1
|
Charach L, Spitzer A, Zusmanovitch L, Charach G. Lymphocyte to White Blood Cell Count Ratio an Independent Risk Factor for Heart Failure. Life (Basel) 2024; 14:1266. [PMID: 39459566 PMCID: PMC11509067 DOI: 10.3390/life14101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Heart failure affects 1-2% of the population in developed countries. Hemogram biomarkers are cheap, rapid, readily accessible and are known to have prognostic benefit in cardiovascular, infectious and oncologic diseases. METHODS The aim of the current study is to evaluate lymphocyte-to-white-blood-cell ratio (LWR) as a prognostic predictor in patients with heart failure. Patients with heart failure were recruited between January 2000 and July 2001. Exclusion criteria included metastatic malignancy, exposure to chemotherapy, radiotherapy or medications known to affect complete blood count. RESULTS 338 patients were enrolled, 33 were excluded. Mean age was 70.1 ± 10.8, 225 patients were male (73%) and 80 were female (27%). All patients were divided into three groups according to LWR. Group 1 < 0.2, group 2-0.2 < LWR < 0.35 and group 3 > 0.35. Patients with LWR ratio < 0.2 had the poorest survival while patients in the highest LWR (ratio > 0.35) had the best long-term survival. CONCLUSIONS Patients with congestive heart failure and LWR < 0.2 showed significant increased mortality. LWR was shown as independent prognostic predictor for HF patients compared to other main outcome parameters, including CRP, NYHA, EF and LDL.
Collapse
Affiliation(s)
- Lior Charach
- Division of Gastroenterology, Laniado Medical Center, Netanya 4244916, Israel
| | - Avishay Spitzer
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv 6423906, Israel
| | | | - Gideon Charach
- Holon Institute of Technology Israel, Holon 5810201, Israel
| |
Collapse
|
2
|
Konuş AH, Özderya A, Çırakoğlu ÖF, Sayın MR, Yerlikaya MG. The relationship between advanced lung cancer inflammation index and high SYNTAX score in patients with non-ST-elevation myocardial infarction. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2024; 20:277-284. [PMID: 39464597 PMCID: PMC11506407 DOI: 10.5114/aic.2024.142239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction The advanced lung cancer inflammation index (ALI) is an independent prognostic biomarker of inflammation and nutrition in various types of cancer, acute heart failure and acute coronary syndrome. The SYNTAX (Synergy between Percutaneous Coronary Intervention with TAXUS and Cardiac Surgery) score (SXscore) is an angiographic scoring tool used to determine the extent and severity of coronary artery disease. Aim To investigate the relationship between ALI and coronary artery lesion complexity assessed using the SXscore in patients with non-ST-segment elevation myocardial infarction (NSTEMI). Material and methods Between February and November 2020, a total of 284 patients with NSTEMI were included consecutively. ALI was calculated with the formula body mass index (BMI) × serum albumin concentration/neutrophil-to-lymphocyte ratio (NLR). SXscore was calculated using the online calculator and divided into two groups - low (< 32) and high (≥ 33) - and then analyzed. Results Patients with a high SXscore had lower ALI (22.4 ±7.3 vs. 58.5 ±44.3, p = 0.016). In the univariable analysis, age (p = 0.046), BMI (p = 0.021), C-reactive protein (p = 0.002), peak troponin I (p = 0.009), NLR (p = 0.025), serum albumin (p = 0.003) and ALI (p < 0.001) were significantly associated with a high SXscore. ALI emerged as an independent predictor of a high SXscore in multivariable analysis (95% CI: 0.931-0.984, p = 0.002). Conclusions The ALI may be useful as a simple tool for predicting high SXscore in patients with NSTEMI. To our knowledge, this is the first study to examine the relationship between ALI and severity of CAD.
Collapse
Affiliation(s)
- Ali Hakan Konuş
- University of Health Sciences, Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Education and Hospital, Trabzon, Turkey
| | - Ahmet Özderya
- University of Health Sciences, Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Education and Hospital, Trabzon, Turkey
| | - Ömer Faruk Çırakoğlu
- University of Health Sciences, Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Education and Hospital, Trabzon, Turkey
| | - Muhammet Raşit Sayın
- University of Health Sciences, Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Education and Hospital, Trabzon, Turkey
| | - Murat Gökhan Yerlikaya
- University of Health Sciences, Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Education and Hospital, Trabzon, Turkey
| |
Collapse
|
3
|
Tang MY, Xie H, Tao JT, Zhang C, Luo YH, Zhang C, Peng SQ, Xie LX, Lv WB, Zhang C, Huang L. Pathophysiological relevance and therapeutic outlook of GPR43 in atherosclerosis. Biochem Cell Biol 2024. [PMID: 39013204 DOI: 10.1139/bcb-2024-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Atherosclerosis (AS) is an inflammatory arterial disorder that occurs due to the deposition of the excessive lipoprotein under the artery intima, mainly including low-density lipoprotein and other apolipoprotein B-containing lipoproteins. G protein-coupled receptors (GPCRs) play a crucial role in transmitting signals in physiological and pathophysiological conditions. GPCRs recognize inflammatory mediators, thereby serving as important players during chronic inflammatory processes. It has been demonstrated that free fatty acids can function as ligands for various GPCRs, such as free fatty acid receptor (FFAR)1/GPR40, FFAR2/GPR43, FFAR3/GPR41, FFAR4/GPR120, and the lipid metabolite binding glucose-dependent insulinotropic receptor (GPR119). This review discusses GPR43 and its ligands in the pathogenesis of AS, especially focusing on its distinct role in regulating chronic vascular inflammation, inhibiting oxidative stress, ameliorating endothelial dysfunction and improving dyslipidemia. It is hoped that this review may provide guidance for further studies aimed at GPR43 as a promising target for drug development in the prevention and therapy of AS.
Collapse
Affiliation(s)
- Mu-Yao Tang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Hao Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Jin-Tao Tao
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chun Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yao-Hua Luo
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Cong Zhang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Si-Qin Peng
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Xi Xie
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Wen-Bo Lv
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
- Departments of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
4
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
5
|
Wu TT, Pan Y, Zhi XY, Deng CJ, Wang S, Guo XX, Hou XG, Yang Y, Zheng YY, Xie X. Association between extremely high prognostic nutritional index and all-cause mortality in patients with coronary artery disease: secondary analysis of a prospective cohort study in China. BMJ Open 2024; 14:e079954. [PMID: 38885991 PMCID: PMC11184201 DOI: 10.1136/bmjopen-2023-079954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES Decreased prognostic nutritional index (PNI) was associated with adverse outcomes in many clinical diseases. This study aimed to evaluate the relationship between baseline PNI value and adverse clinical outcomes in patients with coronary artery disease (CAD). DESIGN The Personalized Antiplatelet Therapy According to CYP2C19 Genotype in Coronary Artery Disease (PRACTICE) study, a prospective cohort study of 15 250 patients with CAD, was performed from December 2016 to October 2021. The longest follow-up period was 5 years. This study was a secondary analysis of the PRACTICE study. SETTING The study setting was Xinjiang Medical University Affiliated First Hospital in China. PARTICIPANTS Using the 50th and 90th percentiles of the PNI in the total cohort as two cut-off limits, we divided all participants into three groups: Q1 (PNI <51.35, n = 7515), Q2 (51.35 ≤ PNI < 59.80, n = 5958) and Q3 (PNI ≥ 59.80, n = 1510). The PNI value was calculated as 10 × serum albumin (g/dL) + 0.005 × total lymphocyte count (per mm3). PRIMARY OUTCOME The primary outcome measure was mortality, including all-cause mortality (ACM) and cardiac mortality (CM). RESULTS In 14 983 participants followed for a median of 24 months, a total of 448 ACM, 333 CM, 1162 major adverse cardiovascular events (MACE) and 1276 major adverse cardiovascular and cerebrovascular events (MACCE) were recorded. The incidence of adverse outcomes was significantly different among the three groups (p <0.001). There were 338 (4.5%), 77 (1.3%) and 33 (2.2%) ACM events in the three groups, respectively. A restricted cubic spline displayed a J-shaped relationship between the PNI and worse 5-year outcomes, including ACM, CM, MACE and MACCE. After adjusting for traditional cardiovascular risk factors, we found that only patients with extremely high PNI values in the Q3 subgroup or low PNI values in the Q1 subgroup had a greater risk of ACM (Q3 vs Q2, HR: 1.617, 95% CI 1.012 to 2.585, p=0.045; Q1 vs Q2, HR=1.995, 95% CI 1.532 to 2.598, p <0.001). CONCLUSION This study revealed a J-shaped relationship between the baseline PNI and ACM in patients with CAD, with a greater risk of ACM at extremely high PNI values. TRIAL REGISTRATION NUMBER NCT05174143.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ying Pan
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao-Yu Zhi
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chang-Jiang Deng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shun Wang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiao-Xia Guo
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xian-Geng Hou
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yi Yang
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ying-Ying Zheng
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiang Xie
- Department of Cardiology, Xinjiang Medical University Affiliated First Hospital, No. 137, Liyushan Road, Urumqi, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University, Ministry of Education), Urumqi, China
- Key Laboratory of Hypertension Research of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
6
|
Karava V, Kondou A, Dotis J, Taparkou A, Farmaki E, Kollios K, Printza N. Exploring systemic inflammation in children with chronic kidney disease: correlates of interleukin 6. Pediatr Nephrol 2024; 39:1567-1576. [PMID: 38103065 DOI: 10.1007/s00467-023-06234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND Systemic inflammation (SI) is linked to chronic kidney disease (CKD) progression and multiple complications. Data regarding SI biomarkers in pediatric patients are scarce. This case-control and cross-sectional study investigates the correlation of neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), total iron binding capacity (TIBC) and serum albumin to serum interleukin-6 (IL-6). METHODS NLR and PLR were measured in 53 patients (median age: 12.9 years), including 17 on dialysis and 36 with a median glomerular filtration rate of 39 ml/min/1.73m2, and in 25 age and sex-matched healthy controls. Iron profile, serum albumin and IL-6 were measured in the patient group. IL-6 levels > 3rd quartile were classified as high. RESULTS Patients presented higher NLR and PLR and particularly those on dialysis (p < 0.001 and p = 0.001). We observed a significant correlation between natural logarithm (ln) of IL-6 (lnIL-6) and NLR (rs = 0.344, p = 0.014), serum albumin (rs = -0.350, p = 0.011) and TIBC (rs = -0.345, p = 0.012) after adjustment for CKD stage, while the correlation between lnIL-6 and PLR was not significant (rs = 0.206, p = 0.151). Combination of NLR, serum albumin and TIBC predicted high IL-6 (13 patients) with an AUC of 0.771 (95% CI 0.608-0.943). Pairing of NLR ≥ 1.7 and TIBC ≤ 300 μg/dL exhibited the highest sensitivity (76.9%), while incorporating serum albumin ≤ 3.8 g/dL along with them achieved the highest specificity (95%) for detecting high IL-6 levels. CONCLUSION Both NLR and PLR levels increase in CKD, especially in patients on chronic dialysis. NLR, rather than PLR, along with TIBC and serum albumin, are associated with IL-6 in pediatric CKD.
Collapse
Affiliation(s)
- Vasiliki Karava
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece.
| | - Antonia Kondou
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - John Dotis
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| | - Anna Taparkou
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Farmaki
- Pediatric Immunology and Rheumatology Referral Center, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kollios
- 3rd Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikoleta Printza
- Pediatric Nephrology Unit, 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University of Thessaloniki, 49 Konstantinoupoleos Street, 54642, Thessaloniki, Greece
| |
Collapse
|
7
|
Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, Romeo F, Perrone Filardi P, Indolfi C, Coronelli M. Evolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown) 2023; 24:e156-e167. [PMID: 37186566 DOI: 10.2459/jcm.0000000000001450] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Atherosclerosis is the anatomo-pathological substrate of most cardio, cerebro and vascular diseases such as acute and chronic coronary syndromes, stroke and peripheral artery diseases. The pathophysiology of atherosclerotic plaque and its complications are under continuous investigation. In the last 2 decades our understanding on the formation, progression and complication of the atherosclerotic lesion has greatly improved and the role of immunity and inflammation is now well documented and accepted. The conventional risk factors modulate endothelial function determining the switch to a proatherosclerotic phenotype. From this point, lipid accumulation with an imbalance from cholesterol influx and efflux, foam cells formation, T-cell activation, cytokines release and matrix-degrading enzymes production occur. Lesions with high inflammatory rate become vulnerable and prone to rupture. Once complicated, the intraplaque thrombogenic material, such as the tissue factor, is exposed to the flowing blood, thus inducing coagulation cascade activation, platelets aggregation and finally intravascular thrombus formation that leads to clinical manifestations of this disease. Nonconventional risk factors, such as gut microbiome, are emerging novel markers of atherosclerosis. Several data indicate that gut microbiota may play a causative role in formation, progression and complication of atherosclerotic lesions. The gut dysbiosis-related inflammation and gut microbiota-derived metabolites have been proposed as the main working hypothesis in contributing to disease formation and progression. The current evidence suggest that the conventional and nonconventional risk factors may modulate the degree of inflammation of the atherosclerotic lesion, thus influencing its final fate. Based on this hypothesis, targeting inflammation seems to be a promising approach to further improve our management of atherosclerotic-related diseases.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | | | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marco A Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome
| | | | | | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio
- Institute of Life Sciences, Scuola Superiore Sant'Anna
| | - Roberto Pedrinelli
- Critical Care Medicine-Cardiology Division, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa
| | - Giuseppe Mercuro
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi, Cagliari
| | | | - Pasquale Perrone Filardi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli 'Federico II', Napoli
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Maurizio Coronelli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Li T, Yuan D, Wang P, Zeng G, Jia S, Zhang C, Zhu P, Song Y, Tang X, Gao R, Xu B, Yuan J. Association of prognostic nutritional index level and diabetes status with the prognosis of coronary artery disease: a cohort study. Diabetol Metab Syndr 2023; 15:58. [PMID: 36966329 PMCID: PMC10039549 DOI: 10.1186/s13098-023-01019-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/05/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Malnutrition and inflammation are associated with adverse clinical outcomes in patients with diabetes or coronary artery disease (CAD). Prognostic nutritional index (PNI) is a comprehensive and simple indicator reflecting nutritional condition and immunological status. Whether there is a crosstalk between nutritional-immunological status and diabetes status for the impact on the prognosis of coronary artery disease (CAD) is unclear. METHODS A total of 9429 consecutive CAD patients undergoing percutaneous coronary intervention were grouped by diabetes status [diabetes (DM) and non-diabetes (non-DM)] and preprocedural PNI level [high PNI (H-PNI) and low PNI (L-PNI)] categorized by the statistically optimal cut-off value of 48.49. The primary endpoint was all-cause death. RESULTS During a median follow-up of 5.1 years (interquartile range: 5.0-5.1 years), 366 patients died. Compared with the non-DM/H-PNI group, the DM/L-PNI group yielded the highest risk of all-cause death (adjusted hazard ratio: 2.65, 95% confidence interval: 1.97-3.56, p < 0.001), followed by the non-DM/L-PNI group (adjusted hazard ratio: 1.44, 95% confidence interval: 1.05-1.98, p = 0.026), while DM/H-PNI was not associated with the risk of all-cause death. The negative effect of L-PNI on all-cause death was significantly stronger in diabetic patients than in nondiabetic patients (p for interaction = 0.037). Preprocedural PNI category significantly improved the Global Registry of Acute Coronary Events (GRACE) risk score for predicting all-cause death in patients with acute coronary syndrome, especially in those with diabetes. CONCLUSIONS CAD patients with diabetes and L-PNI experienced the worst prognosis. The presence of diabetes amplifies the negative effect of L-PNI on all-cause death. Poor nutritional-immunological status outweighs diabetes in increasing the risk of all-cause death in CAD patients. Preprocedural PNI can serve as an assessment tool for nutritional and inflammatory risk and an independent prognostic factor in CAD patients, especially in those with diabetes.
Collapse
Affiliation(s)
- Tianyu Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Deshan Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Peizhi Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Guyu Zeng
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Sida Jia
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Ce Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Pei Zhu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Ying Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaofang Tang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Runlin Gao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Bo Xu
- Catheterization Laboratories, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China.
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167, North Lishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
9
|
Wang X, Guan Z, Tang W, Wang X, Xu C, Shan E, Wang W, Gao Y. PAX5/ITGAX Contributed to the Progression of Atherosclerosis by Regulation of B Differentiation via TNF-α Signaling Pathway. DNA Cell Biol 2023; 42:97-104. [PMID: 36730754 DOI: 10.1089/dna.2022.0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the effect of paired box protein 5 (PAX5)/integrin subunit alpha X (ITGAX) in atherosclerosis (AS). AS model was established using ApoE-/- mice (C57BL/6). Human vascular smooth muscle cells (HVSMCs) were stimulated with ox-LDL. Quantitative reverse transcription polymerase chain reaction and Western blotting were used to detect the expression levels of genes and proteins. Reporter constructs and luciferase assays were used to investigate the role of ITGAX and PAX5. Cells proliferation and inflammation factors were detected. The results presented that aortic plaque area, lipid content, serum triglyceride, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol levels were significantly increased in the high-fat diet group (p < 0.05). ITGAX was upregulated in atherosclerotic tissues. In addition, ox-LDL treatment induced HVSMCs proliferation, migration, and invasion. Reporter constructs and luciferase assays indicated ITGAX interaction with PAX5. Furthermore, siITGAX and siPAX5 cotransfection restored the rate of HVSMCs in G1 and S and G2/M phases, decreased the content of tumor necrosis factor-alpha (TNF-ɑ), interleukin (IL)-6, and IL-8 (p < 0.05). Interestingly, siITGAX and siPAX5 cotransfection also decreased the expression levels of TNF-α, TNF-R1, TNF-R2, CD19, and CD86 (p < 0.05). Our results suggest that ITGAX may be a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Xiangkui Wang
- The First Clinical College of Jinan University, Jinan University, Guangzhou, China
- Department of Vascular Surgery, Huaibei General Miner Hospital, Huaibei, China
| | - Zeyu Guan
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wenbo Tang
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaogao Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Chao Xu
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Erbo Shan
- Department of Vascular Surgery and the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Wang
- Department of Surgical Oncology, the Second Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yong Gao
- The First Clinical College of Jinan University, Jinan University, Guangzhou, China
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
10
|
Cimmino G, Loffredo FS, De Rosa G, Cirillo P. Colchicine in Athero-Thrombosis: Molecular Mechanisms and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24032483. [PMID: 36768804 PMCID: PMC9917272 DOI: 10.3390/ijms24032483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Several lines of evidence have clearly indicated that inflammation plays a pivotal role in the development of atherosclerosis and of its thrombotic complications such as acute coronary syndromes or ischemic stroke. Thus, it has been postulated that the use of anti-inflammatory agents might be extremely useful to improve cardiovascular outcome. Recently, increasing attention has been reserved to one of the oldest plant-derived drugs still in use in clinical practice, colchicine that has been used as drug to treat inflammatory diseases such gout or Mediterranean fever. To date, current guidelines of the European Society of Cardiology have included colchicine as first line choice for treatment of acute and recurrent pericarditis. Moreover, several studies have investigated its role in the clinical scenarios of cardiovascular disease including chronic and acute coronary syndromes with promising results. In this review, starting from a description of the mechanism(s) involved behind its anti-inflammatory effects, we give an overview on its potential effects in atherothrombosis and finally present an updated overview of clinical evidence on the role of this drug in cardiovascular disease.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-081-7064239
| | - Francesco S. Loffredo
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Gennaro De Rosa
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, Section of Cardiology, University of Naples “Federico II”, 80131 Naples, Italy
| |
Collapse
|
11
|
Munteanu C, Schwartz B. The relationship between nutrition and the immune system. Front Nutr 2022; 9:1082500. [PMID: 36570149 PMCID: PMC9772031 DOI: 10.3389/fnut.2022.1082500] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Nutrition plays an essential role in the regulation of optimal immunological response, by providing adequate nutrients in sufficient concentrations to immune cells. There are a large number of micronutrients, such as minerals, and vitamins, as well as some macronutrients such as some amino acids, cholesterol and fatty acids demonstrated to exert a very important and specific impact on appropriate immune activity. This review aims to summarize at some extent the large amount of data accrued to date related to the modulation of immune function by certain micro and macronutrients and to emphasize their importance in maintaining human health. Thus, among many, some relevant case in point examples are brought and discussed: (1) The role of vitamin A/all-trans-retinoic-acids (ATRA) in acute promyelocytic leukemia, being this vitamin utilized as a very efficient therapeutic agent via effective modulation of the immune function (2) The involvement of vitamin C in the fight against tumor cells via the increase of the number of active NK cells. (3) The stimulation of apoptosis, the suppression of cancer cell proliferation, and delayed tumor development mediated by calcitriol/vitamin D by means of immunity regulation (4) The use of selenium as a cofactor to reach more effective immune response to COVID vaccination (5). The crucial role of cholesterol to regulate the immune function, which is demonstrated to be very sensitive to the variations of this macronutrient concentration. Other important examples are reviewed as well.
Collapse
Affiliation(s)
- Camelia Munteanu
- Department of Plant Culture, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania,Camelia Munteanu,
| | - Betty Schwartz
- Robert H. Smith Faculty of Agriculture, Food and Environment, The School of Nutritional Sciences, The Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot, Israel,*Correspondence: Betty Schwartz,
| |
Collapse
|
12
|
Fu Z, Song X, Shen A, Zhou T. Microarray analysis reveals the potential molecular mechanism of Lp299v in stable coronary atherosclerotic disease. AMB Express 2022; 12:125. [PMID: 36152115 PMCID: PMC9509519 DOI: 10.1186/s13568-022-01466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence has confirmed that inflammatory mechanisms are involved in the formation and treatment of coronary atherosclerotic disease (CAD). An increase in circulatory levels of inflammatory cytokines has been found in patients with CAD, while the molecular mechanisms of inflammation still remain elusive. This study was designed to identify differentially expressed genes (DEGs), and to explore the molecular mechanism and hub genes that are involved in the effects of Lactobacillus plantarum 299v (Lp299v) supplementation. Microarray dataset (GSE156357) was downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were identified by the R software. Then, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and construction of protein–protein interaction (PPI) network were performed by DAVID, STRING, and Cytoscape software. In daily alcohol user (DAU) group, 7,541 DEGs were identified, including 206 up-regulated and 7,335 down-regulated DEGs. In non-daily alcohol user (non-DAU) group, 2,799 DEGs were identified (2,491 up-regulated and 308 down-regulated DEGs). The GO enrichment analysis revealed that miosis was up-regulated and immune response was down-regulated. The KEGG enrichment analysis showed that Lp299v supplementation reduced the levels of chemotactic cytokines, and weakened immune response. Proteins of G protein-coupled receptor, inflammatory response, regulation of cell proliferation and apoptosis-related proteins were found in the PPI network. The hub genes were associated with G protein-coupled receptor, inflammatory response, and cell proliferation and apoptosis. The weighted gene co-expression network analysis (WGCNA) enriched the DEGs in 4 modules. This study indicated the expressions of chemokine receptors and regulation of immune response in the Lp299v supplementation. Meanwhile, it was supposed that chemokine receptors may have a cellular effect.
Collapse
Affiliation(s)
- Zhenyang Fu
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Xiaolei Song
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University,Guangzhou Medical University, Guangzhou, China
| | - Anna Shen
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China
| | - Tao Zhou
- Department of Cardiology, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
13
|
Biswas M, Suvarna R, Krishnan S V, Devasia T, Shenoy Belle V, Prabhu K. The mechanistic role of neutrophil lymphocyte ratio perturbations in the leading non communicable lifestyle diseases. F1000Res 2022; 11:960. [PMID: 36619602 PMCID: PMC9780608 DOI: 10.12688/f1000research.123245.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 01/13/2023] Open
Abstract
Inflammation plays a critical role in the development and progression of chronic diseases like type 2 diabetes mellitus, coronary artery disease, and chronic obstructive pulmonary disease. Inflammatory responses are indispensable for pathogen control and tissue repair, but they also cause collateral damage. A chronically activated immune system and the resultant immune dysregulation mediated inflammatory surge may cause multiple negative effects, requiring tight regulation and dampening of the immune response to minimize host injury. While chronic diseases are characterized by systemic inflammation, the mechanistic relationship of neutrophils and lymphocytes to inflammation and its correlation with the clinical outcomes is yet to be elucidated. The neutrophil to lymphocyte ratio (NLR) is an easy-to-measure laboratory marker used to assess systemic inflammation. Understanding the mechanisms of NLR perturbations in chronic diseases is crucial for risk stratification, early intervention, and finding novel therapeutic targets. We investigated the correlation between NLR and prevalent chronic conditions as a measure of systemic inflammation. In addition to predicting the risk of impending chronic conditions, NLR may also provide insight into their progression. This review summarizes the mechanisms of NLR perturbations at cellular and molecular levels, and the key inflammatory signaling pathways involved in the progression of chronic diseases. We have also explored preclinical studies investigating these pathways and the effect of quelling inflammation in chronic disease as reported by a few in vitro, in vivo studies, and clinical trials.
Collapse
Affiliation(s)
- Monalisa Biswas
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Renuka Suvarna
- Division of Ayurveda, Center for Integrative Medicine and Research, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vimal Krishnan S
- Department of Emergency Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Vijetha Shenoy Belle
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| | - Krishnananda Prabhu
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India,
| |
Collapse
|
14
|
Zhou Y, Wang S, Liang X, Heger Z, Xu M, Lu Q, Yu M, Adam V, Li N. Turning Hot into Cold: Immune Microenvironment Reshaping for Atherosclerosis Attenuation Based on pH-Responsive shSiglec-1 Delivery System. ACS NANO 2022; 16:10517-10533. [PMID: 35762565 DOI: 10.1021/acsnano.2c01778] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Current atherosclerosis treatment is based on a combination of cholesterol-lowering medication and low-fat diets; however, the clinical effect is unsatisfactory. It has been shown that the level of immune cell infiltration and pro-inflammatory factors in the atherosclerotic immune microenvironment (AIM) play important roles in the development and progression of atherosclerosis. Therefore, we hypothesized that reshaping "hot AIM" into "cold AIM" could attenuate atherosclerosis. For this purpose, we designed a pH-responsive and charge-reversible nanosystem, referred to as Au-PEI/shSiglec-1/PEI-acetylsalicylic acid (ASPA NPs) to effectively deliver shSiglec-1, which blocked the interactions between macrophages with CD8+ T/NKT cells, thus inhibiting immune cell infiltration. Further, we demonstrated that acetylsalicylic acid (ASA), detached from the pH-responsive PEI-ASA polymer, and inhibited lipid accumulation in macrophage, thereby decreasing the lipid antigen presentation. Additionally, reduced macrophage-produced inflammatory factors by ASA and low CD8+ T/NKT cell infiltration levels synergistically inhibit Th17 cell differentiation, thus further dramatically attenuating inflammation in AIM by decreasing the IL-17A production. Eventually, ASPA NPs efficiently reshaped AIM by inhibiting immune cell infiltration, lipid antigen presentation, and pro-inflammation, which provided a feasible therapeutic strategy for atherosclerosis immunotherapy.
Collapse
Affiliation(s)
- Yue Zhou
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Siyu Wang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyang Liang
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Min Xu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Qiang Lu
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Meng Yu
- School of Pharmaceutical Science Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-61200 Brno, Czech Republic
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
15
|
Gur DO, Efe MM, Alpsoy S, Akyüz A, Uslu N, Çelikkol A, Gur O. Índice Imunoinflamatório Sistêmico como Determinante de Carga Aterosclerótica e Pacientes de Alto Risco com Síndromes Coronarianas Agudas. Arq Bras Cardiol 2022; 119:382-390. [PMID: 35766615 PMCID: PMC9438541 DOI: 10.36660/abc.20210416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
|
16
|
Cimmino G, di Serafino L, Cirillo P. Pathophysiology and mechanisms of Acute Coronary Syndromes: athero-thrombosis, immune-inflammation and beyond. Expert Rev Cardiovasc Ther 2022; 20:351-362. [PMID: 35510629 DOI: 10.1080/14779072.2022.2074836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The pathophysiology of atherosclerosis and its acute complications, such as the Acute Coronary Syndromes (ACS), is continuously under investigation. Immunity and inflammation seem to play a pivotal role in promoting formation and grow of atherosclerotic plaques. At the same time, plaque rupture followed by both platelets' activation and coagulation cascade induction lead to intracoronary thrombus formation. Although these phenomena might be considered responsible of about 90% of ACS, in up to 5-10% of acute syndromes a non-obstructive coronary artery disease (MINOCA) might be documented. This paper gives an overview on athero-thrombosis and immuno-inflammation processes involved in ACS pathophysiology also emphasizing the pathological mechanisms potentially involved in MINOCA. AREAS COVERED The relationship between immuno-inflammation and atherothrombosis is continuously updated by recent findings. At the same time, pathophysiology of MINOCA still remains a partially unexplored field, stimulating the research of potential links between these two aspects of ACS pathophysiology. EXPERT OPINION Pathophysyiology of ACS has been extensively investigated; however, several grey areas still remain. MINOCA represents one of these areas. At the same time, many aspects of immune-inflammation processes are still unknown. Thus, research should be continued to shed a brighter light on both these sides of "ACS" moon.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, Section of Cardiology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigi di Serafino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Plinio Cirillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Application of OpenArray RT-qPCR for identification of microRNA expression signatures of lower extremity artery disease. J Appl Genet 2022; 63:497-512. [DOI: 10.1007/s13353-022-00692-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
|
18
|
Mannarino MR, Bianconi V, Gigante B, Strawbridge RJ, Savonen K, Kurl S, Giral P, Smit A, Eriksson P, Tremoli E, Veglia F, Baldassarre D, Pirro M. Neutrophil to lymphocyte ratio is not related to carotid atherosclerosis progression and cardiovascular events in the primary prevention of cardiovascular disease: Results from the IMPROVE study. Biofactors 2022; 48:100-110. [PMID: 34761838 PMCID: PMC9299016 DOI: 10.1002/biof.1801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is a component of the pathogenesis of atherosclerosis and is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). The neutrophil to lymphocyte ratio (NLR) is a possible inflammation metric for the detection of ASCVD risk, although results of prospective studies are highly inconsistent on this topic. We investigated the cross-sectional relationship between NLR and carotid intima-media thickness (cIMT) in subjects at moderate-to-high ASCVD risk. The prospective association between NLR, cIMT progression, and incident vascular events (VEs) was also explored. In 3341 subjects from the IMT-Progression as Predictors of VEs (IMPROVE) study, we analyzed the association between NLR, cIMT, and its 15-month progression. The association between NLR and incident VEs was also investigated. NLR was positively associated with cross-sectional measures of cIMT, but not with cIMT progression. The association between NLR and cross-sectional cIMT measures was abolished when adjusted for confounders. No association was found between NRL and incident VEs. Similarly, there were no significant differences in the hazard ratios (HRs) of VEs across NLR quartiles. NLR was neither associated with the presence and progression of carotid atherosclerosis, nor with the risk of VEs. Our findings do not support the role of NLR as a predictor of the risk of atherosclerosis progression and ASCVD events in subjects at moderate-to-high ASCVD risk, in primary prevention. However, the usefulness of NLR for patients at a different level of ASCVD risk cannot be inferred from this study.
Collapse
Affiliation(s)
- Massimo R. Mannarino
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
| | - Rona J. Strawbridge
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Institute of Health and WellbeingUniversity of GlasgowGlasgowUK
- Health Data Research UKGlasgowUK
| | - Kai Savonen
- Foundation for Research in Health Exercise and NutritionKuopio & Research Institute of Exercise MedicineKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
| | - Sudhir Kurl
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Philippe Giral
- Assistance Publique ‐ Hopitaux de ParisParisFrance
- Service Endocrinologie‐Metabolisme, Groupe Hôspitalier Pitie‐SalpetriereUnités de Prévention CardiovasculaireParisFrance
| | - Andries Smit
- Department of MedicineUniversity Medical Center GroningenGroningenthe Netherlands
- Department of MedicineIsala Clinics ZwolleZwolleThe Netherlands
| | - Per Eriksson
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
| | | | | | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCSMilanItaly
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di MilanoMilanItaly
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | |
Collapse
|
19
|
Hinterdobler J, Schunkert H, Kessler T, Sager HB. Impact of Acute and Chronic Psychosocial Stress on Vascular Inflammation. Antioxid Redox Signal 2021; 35:1531-1550. [PMID: 34293932 PMCID: PMC8713271 DOI: 10.1089/ars.2021.0153] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Significance: Atherosclerosis and its complications, such as acute coronary syndromes, are the leading causes of death worldwide. A wide range of inflammatory processes substantially contribute to the initiation and progression of cardiovascular disease (CVD). In addition, epidemiological studies strongly associate both chronic stress and acute psychosocial stress with the occurrence of CVDs. Recent Advances: Extensive research during recent decades has not only identified major pathways in cardiovascular inflammation but also revealed a link between psychosocial factors and the immune system in the context of atherosclerosis. Both chronic and acute psychosocial stress drive systemic inflammation via neuroimmune interactions and promote atherosclerosis progression. Critical Issues: The associations human epidemiological studies found between psychosocial stress and cardiovascular inflammation have been substantiated by additional experimental studies in mice and humans. However, we do not yet fully understand the mechanisms through which psychosocial stress drives cardiovascular inflammation; consequently, specific treatment, although urgently needed, is lacking. Future Directions: Psychosocial factors are increasingly acknowledged as risk factors for CVD and are currently treated via behavioral interventions. Additional mechanistic insights might provide novel pharmacological treatment options to reduce stress-related morbidity and mortality. Antioxid. Redox Signal. 35, 1531-1550.
Collapse
Affiliation(s)
- Julia Hinterdobler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Front Physiol 2021; 12:746749. [PMID: 34925055 PMCID: PMC8678573 DOI: 10.3389/fphys.2021.746749] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- School of Life Sciences, Central South University, Changsha, China
| | - Ling Zhu
- School of Life Sciences, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Poznyak AV, Bezsonov EE, Popkova TV, Starodubova AV, Orekhov AN. Immunity in Atherosclerosis: Focusing on T and B Cells. Int J Mol Sci 2021; 22:ijms22168379. [PMID: 34445084 PMCID: PMC8395064 DOI: 10.3390/ijms22168379] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the major cause of the development of cardiovascular disease, which, in turn, is one of the leading causes of mortality worldwide. From the point of view of pathogenesis, atherosclerosis is an extremely complex disease. A huge variety of processes, such as violation of mitophagy, oxidative stress, damage to the endothelium, and others, are involved in atherogenesis; however, the main components of atherogenesis are considered to be inflammation and alterations of lipid metabolism. In this review, we want to focus on inflammation, and more specifically on the cellular elements of adaptive immunity, T and B cells. It is known that various T cells are widely represented directly in atherosclerotic plaques, while B cells can be found, for example, in the adventitia layer. Of course, such widespread and well-studied cells have attracted attention as potential therapeutic targets for the treatment of atherosclerosis. Various approaches have been developed and tested for their efficacy.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Evgeny E. Bezsonov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
| | - Tatyana V. Popkova
- V.A. Nasonova Institute of Rheumatology, 34A Kashirskoye Shosse, 115522 Moscow, Russia;
| | - Antonina V. Starodubova
- Federal Research Centre for Nutrition, Biotechnology and Food Safety, 2/14 Ustinsky Passage, 109240 Moscow, Russia;
- Medical Faculty, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, 117997 Moscow, Russia
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, 121609 Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
22
|
Abstract
Atherosclerosis is the leading cause of acute cardiovascular events, and vascular calcification is an important pathological phenomenon in atherosclerosis. Recently, many studies have shown that immune cells are closely associated with the development of atherosclerosis and calcification, but there are many conflicting viewpoints because of immune system complications, such as the pro-atherosclerotic and atheroprotective effects of regulatory B cells (Bregs), T helper type 2 (Th2) cells and T helper type 17 (Th17) cells. In this review, we summarize the studies on the roles of immune cells, especially lymphocytes and macrophages, in atherosclerotic calcification. Furthermore, we prepared graphs showing the relationship between T cells, B cells and macrophages and atherosclerotic calcification. Finally, we highlight some potential issues that are closely associated with the function of immune cells in atherosclerotic calcification. Based on current research results, this review summarizes the relationship between immune cells and atherosclerotic calcification, and it will be beneficial to understand the relationship of immune cells and atherosclerotic calcification.
Collapse
Affiliation(s)
- Jingsong Cao
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Clinical Medicine Research Center, 574417The First Affiliated Hospital of University of South China, Hengyang, China.,Department of Endocrinology and Metabolism, 574417The First Affiliated Hospital of University of South China, Hengyang, Hunan, China.,Department of Metabolism and Endocrinology, 574417The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
23
|
Choi YY, Kim A, Seong KM. Chronic radiation exposure aggravates atherosclerosis by stimulating neutrophil infiltration. Int J Radiat Biol 2021; 97:1270-1281. [PMID: 34032557 DOI: 10.1080/09553002.2021.1934750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation exposure is known to increase the risk of chronic inflammatory diseases, such as atherosclerosis, by modulating inflammation. METHODS To investigate the infiltration of leukocytes in radiation-aggravated atherosclerosis, we examined low-density lipoprotein receptor-deficient (Ldlr-/-) mice and C57BL/6j mice after exposure to 0.5 or 1 Gy radiation over 16 weeks. RESULTS We found that radiation exposure induced atherosclerosis development in Ldlr-/- mice, as demonstrated by increased lipid-laden plaque size, reactive oxygen species levels, and levels of the pro-inflammatory cytokines, IL-1β and TNF-α, in the aortas and spleens. Total plasma cholesterol, triglyceride, and LDL cholesterol levels were also increased by radiation exposure, along with cardiovascular risk. We also showed dose-dependent increases in neutrophils and monocytes that coincided with a reduction in lymphocytes in the spleens of Ldlr-/- mice. The correlation between the infiltration of leukocytes and cytokine production was also confirmed in the hearts and spleens of these mice. CONCLUSIONS We concluded that chronic radiation exposure increased the production of pro-inflammatory mediators, which was associated with the migration of neutrophils and inflammatory monocytes into sites of atherosclerosis. Thus, our data suggest that the accumulation of neutrophils and inflammatory monocytes, together with the reduction of lymphocytes, contribute to aggravated atherosclerosis in Ldlr-/- mice under prolonged exposure to radiation.
Collapse
Affiliation(s)
- You Yeon Choi
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| | - Ki Moon Seong
- Laboratory of Biodosimetry, National Radiation Emergency Medical Center, KIRAMS, Seoul, Republic of Korea
| |
Collapse
|
24
|
Sager HB, Koenig W. Immune cell-based cardiovascular risk assessment: spotlight on the neutrophil-lymphocyte ratio. Eur Heart J 2021; 42:904-906. [PMID: 33421053 DOI: 10.1093/eurheartj/ehaa1104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hendrik B Sager
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
25
|
Yuvaraj J, Cheng K, Lin A, Psaltis PJ, Nicholls SJ, Wong DTL. The Emerging Role of CT-Based Imaging in Adipose Tissue and Coronary Inflammation. Cells 2021; 10:1196. [PMID: 34068406 PMCID: PMC8153638 DOI: 10.3390/cells10051196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence arising from recent randomized clinical trials demonstrate the association of vascular inflammatory mediators with coronary artery disease (CAD). Vascular inflammation localized in the coronary arteries leads to an increased risk of CAD-related events, and produces unique biological alterations to local cardiac adipose tissue depots. Coronary computed tomography angiography (CTA) provides a means of mapping inflammatory changes to both epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT) as independent markers of coronary risk. Radiodensity or attenuation of PCAT on coronary CTA, notably, provides indirect quantification of coronary inflammation and is emerging as a promising non-invasive imaging implement. An increasing number of observational studies have shown robust associations between PCAT attenuation and major coronary events, including acute coronary syndrome, and 'vulnerable' atherosclerotic plaque phenotypes that are associated with an increased risk of the said events. This review outlines the biological characteristics of both EAT and PCAT and provides an overview of the current literature on PCAT attenuation as a surrogate marker of coronary inflammation.
Collapse
Affiliation(s)
- Jeremy Yuvaraj
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Andrew Lin
- Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA 90048, USA;
| | - Peter J. Psaltis
- Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia;
- South Australian Health Medical Research Institute, Adelaide, SA 5000, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| | - Dennis T. L. Wong
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University and Monash Heart, Monash Health, Clayton, VIC 3168, Australia; (J.Y.); (K.C.); (S.J.N.)
| |
Collapse
|
26
|
Collado A, Domingo E, Marques P, Perello E, Martínez-Hervás S, Piqueras L, Ascaso JF, Real JT, Sanz MJ. Oral Unsaturated Fat Load Impairs Postprandial Systemic Inflammation in Primary Hypercholesterolemia Patients. Front Pharmacol 2021; 12:656244. [PMID: 33959024 PMCID: PMC8093814 DOI: 10.3389/fphar.2021.656244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Context: Primary hypercholesterolemia (PH) is a lipid disorder characterized by elevated levels of cholesterol and low-density lipoprotein (LDL). Low-grade systemic inflammation is associated with PH, which might explain the higher incidence of cardiovascular diseases in this setting. Objective: To evaluate the effect of an oral unsaturated fat load (OUFL) on different immune parameters and functional consequences in patients with PH in postprandial state. Design: A commercial liquid preparation of long-chain triglycerides (Supracal®; ω6/ω3 ratio >20/1, OUFL) was administered to 20 patients and 10 age-matched controls. Whole blood was collected before (fasting state) and 4 h after administration (postprandial state). Flow cytometry was employed to determine platelet and leukocyte activation, and the levels of circulating platelet-leukocyte aggregates. Soluble markers were determined by ELISA, and the parallel-plate flow chamber was employed to study leukocyte adhesion to the dysfunctional arterial endothelium. Results: The PH group had a lower percentage of activated platelets and circulating type 1 monocytes, and blunted neutrophil activation after the OUFL, accompanied by a significant increase in the percentage of regulatory T lymphocytes. In this group, the OUFL led to a significant impairment of leukocyte adhesion to the dysfunctional [tumor necrosis factor α (TNFα)-stimulated] endothelium and reduced the plasma levels of soluble P-selectin, platelet factor-4 (PF-4)/CXCL4, CXCL8, CCL2, CCL5, and TNFα. Conclusion: The OUFL has a beneficial impact on the pro-thrombotic and pro-inflammatory state of PH patients and might be a promising macronutrient approach to dampen the systemic inflammation associated with PH and the development of further cardiovascular events.
Collapse
Affiliation(s)
- Aida Collado
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Elena Domingo
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Patrice Marques
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Eva Perello
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Sergio Martínez-Hervás
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Laura Piqueras
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Juan F Ascaso
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - José T Real
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.,Department of Medicine, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
27
|
Rai A, Narisawa M, Li P, Piao L, Li Y, Yang G, Cheng XW. Adaptive immune disorders in hypertension and heart failure: focusing on T-cell subset activation and clinical implications. J Hypertens 2020; 38:1878-1889. [PMID: 32890260 DOI: 10.1097/hjh.0000000000002456] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
: Hypertension is a growing health concern worldwide. Established hypertension is a causative factor of heart failure, which is characterized by increased vascular resistance and intractable uncontrolled blood pressure. Hypertension and heart failure have multiple causes and complex pathophysiology but cellular immunity is thought to contribute to the development of both. Recent studies showed that T cells play critical roles in hypertension and heart failure in humans and animals, with various stimuli leading to the formation of effector T cells that infiltrate the cardiovascular wall. Monocytes/macrophages also accumulate in the cardiovascular wall. Various cytokines (e.g. interleukin-6, interleukin-17, interleukin-10, tumor necrosis factor-α, and interferon-γ) released from immune cells of various subtypes promote vascular senescence and elastic laminal degradation as well as cardiac fibrosis and/or hypertrophy, leading to cardiovascular structural alterations and dysfunction. Recent laboratory evidence has defined a link between inflammation and the immune system in initiation and progression of hypertension and heart failure. Moreover, cross-talk among natural killer cells, adaptive immune cells (T cells and B cells), and innate immune cells (i.e. monocytes, macrophages, neutrophils, and dendritic cells) contributes to end-cardiovasculature damage and dysfunction in hypertension and heart failure. Clinical and experimental studies on the diagnostic potential of T-cell subsets revealed that blood regulatory T cells, CD4 cells, CD8 T cells, and the ratio of CD4 to CD8 T cells show promise as biomarkers of hypertension and heart failure. Therapeutic interventions to suppress activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of cardiovascular failure, including hypertension of heart failure.
Collapse
Affiliation(s)
- Avinas Rai
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ping Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Limei Piao
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Yanglong Li
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Guang Yang
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| | - Xian Wu Cheng
- Department of Cardiology, Yanbian University Hospital, Juzijie, Yanji, Jilin Province, China
| |
Collapse
|
28
|
Aguilar-Ballester M, Herrero-Cervera A, Vinué Á, Martínez-Hervás S, González-Navarro H. Impact of Cholesterol Metabolism in Immune Cell Function and Atherosclerosis. Nutrients 2020; 12:nu12072021. [PMID: 32645995 PMCID: PMC7400846 DOI: 10.3390/nu12072021] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/24/2022] Open
Abstract
Cholesterol, the most important sterol in mammals, helps maintain plasma membrane fluidity and is a precursor of bile acids, oxysterols, and steroid hormones. Cholesterol in the body is obtained from the diet or can be de novo synthetized. Cholesterol homeostasis is mainly regulated by the liver, where cholesterol is packed in lipoproteins for transport through a tightly regulated process. Changes in circulating lipoprotein cholesterol levels lead to atherosclerosis development, which is initiated by an accumulation of modified lipoproteins in the subendothelial space; this induces significant changes in immune cell differentiation and function. Beyond lesions, cholesterol levels also play important roles in immune cells such as monocyte priming, neutrophil activation, hematopoietic stem cell mobilization, and enhanced T cell production. In addition, changes in cholesterol intracellular metabolic enzymes or transporters in immune cells affect their signaling and phenotype differentiation, which can impact on atherosclerosis development. In this review, we describe the main regulatory pathways and mechanisms of cholesterol metabolism and how these affect immune cell generation, proliferation, activation, and signaling in the context of atherosclerosis.
Collapse
Affiliation(s)
- María Aguilar-Ballester
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Andrea Herrero-Cervera
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
| | - Sergio Martínez-Hervás
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- Endocrinology and Nutrition Department Clinic Hospital and Department of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, 46010 Valencia, Spain; (M.A.-B.); (A.H.-C.); (Á.V.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-963864403; Fax: +34-963987860
| |
Collapse
|
29
|
Vinciguerra M, Romiti S, Fattouch K, De Bellis A, Greco E. Atherosclerosis as Pathogenetic Substrate for Sars-Cov2 Cytokine Storm. J Clin Med 2020; 9:E2095. [PMID: 32635302 PMCID: PMC7408959 DOI: 10.3390/jcm9072095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) outbreak is a public health emergency affecting different regions around the world. The lungs are often damaged due to the presence of Sars-CoV-2 binding receptor ACE2 on epithelial alveolar cells. Severity of infection varies from complete absence of symptomatology to more aggressive symptoms, characterized by sudden acute respiratory distress syndrome (ARDS), multiorgan failure, and sepsis, requiring treatment in intensive care unit (ICU). It is not still clear why the immune system is not able to efficiently suppress viral replication in a small percentage of patients. It has been documented as pathological conditions affecting the cardiovascular system, strongly associated to atherosclerotic progression, such as heart failure (HF), coronary heart disease (CHD), hypertension (HTN) and diabetes mellitus (DM), could serve as predictive factors for severity and susceptibility during Sars-CoV-2 infection. Atherosclerotic progression, as a chronic inflammation process, is characterized by immune system dysregulation leading to pro-inflammatory patterns, including interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), and IL-1β. Reviewing immune system and inflammation profiles in atherosclerosis and laboratory results reported in severe COVID-19 infections, we hypothesized a pathogenetic correlation. Atherosclerosis may be an ideal pathogenetic substrate for high viral replication ability, leading to adverse outcomes, as reported in patients with cardiovascular factors. The level of atherosclerotic progression may affect a different degree of severe infection; in a vicious circle, feeding itself, Sars-CoV-2 may exacerbate atherosclerotic evolution due to excessive and aberrant plasmatic concentration of cytokines.
Collapse
Affiliation(s)
- Mattia Vinciguerra
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Silvia Romiti
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| | - Khalil Fattouch
- Department of Cardiovascular Surgery, GVM Care and Research, Maria Eleonora Hospital, 90135 Palermo, Italy
| | - Antonio De Bellis
- Department of Cardiology and Cardiac Surgery, Casa di Cura “S. Michele”, Maddaloni, 81024 Caserta, Italy;
| | - Ernesto Greco
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.V.); (S.R.); (E.G.)
| |
Collapse
|
30
|
Abstract
Unhealthy diet, lack of exercise, psychosocial stress, and insufficient sleep are increasingly prevalent modifiable risk factors for cardiovascular disease. Accumulating evidence indicates that these risk factors may fuel chronic inflammatory processes that are active in atherosclerosis and lead to myocardial infarction and stroke. In concert with hyperlipidemia, maladaptive immune system activities can contribute to disease progression and increase the probability of adverse events. In this review, we discuss recent insight into how the above modifiable risk factors influence innate immunity. Specifically, we focus on pathways that raise systemic myeloid cell numbers and modulate immune cell phenotypes, reviewing hematopoiesis, leukocyte trafficking, and innate immune cell accumulation in cardiovascular organs. Often, relevant mechanisms that begin with lifestyle choices and lead to cardiovascular events span multiple organ systems, including the central nervous, endocrine, metabolic, hematopoietic, immune and, finally, the cardiovascular system. We argue that deciphering such pathways provides not only support for preventive interventions but also opportunities to develop biomimetic immunomodulatory therapeutics that mitigate cardiovascular inflammation.
Collapse
Affiliation(s)
- Maximilian J Schloss
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Filip K Swirski
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.)
| | - Matthias Nahrendorf
- From the Center for Systems Biology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston (M.J.S., F.K.S., M.N.).,Department of Radiology, Massachusetts General Hospital, Boston (M.J.S., F.K.S., M.N.).,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston (M.N.).,Department of Internal Medicine I, University Hospital Wuerzburg, Germany (M.N.)
| |
Collapse
|
31
|
Sun Y, Li L, Wu Y, Yang K. PD-1/PD-L1 in cardiovascular disease. Clin Chim Acta 2020; 505:26-30. [PMID: 32084380 DOI: 10.1016/j.cca.2020.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 01/03/2023]
Abstract
The PD-1/PD-L1 coinhibitory pathway has critical roles in the immune response and autoimmunity via the regulation of T cell activity. Excessive activity and high expression of this pathway suppresses the function of T cells and immunity. Recent research has indicated that tumour cells express high levels of PD-L1, which has an immunosuppressive effect and can result in treatment failure. Anti-PD-L1 or anti-PD-1 agents have well-established beneficial effects on mortality and quality of life in cancer patients. Based on the regulatory effects and therapeutic value of the PD-1/PD-L1 pathway in malignant disorders, we propose that it also regulates cell immunity and in CHD and atherosclerosis. Low expression level of PD-1/ PD-L1 or anti-PD-1/PD-L1 therapy accelerates the immune processes in CHD and aggravates disease according to numerous studies. A few studies have provided strong evidence that changes in the expression levels of PD-1 or PD-L1 can alter the degree of inflammation and the state of coronary plaques in atherosclerosis. In this review, we summarise the alterations of the PD-1/PD-L1 pathway and discuss its role in CHD.
Collapse
Affiliation(s)
- YunFeng Sun
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - Liang Li
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China
| | - YaWei Wu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, 830000 Urumqi, Xinjiang, China
| | - KePing Yang
- Yangtze University Health Science Center, 434020 Jingzhou City, Hubei Province, China; Department of Cardiology, Jingzhou Central Hospital, 434020 Jingzhou City, Hubei Province, China.
| |
Collapse
|
32
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A, Kyaw T. B Cell and CD4 T Cell Interactions Promote Development of Atherosclerosis. Front Immunol 2020; 10:3046. [PMID: 31998318 PMCID: PMC6965321 DOI: 10.3389/fimmu.2019.03046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (μ) heavy chain (μMT) in ApoE−/− mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic μMT−/− ApoE−/− mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient μMT−/− ApoE−/− mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into μMT−/− ApoE−/− mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
33
|
Koc M, Šiklová M, Šrámková V, Štěpán M, Krauzová E, Štich V, Rossmeislová L. Signs of Deregulated Gene Expression Are Present in Both CD14 + and CD14 - PBMC From Non-Obese Men With Family History of T2DM. Front Endocrinol (Lausanne) 2020; 11:582732. [PMID: 33658980 PMCID: PMC7917286 DOI: 10.3389/fendo.2020.582732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/18/2020] [Indexed: 12/03/2022] Open
Abstract
AIM Development of type 2 diabetes (T2DM) is associated with disturbances in immune and metabolic status that may be reflected by an altered gene expression profile of peripheral blood mononuclear cells (PBMC). To reveal a potential family predisposition to these alterations, we investigated the regulation of gene expression profiles in circulating CD14+ and CD14- PBMC in fasting conditions and in response to oral glucose tolerance test (OGTT) in glucose tolerant first-degree relatives (FDR) of T2DM patients and in control subjects. MATERIALS AND METHODS This work is based on the clinical study LIMEX (NCT03155412). Non-obese 12 non-diabetic (FDR), and 12 control men without family history of diabetes matched for age and BMI underwent OGTT. Blood samples taken before and at the end of OGTT were used for isolation of circulating CD14+ and CD14- PBMC. In these cells, mRNA levels of 94 genes related to lipid and carbohydrate metabolism, immunity, and inflammation were assessed by qPCR. RESULTS Irrespectively of the group, the majority of analyzed genes had different mRNA expression in CD14+ PBMC compared to CD14- PBMC in the basal (fasting) condition. Seven genes (IRS1, TLR2, TNFα in CD14+ PBMC; ABCA1, ACOX1, ATGL, IL6 in CD14- PBMC) had different expression in control vs. FDR groups. OGTT regulated mRNA levels of nine genes selectively in CD14+ PBMC and of two genes (ABCA1, PFKL) selectively in CD14-PBMC. Differences in OGTT-induced response between FDR and controls were observed for EGR2, CCL2 in CD14+ PBMC and for ABCA1, ACOX1, DGAT2, MLCYD, and PTGS2 in CD14- PBMC. CONCLUSION This study revealed a different impact of glucose challenge on gene expression in CD14+ when compared with CD14- PBMC fractions and suggested possible impact of family predisposition to T2DM on basal and OGTT-induced gene expression in these PBMC fractions. Future studies on these putative alterations of inflammation and lipid metabolism in fractionated PBMC in larger groups of subjects are warranted.
Collapse
Affiliation(s)
- Michal Koc
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Michaela Šiklová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
| | - Veronika Šrámková
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
| | - Marek Štěpán
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Eva Krauzová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Vladimír Štich
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
- Department of Internal Medicine, Third Faculty of Medicine, Charles University, and Kralovske Vinohrady University Hospital, Prague, Czechia
| | - Lenka Rossmeislová
- Department for Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czechia
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague, and Inserm, Toulouse, France
- *Correspondence: Lenka Rossmeislová,
| |
Collapse
|
34
|
Luke K, Purwanto B, Herawati L, Al-Farabi MJ, Oktaviono YH. Predictive Value of Hematologic Indices in the Diagnosis of Acute Coronary Syndrome. Open Access Maced J Med Sci 2019; 7:2428-2433. [PMID: 31666841 PMCID: PMC6814467 DOI: 10.3889/oamjms.2019.666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Distinguishing between Acute Coronary Syndrom (ACS) and SCAD (Stable Coronary Artery Disease) requires advanced laboratory instrument and electrocardiogram. However, their availabilities in primary care settings in developing countries are limited. Hematologic changes usually occur in the ACS patient and might be valuable to distinguish ACS from SCAD. AIM This study compares the hematologic indices between ACS and SCAD patients and analyses its predictive value for ACS. MATERIAL AND METHODS A total of 191 patients (79 ACS and 112 SCAD) were enrolled in this study based on the inclusion criteria. Patient's characteristic, hematologic indices on admission, and the final diagnosis were obtained from medical records. Statistical analyses were done using SPSS 23.0. RESULTS In this research MCHC value (33.40 vs. 32.80 g/dL; p < 0.05); WBC (11.16 vs. 7.40 x109/L; p < 0.001); NLR (6.29 vs. 2.18; p < 0.001); and PLR (173.88 vs 122.46; p < 0.001) were significantly higher in ACS compared to SCAD patients. While MPV (6.40 vs. 10.00 fL; p < 0.001) was significantly lower in ACS patients. ROC curve analysis showed MPV had the highest AUC (95%) for ACS diagnosis with an optimum cut-off point at ≤ 8.35 fL (sensitivity 93.6% and specificity 97.3%). CONCLUSION There was a significant difference between hematologic indices between ACS and SCAD patients. MPV is the best indices to distinguish ACS.
Collapse
Affiliation(s)
- Kevin Luke
- Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Bambang Purwanto
- Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Lilik Herawati
- Department of Physiology, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Makhyan Jibril Al-Farabi
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
- School of Management, Healthcare Entrepreneurship Division, University College London, Gower St, Bloomsbury, WC1E 6BT, London, UK
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
35
|
Martínez-Hervás S, Sánchez-García V, Herrero-Cervera A, Vinué Á, Real JT, Ascaso JF, Burks DJ, González-Navarro H. Type 1 diabetic mellitus patients with increased atherosclerosis risk display decreased CDKN2A/2B/2BAS gene expression in leukocytes. J Transl Med 2019; 17:222. [PMID: 31299986 PMCID: PMC6626385 DOI: 10.1186/s12967-019-1977-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) patients display increased risk of cardiovascular disease (CVD) and are characterized by a diminished regulatory T (Treg) cell content or function. Previous studies have shown an association between decreased CDKN2A/2B/2BAS gene expression and enhanced CVD. In the present study the potential relationship between CDKN2A/2B/2BAS gene expression, immune cell dysfunction and increased cardiovascular risk in T1DM patients was explored. Methods A cross-sectional study was performed in 90 subjects divided into controls and T1DM patients. Circulating leukocyte subpopulations analysis by flow cytometry, expression studies on peripheral blood mononuclear cell by qPCR and western blot and correlation studies were performed in both groups of subjects. Results Analysis indicated that, consistent with the described T cell dysfunction, T1DM subjects showed decreased circulating CD4+CD25+CD127− Treg cells. In addition, T1DM subjects had lower mRNA levels of the transcription factors FOXP3 and RORC and lower levels of IL2 and IL6 which are involved in Treg and Th17 cell differentiation, respectively. T1DM patients also exhibited decreased mRNA levels of CDKN2A (variant 1 p16Ink4a), CDKN2A (p14Arf,variant 4), CDKN2B (p15Ink4b) and CDKN2BAS compared with controls. Notably, T1DM patients had augmented pro-atherogenic CD14++CD16+-monocytes, which predict cardiovascular acute events and enhanced common carotid intima-media thickness (CC-IMT). Conclusions Decreased expression of CDKN2A/2B/2BAS in leukocytes associates with increased CC-IMT atherosclerosis surrogate marker and proatherogenic CD14++CD16+ monocytes in T1DM patients. These results suggest a potential role of CDKN2A/2B/2BAS genes in CVD risk in T1DM. Electronic supplementary material The online version of this article (10.1186/s12967-019-1977-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sergio Martínez-Hervás
- Endocrinology and Nutrition Department Hospital Clínico Universitario. Department of Medicine, University of Valencia, 46010, Valencia, Spain.,INCLIVA Institute of Health Research, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain.,CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
| | | | | | - Ángela Vinué
- INCLIVA Institute of Health Research, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain
| | - José Tomás Real
- Endocrinology and Nutrition Department Hospital Clínico Universitario. Department of Medicine, University of Valencia, 46010, Valencia, Spain.,INCLIVA Institute of Health Research, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain.,CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
| | - Juan F Ascaso
- Endocrinology and Nutrition Department Hospital Clínico Universitario. Department of Medicine, University of Valencia, 46010, Valencia, Spain.,INCLIVA Institute of Health Research, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain.,CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain
| | - Deborah Jane Burks
- CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain.,Príncipe Felipe Research Center (CIPF), 46012, Valencia, Spain
| | - Herminia González-Navarro
- INCLIVA Institute of Health Research, Avda. Menéndez Pelayo, 4, 46010, Valencia, Spain. .,CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029, Madrid, Spain. .,Department of Didactics of Experimental and Social Sciences, University of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
36
|
Yi Y, Zhou L, Zuo S, Yin W, Li D, Wang J. Gender-specific association between neutrophil-to-lymphocyte ratio and arterial stiffness in an apparently healthy population undergoing a health examination. Vascular 2019; 27:668-676. [PMID: 31260380 DOI: 10.1177/1708538119840557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Neutrophil-to-lymphocyte ratio (NLR) value has emerged as a cardiovascular prognostic marker. Although several recent studies suggested NLR was associated with arterial stiffness, it was still controversial. The aim of this study was to investigate the correlation between NLR and arterial stiffness by measuring of brachial-ankle pulse wave velocity (baPWV) in an apparently healthy population. Methods This retrospective study enrolled 5612 participants during the health examinations from 1 October 2007 to 30 September 2011. Arterial stiffness was measured by baPWV. NLR was calculated as the ratio of the absolute neutrophil count to the absolute lymphocyte count in peripheral blood. According to the quartiles of NLR, the patients were categorized into four groups in males and females, respectively. Associations between NLR and baPWV were evaluated using partial correlation and multivariate logistic regression analysis. Results Both female and male subjects with increased arterial stiffness (baPWV ≥ 1400 cm/s) were likely to be older (females: P < 0.001, males: P < 0.001) and have higher systolic blood pressure (females: P < 0.001, males: P < 0.001), diastolic blood pressure (females: P < 0.001, males: P < 0.001), fasting plasma glucose (females: P < 0.001, males: P < 0.001), serum total cholesterol (females: P < 0.001, males: P = 0.028), triglyceride (females: P < 0.001, males: P = 0.031), urea nitrogen (females: P < 0.001, males: P < 0.001) than those without increased arterial stiffness. In addition, compared to those without increased arterial stiffness, body mass index ( P < 0.001), waist circumference ( P < 0.001), low-density lipoproteins cholesterol ( P < 0.001), creatinine ( P < 0.001), uric acid ( P < 0.001) and lymphocytes ( P = 0.001) were higher in females with increased arterial stiffness. However, males with increased arterial stiffness had higher NLR value (2.0 ± 0.7 vs. 2.1 ± 0.9, P < 0.001) and neutrophils (4.3 ± 1.4 vs. 4.5 ± 1.5, P < 0.001) than those without increased arterial stiffness, while the difference was not found in females. ANCOVA showed that males with quartile 3 and quartile 4 of NLR had greater levels of baPWV. NLR was correlated to baPWV in males by partial correlation analysis (r = 0.110, P < 0.001), but not in females. In multiple logistic regression analysis, the quartile 4 of NLR was positively associated with increased arterial stiffness in males (OR = 1.43, 95% confidence intervals [CI]=1.12–1.82, P = 0.004), but there was no obvious correlation in females. Conclusions Our findings suggest that there is a gender difference in the relationship between arterial stiffness and NLR. After adjusting for other confounders, the risk of increased arterial stiffness in apparently healthy adult males (rather than females) is independently associated with the highest quartile of NLR.
Collapse
Affiliation(s)
- Yihu Yi
- XiangYa School of Medicine, Central South University, Changsha, P.R. China
| | - Lingyun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Shanru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Wenjun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Daiyang Li
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Jianglin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, P.R. China
| |
Collapse
|
37
|
Maruf A, Wang Y, Yin T, Huang J, Wang N, Durkan C, Tan Y, Wu W, Wang G. Atherosclerosis Treatment with Stimuli-Responsive Nanoagents: Recent Advances and Future Perspectives. Adv Healthc Mater 2019; 8:e1900036. [PMID: 30945462 DOI: 10.1002/adhm.201900036] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/06/2019] [Indexed: 01/04/2023]
Abstract
Atherosclerosis is the root of approximately one-third of global mortalities. Nanotechnology exhibits splendid prospects to combat atherosclerosis at the molecular level by engineering smart nanoagents with versatile functionalizations. Significant advances in nanoengineering enable nanoagents to autonomously navigate in the bloodstream, escape from biological barriers, and assemble with their nanocohort at the targeted lesion. The assembly of nanoagents with endogenous and exogenous stimuli breaks down their shells, facilitates intracellular delivery, releases their cargo to kill the corrupt cells, and gives imaging reports. All these improvements pave the way toward personalized medicine for atherosclerosis. This review systematically summarizes the recent advances in stimuli-responsive nanoagents for atherosclerosis management and its progress in clinical trials.
Collapse
Affiliation(s)
- Ali Maruf
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Tieyin Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Junli Huang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Nan Wang
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Colm Durkan
- The Nanoscience CentreUniversity of Cambridge Cambridge CB3 0FF UK
| | - Youhua Tan
- Department of Biomedical EngineeringThe Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing University Chongqing 400030 China
| |
Collapse
|
38
|
Neupane R, Jin X, Sasaki T, Li X, Murohara T, Cheng XW. Immune Disorder in Atherosclerotic Cardiovascular Disease - Clinical Implications of Using Circulating T-Cell Subsets as Biomarkers. Circ J 2019; 83:1431-1438. [PMID: 31092769 DOI: 10.1253/circj.cj-19-0114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Atherosclerotic cardiovascular disease (ACVD) is an inflammatory phenomenon that leads to structural abnormality in the vascular lumen due to the formation of atheroma by the deposition of lipid particles and inflammatory cytokines. There is a close interaction between innate immune cells (neutrophils, monocyte, macrophages, dendritic cells) and adaptive immune cells (T and B lymphocytes) in the initiation and progression of atherosclerosis. According to novel insights into the role of adaptive immunity in atherosclerosis, the activation of CD4+T cells in response to oxidized low-density lipoprotein-antigen initiates the formation and facilitates the propagation of atheroma, whereas CD8+T cells cause the rupture of a developed atheroma by their cytotoxic nature. Peripheral CD4+and CD8+T-cell counts were altered in patients with other cardiovascular risk factors. Furthermore, on evaluation of the feasibility of immune cells as a diagnostic tool, the blood CD4+(helper), CD8+(cytotoxic), and CD4+CD25+Foxp3+(regulatory) T cells and the ratio of CD4 to CD8 cells hold promise as biomarkers of coronary artery disease and their subtypes. T cells also could be a therapeutic target for cardiovascular diseases. The goal of this review was therefore to summarize the available information regarding immune disorders in ACVD with a special focus on the clinical implications of circulating T-cell subsets as biomarkers.
Collapse
Affiliation(s)
- Rajib Neupane
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Xiongjie Jin
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine
| | - Xiang Li
- Department of Cardiology and Hypertension, Yanbian University Hospital
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Yanbian University Hospital.,Department of Cardiology, Nagoya University Graduate School of Medicine
| |
Collapse
|
39
|
Valga F, Monzón T, Henriquez F, Antón-Pérez G. Índices neutrófilo-linfocito y plaqueta-linfocito como marcadores biológicos de interés en la enfermedad renal. Nefrologia 2019; 39:243-249. [DOI: 10.1016/j.nefro.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 09/10/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022] Open
|
40
|
Rutin and curcumin reduce inflammation, triglyceride levels and ADA activity in serum and immune cells in a model of hyperlipidemia. Blood Cells Mol Dis 2019; 76:13-21. [DOI: 10.1016/j.bcmd.2018.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/25/2018] [Indexed: 12/11/2022]
|
41
|
Changes in CDKN2A/2B expression associate with T-cell phenotype modulation in atherosclerosis and type 2 diabetes mellitus. Transl Res 2019; 203:31-48. [PMID: 30176239 DOI: 10.1016/j.trsl.2018.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
Previous studies indicate a role of CDKN2A/2B/2BAS genes in atherosclerosis and type 2 diabetes mellitus (T2DM). Progression of these diseases is accompanied by T-cell imbalance and chronic inflammation. Our main objective was to investigate a potential association between CDKN2A/2B/2BAS gene expression and T cell phenotype in T2DM and coronary artery disease (CAD) in humans, and to explore the therapeutic potential of these genes to restore immune cell homeostasis and disease progression. Reduced mRNA levels of CDKN2A (p16Ink4a), CDKN2B (p15Ink4b), and CDKN2BAS were observed in human T2DM and T2DM-CAD subjects compared with controls. Protein levels of p16Ink4a and p15Ink4b were also diminished in T2DM-CAD patients while CDK4 levels, the main target of p16Ink4a and p15Ink4b, were augmented in T2DM and T2DM-CAD subjects. Both patient groups displayed higher activated CD3+CD69+ T cells and proatherogenic CD14++CD16+ monocytes, while CD4+CD25+CD127 regulatory T (Treg cells) cells were decreased. Treatment of primary human lymphocytes with PD0332991, a p16Ink4a/p15Ink4b mimetic drug and a proven CDK4 inhibitor, increased Treg cells and the levels of activated transcription factor phosphoSTAT5. In vivo PD0332991 treatment of atherosclerotic apoE-/- mice and insulin resistant apoE-/-Irs2+/- mice augmented Foxp3-expressing Treg cells and decreased lesion size. Thus, atherosclerosis complications in T2DM associate with altered immune cell homeostasis, diminished CDKN2A/2B/2BAS expression, and increased CDK4 levels. The present study also suggests that the treatment with drugs that mimic CDKN2A/2B genes could potential be considered as a promising therapy to delay atherosclerosis.
Collapse
|
42
|
Discovery, synthesis and anti-atherosclerotic activities of a novel selective sphingomyelin synthase 2 inhibitor. Eur J Med Chem 2018; 163:864-882. [PMID: 30580239 DOI: 10.1016/j.ejmech.2018.12.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/03/2023]
Abstract
The sphingomyelin synthase 2 (SMS2) is a potential target for pharmacological intervention in atherosclerosis. However, so far, few selective SMS2 inhibitors and their pharmacological activities were reported. In this study, a class of 2-benzyloxybenzamides were discovered as novel SMS2 inhibitors through scaffold hopping and structural optimization. Among them, Ly93 as one of the most potent inhibitors exhibited IC50 values of 91 nM and 133.9 μM against purified SMS2 and SMS1 respectively. The selectivity ratio of Ly93 was more than 1400-fold for purified SMS2 over SMS1. The in vitro studies indicated that Ly93 not only dose-dependently diminished apoB secretion from Huh7 cells, but also significantly reduced the SMS activity and increased cholesterol efflux from macrophages. Meanwhile, Ly93 inhibited the secretion of LPS-mediated pro-inflammatory cytokine and chemokine in macrophages. The pharmacokinetic profiles of Ly93 performed on C57BL/6J mice demonstrated that Ly93 was orally efficacious. As a potent selective SMS2 inhibitor, Ly93 significantly decreased the plasma SM levels of C57BL/6J mice. Furthermore, Ly93 was capable of dose-dependently attenuating the atherosclerotic lesions in the root and the entire aorta as well as macrophage content in lesions, in apolipoprotein E gene knockout mice treated with Ly93. In conclusion, we discovered a novel selective SMS2 inhibitor Ly93 and demonstrated its anti-atherosclerotic activities in vivo. The preliminary molecular mechanism-of-action studies revealed its function in lipid homeostasis and inflammation process, which indicated that the selective inhibition of SMS2 would be a promising treatment for atherosclerosis.
Collapse
|
43
|
Podolec J, Niewiara L, Skiba D, Siedlinski M, Baran J, Komar M, Guzik B, Kablak-Ziembicka A, Kopec G, Guzik T, Bartus K, Plazak W, Zmudka K. Higher levels of circulating naïve CD8 +CD45RA + cells are associated with lower extent of coronary atherosclerosis and vascular dysfunction. Int J Cardiol 2018; 259:26-30. [PMID: 29579606 DOI: 10.1016/j.ijcard.2018.01.079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Jakub Podolec
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland.
| | - Lukasz Niewiara
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Dominik Skiba
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland; British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mateusz Siedlinski
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland
| | - Jakub Baran
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Monika Komar
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Bartlomiej Guzik
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Anna Kablak-Ziembicka
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Grzegorz Kopec
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Faculty of Medicine, Jagiellonian University Medical College, Poland; British Heart Foundation Centre for Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Krzysztof Bartus
- Department of Cardiovascular Surgery and Transplantology, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Wojciech Plazak
- Department of Cardiac and Vascular Diseases, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| | - Krzysztof Zmudka
- Department of Interventional Cardiology, Jagiellonian University College of Medicine, John Paul II Hospital, Krakow, Poland
| |
Collapse
|
44
|
Ma S, Wang S, Li M, Zhang Y, Zhu P. The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids Health Dis 2018; 17:240. [PMID: 30326915 PMCID: PMC6192115 DOI: 10.1186/s12944-018-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Atherosclerosis is believed to be the major cause of CVD, characterized by atherosclerotic lesion formation and plaque disruption. Although remarkable advances in understanding the mechanisms of atherosclerosis have been made, the application of these theories is still limited in the prevention and treatment of atherosclerosis. Therefore, novel and effective strategies to treat high-risk patients with atherosclerosis require further development. Pigment epithelium-derived factor (PEDF), a glycoprotein with anti-inflammatory, anti-oxidant, anti-angiogenic, anti-thrombotic and anti-tumorigenic properties, is of considerable interest in the prevention of atherosclerosis. Accumulating research has suggested that PEDF exerts beneficial effects on atherosclerotic lesions and CVD patients. Our group, along with colleagues, has demonstrated that PEDF may be associated with acute coronary syndrome (ACS), and that the polymorphisms of rs8075977 of PEDF are correlated with coronary artery disease (CAD). Moreover, we have explored the anti-atherosclerosis mechanisms of PEDF, showing that oxidized-low density lipoprotein (ox-LDL) reduced PEDF concentrations through the upregulation of reactive oxygen species (ROS), and that D-4F can protect endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF. Additionally, PEDF might alleviate endothelial injury by inhibiting the Wnt/β-catenin pathway. These data suggest that PEDF may be a novel therapeutic target for the treatment of atherosclerosis. In this review, we will summarize the role of PEDF in the development of atherosclerosis, focusing on endothelial dysfunction, inflammation, oxidative stress, angiogenesis and cell proliferation. We will also discuss its promising therapeutic implications for atherosclerosis.
Collapse
Affiliation(s)
- Shouyuan Ma
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuxia Wang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, 100853, China
| | - Man Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
45
|
Chen PY, Simons M. Fibroblast growth factor-transforming growth factor beta dialogues, endothelial cell to mesenchymal transition, and atherosclerosis. Curr Opin Lipidol 2018; 29:397-403. [PMID: 30080704 PMCID: PMC6290915 DOI: 10.1097/mol.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Despite much effort, atherosclerosis remains an important public health problem, leading to substantial morbidity and mortality worldwide. The purpose of this review is to provide an understanding of the role of endothelial cell fate change in atherosclerosis process. RECENT FINDINGS Recent studies indicate that a process known as endothelial-to-mesenchymal transition (EndMT) may play an important role in atherosclerosis development. Transforming growth factor beta (TGFβ) has been shown to be an important driver of the endothelial cell phenotype transition. SUMMARY The current review deals with the current state of knowledge regarding EndMT's role in atherosclerosis and its regulation by fibroblast growth factor (FGF)-TGFβ cross-talk. A better understanding of FGF-TGFβ signaling in the regulation of endothelial cell phenotypes is key to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Pei-Yu Chen
- Yale Cardiovascular Research Center, Department of Internal Medicine
| | - Michael Simons
- Yale Cardiovascular Research Center, Department of Internal Medicine
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
46
|
Baptista D, Mach F, Brandt KJ. Follicular regulatory T cell in atherosclerosis. J Leukoc Biol 2018; 104:925-930. [PMID: 30134501 DOI: 10.1002/jlb.mr1117-469r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease involving the infiltration of immune cells, such as monocytes/macrophages, neutrophils, T cells, and B cells, into the inner layer of vessel walls. T and B cell functions in the process of atherogenesis, as well as their mutual regulation, have been investigated but several aspects remain to be clarified. In the present review, we give a brief overview of the functions of follicular regulatory T cell (Tfr) on follicular T (Tfh) and B cell regulation related to atherosclerosis pathogenesis, including their influence on lymphangiogenesis and lipoprotein metabolism. We will also discuss their potential therapeutics properties in the resolution of established atherosclerotic lesions.
Collapse
Affiliation(s)
- Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
Understanding the Impact of Dietary Cholesterol on Chronic Metabolic Diseases through Studies in Rodent Models. Nutrients 2018; 10:nu10070939. [PMID: 30037080 PMCID: PMC6073247 DOI: 10.3390/nu10070939] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The development of certain chronic metabolic diseases has been attributed to elevated levels of dietary cholesterol. However, decades of research in animal models and humans have demonstrated a high complexity with respect to the impact of dietary cholesterol on the progression of these diseases. Thus, recent investigations in non-alcoholic fatty liver disease (NAFLD) point to dietary cholesterol as a key factor for the activation of inflammatory pathways underlying the transition from NAFLD to non-alcoholic steatohepatitis (NASH) and to hepatic carcinoma. Dietary cholesterol was initially thought to be the key factor for cardiovascular disease development, but its impact on the disease depends partly on the capacity to modulate plasmatic circulating low-density lipoprotein (LDL) cholesterol levels. These studies evidence a complex relationship between these chronic metabolic diseases and dietary cholesterol, which, in certain conditions, might promote metabolic complications. In this review, we summarize rodent studies that evaluate the impact of dietary cholesterol on these two prevalent chronic diseases and their relevance to human pathology.
Collapse
|
48
|
de Menezes Pereira M, Sant'Ana Santos TP, Cabral MS, Sampaio GP, Aras R, Ribeiro P, Atta AM. Th17 immune responses in Brazilian dyslipidemic patients with atherosclerosis. Int Immunopharmacol 2018; 56:51-57. [DOI: 10.1016/j.intimp.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/03/2018] [Accepted: 01/06/2018] [Indexed: 01/14/2023]
|
49
|
Silverstein RL. Atherothrombosis. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
50
|
Zupančič E, Fayad ZA, Mulder WJM. Cardiovascular Immunotherapy and the Role of Imaging. Arterioscler Thromb Vasc Biol 2017; 37:e167-e171. [PMID: 29070539 PMCID: PMC5743324 DOI: 10.1161/atvbaha.117.309227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Eva Zupančič
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Zahi A Fayad
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.)
| | - Willem J M Mulder
- From the Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY (E.Z., Z.A.F., W.J.M.M.); and Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands (W.J.M.M.).
| |
Collapse
|