tunicamycin, drives GPER into the nucleus. Surveying a small set of CAFs from breast cancer biopsies, we found that a relatively common single nucleotide polymorphism, which results in the expression of a GPER variant with the amino acid substitution P16L, is associated with the nuclear localization of GPER. GPER with P16L fails to be glycosylated, presumably because of a conformational effect on the nearby glycosylation sites. GPER P16L is defective for membrane-associated signaling, but instead acts like an estrogen-stimulated transcription factor. In CAFs, it induces the secretion of paracrine factors that promote the migration of carcinoma cells. This raises the possibility that the GPER P16L polymorphism could be a risk factor for breast cancer.
Collapse
Affiliation(s)
- Marco Pupo
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.,Current address: Areta International S.r.l., Gerenzano, Italy
| | - Alexandre Bodmer
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Melissa Berto
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pierre-Yves Dietrich
- Département d'Oncologie, Hôpitaux Universitaires de Genève, CH - 1211 Genève 14, Switzerland
| | - Didier Picard
- Département de Biologie Cellulaire and Institute of Genetics and Genomics of Geneva, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland
| |
Collapse
|
29
|
Lamon-Fava S, Diffenderfer MR, Barrett PHR, Wan WY, Postfai B, Nartsupha C, Dolnikowski GG, Schaefer EJ. Differential Effects of Estrogen and Progestin on Apolipoprotein B100 and B48 Kinetics in Postmenopausal Women. Lipids 2018. [DOI: 10.1002/lipd.12011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefania Lamon-Fava
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - Margaret R. Diffenderfer
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - P. Hugh R. Barrett
- School of Medicine and Pharmacology and Faculty of Engineering, Computing and Mathematics, The University of Western Australia; Perth WA 6009 Australia
| | - Wing Yee Wan
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - Borbala Postfai
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - Chorthip Nartsupha
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - Gregory G. Dolnikowski
- Mass Spectrometry Core Unit; Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| | - Ernst J. Schaefer
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University; Boston MA 02111 USA
| |
Collapse
|
30
|
Dron JS, Ho R, Hegele RA. Recent Advances in the Genetics of Atherothrombotic Disease and Its Determinants. Arterioscler Thromb Vasc Biol 2017; 37:e158-e166. [DOI: 10.1161/atvbaha.117.309934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacqueline S. Dron
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rosettia Ho
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A. Hegele
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
31
|
Qiu S, Vazquez JT, Boulger E, Liu H, Xue P, Hussain MA, Wolfe A. Hepatic estrogen receptor α is critical for regulation of gluconeogenesis and lipid metabolism in males. Sci Rep 2017; 7:1661. [PMID: 28490809 PMCID: PMC5431852 DOI: 10.1038/s41598-017-01937-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Impaired estrogens action is associated with features of the metabolic syndrome in animal models and humans. We sought to determine whether disruption of hepatic estrogens action in adult male mice could recapitulate aspects of the metabolic syndrome to understand the mechanistic basis for the phenotype. We found 17β-estradiol (E2) inhibited hepatic gluconeogenic genes such as phosphoenolpyruvate carboxykinase 1 (Pck-1) and glucose 6-phosphatase (G6Pase) and this effect was absent in mice lacking liver estrogen receptor α (Esr1) (LERKO mice). Male LERKO mice displayed elevated hepatic gluconeogenic activity and fasting hyperglycemia. We also observed increased liver lipid deposits and triglyceride levels in male LERKO mice, resulting from increased hepatic lipogenesis as reflected by increased mRNA levels of fatty acid synthase (Fas) and acetyl-CoA carboxylase (Acc1). ChIP assay demonstrated estradiol (E2) induced ESR1 binding to Pck-1, G6Pase, Fas and Acc1 promoters. Metabolic phenotyping demonstrated both basal metabolic rate and feeding were lower for the LERKO mice as compared to Controls. Furthermore, the respiratory exchange rate was significantly lower in LERKO mice than in Controls, suggesting an increase in lipid oxidation. Our data indicate that hepatic E2/ESR1 signaling plays a key role in the maintenance of gluconeogenesis and lipid metabolism in males.
Collapse
Affiliation(s)
- Shuiqing Qiu
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Erin Boulger
- School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ping Xue
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mehboob Ali Hussain
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Wolfe
- Division of Metabolism and Pediatric Endocrinology, Departments of Medicine, Pediatrics, Biological Chemistry and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Burke AC, Dron JS, Hegele RA, Huff MW. PCSK9: Regulation and Target for Drug Development for Dyslipidemia. Annu Rev Pharmacol Toxicol 2017; 57:223-244. [DOI: 10.1146/annurev-pharmtox-010716-104944] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amy C. Burke
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
| | - Jacqueline S. Dron
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
| | - Robert A. Hegele
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Murray W. Huff
- Department of Biochemistry, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7; , , ,
- Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
33
|
Feldman RD, Limbird LE. GPER (GPR30): A Nongenomic Receptor (GPCR) for Steroid Hormones with Implications for Cardiovascular Disease and Cancer. Annu Rev Pharmacol Toxicol 2016; 57:567-584. [PMID: 27814026 DOI: 10.1146/annurev-pharmtox-010716-104651] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Although the rapid effects of steroids, such as estrogen and aldosterone, were postulated originally to be nongenomic, it is now appreciated that activation of such signaling pathways via a steroid-acting G protein-coupled receptor, the G protein estrogen receptor (GPER), has important transcription-dependent outcomes in the regulation of cell growth and programmed cell death secondary to GPER-regulated second-messenger pathways. GPER is expressed ubiquitously and has diverse biological effects, including regulation of endocrine, immune, neuronal, and cardiovascular functions. Perhaps the most biologically important consequences of GPER activation are the regulation of cell growth, migration, and apoptotic cell death. These cell growth regulatory effects, important in cancer biology, are also relevant in the regulation of cardiac and vascular hypertrophy and in the response to ischemia. This review provides a summary of relevant findings of the impact of GPER regulation by either estradiol or aldosterone in in vitro model systems and extends those findings to in vivo studies of direct clinical relevance for development of GPER-directed agents for treatment of cancer and cardiovascular diseases associated with cellular proliferation.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6;
| | - Lee E Limbird
- Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208
| |
Collapse
|
34
|
Barton M. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER. Steroids 2016; 111:37-45. [PMID: 26921679 DOI: 10.1016/j.steroids.2016.02.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 02/13/2016] [Accepted: 02/22/2016] [Indexed: 01/21/2023]
Abstract
It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zürich, Switzerland.
| |
Collapse
|
35
|
Meyer MR, Barton M. Estrogens and Coronary Artery Disease: New Clinical Perspectives. ADVANCES IN PHARMACOLOGY 2016; 77:307-60. [PMID: 27451102 DOI: 10.1016/bs.apha.2016.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In premenopausal women, endogenous estrogens are associated with reduced prevalence of arterial hypertension, coronary artery disease, myocardial infarction, and stroke. Clinical trials conducted in the 1990s such as HERS, WHI, and WISDOM have shown that postmenopausal treatment with horse hormone mixtures (so-called conjugated equine estrogens) and synthetic progestins adversely affects female cardiovascular health. Our understanding of rapid (nongenomic) and chronic (genomic) estrogen signaling has since advanced considerably, including identification of a new G protein-coupled estrogen receptor (GPER), which like the "classical" receptors ERα and ERβ is highly abundant in the cardiovascular system. Here, we discuss the role of estrogen receptors in the pathogenesis of coronary artery disease and review natural and synthetic ligands of estrogen receptors as well as their effects in physiology, on cardiovascular risk factors, and atherosclerotic vascular disease. Data from preclinical and clinical studies using nonselective compounds activating GPER, which include selective estrogen receptor modulators such as tamoxifen or raloxifene, selective estrogen receptor downregulators such as Faslodex™ (fulvestrant/ICI 182,780), vitamin B3 (niacin), green tea catechins, and soy flavonoids such as genistein or resveratrol, strongly suggest that activation of GPER may afford therapeutic benefit for primary and secondary prevention in patients with or at risk for coronary artery disease. Evidence from preclinical studies suggest similar efficacy profiles for selective small molecule GPER agonists such as G-1 which are devoid of uterotrophic activity. Further clinical research in this area is warranted to provide opportunities for future cardiovascular drug development.
Collapse
Affiliation(s)
- M R Meyer
- Triemli City Hospital, Zürich, Switzerland.
| | - M Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
36
|
Feldman RD. Heart Disease in Women: Unappreciated Challenges, GPER as a New Target. Int J Mol Sci 2016; 17:ijms17050760. [PMID: 27213340 PMCID: PMC4881581 DOI: 10.3390/ijms17050760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/09/2016] [Accepted: 05/11/2016] [Indexed: 12/30/2022] Open
Abstract
Heart disease in women remains underappreciated, underdiagnosed and undertreated. Further, although we are starting to understand some of the social and behavioral determinants for this, the biological basis for the increased rate of rise in atherosclerosis risk in women after menopause remains very poorly understand. In this review we will outline the scope of the clinical issues related to heart disease in women, the emerging findings regarding the biological basis underlying the increased prevalence of atherosclerotic risk factors in postmenopausal women (vs. men) and the role of the G protein-coupled estrogen receptor (GPER) and its genetic regulation as a determinant of these sex-specific risks. GPER is a recently appreciated GPCR that mediates the rapid effects of estrogen and aldosterone. Recent studies have identified that GPER activation regulates both blood pressure. We have shown that regulation of GPER function via expression of a hypofunctional GPER genetic variant is an important determinant of blood pressure and risk of hypertension in women. Further, our most recent studies have identified that GPER activation is an important regulator of low density lipoprotein (LDL) receptor metabolism and that expression of the hypofunctional GPER genetic variant is an important contributor to the development of hypercholesterolemia in women. GPER appears to be an important determinant of the two major risk factors for coronary artery disease-blood pressure and LDL cholesterol. Further, the importance of this mechanism appears to be greater in women. Thus, the appreciation of the role of GPER function as a determinant of the progression of atherosclerotic disease may be important both in our understanding of cardiometabolic function but also in opening the way to greater appreciation of the sex-specific regulation of atherosclerotic risk factors.
Collapse
Affiliation(s)
- Ross D Feldman
- Discipline of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
37
|
The relationship between cholesterol concentration and carotid intima media thickness differs according to gender and menopausal status in Korean type 2 diabetic patients. Clin Chim Acta 2016; 455:107-12. [PMID: 26828534 DOI: 10.1016/j.cca.2016.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 11/21/2022]
Abstract
BACKGROUND We investigated the associations between cardiometabolic factors and carotid intima media thickness (IMT) in Korea type 2 diabetes (T2DM) patients, and assessed the possible difference with respect to gender and menopausal status. METHODS We conducted a cross-sectional study with 1288 T2DM patients from the Department of Endocrinology and Metabolism at Gangnam Severance Hospital. Carotid IMT and various biochemical parameters were measured, and the postmenopausal status was assessed. RESULTS In partial correlation analysis, total cholesterol (TC) and LDL cholesterol (LDL-C) were positively correlated with right maximum IMT in men. For postmenopausal women, TC and LDL-C were positively correlated with IMT (all p<0.05) while no such correlation was observed in premenopausal women. In regression analysis, age was the most predominant factor for IMT in all 3 groups. For men, insulin and TC were predictive factors for maximum IMT (all p<0.05), and for postmenopausal women, TC and LDL-C were significant factors for mean and maximum IMT (all p<0.01). However, cholesterol concentrations were not related to all types of IMT in premenopausal women. CONCLUSION The association between LDL-C and carotid IMT seems to differ according to gender and menopausal status in T2DM patients.
Collapse
|
38
|
Gaudet HM, Cheng SB, Christensen EM, Filardo EJ. The G-protein coupled estrogen receptor, GPER: The inside and inside-out story. Mol Cell Endocrinol 2015; 418 Pt 3:207-19. [PMID: 26190834 DOI: 10.1016/j.mce.2015.07.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 07/15/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023]
Abstract
GPER possesses structural and functional characteristics shared by members of the G-protein-coupled receptor (GPCR) superfamily, the largest class of plasma membrane receptors. This newly appreciated estrogen receptor is localized predominately within intracellular membranes in most, but not all, cell types and its surface expression is modulated by steroid hormones and during tissue injury. An intracellular staining pattern is not unique among GPCRs, which employ a diverse array of molecular mechanisms that restrict cell surface expression and effectively regulating receptor binding and activation. The finding that GPER displays an intracellular predisposition has created some confusion as the estrogen-inducible transcription factors, ERα and ERβ, also reside intracellularly, and has led to complex suggestions of receptor interaction. GPER undergoes constitutive retrograde trafficking from the plasma membrane to the endoplasmic reticulum and recent studies indicate its interaction with PDZ binding proteins that sort transmembrane receptors to synaptosomes and endosomes. Genetic targeting and selective ligand approaches as well as cell models that express GPER in the absence of ERs clearly supports GPER as a bonafide "stand alone" receptor. Here, the molecular details that regulate GPER action, its cell biological activities and its implicated roles in physiological and pathological processes are reviewed.
Collapse
Affiliation(s)
- H M Gaudet
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - S B Cheng
- Women & Infants Hospital, Brown University, Providence, RI, 02903, USA
| | - E M Christensen
- Wheaton College, Department of Chemistry, Norton, MA, 02766, USA
| | - E J Filardo
- Rhode Island Hospital, Brown University, Providence, RI, 02903, USA.
| |
Collapse
|
39
|
Prossnitz ER, Hathaway HJ. What have we learned about GPER function in physiology and disease from knockout mice? J Steroid Biochem Mol Biol 2015; 153:114-26. [PMID: 26189910 PMCID: PMC4568147 DOI: 10.1016/j.jsbmb.2015.06.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
Abstract
Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| | - Helen J Hathaway
- Department of Cell Biology & Physiology, University of New Mexico, Albuquerque, NM 87131, United States; University of New Mexico Cancer Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
40
|
Barton M, Prossnitz ER. Emerging roles of GPER in diabetes and atherosclerosis. Trends Endocrinol Metab 2015; 26:185-92. [PMID: 25767029 PMCID: PMC4731095 DOI: 10.1016/j.tem.2015.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 01/13/2023]
Abstract
The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed.
Collapse
Affiliation(s)
- Matthias Barton
- Molecular Internal Medicine, University of Zurich, Switzerland.
| | - Eric R Prossnitz
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA; UNM Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87120, USA.
| |
Collapse
|
41
|
Shen M, Shi H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int J Endocrinol 2015; 2015:294278. [PMID: 26491440 PMCID: PMC4600502 DOI: 10.1155/2015/294278] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 02/06/2023] Open
Abstract
The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.
Collapse
Affiliation(s)
- Minqian Shen
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
| | - Haifei Shi
- Cell, Molecular, and Structural Biology, Department of Biology, Miami University, 700 E. High Street, Oxford, OH 45056, USA
- *Haifei Shi:
| |
Collapse
|