1
|
Gurung S, Restrepo NK, Sumanas S. Endocardium gives rise to blood cells in zebrafish embryos. Cell Rep 2024; 43:113736. [PMID: 38308842 PMCID: PMC10993658 DOI: 10.1016/j.celrep.2024.113736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 01/17/2024] [Indexed: 02/05/2024] Open
Abstract
Previous studies have suggested that the endocardium contributes to hematopoiesis in murine embryos, although definitive evidence to demonstrate the hematopoietic potential of the endocardium is still missing. Here, we use a zebrafish embryonic model to test the emergence of hematopoietic progenitors from the endocardium. By using a combination of expression analysis, time-lapse imaging, and lineage-tracing approaches, we demonstrate that myeloid cells emerge from the endocardium in zebrafish embryos. Inhibition of Etv2/Etsrp or Scl/Tal1, two known master regulators of hematopoiesis and vasculogenesis, does not affect the emergence of endocardial-derived myeloid cells, while inhibition of Hedgehog signaling results in their reduction. Single-cell RNA sequencing analysis followed by experimental validation suggests that the endocardium is the major source of neutrophilic granulocytes. These findings will promote our understanding of alternative mechanisms involved in hematopoiesis, which are likely to be conserved between zebrafish and mammalian embryos.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pathology, Advanced Diagnostics Laboratories, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
2
|
Cheng X, Barakat R, Pavani G, Usha MK, Calderon R, Snella E, Gorden A, Zhang Y, Gadue P, French DL, Dorman KS, Fidanza A, Campbell CA, Espin-Palazon R. Nod1-dependent NF-kB activation initiates hematopoietic stem cell specification in response to small Rho GTPases. Nat Commun 2023; 14:7668. [PMID: 37996457 PMCID: PMC10667254 DOI: 10.1038/s41467-023-43349-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Uncovering the mechanisms regulating hematopoietic specification not only would overcome current limitations related to hematopoietic stem and progenitor cell (HSPC) transplantation, but also advance cellular immunotherapies. However, generating functional human induced pluripotent stem cell (hiPSC)-derived HSPCs and their derivatives has been elusive, necessitating a better understanding of the developmental mechanisms that trigger HSPC specification. Here, we reveal that early activation of the Nod1-Ripk2-NF-kB inflammatory pathway in endothelial cells (ECs) primes them to switch fate towards definitive hemogenic endothelium, a pre-requisite to specify HSPCs. Our genetic and chemical embryonic models show that HSPCs fail to specify in the absence of Nod1 and its downstream kinase Ripk2 due to a failure on hemogenic endothelial (HE) programming, and that small Rho GTPases coordinate the activation of this pathway. Manipulation of NOD1 in a human system of definitive hematopoietic differentiation indicates functional conservation. This work establishes the RAC1-NOD1-RIPK2-NF-kB axis as a critical intrinsic inductor that primes ECs prior to HE fate switch and HSPC specification. Manipulation of this pathway could help derive a competent HE amenable to specify functional patient specific HSPCs and their derivatives for the treatment of blood disorders.
Collapse
Affiliation(s)
- Xiaoyi Cheng
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Radwa Barakat
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Qalyubia, 13518, Egypt
| | - Giulia Pavani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Masuma Khatun Usha
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Rodolfo Calderon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Elizabeth Snella
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Abigail Gorden
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Yudi Zhang
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Paul Gadue
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Karin S Dorman
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Antonella Fidanza
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU, Edinburgh, United Kingdom
| | - Clyde A Campbell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Raquel Espin-Palazon
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Sposato AL, Llewellyn DR, Weber JM, Hollins HL, Schrock MN, Farrell JA, Gagnon JA. Germ cells do not progress through spermatogenesis in the infertile zebrafish testis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556432. [PMID: 37732254 PMCID: PMC10508784 DOI: 10.1101/2023.09.05.556432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Vertebrate spermatogonial stem cells maintain sperm production over the lifetime of an animal but fertility declines with age. While morphological studies have greatly informed our understanding of typical spermatogenesis, the molecular and cellular mechanisms underlying spermatogenesis are not yet understood, particularly with respect to the onset of fertility. We used single-cell RNA sequencing to generate a developmental atlas of the zebrafish testis. Using 5 timepoints across the adult life of a zebrafish, we described cellular profiles in the testis during and after fertility. While all germ cell stages of spermatogenesis are detected in testes from fertile adult zebrafish, testes from older infertile males only contained spermatogonia and a reduced population of spermatocytes. These remaining germ cells are transcriptionally distinct from fertile spermatogonia. Immune cells including macrophages and lymphocytes drastically increase in abundance in infertile testes. Our developmental atlas reveals the cellular changes as the testis ages and defines a molecular roadmap for the regulation of male fertility.
Collapse
Affiliation(s)
- Andrea L. Sposato
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | | | - Jenna M. Weber
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Hailey L. Hollins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Madison N. Schrock
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A. Farrell
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20814
| | - James A. Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
- Henry Eyring Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
4
|
Hu YX, Jing Q. Zebrafish: a convenient tool for myelopoiesis research. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:2. [PMID: 36595106 PMCID: PMC9810781 DOI: 10.1186/s13619-022-00139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/29/2022] [Indexed: 04/18/2023]
Abstract
Myelopoiesis is the process in which the mature myeloid cells, including monocytes/macrophages and granulocytes, are developed. Irregular myelopoiesis may cause and deteriorate a variety of hematopoietic malignancies such as leukemia. Myeloid cells and their precursors are difficult to capture in circulation, let alone observe them in real time. For decades, researchers had to face these difficulties, particularly in in-vivo studies. As a unique animal model, zebrafish possesses numerous advantages like body transparency and convenient genetic manipulation, which is very suitable in myelopoiesis research. Here we review current knowledge on the origin and regulation of myeloid development and how zebrafish models were applied in these studies.
Collapse
Affiliation(s)
- Yang-Xi Hu
- Department of Cardiology, Changzheng Hospital, Shanghai, 200003, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
5
|
Wu M, Xu J, Zhang Y, Wen Z. Learning from Zebrafish Hematopoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:137-157. [PMID: 38228963 DOI: 10.1007/978-981-99-7471-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoiesis is a complex process that tightly regulates the generation, proliferation, differentiation, and maintenance of hematopoietic cells. Disruptions in hematopoiesis can lead to various diseases affecting both hematopoietic and non-hematopoietic systems, such as leukemia, anemia, thrombocytopenia, rheumatoid arthritis, and chronic granuloma. The zebrafish serves as a powerful vertebrate model for studying hematopoiesis, offering valuable insights into both hematopoietic regulation and hematopoietic diseases. In this chapter, we present a comprehensive overview of zebrafish hematopoiesis, highlighting its distinctive characteristics in hematopoietic processes. We discuss the ontogeny and modulation of both primitive and definitive hematopoiesis, as well as the microenvironment that supports hematopoietic stem/progenitor cells. Additionally, we explore the utility of zebrafish as a disease model and its potential in drug discovery, which not only advances our understanding of the regulatory mechanisms underlying hematopoiesis but also facilitates the exploration of novel therapeutic strategies for hematopoietic diseases.
Collapse
Affiliation(s)
- Mei Wu
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jin Xu
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Yiyue Zhang
- South China University of Technology, School of Medicine, Guangzhou, Guangdong, China.
| | - Zilong Wen
- Southern University of Science and Technology, School of Life Sciences, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Choe YH, Sorensen J, Garry DJ, Garry MG. Blastocyst complementation and interspecies chimeras in gene edited pigs. Front Cell Dev Biol 2022; 10:1065536. [PMID: 36568986 PMCID: PMC9773398 DOI: 10.3389/fcell.2022.1065536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The only curative therapy for many endstage diseases is allograft organ transplantation. Due to the limited supply of donor organs, relatively few patients are recipients of a transplanted organ. Therefore, new strategies are warranted to address this unmet need. Using gene editing technologies, somatic cell nuclear transfer and human induced pluripotent stem cell technologies, interspecies chimeric organs have been pursued with promising results. In this review, we highlight the overall technical strategy, the successful early results and the hurdles that need to be addressed in order for these approaches to produce a successful organ that could be transplanted in patients with endstage diseases.
Collapse
Affiliation(s)
- Yong-ho Choe
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jacob Sorensen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| | - Mary G. Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Sierra-Pagan JE, Garry DJ. The regulatory role of pioneer factors during cardiovascular lineage specification – A mini review. Front Cardiovasc Med 2022; 9:972591. [PMID: 36082116 PMCID: PMC9445115 DOI: 10.3389/fcvm.2022.972591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.
Collapse
Affiliation(s)
- Javier E. Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Daniel J. Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States
- *Correspondence: Daniel J. Garry
| |
Collapse
|
8
|
Wang L, Lin L, Qi H, Chen J, Grossfeld P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res 2022; 131:371-387. [PMID: 35894043 PMCID: PMC9624262 DOI: 10.1161/circresaha.121.319955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Jacobsen syndrome is a rare chromosomal disorder caused by deletions in the long arm of human chromosome 11, resulting in multiple developmental defects including congenital heart defects. Combined studies in humans and genetically engineered mice implicate that loss of ETS1 (E26 transformation specific 1) is the cause of congenital heart defects in Jacobsen syndrome, but the underlying molecular and cellular mechanisms are unknown. OBJECTIVE To determine the role of ETS1 in heart development, specifically its roles in coronary endothelium and endocardium and the mechanisms by which loss of ETS1 causes coronary vascular defects and ventricular noncompaction. METHODS AND RESULTS ETS1 global and endothelial-specific knockout mice were used. Phenotypic assessments, RNA sequencing, and chromatin immunoprecipitation analysis were performed together with expression analysis, immunofluorescence and RNAscope in situ hybridization to uncover phenotypic and transcriptomic changes in response to loss of ETS1. Loss of ETS1 in endothelial cells causes ventricular noncompaction, reproducing the phenotype arising from global deletion of ETS1. Endothelial-specific deletion of ETS1 decreased the levels of Alk1 (activin receptor-like kinase 1), Cldn5 (claudin 5), Sox18 (SRY-box transcription factor 18), Robo4 (roundabout guidance receptor 4), Esm1 (endothelial cell specific molecule 1) and Kdr (kinase insert domain receptor), 6 important angiogenesis-relevant genes in endothelial cells, causing a coronary vasculature developmental defect in association with decreased compact zone cardiomyocyte proliferation. Downregulation of ALK1 expression in endocardium due to the loss of ETS1, along with the upregulation of TGF (transforming growth factor)-β1 and TGF-β3, occurred with increased TGFBR2/TGFBR1/SMAD2 signaling and increased extracellular matrix expression in the trabecular layer, in association with increased trabecular cardiomyocyte proliferation. CONCLUSIONS These results demonstrate the importance of endothelial and endocardial ETS1 in cardiac development. Delineation of the gene regulatory network involving ETS1 in heart development will enhance our understanding of the molecular mechanisms underlying ventricular and coronary vascular developmental defects and will lead to improved approaches for the treatment of patients with congenital heart disease.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Hui Qi
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
9
|
Chen X, Li W. Isoflucypram cardiovascular toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147529. [PMID: 33991914 DOI: 10.1016/j.scitotenv.2021.147529] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Isoflucypram belongs to the new generation of succinate dehydrogenase inhibitor (SDHI) fungicides that are commonly used in crop fungal disease control. Evidence indicates that isoflucypram poses a potential risk to aquatic organisms. However, the effects of isoflucypram during early embryogenesis are not fully understood. In the present study, zebrafish embryos were exposed to 0.025, 0.25, or 2.5 μM isoflucypram for three days. Isoflucypram caused severe developmental abnormalities (yolk sac edema, pericardial edema, and blood clotting clustering), hatching delay, and decreased heart rates in zebrafish. The expression levels of cardiac-specific genes (nkx2.5, myh7, myl7, and myh6) and erythropoiesis-related genes (gata1a, hbbe1, hbbe2, and alas2) were disrupted after isoflucypram exposure. Furthermore, enrichment analysis indicated that most of the differentially expressed genes (DEGs) were enriched in heart development or hemopoiesis processes. Overall, these findings suggest that exposure to isoflucypram is associated with developmental and cardiovascular toxicity in zebrafish.
Collapse
Affiliation(s)
- Xin Chen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Garry DJ, Garry MG. Interspecies chimeras as a platform for exogenic organ production and transplantation. Exp Biol Med (Maywood) 2021; 246:1838-1844. [PMID: 34165344 DOI: 10.1177/15353702211024948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic diseases are associated with considerable morbidity and mortality. Therefore, new therapeutic strategies are warranted. Here, we provide a brief review outlining the rationale and feasibility for the generation of intraspecies and interspecies chimeras, which one day may serve as a platform for organ transplantation. These strategies are further associated with consideration of scientific and ethical issues.
Collapse
Affiliation(s)
- Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN 55455, USA.,NorthStar Genomics, LLC, Eagan, MN 55122, USA
| | - Mary G Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN 55455, USA.,NorthStar Genomics, LLC, Eagan, MN 55122, USA
| |
Collapse
|
11
|
Quillien A, Gilbert G, Boulet M, Ethuin S, Waltzer L, Vandel L. Prmt5 promotes vascular morphogenesis independently of its methyltransferase activity. PLoS Genet 2021; 17:e1009641. [PMID: 34153034 PMCID: PMC8248709 DOI: 10.1371/journal.pgen.1009641] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/01/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
During development, the vertebrate vasculature undergoes major growth and remodeling. While the transcriptional cascade underlying blood vessel formation starts to be better characterized, little is known concerning the role and mode of action of epigenetic enzymes during this process. Here, we explored the role of the Protein Arginine Methyl Transferase Prmt5 in blood vessel formation as well as hematopoiesis using zebrafish as a model system. Through the combination of different prmt5 loss-of-function approaches we highlighted a key role of Prmt5 in both processes. Notably, we showed that Prmt5 promotes vascular morphogenesis through the transcriptional control of ETS transcription factors and adhesion proteins in endothelial cells. Interestingly, using a catalytic dead mutant of Prmt5 and a specific drug inhibitor, we found that while Prmt5 methyltransferase activity was required for blood cell formation, it was dispensable for vessel formation. Analyses of chromatin architecture impact on reporter genes expression and chromatin immunoprecipitation experiments led us to propose that Prmt5 regulates transcription by acting as a scaffold protein that facilitates chromatin looping to promote vascular morphogenesis. Blood vessel formation is an essential developmental process required for the survival of all vertebrates. The vascular anatomy and the mechanisms involved in vessel formation are highly conserved among vertebrates. Hence, we used zebrafish as a model, to decipher the role and the mode of action of Prmt5, an enzyme known to regulate gene expression, in vascular morphogenesis and in blood cell formation in vivo. Using different approaches, we highlighted a key role of Prmt5 during both processes. However, we found that while blood cell formation required Prmt5 enzymatic activity, vascular morphogenesis was independent on its activity. Prmt5 has been proposed as a therapeutic target in many diseases, including cancer. Yet, we show here that Prmt5 acts at least in part independently of its methyltransferase activity to regulate vascular morphogenesis. By shedding light on a mechanism of action of Prmt5 that will be insensitive to enzymatic inhibitors, our data calls forth the design of alternative drugs. In addition, this non-canonical function of Prmt5 may have a more pervasive role than previously thought in physiological conditions, i.e. during development, but also in pathological situations such as in tumor angiogenesis and certainly deserves more attention in the future.
Collapse
Affiliation(s)
- Aurélie Quillien
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- RESTORE, INSERM UMR1301, CNRS UMR5070, Université Paul Sabatier, Université de Toulouse, Toulouse, France
- * E-mail: (AQ); (LV)
| | - Guerric Gilbert
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Manon Boulet
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Séverine Ethuin
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lucas Waltzer
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
| | - Laurence Vandel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Université Clermont Auvergne, CNRS, INSERM, iGReD, Clermont-Ferrand, France
- * E-mail: (AQ); (LV)
| |
Collapse
|
12
|
Pak B, Schmitt CE, Choi W, Kim JD, Han O, Alsiö J, Jung DW, Williams DR, Coppieters W, Stainier DYR, Jin SW. Analyses of Avascular Mutants Reveal Unique Transcriptomic Signature of Non-conventional Endothelial Cells. Front Cell Dev Biol 2020; 8:589717. [PMID: 33330468 PMCID: PMC7719722 DOI: 10.3389/fcell.2020.589717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Christopher E. Schmitt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Woosoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Orjin Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jessica Alsiö
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Darren R. Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Wouter Coppieters
- Unit of Animal Genomics, Faculty of Veterinary Medicine, Interdisciplinary Institute of Applied Genomics (GIGA-R), University of Liège (B34), Liège, Belgium
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suk-Won Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
13
|
Differentially Expressed mRNAs and Their Long Noncoding RNA Regulatory Network with Helicobacter pylori-Associated Diseases including Atrophic Gastritis and Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3012193. [PMID: 33282942 PMCID: PMC7686847 DOI: 10.1155/2020/3012193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/28/2020] [Accepted: 10/31/2020] [Indexed: 02/08/2023]
Abstract
Background Helicobacter pylori (Hp) infection is the strongest risk factor for gastric cancer (GC). However, the mechanisms of Hp-associated GC remain to be explored. Methods The gene expression profiling (GSE111762) data were downloaded from the GEO database. Differentially expressed genes (DEGs) between normal samples (NO) and Hp-atrophic gastritis (GA) or Hp-GA and Hp-GC were identified by GEO2R. Gene Ontology and pathway enrichment analysis were performed using the DAVID database. lncRNA-TF-mRNA and ceRNA regulation networks were constructed using Cytoscape. The cross-networks were obtained by overlapping molecules of the above two networks. GSE27411 and GSE116312 datasets were employed for validation. Results DEGs between NO and Hp-GA are linked to the activity of inward rectifying potassium channels, digestion, etc. DEGs between Hp-GA and Hp-GC were associated with digestion, positive regulation of cell proliferation, etc. According to the lncRNA-TF-mRNA network, 63 lncRNAs, 12 TFs, and 209 mRNAs were involved in Hp-GA while 16 lncRNAs, 11 TFs, and 92 mRNAs were contained in the Hp-GC network. In terms of the ceRNA network, 120 mRNAs, 18 miRNAs, and 27 lncRNAs were shown in Hp-GA while 72 mRNAs, 8 miRNAs, and 1 lncRNA were included in the Hp-GC network. In the cross-network, we found that immune regulation and differentiation regulation were important in the process of NO-GA. Neuroendocrine regulation was mainly related to the process of GA-GC. In the end, we verified that CDX2 plays an important role in the pathological process of NO to Hp-GA. Comparing Hp-GA with Hp-GC, DEGs (FPR1, TFF2, GAST, SST, FUT9, and SHH), TF, and GATA5 were of great significance. Conclusions We identified the DEGs, and their lncRNA regulatory network of Hp-associated diseases might provide insights into the mechanism between Hp infection and GC. Furthermore, in-depth studies of the molecules might be useful to explore the multistep process of gastric diseases.
Collapse
|
14
|
Abstract
Vascularization is a major hurdle in complex tissue and organ engineering. Tissues greater than 200 μm in diameter cannot rely on simple diffusion to obtain nutrients and remove waste. Therefore, an integrated vascular network is required for clinical translation of engineered tissues. Microvessels have been described as <150 μm in diameter, but clinically they are defined as <1 mm. With new advances in super microsurgery, vessels less than 1 mm can be anastomosed to the recipient circulation. However, this technical advancement still relies on the creation of a stable engineered microcirculation that is amenable to surgical manipulation and is readily perfusable. Microvascular engineering lays on the crossroads of microfabrication, microfluidics, and tissue engineering strategies that utilize various cellular constituents. Early research focused on vascularization by co-culture and cellular interactions, with the addition of angiogenic growth factors to promote vascular growth. Since then, multiple strategies have been utilized taking advantage of innovations in additive manufacturing, biomaterials, and cell biology. However, the anatomy and dynamics of native blood vessels has not been consistently replicated. Inconsistent results can be partially attributed to cell sourcing which remains an enigma for microvascular engineering. Variations of endothelial cells, endothelial progenitor cells, and stem cells have all been used for microvascular network fabrication along with various mural cells. As each source offers advantages and disadvantages, there continues to be a lack of consensus. Furthermore, discord may be attributed to incomplete understanding about cell isolation and characterization without considering the microvascular architecture of the desired tissue/organ.
Collapse
|
15
|
Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish. Dev Biol 2020; 465:11-22. [PMID: 32628937 DOI: 10.1016/j.ydbio.2020.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
ETS transcription factors play an important role in the specification and differentiation of endothelial cells during vascular development. Despite previous studies, the role of the founding member of the ETS family, Ets1, in vascular development in vivo is only partially understood. Here, we generated a zebrafish ets1 mutant by TALEN genome editing and tested functional redundancy between Ets1 and a related ETS factor Etv2/Etsrp/ER71. While zebrafish ets1-/- mutants have a normal functional vascular system, etv2-/-;ets1-/embryos had more severe angiogenic defects and lower expression levels of kdr and kdrl, the two zebrafish homologs of the mammalian Vascular Endothelial Growth Factor Receptor 2 VEGFR2/Flk1, than etv2-/-embryos. Expression of constitutively active Mitogen-Activated Protein Kinase1 (MAP2K1) within endothelial cells partially rescued this angiogenic defect. Interestingly, ets1-/- embryos displayed extensive apoptosis within the trunk vasculature despite exhibiting normal vascular patterning. Loss of Ets1 combined with a partial knockdown of Etv2 function resulted in a decrease in endothelial cell numbers in the axial vasculature, which argues for a role of Ets1 in promoting vasculogenesis. We also demonstrate that although both Ets1 and Etv2 can induce ectopic vascular marker expression in zebrafish embryos, Ets1 activity is dependent on MAPK-mediated phosphorylation of its Thr30 and Ser33 residues, while Etv2 activity is not. Together, our results identify a novel function of Ets1 in regulating endothelial cell survival during vasculogenesis in vivo. Based on these findings, we propose a revised model of how Ets1 and Etv2 play unique and partially redundant roles to promote vascular development.
Collapse
Affiliation(s)
- Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
16
|
Chestnut B, Casie Chetty S, Koenig AL, Sumanas S. Single-cell transcriptomic analysis identifies the conversion of zebrafish Etv2-deficient vascular progenitors into skeletal muscle. Nat Commun 2020; 11:2796. [PMID: 32493965 PMCID: PMC7271194 DOI: 10.1038/s41467-020-16515-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 04/29/2020] [Indexed: 01/09/2023] Open
Abstract
Cell fate decisions involved in vascular and hematopoietic embryonic development are still poorly understood. An ETS transcription factor Etv2 functions as an evolutionarily conserved master regulator of vasculogenesis. Here we report a single-cell transcriptomic analysis of hematovascular development in wild-type and etv2 mutant zebrafish embryos. Distinct transcriptional signatures of different types of hematopoietic and vascular progenitors are identified using an etv2ci32Gt gene trap line, in which the Gal4 transcriptional activator is integrated into the etv2 gene locus. We observe a cell population with a skeletal muscle signature in etv2-deficient embryos. We demonstrate that multiple etv2ci32Gt; UAS:GFP cells differentiate as skeletal muscle cells instead of contributing to vasculature in etv2-deficient embryos. Wnt and FGF signaling promote the differentiation of these putative multipotent etv2 progenitor cells into skeletal muscle cells. We conclude that etv2 actively represses muscle differentiation in vascular progenitors, thus restricting these cells to a vascular endothelial fate.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Center for Cardiovascular Research, Washington University School of Medicine, 660S. Euclid Ave, St. Louis, MO, 63110, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
17
|
Menegatti S, de Kruijf M, Garcia‐Alegria E, Lacaud G, Kouskoff V. Transcriptional control of blood cell emergence. FEBS Lett 2019; 593:3304-3315. [PMID: 31432499 PMCID: PMC6916194 DOI: 10.1002/1873-3468.13585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023]
Abstract
The haematopoietic system is established during embryonic life through a series of developmental steps that culminates with the generation of haematopoietic stem cells. Characterisation of the transcriptional network that regulates blood cell emergence has led to the identification of transcription factors essential for this process. Among the many factors wired within this complex regulatory network, ETV2, SCL and RUNX1 are the central components. All three factors are absolutely required for blood cell generation, each one controlling a precise step of specification from the mesoderm germ layer to fully functional blood progenitors. Insight into the transcriptional control of blood cell emergence has been used for devising protocols to generate blood cells de novo, either through reprogramming of somatic cells or through forward programming of pluripotent stem cells. Interestingly, the physiological process of blood cell generation and its laboratory-engineered counterpart have very little in common.
Collapse
Affiliation(s)
- Sara Menegatti
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Marcel de Kruijf
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Eva Garcia‐Alegria
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology GroupCancer Research UK Manchester InstituteThe University of ManchesterMacclesfieldUK
| | - Valerie Kouskoff
- Developmental Haematopoiesis GroupFaculty of Biology, Medicine and Healththe University of ManchesterUK
| |
Collapse
|
18
|
Chestnut B, Sumanas S. Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Dev Dyn 2019; 249:245-261. [PMID: 31705559 DOI: 10.1002/dvdy.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/22/2019] [Accepted: 11/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND ETS transcription factor Etv2/Etsrp is one of the earliest markers for vascular and hematopoietic progenitors and functions as a key regulator of hematovascular development in multiple vertebrates, including zebrafish. Therefore, transgenic etv2 reporter lines provide a valuable tool to study vasculogenesis and hematopoiesis. However, previously generated zebrafish reporter lines do not fully recapitulate the endogenous pattern of etv2 expression. RESULTS Here we used CRISPR/Cas9-mediated homology-independent DNA repair approach to knock-in a Gal4 transcriptional activator into the zebrafish etv2 genomic locus, thus generating etv2 ci32Gt gene trap line. etv2 ci32Gt ; UAS:GFP embryos show GFP expression in vascular endothelial, myeloid and red blood cells. Because gal4 insertion interrupts the etv2 locus, homozygous etv2 ci32Gt embryos display defects in vasculogenesis and myelopoiesis, and enable visualizing etv2-deficient hematovascular progenitors in live embryos. Furthermore, we performed differential transcriptome analysis of sorted GFP-positive cells from heterozygous and homozygous etv2 ci32Gt embryos. Approximately 500 downregulated genes were identified in etv2 ci32Gt homozygous embryos, which include multiple genes expressed in vascular endothelial and myeloid cells. CONCLUSIONS The etv2 ci32Gt gene trap line and the data sets of misregulated genes will be valuable resources to study hematopoietic and vascular development.
Collapse
Affiliation(s)
- Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
19
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
20
|
Singh BN, Gong W, Das S, Theisen JWM, Sierra-Pagan JE, Yannopoulos D, Skie E, Shah P, Garry MG, Garry DJ. Etv2 transcriptionally regulates Yes1 and promotes cell proliferation during embryogenesis. Sci Rep 2019; 9:9736. [PMID: 31278282 PMCID: PMC6611806 DOI: 10.1038/s41598-019-45841-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.
Collapse
Affiliation(s)
- Bhairab N Singh
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Wuming Gong
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Javier E Sierra-Pagan
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Demetris Yannopoulos
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Erik Skie
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Pruthvi Shah
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mary G Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel J Garry
- Medicine Department and the Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA. .,Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, 55455, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Marass M, Beisaw A, Gerri C, Luzzani F, Fukuda N, Günther S, Kuenne C, Reischauer S, Stainier DYR. Genome-wide strategies reveal target genes of Npas4l associated with vascular development in zebrafish. Development 2019; 146:dev.173427. [PMID: 31097478 DOI: 10.1242/dev.173427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022]
Abstract
The development of a vascular network is essential to nourish tissues and sustain organ function throughout life. Endothelial cells (ECs) are the building blocks of blood vessels, yet our understanding of EC specification remains incomplete. Zebrafish cloche/npas4l mutants have been used broadly as an avascular model, but little is known about the molecular mechanisms of action of the Npas4l transcription factor. Here, to identify its direct and indirect target genes, we have combined complementary genome-wide approaches, including transcriptome analyses and chromatin immunoprecipitation. The cross-analysis of these datasets indicates that Npas4l functions as a master regulator by directly inducing a group of transcription factor genes that are crucial for hematoendothelial specification, such as etv2, tal1 and lmo2 We also identified new targets of Npas4l and investigated the function of a subset of them using the CRISPR/Cas9 technology. Phenotypic characterization of tspan18b mutants reveals a novel player in developmental angiogenesis, confirming the reliability of the datasets generated. Collectively, these data represent a useful resource for future studies aimed to better understand EC fate determination and vascular development.
Collapse
Affiliation(s)
- Michele Marass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Arica Beisaw
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Claudia Gerri
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Francesca Luzzani
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Nana Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Carsten Kuenne
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| |
Collapse
|
22
|
Pociute K, Schumacher JA, Sumanas S. Clec14a genetically interacts with Etv2 and Vegf signaling during vasculogenesis and angiogenesis in zebrafish. BMC DEVELOPMENTAL BIOLOGY 2019; 19:6. [PMID: 30953479 PMCID: PMC6451255 DOI: 10.1186/s12861-019-0188-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND C-lectin family 14 Member A (Clec14a) is a transmembrane protein specifically expressed in vascular endothelial cells during embryogenesis. Previous in vitro and in vivo studies have provided conflicting data regarding Clec14a role in promoting or inhibiting angiogenesis, therefore its functional role in vascular development remains poorly understood. RESULTS Here we have generated a novel clec14a mutant allele in zebrafish embryos using TALEN genome editing. clec14a mutant embryos exhibit partial defects and delay in the sprouting of intersegmental vessels. These defects in angiogenesis are greatly increased upon the knockdown of a structurally related C1qr protein. Furthermore, a partial knockdown of an ETS transcription factor Etv2 results in a synergistic effect with the clec14a mutation and inhibits expression of early vascular markers in endothelial progenitor cells, arguing that clec14a is involved in promoting vasculogenesis. In addition, Clec14a genetically interacts with Vegfa signaling. A partial knockdown of Vegfaa function in the clec14a mutant background resulted in a synergistic inhibition of intersegmental vessel sprouting. CONCLUSIONS These results argue that clec14a is involved in both vasculogenesis and angiogenesis, and suggest that Clec14a genetically interacts with Etv2 and Vegf signaling during vascular development in zebrafish embryos.
Collapse
Affiliation(s)
- Karolina Pociute
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Present Address: Vilnius University Life Sciences Center, Sauletekio 7, 10223, Vilnius, Lithuania
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA. .,Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Ave, Cincinnati, OH, 45229, USA.
| |
Collapse
|
23
|
Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol 2019; 38:e17-e24. [PMID: 29467221 DOI: 10.1161/atvbaha.118.310223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
The vascular system forms as a branching network of endothelial cells that acquire identity as arterial, venous, hemogenic, or lymphatic. Endothelial specification depends on gene targets transcribed by Ets domain-containing factors, including Ets variant gene 2 (Etv2), together with the activity of chromatin-remodeling complexes containing Brahma-related gene-1 (Brg1). Once specified and assembled into vessels, mechanisms regulating lumen diameter and axial growth ensure that the structure of the branching vascular network matches the need for perfusion of target tissues. In addition, blood vessels provide important morphogenic cues that guide or direct the development of organs forming around them. As the embryo grows and lumen diameters increase, smooth muscle cells wrap around the nascent vessel walls to provide mechanical strength and vasomotor control of the circulation. Increasing mechanical stretch and wall strain promote smooth muscle cell differentiation via coupling of actin cytoskeletal remodeling to myocardin and serum response factor-dependent transcription. Remodeling of artery walls by developmental signaling pathways reappears in postnatal blood vessels during physiological and pathological adaptation to vessel wall injury, inflammation, or chronic hypoxia. Recent reports providing insights into major steps in vascular development are reviewed here with a particular emphasis on studies that have been recently published in Arteriosclerosis, Thrombosis, and Vascular Biology.
Collapse
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
24
|
Zebrafish disease models in hematology: Highlights on biological and translational impact. Biochim Biophys Acta Mol Basis Dis 2018; 1865:620-633. [PMID: 30593895 DOI: 10.1016/j.bbadis.2018.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Zebrafish (Danio rerio) has proven to be a versatile and reliable in vivo experimental model to study human hematopoiesis and hematological malignancies. As vertebrates, zebrafish has significant anatomical and biological similarities to humans, including the hematopoietic system. The powerful genome editing and genome-wide forward genetic screening tools have generated models that recapitulate human malignant hematopoietic pathologies in zebrafish and unravel cellular mechanisms involved in these diseases. Moreover, the use of zebrafish models in large-scale chemical screens has allowed the identification of new molecular targets and the design of alternative therapies. In this review we summarize the recent achievements in hematological research that highlight the power of the zebrafish model for discovery of new therapeutic molecules. We believe that the model is ready to give an immediate translational impact into the clinic.
Collapse
|
25
|
Ton QV, Leino D, Mowery SA, Bredemeier NO, Lafontant PJ, Lubert A, Gurung S, Farlow JL, Foroud TM, Broderick J, Sumanas S. Collagen COL22A1 maintains vascular stability and mutations in COL22A1 are potentially associated with intracranial aneurysms. Dis Model Mech 2018; 11:11/12/dmm033654. [PMID: 30541770 PMCID: PMC6307901 DOI: 10.1242/dmm.033654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
Collagen XXII (COL22A1) is a quantitatively minor collagen, which belongs to the family of fibril-associated collagens with interrupted triple helices. Its biological function has been poorly understood. Here, we used a genome-editing approach to generate a loss-of-function mutant in zebrafish col22a1. Homozygous mutant adults exhibit increased incidence of intracranial hemorrhages, which become more prominent with age and after cardiovascular stress. Homozygous col22a1 mutant embryos show higher sensitivity to cardiovascular stress and increased vascular permeability, resulting in a greater percentage of embryos with intracranial hemorrhages. Mutant embryos also exhibit dilations and irregular structure of cranial vessels. To test whether COL22A1 is associated with vascular disease in humans, we analyzed data from a previous study that performed whole-exome sequencing of 45 individuals from seven families with intracranial aneurysms. The rs142175725 single-nucleotide polymorphism was identified, which segregated with the phenotype in all four affected individuals in one of the families, and affects a highly conserved E736 residue in COL22A1 protein, resulting in E736D substitution. Overexpression of human wild-type COL22A1, but not the E736D variant, partially rescued the col22a1 loss-of-function mutant phenotype in zebrafish embryos. Our data further suggest that the E736D mutation interferes with COL22A1 protein secretion, potentially leading to endoplasmic reticulum stress. Altogether, these results argue that COL22A1 is required to maintain vascular integrity. These data further suggest that mutations in COL22A1 could be one of the risk factors for intracranial aneurysms in humans. Summary: Collagen COL22A1 is expressed in perivascular fibroblast-like cells and is required to maintain vascular stability in a zebrafish model. Mutations in COL22A1 are likely to be associated with intracranial aneurysms.
Collapse
Affiliation(s)
- Quynh V Ton
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Leino
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sarah A Mowery
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nina O Bredemeier
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Allison Lubert
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Suman Gurung
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Janice L Farlow
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Tatiana M Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joseph Broderick
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA .,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
26
|
Sharma R, Gangwar SP, Saxena AK. Comparative structure analysis of the ETSi domain of ERG3 and its complex with the E74 promoter DNA sequence. Acta Crystallogr F Struct Biol Commun 2018; 74:656-663. [PMID: 30279318 PMCID: PMC6168766 DOI: 10.1107/s2053230x1801110x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/03/2018] [Indexed: 11/10/2022] Open
Abstract
ERG3 (ETS-related gene) is a member of the ETS (erythroblast transformation-specific) family of transcription factors, which contain a highly conserved DNA-binding domain. The ETS family of transcription factors differ in their binding to promoter DNA sequences, and the mechanism of their DNA-sequence discrimination is little known. In the current study, crystals of the ETSi domain (the ETS domain of ERG3 containing a CID motif) in space group P41212 and of its complex with the E74 DNA sequence (DNA9) in space group C2221 were obtained and their structures were determined. Comparative structure analysis of the ETSi domain and its complex with DNA9 with previously determined structures of the ERGi domain (the ETS domain of ERG containing inhibitory motifs) in space group P65212 and of the ERGi-DNA12 complex in space group P41212 were performed. The ETSi domain is observed as a homodimer in solution as well as in the crystallographic asymmetric unit. Superposition of the structure of the ETSi domain on that of the ERGi domain showed a major conformational change at the C-terminal DNA-binding autoinhibitory (CID) motif, while minor changes are observed in the loop regions of the ETSi-domain structure. The ETSi-DNA9 complex in space group C2221 forms a structure that is quite similar to that of the ERG-DNA12 complex in space group P41212. Upon superposition of the complexes, major conformational changes are observed at the 5' and 3' ends of DNA9, while the conformation of the core GGA nucleotides was quite conserved. Comparison of the ETSi-DNA9 structure with known structures of ETS class 1 protein-DNA complexes shows the similarities and differences in the promoter DNA binding and specificity of the class 1 ETS proteins.
Collapse
Affiliation(s)
- Ruby Sharma
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Shanti P. Gangwar
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Ajay K. Saxena
- Structural Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
27
|
Grajevskaja V, Camerota D, Bellipanni G, Balciuniene J, Balciunas D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018; 13:e0197293. [PMID: 29933372 PMCID: PMC6014646 DOI: 10.1371/journal.pone.0197293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Diana Camerota
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Jorune Balciuniene
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
28
|
Koyano-Nakagawa N, Garry DJ. Etv2 as an essential regulator of mesodermal lineage development. Cardiovasc Res 2018; 113:1294-1306. [PMID: 28859300 DOI: 10.1093/cvr/cvx133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
The 'master regulatory factors' that position at the top of the genetic hierarchy of lineage determination have been a focus of intense interest, and have been investigated in various systems. Etv2/Etsrp71/ER71 is such a factor that is both necessary and sufficient for the development of haematopoietic and endothelial lineages. As such, genetic ablation of Etv2 leads to complete loss of blood and vessels, and overexpression can convert non-endothelial cells to the endothelial lineage. Understanding such master regulatory role of a lineage is not only a fundamental quest in developmental biology, but also holds immense possibilities in regenerative medicine. To harness its activity and utility for therapeutic interventions, it is essential to understand the regulatory mechanisms, molecular function, and networks that surround Etv2. In this review, we provide a comprehensive overview of Etv2 biology focused on mouse and human systems.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, 2231 6th st. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
29
|
Davis JA, Koenig AL, Lubert A, Chestnut B, Liu F, Palencia Desai S, Winkler T, Pociute K, Choi K, Sumanas S. ETS transcription factor Etsrp / Etv2 is required for lymphangiogenesis and directly regulates vegfr3 / flt4 expression. Dev Biol 2018; 440:40-52. [PMID: 29753018 DOI: 10.1016/j.ydbio.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/27/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
The molecular mechanisms initiating the formation of the lymphatic system, lymphangiogenesis, are still poorly understood. Here we have identified a novel role in lymphangiogenesis for an ETS transcription factor, Etv2/Etsrp, a known regulator of embryonic vascular development. Through the use of fully validated photoactivatable morpholinos we show that inducible Etv2 inhibition in zebrafish embryos at 1 day post-fertilization (dpf) results in significant inhibition of lymphangiogenesis, while development of blood vessels is unaffected. In Etv2-inhibited embryos and larvae, the number of lymphatic progenitors is greatly reduced, the major lymphatic vessel, the thoracic duct, is absent or severely fragmented, and lymphangiogenesis-associated marker expression, including lyve1b, prox1a, and vegfr3/flt4, is strongly downregulated. We also demonstrate that lymphatic progenitors in Etv2 deficient embryos fail to respond to Vegfc signaling. Chromatin immunoprecipitation and sequencing (ChIP-Seq) studies using differentiated mouse embryonic stem (ES) cells as well as luciferase reporter studies in the ES cells and in zebrafish embryos argue that Etv2 directly binds the promoter/enhancer regions of Vegfc receptor Vegfr3/Flt4 and lymphatic marker Lyve1, and promotes their expression. Together these data support a model where Etv2 initiates lymphangiogenesis by directly promoting the expression of flt4 within the posterior cardinal vein.
Collapse
Affiliation(s)
- Jennifer A Davis
- Cancer&Blood Disease Institute, Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Andrew L Koenig
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Allison Lubert
- Cancer&Blood Disease Institute, Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brendan Chestnut
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fang Liu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharina Palencia Desai
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tamara Winkler
- Cancer&Blood Disease Institute, Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Karolina Pociute
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA; Graduate School of Biotechnology, Kyung Hee University, Yong In, South Korea
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Abstract
Photoactivatable morpholinos (MO) allow specific temporal and spatial inhibition of gene function, which is not possible with conventional morpholino or genetic global gene knock-out approaches. Here, we describe an application of commercially available photoactivatable MO technology for specific gene inhibition in a zebrafish embryonic model and discuss the required controls related to the specificity and efficacy of this method. A similar approach should be also applicable to other model organisms.
Collapse
Affiliation(s)
- Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45230, USA.
| |
Collapse
|
31
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
32
|
Takada N, Omae M, Sagawa F, Chi NC, Endo S, Kozawa S, Sato TN. Re-evaluating the functional landscape of the cardiovascular system during development. Biol Open 2017; 6:1756-1770. [PMID: 28982700 PMCID: PMC5703621 DOI: 10.1242/bio.030254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cardiovascular system facilitates body-wide distribution of oxygen, a vital process for the development and survival of virtually all vertebrates. However, the zebrafish, a vertebrate model organism, appears to form organs and survive mid-larval periods without a functional cardiovascular system. Despite such dispensability, it is the first organ to develop. Such enigma prompted us to hypothesize other cardiovascular functions that are important for developmental and/or physiological processes. Hence, systematic cellular ablations and functional perturbations were performed on the zebrafish cardiovascular system to gain comprehensive and body-wide understanding of such functions and to elucidate the underlying mechanisms. This approach identifies a set of organ-specific genes, each implicated for important functions. The study also unveils distinct cardiovascular mechanisms, each differentially regulating their expressions in organ-specific and oxygen-independent manners. Such mechanisms are mediated by organ-vessel interactions, circulation-dependent signals, and circulation-independent beating-heart-derived signals. A comprehensive and body-wide functional landscape of the cardiovascular system reported herein may provide clues as to why it is the first organ to develop. Furthermore, these data could serve as a resource for the study of organ development and function. Summary: The body-wide landscape of the cardiovascular functions during development is reported. Such landscape may provide clues as to why the cardiovascular system is the first organ to develop.
Collapse
Affiliation(s)
- Norio Takada
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Madoka Omae
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan.,Kyoto University, Graduate School of Biostudies, Kyoto 606-8303, Japan
| | - Fumihiko Sagawa
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Neil C Chi
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0613J, USA
| | - Satsuki Endo
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Satoshi Kozawa
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan.,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Thomas N Sato
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0288, Japan .,ERATO Sato Live Bio-Forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan.,Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.,Centenary Institute, Sydney 2042, Australia
| |
Collapse
|
33
|
Dang LTH, Aburatani T, Marsh GA, Johnson BG, Alimperti S, Yoon CJ, Huang A, Szak S, Nakagawa N, Gomez I, Ren S, Read SK, Sparages C, Aplin AC, Nicosia RF, Chen C, Ligresti G, Duffield JS. Hyperactive FOXO1 results in lack of tip stalk identity and deficient microvascular regeneration during kidney injury. Biomaterials 2017; 141:314-329. [PMID: 28711779 DOI: 10.1016/j.biomaterials.2017.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Loss of the microvascular (MV) network results in tissue ischemia, loss of tissue function, and is a hallmark of chronic diseases. The incorporation of a functional vascular network with that of the host remains a challenge to utilizing engineered tissues in clinically relevant therapies. We showed that vascular-bed-specific endothelial cells (ECs) exhibit differing angiogenic capacities, with kidney microvascular endothelial cells (MVECs) being the most deficient, and sought to explore the underlying mechanism. Constitutive activation of the phosphatase PTEN in kidney MVECs resulted in impaired PI3K/AKT activity in response to vascular endothelial growth factor (VEGF). Suppression of PTEN in vivo resulted in microvascular regeneration, but was insufficient to improve tissue function. Promoter analysis of the differentially regulated genes in KMVECs suggests that the transcription factor FOXO1 is highly active and RNAseq analysis revealed that hyperactive FOXO1 inhibits VEGF-Notch-dependent tip-cell formation by direct and indirect inhibition of DLL4 expression in response to VEGF. Inhibition of FOXO1 enhanced angiogenesis in human bio-engineered capillaries, and resulted in microvascular regeneration and improved function in mouse models of injury-repair.
Collapse
Affiliation(s)
- Lan T H Dang
- Research & Development, Biogen, Cambridge, MA, USA.
| | - Takahide Aburatani
- Division of Nephrology, Departments of Medicine & Pathology, University of Washington, Seattle, USA; Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | - Angela Huang
- Research & Development, Biogen, Cambridge, MA, USA
| | - Suzanne Szak
- Research & Development, Biogen, Cambridge, MA, USA
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine & Pathology, University of Washington, Seattle, USA; Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Ivan Gomez
- Research & Development, Biogen, Cambridge, MA, USA
| | - Shuyu Ren
- Research & Development, Biogen, Cambridge, MA, USA
| | - Sarah K Read
- Research & Development, Biogen, Cambridge, MA, USA
| | | | - Alfred C Aplin
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Roberto F Nicosia
- Department of Pathology, University of Washington, Seattle, WA, USA; Pathology and Laboratory Medicine Service, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Chris Chen
- Department of Bioengineering, Boston University, Boston, USA
| | | | - Jeremy S Duffield
- Research & Development, Biogen, Cambridge, MA, USA; Division of Nephrology, Departments of Medicine & Pathology, University of Washington, Seattle, USA; Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
34
|
ETV-2 activated proliferation of endothelial cells and attenuated acute hindlimb ischemia in mice. In Vitro Cell Dev Biol Anim 2017; 53:616-625. [DOI: 10.1007/s11626-017-0151-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
|
35
|
Casie Chetty S, Rost MS, Enriquez JR, Schumacher JA, Baltrunaite K, Rossi A, Stainier DYR, Sumanas S. Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression. Dev Biol 2017; 424:147-161. [PMID: 28279709 DOI: 10.1016/j.ydbio.2017.03.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/28/2017] [Accepted: 03/05/2017] [Indexed: 01/24/2023]
Abstract
Vasculogenesis involves the differentiation of vascular endothelial progenitors de novo from undifferentiated mesoderm, their migration and coalescence to form the major embryonic vessels and the acquisition of arterial or venous identity. Vascular Endothelial Growth Factor (Vegf) signaling plays multiple roles during vascular development. However, its function during embryonic vasculogenesis has been controversial. Previous studies have implicated Vegf signaling in either regulating arteriovenous specification or overall vascular endothelial differentiation. To clarify the role of Vegf in embryonic vasculogenesis and identify its downstream targets, we used chemical inhibitors of Vegf receptor (Vegfr) signaling in zebrafish embryos as well as zebrafish genetic mutants. A high level of chemical inhibition of Vegfr signaling resulted in the reduction of overall vascular endothelial marker gene expression, including downregulation of both arterial and venous markers, ultimately leading to the apoptosis of vascular endothelial cells. In contrast, a low level of Vegfr inhibition specifically blocked arterial specification while the expression of venous markers appeared largely unaffected or increased. Inhibition of Vegfr signaling prior to the initiation of vasculogenesis reduced overall vascular endothelial differentiation, while inhibition of Vegfr signaling starting at mid-somitogenesis stages largely inhibited arterial specification. Conversely, Vegf overexpression resulted in the expansion of both arterial and pan-endothelial markers, while the expression of several venous-specific markers was downregulated. We further show that Vegf signaling affects overall endothelial differentiation by modulating the expression of the ETS transcription factor etv2/ etsrp. etv2 expression was downregulated in Vegfr- inhibited embryos, and expanded in Vegfaa-overexpressing embryos. Furthermore, vascular-specific overexpression of etv2 in Vegfr-inhibited embryos rescued defects in vascular endothelial differentiation. Similarly, vegfaa genetic mutants displayed a combination of the two phenotypes observed with chemical Vegfr inhibition: the expression of arterial and pan-endothelial markers including etv2 was downregulated while the expression of most venous markers was either expanded or unchanged. Based on these results we propose a revised model which explains the different phenotypes observed upon inhibition of Vegf signaling: low levels of Vegf signaling promote overall vascular endothelial differentiation and cell survival by upregulating etv2 expression, while high levels of Vegf signaling promote arterial and inhibit venous specification.
Collapse
Affiliation(s)
- Satish Casie Chetty
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Megan S Rost
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Jacob Ryan Enriquez
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Jennifer A Schumacher
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Kristina Baltrunaite
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | - Andrea Rossi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, Bad Nauheim 61231, Germany
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA.
| |
Collapse
|
36
|
ETS transcription factors Etv2 and Fli1b are required for tumor angiogenesis. Angiogenesis 2017; 20:307-323. [PMID: 28108843 DOI: 10.1007/s10456-017-9539-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/01/2017] [Indexed: 10/20/2022]
Abstract
ETS transcription factor ETV2/Etsrp functions as a key regulator of embryonic vascular development in multiple vertebrates. However, its role in pathological vascular development has not been previously investigated. To analyze its role in tumor angiogenesis, we utilized a zebrafish xenotransplantation model. Using a photoconvertible kdrl:NLS-KikGR line, we demonstrated that all tumor vessels originate from the existing embryonic vasculature by the mechanism of angiogenesis. Xenotransplantation of mouse B16 melanoma cells resulted in a significant increase in expression of the ETS transcription factors etv2 and fli1b expression throughout the embryonic vasculature. etv2 null mutants which undergo significant recovery of embryonic angiogenesis during later developmental stages displayed a strong inhibition of tumor angiogenesis. We utilized highly specific and fully validated photoactivatable morpholinos to inhibit Etv2 function after embryonic vasculogenesis has completed. Inducible inhibition of Etv2 function resulted in a significant reduction of tumor angiogenesis and inhibition of tumor growth. Furthermore, inducible inhibition of Etv2 function in fli1b mutant embryos resulted in even stronger reduction in tumor angiogenesis and growth, demonstrating that Etv2 and Fli1b have a partially redundant requirement during tumor angiogenesis. These results demonstrate the requirement for Etv2 and Fli1b in tumor angiogenesis and suggest that inhibition of these ETS factors may present a novel strategy to inhibit tumor angiogenesis and reduce tumor growth.
Collapse
|
37
|
Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia. Stem Cell Res Ther 2016; 7:104. [PMID: 27488544 PMCID: PMC4973107 DOI: 10.1186/s13287-016-0368-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/18/2016] [Indexed: 12/22/2022] Open
Abstract
Background Endothelial progenitor cell (EPC) transplantation is a promising therapy for ischemic diseases such as ischemic myocardial infarction and hindlimb ischemia. However, limitation of EPC sources remains a major obstacle. Direct reprogramming has become a powerful tool to produce EPCs from fibroblasts. Some recent efforts successfully directly reprogrammed human fibroblasts into functional EPCs; however, the procedure efficacy was low. This study therefore aimed to improve the efficacy of direct reprogramming of human fibroblasts to functional EPCs. Methods Human fibroblasts isolated from foreskin were directly reprogrammed into EPCs by viral ETV2 transduction. Reprogramming efficacy was improved by culturing transduced fibroblasts in hypoxia conditions (5 % oxygen). Phenotype analyses confirmed that single-factor ETV2 transduction successfully reprogrammed dermal fibroblasts into functional EPCs. Results Hypoxia treatment during the reprogramming procedure increased the efficacy of reprogramming from 1.21 ± 0.61 % in normoxia conditions to 7.52 ± 2.31 % in hypoxia conditions. Induced EPCs in hypoxia conditions exhibited functional EPC phenotypes similar to those in normoxia conditions, such as expression of CD31 and VEGFR2, and expressed endothelial gene profiles similar to human umbilical vascular endothelial cells. These cells also formed capillary-like networks in vitro. Conclusion Our study demonstrates a new simple method to increase the reprogramming efficacy of human fibroblasts to EPCs using ETV2 and hypoxia.
Collapse
|
38
|
The endoderm indirectly influences morphogenetic movements of the zebrafish head kidney through the posterior cardinal vein and VegfC. Sci Rep 2016; 6:30677. [PMID: 27477767 PMCID: PMC4967926 DOI: 10.1038/srep30677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Integration of blood vessels and organ primordia determines organ shape and function. The head kidney in the zebrafish interacts with the dorsal aorta (DA) and the posterior cardinal vein (PCV) to achieve glomerular filtration and definitive hematopoiesis, respectively. How the head kidney co-develops with both the axial artery and vein remains unclear. We found that in endodermless sox32-deficient embryos, the head kidney associated with the PCV but not the DA. Disrupted convergent migration of the PCV and the head kidney in sox32-deficient embryos was rescued in a highly coordinated fashion through the restoration of endodermal cells. Moreover, grafted endodermal cells abutted the host PCV endothelium in the transplantation assay. Interestingly, the severely-disrupted head kidney convergence in the sox32-deficient embryo was suppressed by both the cloche mutation and the knockdown of endothelial genes, indicating that an interaction between the endoderm and the PCV restricts the migration of the head kidney. Furthermore, knockdown of either vegfC or its receptor vegfr3 suppressed the head kidney convergence defect in endodermless embryos and perturbed the head kidney-PCV association in wild-type embryos. Our findings thus underscore a role for PCV and VegfC in patterning the head kidney prior to organ assembly and function.
Collapse
|
39
|
Xie H, Ye D, Sepich D, Lin F. S1pr2/Gα13 signaling regulates the migration of endocardial precursors by controlling endoderm convergence. Dev Biol 2016; 414:228-43. [PMID: 27158029 DOI: 10.1016/j.ydbio.2016.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/09/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
Abstract
Formation of the heart tube requires synchronized migration of endocardial and myocardial precursors. Our previous studies indicated that in S1pr2/Gα13-deficient embryos, impaired endoderm convergence disrupted the medial migration of myocardial precursors, resulting in the formation of two myocardial populations. Here we show that endoderm convergence also regulates endocardial migration. In embryos defective for S1pr2/Gα13 signaling, endocardial precursors failed to migrate towards the midline, and the presumptive endocardium surrounded the bilaterally-located myocardial cells rather than being encompassed by them. In vivo imaging of control embryos revealed that, like their myocardial counterparts, endocardial precursors migrated with the converging endoderm, though from a more anterior point, then moved from the dorsal to the ventral side of the endoderm (subduction), and finally migrated posteriorly towards myocardial precursors, ultimately forming the inner layer of the heart tube. In embryos defective for endoderm convergence due to an S1pr2/Gα13 deficiency, both the medial migration and the subduction of endocardial precursors were impaired, and their posterior migration towards the myocardial precursors was premature. This placed them medial to the myocardial populations, physically blocking the medial migration of the myocardial precursors. Furthermore, contact between the endocardial and myocardial precursor populations disrupted the epithelial architecture of the myocardial precursors, and thus their medial migration; in embryos depleted of endocardial cells, the myocardial migration defect was partially rescued. Our data indicate that endoderm convergence regulates the medial migration of endocardial precursors, and that premature association of the endocardial and myocardial populations contributes to myocardial migration defects observed in S1pr2/Gα13-deficient embryos. The demonstration that endoderm convergence regulates the synchronized migration of endocardial and myocardial precursors reveals a new role of the endoderm in heart development.
Collapse
Affiliation(s)
- Huaping Xie
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA
| | - Ding Ye
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Diane Sepich
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, 1-400 Bowen Science Building, 51 N Road, Iowa City, IA 52242-1109, USA.
| |
Collapse
|
40
|
Yamamizu K, Sharov AA, Piao Y, Amano M, Yu H, Nishiyama A, Dudekula DB, Schlessinger D, Ko MSH. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines. Sci Rep 2016; 6:25667. [PMID: 27150017 PMCID: PMC4858678 DOI: 10.1038/srep25667] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/21/2016] [Indexed: 11/22/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
Collapse
Affiliation(s)
- Kohei Yamamizu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yulan Piao
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Misa Amano
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hong Yu
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Akira Nishiyama
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Dawood B Dudekula
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Department of Systems Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
41
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
42
|
The LIM-homeodomain transcription factor Islet2a promotes angioblast migration. Dev Biol 2016; 414:181-92. [PMID: 27126199 DOI: 10.1016/j.ydbio.2016.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 03/25/2016] [Accepted: 04/24/2016] [Indexed: 02/04/2023]
Abstract
Angioblasts of the developing vascular system require many signaling inputs to initiate their migration, proliferation and differentiation into endothelial cells. What is less studied is which intrinsic cell factors interpret these extrinsic signals. Here, we show the Lim homeodomain transcription factor islet2a (isl2a) is expressed in the lateral posterior mesoderm prior to angioblast migration. isl2a deficient angioblasts show disorganized migration to the midline to form axial vessels and fail to spread around the tailbud of the embryo. Isl2a morphants have fewer vein cells and decreased vein marker expression. We demonstrate that isl2a is required cell autonomously in angioblasts to promote their incorporation into the vein, and is permissive for vein identity. Knockout of isl2a results in decreased migration and proliferation of angioblasts during intersegmental artery growth. Since Notch signaling controls both artery-vein identity and tip-stalk cell formation, we explored the interaction of isl2a and Notch. We find that isl2a expression is negatively regulated by Notch activity, and that isl2a positively regulates flt4, a VEGF-C receptor repressed by Notch during angiogenesis. Thus Isl2a may act as an intermediate between Notch signaling and genetic programs controlling angioblast number and migration, placing it as a novel transcriptional regulator of early angiogenesis.
Collapse
|
43
|
Sumanas S, Choi K. ETS Transcription Factor ETV2/ER71/Etsrp in Hematopoietic and Vascular Development. Curr Top Dev Biol 2016; 118:77-111. [PMID: 27137655 DOI: 10.1016/bs.ctdb.2016.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective establishment of the hematopoietic and vascular systems is prerequisite for successful embryogenesis. The ETS transcription factor Etv2 has proven to be essential for hematopoietic and vascular development. Etv2 expression marks the onset of the hematopoietic and vascular development and its deficiency leads to an absolute block in hematopoietic and vascular development. Etv2 is transiently expressed during development and is mainly expressed in testis in adults. Consistent with its expression pattern, Etv2 is transiently required for the generation of the optimal levels of the hemangiogenic cell population. Deletion of this gene after the hemangiogenic progenitor formation leads to normal hematopoietic and vascular development. Mechanistically, ETV2 induces the hemangiogenic program by activating blood and endothelial cell lineage specifying genes and enhancing VEGF signaling. Moreover, ETV2 establishes an ETS hierarchy by directly activating other Ets genes, which in the face of transient Etv2 expression, presumably maintain blood and endothelial cell program initiated by ETV2 through an ETS switching mechanism. Current studies suggest that the hemangiogenic progenitor population is exclusively sensitive to ETV2-dependent FLK1 signaling. Any perturbation in the ETV2, VEGF, and FLK1 balance causing insufficient hemangiogenic progenitor cell generation would lead to defects in hematopoietic and endothelial cell development.
Collapse
Affiliation(s)
- S Sumanas
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - K Choi
- Washington University, School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
44
|
Hou C, Tsodikov OV. Structural Basis for Dimerization and DNA Binding of Transcription Factor FLI1. Biochemistry 2015; 54:7365-74. [PMID: 26618620 DOI: 10.1021/acs.biochem.5b01121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FLI1 (Friend leukemia integration 1) is a metazoan transcription factor that is upregulated in a number of cancers. In addition, rearrangements of the fli1 gene cause sarcomas, leukemias, and lymphomas. These rearrangements encode oncogenic transcription factors, in which the DNA binding domain (DBD or ETS domain) of FLI1 on the C-terminal side is fused to a part of an another protein on the N-terminal side. Such abnormal cancer cell-specific fusions retain the DNA binding properties of FLI1 and acquire non-native protein-protein or protein-nucleic acid interactions of the substituted region. As a result, these fusions trigger oncogenic transcriptional reprogramming of the host cell. Interactions of FLI1 fusions with other proteins and with itself play a critical role in the oncogenic regulatory functions, and they are currently under intense scrutiny, mechanistically and as potential novel anticancer drug targets. We report elusive crystal structures of the FLI1 DBD, alone and in complex with cognate DNA containing a GGAA recognition sequence. Both structures reveal a previously unrecognized dimer of this domain, consistent with its dimerization in solution. The homodimerization interface is helix-swapped and dominated by hydrophobic interactions, including those between two interlocking Phe362 residues. A mutation of Phe362 to an alanine disrupted the propensity of this domain to dimerize without perturbing its structure or the DNA binding function, consistent with the structural observations. We propose that FLI1 DBD dimerization plays a role in transcriptional activation and repression by FLI1 and its fusions at promoters containing multiple FLI1 binding sites.
Collapse
Affiliation(s)
- Caixia Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky , 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
45
|
Oh SY, Kim JY, Park C. The ETS Factor, ETV2: a Master Regulator for Vascular Endothelial Cell Development. Mol Cells 2015; 38:1029-36. [PMID: 26694034 PMCID: PMC4696993 DOI: 10.14348/molcells.2015.0331] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/15/2023] Open
Abstract
Appropriate vessel development and its coordinated function is essential for proper embryogenesis and homeostasis in the adult. Defects in vessels cause birth defects and are an important etiology of diseases such as cardiovascular disease, tumor and diabetes retinopathy. The accumulative data indicate that ETV2, an ETS transcription factor, performs a potent and indispensable function in mediating vessel development. This review discusses the recent progress of the study of ETV2 with special focus on its regulatory mechanisms and cell fate determining role in developing mouse embryos as well as somatic cells.
Collapse
Affiliation(s)
- Se-Yeong Oh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
| | - Ju Young Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
| | - Changwon Park
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA,
USA
- Children’s Heart Research and Outcomes Center, Emory University School of Medicine, Atlanta, GA,
USA
- Molecular and Systems Pharmacology Program, Emory University School of Medicine, Atlanta, GA,
USA
- Biochemistry, Cell Biology and Developmental Biology Program, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|
46
|
Park C, Lee TJ, Bhang SH, Liu F, Nakamura R, Oladipupo SS, Pitha-Rowe I, Capoccia B, Choi HS, Kim TM, Urao N, Ushio-Fukai M, Lee DJ, Miyoshi H, Kim BS, Lim DS, Apte RS, Ornitz DM, Choi K. Injury-Mediated Vascular Regeneration Requires Endothelial ER71/ETV2. Arterioscler Thromb Vasc Biol 2015; 36:86-96. [PMID: 26586661 DOI: 10.1161/atvbaha.115.306430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/07/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Comprehensive understanding of the mechanisms regulating angiogenesis might provide new strategies for angiogenic therapies for treating diverse physiological and pathological ischemic conditions. The E-twenty six (ETS) factor Ets variant 2 (ETV2; aka Ets-related protein 71) is essential for the formation of hematopoietic and vascular systems. Despite its indispensable function in vessel development, ETV2 role in adult angiogenesis has not yet been addressed. We have therefore investigated the role of ETV2 in vascular regeneration. APPROACH AND RESULTS We used endothelial Etv2 conditional knockout mice and ischemic injury models to assess the role of ETV2 in vascular regeneration. Although Etv2 expression was not detectable under steady-state conditions, its expression was readily observed in endothelial cells after injury. Mice lacking endothelial Etv2 displayed impaired neovascularization in response to eye injury, wounding, or hindlimb ischemic injury. Lentiviral Etv2 expression in ischemic hindlimbs led to improved recovery of blood perfusion with enhanced vessel formation. After injury, fetal liver kinase 1 (Flk1), aka VEGFR2, expression and neovascularization were significantly upregulated by Etv2, whereas Flk1 expression and vascular endothelial growth factor response were significantly blunted in Etv2-deficient endothelial cells. Conversely, enforced Etv2 expression enhanced vascular endothelial growth factor-mediated endothelial sprouting from embryoid bodies. Lentiviral Flk1 expression rescued angiogenesis defects in endothelial Etv2 conditional knockout mice after hindlimb ischemic injury. Furthermore, Etv2(+/-); Flk1(+/-) double heterozygous mice displayed a more severe hindlimb ischemic injury response compared with Etv2(+/-) or Flk1(+/-) heterozygous mice, revealing an epistatic interaction between ETV2 and FLK1 in vascular regeneration. CONCLUSIONS Our study demonstrates a novel obligatory role for the ETV2 in postnatal vascular repair and regeneration.
Collapse
Affiliation(s)
- Changwon Park
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae-Jin Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Suk Ho Bhang
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Fang Liu
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rei Nakamura
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Sunday S Oladipupo
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Ian Pitha-Rowe
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Benjamin Capoccia
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hong Seo Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Tae Min Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Norifumi Urao
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Masuko Ushio-Fukai
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dong Jun Lee
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Hiroyuki Miyoshi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Byung-Soo Kim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Dae-Sik Lim
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Rajendra S Apte
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - David M Ornitz
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| | - Kyunghee Choi
- Department of Pediatrics (C.P., H.S.C.), Children's Heart Research and Outcomes Center (C.P.), Molecular and Systems Pharmacology Program (C.P.), Emory University School of Medicine, Atlanta; Department of Pharmacology, College of Medicine, University of Illinois at Chicago, IL (T.M.K., N.U., M.U-F.); School of Chemical Engineering, Sungkyunkwan University, Korea (S.H.B.); School of Chemical and Biological Engineering, Seoul National University, Seoul, Korea (B-S.K.); Korea Advanced Institute of Science and Technology, Korea (D.J.L., D-S.L.); RIKEN BioResource Center, Japan (H.M.); the Departments of Pathology and Immunology (T-J.L., F.L., K.C.), Ophthalmology and Visual Sciences (R.N., I.P-R., R.S.A.), Developmental Biology (S.S.O., D.M.O.), Biochemistry and Molecular Biophysics (B. C.), Developmental, Regenerative, and Stem cell Biology Program (D.M.O., R.S.A., K.C.), Washington University School of Medicine, MO
| |
Collapse
|