1
|
Shima H, Higashiguchi Y, Doi T, Harada M, Okamoto T, Inoue T, Tashiro M, Okada K, Minakuchi J. Low-density Lipoprotein Receptor Activities, Lipids, Apolipoprotein, and Clinical Course of Patients with Steroid-resistant Nephrotic Syndrome Treated with Low-density Lipoprotein Apheresis: A Case Series. Intern Med 2024; 63:433-438. [PMID: 37258157 PMCID: PMC10901716 DOI: 10.2169/internalmedicine.1922-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
We herein report three cases of steroid-resistant nephrotic syndrome successfully treated with low-density lipoprotein apheresis (LDL-A). All patients were treated with a combination of steroids, cyclosporine, and LDL-A. In all cases, the serum concentrations of LDL, total and high-density lipoprotein cholesterol, and triglycerides were significantly lowered following LDL-A administration. Furthermore, the estimated LDL receptor activity increased, while both serum LDL and total cholesterol levels decreased, suggesting that LDL-A increases LDL receptor activity by driving changes in serum cholesterol concentration. This case series suggests that LDL-A increases LDL receptor activity, which may improve the intracellular uptake of cyclosporine.
Collapse
Affiliation(s)
- Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, Japan
| | | | - Toshio Doi
- Department of Kidney Disease, Kawashima Hospital, Japan
| | - Megumi Harada
- Department of Clinical Engineering, Kawashima Hospital, Japan
| | | | - Tomoko Inoue
- Department of Kidney Disease, Kawashima Hospital, Japan
| | | | | | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, Japan
| |
Collapse
|
2
|
Opałka B, Żołnierczuk M, Grabowska M. Immunosuppressive Agents-Effects on the Cardiovascular System and Selected Metabolic Aspects: A Review. J Clin Med 2023; 12:6935. [PMID: 37959400 PMCID: PMC10647341 DOI: 10.3390/jcm12216935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
The widespread use of immunosuppressive drugs makes it possible to reduce inflammation in autoimmune diseases, as well as prevent transplant rejection in organ recipients. Despite their key action in blocking the body's immune response, these drugs have many side effects. These actions primarily affect the cardiovascular system, and the incidence of complications in patients using immunosuppressive drugs is significant, being associated with a higher incidence of cardiovascular incidents such as myocardial infarction and stroke. This paper analyzes the mechanisms of action of commonly used immunosuppressive drugs and their impact on the cardiovascular system. The adverse effect of immunosuppressive drugs is associated with toxicity within the cardiovascular system, which may be a problem in the clinical management of patients after transplantation. Immunosuppressants act on the cardiovascular system in a variety of ways, including fibrosis and myocardial remodeling, endothelium disfunction, hypertension, atherosclerosis, dyslipidemia or hyperglycaemia, metabolic syndrome, and hyperuricemia. The use of multidrug protocols makes it possible to develop regimens that can reduce the incidence of cardiovascular events. A better understanding of their mechanism of action and the range of complications could enable physicians to select the appropriate therapy for a given patient, as well as to reduce complications and prolong life.
Collapse
Affiliation(s)
- Bianka Opałka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Michał Żołnierczuk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland;
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 71-210 Szczecin, Poland;
| |
Collapse
|
3
|
Frątczak A, Miziołek B, Łupicka-Słowik A, Sieńczyk M, Polak K, Bergler-Czop B. Significance of Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) for the Monitoring of Treatment Response to Cyclosporine in Patients with Psoriasis. Life (Basel) 2023; 13:1873. [PMID: 37763277 PMCID: PMC10532527 DOI: 10.3390/life13091873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) may promote development of inflammation in psoriasis, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) may account for dyslipidemia in some psoriatic patients. The aim of the study was to analyze the influence of cyclosporine therapy on serum levels of NGAL and PCSK9 in patients with psoriasis vulgaris. METHODS Serum samples were obtained before and after three months cyclosporine therapy. Patients were grouped into responders and non-responders to cyclosporine depending on whether they achieved at least 50% reduction of Psoriatic Activity Score Index (PASI), or not. Serum levels of PCSK9 and NGAL were assayed using commercially available ELISA tests. Lipid levels were measured with an enzymatic method. RESULTS There were 40 patients enrolled. A significant decrease in serum NGAL level was seen in cyclosporine responders. No similar dependance was found for PCSK9. Serum PCSK9 concentration correlated with total cholesterol (TChol) and LDL at baseline and after three month treatment. CONCLUSIONS Cyclosporine therapy contributes to the reduction of the NGAL serum but not the PCSK9 concentration. Correlation between the PCSK9 serum level and TChol as well as LDL concentration may help to understand drug induced dyslipidemia after cyclosporine.
Collapse
Affiliation(s)
- Aleksandra Frątczak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Bartosz Miziołek
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Agnieszka Łupicka-Słowik
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.Ł.-S.); (M.S.)
| | - Marcin Sieńczyk
- Department of Organic and Medicinal Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.Ł.-S.); (M.S.)
| | - Karina Polak
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| | - Beata Bergler-Czop
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, 20/24 Francuska St., 40-067 Katowice, Poland; (A.F.); (K.P.); (B.B.-C.)
| |
Collapse
|
4
|
Sayilar EI, Ersoy A, Ersoy C, Oruc A, Ayar Y, Sigirli D. The effect of calcineurin inhibitors on anthropometric measurements in kidney transplant recipients. BMC Nephrol 2022; 23:375. [DOI: 10.1186/s12882-022-03004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract
Background
This study was designed to investigate the effect of calcineurin inhibitors (CNIs), cyclosporine (CsA), and tacrolimus (Tac) on anthropometrics in kidney transplant recipients.
Methods
111 of 128 adult kidney transplant recipients who received post-transplant CNIs were included in this retrospective study. Anthropometrics were recorded in the pre-transplant and post-transplant 4-year follow-up periods (1st, 3rd, 6th, 12th, 24th, 36th and 48th months).
Results
Compared to pre-transplant values, significant increases in body weight and body mass index (between 3rd and 48th months), waist and hip circumferences (between 1st and 48th months), waist-to-hip ratio (between 1st and 3rd or 6th months) and neck circumference (between 1st and 12th or 24th months) were observed in both CsA and Tac groups. A significant increase was noted in post-transplant body fat percentage values for the 3rd to 24th months in the CsA group, whereas for the 24th to 48th months in both CsA and Tac groups. Hip circumferences percentage changes from the pre-transplant period to the 1st, 12th and 24th months were significantly higher in CsA than in the Tac group. At each time point, there was no significant difference in percentage changes for other anthropometric parameters between the CsA and Tac groups. De novo diabetes mellitus developed in 8.3% of the CsA group and 19.1% of the Tac group.
Conclusions
After a successful kidney transplant, anthropometric measurements increase in most recipients. Although the effect of calcineurin inhibitor type on weight gain is unclear, a regression analysis showed that CNI type was not a risk factor for the development of obesity in the 48th month. However, it is helpful to be cautious about its dyslipidemic effect in patients using CsA and the potential hazards of using Tac in patients with a diabetic predisposition.
Collapse
|
5
|
Lv P, Li Y, Wu L, Weng H, Chen M, Ding W, Li J. PCSK9 inhibitors in a renal transplant patient complicated with hepatitis B: A case report and literature review. Front Cardiovasc Med 2022; 9:937474. [PMID: 36419496 PMCID: PMC9676271 DOI: 10.3389/fcvm.2022.937474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid metabolism disorders are recognized to be one of the most frequent complications of renal transplantation, while dyslipidemia and chronic kidney disease (CKD) are strong risk factors for arteriosclerotic cardiovascular disease (ASCVD). Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are novel lipid-lowering drugs, the safety and efficacy of which are yet to be confirmed in transplanted patients. There have been several small-sample studies using PCSK9i in patients after heart transplantation, while fewer cases use PCSK9i after kidney transplantation. We report a case of a renal transplant recipient complicated with hepatitis B treated with PCSK9i, which achieved a remarkable lipid-lowering efficacy, and no significant adverse effects were found during the follow-up.
Collapse
|
6
|
Parrella A, Iannuzzi A, Annunziata M, Covetti G, Cavallaro R, Aliberti E, Tortori E, Iannuzzo G. Haematological Drugs Affecting Lipid Metabolism and Vascular Health. Biomedicines 2022; 10:biomedicines10081935. [PMID: 36009482 PMCID: PMC9405726 DOI: 10.3390/biomedicines10081935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/19/2023] Open
Abstract
Many drugs affect lipid metabolism and have side effects which promote atherosclerosis. The prevalence of cancer-therapy-related cardiovascular (CV) disease is increasing due to development of new drugs and improved survival of patients: cardio-oncology is a new field of interest and research. Moreover, drugs used in transplanted patients frequently have metabolic implications. Increasingly, internists, lipidologists, and angiologists are being consulted by haematologists for side effects on metabolism (especially lipid metabolism) and arterial circulation caused by drugs used in haematology. The purpose of this article is to review the main drugs used in haematology with side effects on lipid metabolism and atherosclerosis, detailing their mechanisms of action and suggesting the most effective therapies.
Collapse
Affiliation(s)
- Antonio Parrella
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Arcangelo Iannuzzi
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | | | - Giuseppe Covetti
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Raimondo Cavallaro
- Department of Medicine and Medical Specialties, A. Cardarelli Hospital, 80131 Naples, Italy
| | - Emilio Aliberti
- North Tees University Hospital, Stockton-on-Tees TS19 8PE, UK
| | - Elena Tortori
- Pharmacy Unit, Ospedale del Mare, 80147 Naples, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
7
|
Cardiovascular Risk after Kidney Transplantation: Causes and Current Approaches to a Relevant Burden. J Pers Med 2022; 12:jpm12081200. [PMID: 35893294 PMCID: PMC9329988 DOI: 10.3390/jpm12081200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background. Cardiovascular disease is a frequent complication after kidney transplantation and represents the leading cause of mortality in this population. Material and Methods. We searched for the relevant articles in the National Institutes of Health library of medicine, transplant, cardiologic and nephrological journals. Results. The pathogenesis of cardiovascular disease in kidney transplant is multifactorial. Apart from non-modifiable risk factors, such as age, gender, genetic predisposition and ethnicity, several traditional and non-traditional modifiable risk factors contribute to its development. Traditional factors, such as diabetes, hypertension and dyslipidemia, may be present before and may worsen after transplantation. Immunosuppressants and impaired graft function may strongly influence the exacerbation of these comorbidities. However, in the last years, several studies showed that many other cardiovascular risk factors may be involved in kidney transplantation, including hyperuricemia, inflammation, low klotho and elevated Fibroblast Growth Factor 23 levels, deficient levels of vitamin D, vascular calcifications, anemia and poor physical activity and quality of life. Conclusions. The timely and effective treatment of time-honored and recently discovered modifiable risk factors represent the basis of the prevention of cardiovascular complications in kidney transplantation. Reduction of cardiovascular risk can improve the life expectancy, the quality of life and the allograft function and survival.
Collapse
|
8
|
Jansson Sigfrids F, Stechemesser L, Dahlström EH, Forsblom CM, Harjutsalo V, Weitgasser R, Taskinen MR, Groop PH. Apolipoprotein C-III predicts cardiovascular events and mortality in individuals with type 1 diabetes and albuminuria. J Intern Med 2022; 291:338-349. [PMID: 34817888 PMCID: PMC9298713 DOI: 10.1111/joim.13412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES We studied apolipoprotein C-III (apoC-III) in relation to diabetic kidney disease (DKD), cardiovascular outcomes, and mortality in type 1 diabetes. METHODS The cohort comprised 3966 participants from the prospective observational Finnish Diabetic Nephropathy Study. Progression of DKD was determined from medical records. A major adverse cardiac event (MACE) was defined as acute myocardial infarction, coronary revascularization, stroke, or cardiovascular mortality through 2017. Cardiovascular and mortality data were retrieved from national registries. RESULTS ApoC-III predicted DKD progression independent of sex, diabetes duration, blood pressure, HbA1c , smoking, LDL-cholesterol, lipid-lowering medication, DKD category, and remnant cholesterol (hazard ratio [HR] 1.43 [95% confidence interval 1.05-1.94], p = 0.02). ApoC-III also predicted the MACE in a multivariable regression analysis; however, it was not independent of remnant cholesterol (HR 1.05 [0.81-1.36, p = 0.71] with remnant cholesterol; 1.30 [1.03-1.64, p = 0.03] without). DKD-specific analyses revealed that the association was driven by individuals with albuminuria, as no link between apoC-III and the outcome was observed in the normal albumin excretion or kidney failure categories. The same was observed for mortality: Individuals with albuminuria had an adjusted HR of 1.49 (1.03-2.16, p = 0.03) for premature death, while no association was found in the other groups. The highest apoC-III quartile displayed a markedly higher risk of MACE and death than the lower quartiles; however, this nonlinear relationship flattened after adjustment. CONCLUSIONS The impact of apoC-III on MACE risk and mortality is restricted to those with albuminuria among individuals with type 1 diabetes. This study also revealed that apoC-III predicts DKD progression, independent of the initial DKD category.
Collapse
Affiliation(s)
- Fanny Jansson Sigfrids
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lars Stechemesser
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,First Department of Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Emma H Dahlström
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Carol M Forsblom
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,National Institute for Health and Welfare, Helsinki, Finland
| | - Raimund Weitgasser
- First Department of Medicine, Paracelsus Medical University, Salzburg, Austria.,Department of Medicine, Diabetology, Wehrle-Diakonissen Hospital, Salzburg, Austria
| | | | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | -
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
9
|
Karpale M, Hukkanen J, Hakkola J. Nuclear Receptor PXR in Drug-Induced Hypercholesterolemia. Cells 2022; 11:cells11030313. [PMID: 35159123 PMCID: PMC8833906 DOI: 10.3390/cells11030313] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis is a major global health concern. The central modifiable risk factors and causative agents of the disease are high total and low-density lipoprotein (LDL) cholesterol. To reduce morbidity and mortality, a thorough understanding of the factors that influence an individual’s cholesterol status during the decades when the arteria-narrowing arteriosclerotic plaques are forming is critical. Several drugs are known to increase cholesterol levels; however, the mechanisms are poorly understood. Activation of pregnane X receptor (PXR), the major regulator of drug metabolism and molecular mediator of clinically significant drug–drug interactions, has been shown to induce hypercholesterolemia. As a major sensor of the chemical environment, PXR may in part mediate hypercholesterolemic effects of drug treatment. This review compiles the current knowledge of PXR in cholesterol homeostasis and discusses the role of PXR in drug-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Janne Hukkanen
- Research Unit of Internal Medicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
| | - Jukka Hakkola
- Research Unit of Biomedicine, Biocenter Oulu, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, P.O. Box 5000, FI-90014 Oulu, Finland;
- Correspondence:
| |
Collapse
|
10
|
Atzeni F, Rodríguez-Carrio J, Popa CD, Nurmohamed MT, Szűcs G, Szekanecz Z. Cardiovascular effects of approved drugs for rheumatoid arthritis. Nat Rev Rheumatol 2021; 17:270-290. [PMID: 33833437 DOI: 10.1038/s41584-021-00593-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
The risk of cardiovascular disease is increased in patients with rheumatoid arthritis compared with the general population owing to the influence of traditional and non-traditional risk factors. Inflammation has a pivotal contribution and can accelerate the atherosclerotic process. Although dampening inflammation with DMARDs should theoretically abrogate this process, evidence suggests that these drugs can also promote atherosclerosis directly and indirectly, hence adding to an increased cardiovascular burden. However, the extent and direction of the effects largely differ across drugs. Understanding how these drugs influence endothelial damage and vascular repair mechanisms is key to understanding these outcomes. NSAIDs and glucocorticoids can increase the cardiovascular risk. Conversely, conventional, biologic and targeted DMARDs control inflammation and reduce this risk, although some of these drugs can also aggravate traditional factors or thrombotic events. Given these data, the fundamental objective for clinicians should be disease control, in an individualized approach that considers the most appropriate drug for each patient, taking into account joint and cardiovascular outcomes. This Review provides a comprehensive analysis of the effects of DMARDs and other approved drugs on cardiovascular involvement in rheumatoid arthritis, from a clinical and mechanistic perspective, with a roadmap to inform the research agenda.
Collapse
Affiliation(s)
- Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy.
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Călin D Popa
- Department of Rheumatology, Sint Maartenskliniek Nijmegen, Nijmegen, The Netherlands
| | - Michael T Nurmohamed
- Deptartment of Rheumatology, Amsterdam University Medical Center & Reade, Amsterdam, The Netherlands
| | - Gabriella Szűcs
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Division of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Goldberg RB, Chait A. A Comprehensive Update on the Chylomicronemia Syndrome. Front Endocrinol (Lausanne) 2020; 11:593931. [PMID: 33193106 PMCID: PMC7644836 DOI: 10.3389/fendo.2020.593931] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
The chylomicronemia syndrome is characterized by severe hypertriglyceridemia and fasting chylomicronemia and predisposes affected individuals to acute pancreatitis. When due to very rare monogenic mutations in the genes encoding the enzyme, lipoprotein lipase, or its regulators, APOC2, APOA5, GPIHBP1, and LMF1, it is referred to as the familial chylomicronemia syndrome. Much more frequently, the chylomicronemia syndrome results from a cluster of minor genetic variants causing polygenic hypertriglyceridemia, which is exacerbated by conditions or medications which increase triglyceride levels beyond the saturation point of triglyceride removal systems. This situation is termed the multifactorial chylomicronemia syndrome. These aggravating factors include common conditions such as uncontrolled diabetes, overweight and obesity, alcohol excess, chronic kidney disease and pregnancy and several medications, including diuretics, non-selective beta blockers, estrogenic compounds, corticosteroids, protease inhibitors, immunosuppressives, antipsychotics, antidepressants, retinoids, L-asparaginase, and propofol. A third uncommon cause of the chylomicronemia syndrome is familial forms of partial lipodystrophy. Development of pancreatitis is the most feared complication of the chylomicronemia syndrome, but the risk of cardiovascular disease as well as non-alcoholic steatohepatitis is also increased. Treatment consists of dietary fat restriction and weight reduction combined with the use of triglyceride lowering medications such as fibrates, omega 3 fatty acids and niacin. Effective management of aggravating factors such as improving diabetes control, discontinuing alcohol and replacing or reducing the dose of medications that raise triglyceride levels is essential. Importantly, many if not most cases of the chylomicronemia syndrome can be prevented by effective identification of polygenic hypertriglyceridemia in people with conditions that increase its likelihood or before starting medications that may increase triglyceride levels. Several new pharmacotherapeutic agents are being tested that are likely to considerably improve treatment of hypertriglyceridemia in people at risk.
Collapse
Affiliation(s)
- Ronald B. Goldberg
- Departments of Medicine, Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Ronald B. Goldberg,
| | - Alan Chait
- Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
12
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
13
|
Satoh K, Shimokawa H. Recent Advances in the Development of Cardiovascular Biomarkers. Arterioscler Thromb Vasc Biol 2019; 38:e61-e70. [PMID: 29695533 DOI: 10.1161/atvbaha.118.310226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kimio Satoh
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
14
|
Ponticelli C, Glassock RJ. Prevention of complications from use of conventional immunosuppressants: a critical review. J Nephrol 2019; 32:851-870. [PMID: 30927190 DOI: 10.1007/s40620-019-00602-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/21/2019] [Indexed: 01/08/2023]
Abstract
Synthetic immunosuppressive drugs are largely used in immune-related renal diseases and in kidney transplantation. Most of these drugs have a low therapeutic index (the ratio that compares the blood concentration at which a drug becomes toxic and the concentration at which the drug is effective), which means that the drug should be dosed carefully and the patient monitored frequently. In this review, we consider the categories of synthetic immunosuppressive agents more frequently and conventionally used in clinical nephrology: glucocorticoids, Aalkylating agents (cyclophosphamide, chlorambucil), purine synthesis inhibitors (azathioprine, mycophenolate salts) and calcineurin inhibitors (cyclosporine, tacrolimus). For each category the possible side effects will be reviewed, the general and specific measures to prevent or treat the adverse events will be suggested, and the more common mistakes that may increase the risk of toxicity will be described. However, the efficacy and safety of immunosuppressive agents depend not only on the pharmacologic characteristics of single drugs but can be influenced also by the clinical condition and genetic characteristics of the patient, by the typology and severity of the underlying disease and by the interaction with other concomitantly used drugs.
Collapse
Affiliation(s)
- Claudio Ponticelli
- Division of Nephrology, Istituto Scientifico Ospedale Maggiore, Milan, Italy.
- , Via Ampere 126, 20131, Milan, Italy.
| | - Richard J Glassock
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Xu F, Xiao H, Liu R, Yang Y, Zhang M, Chen L, Chen Z, Liu P, Huang H. Paeonol Ameliorates Glucose and Lipid Metabolism in Experimental Diabetes by Activating Akt. Front Pharmacol 2019; 10:261. [PMID: 30941042 PMCID: PMC6433795 DOI: 10.3389/fphar.2019.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/01/2019] [Indexed: 01/09/2023] Open
Abstract
Our previous study proved that paeonol (Pae) could lower blood glucose levels of diabetic mice. There are also a few reports of its potential use for diabetes treatment. However, the role of Pae in regulating glucose and lipid metabolism in diabetes remains largely unknown. Considering the critical role of serine/threonine kinase B (Akt) in glucose and lipid metabolism, we explored whether Pae could improve glucose and lipid metabolism disorders via Akt. Here, we found that Pae attenuated fasting blood glucose, glycosylated serum protein, serum cholesterol and triglyceride (TG), hepatic glycogen, cholesterol and TG in diabetic mice. Moreover, Pae enhanced glucokinase (GCK) and low-density lipoprotein receptor (LDLR) protein expressions, and increased the phosphorylation of Akt. In insulin-resistant HepG2 cells, Pae increased glucose uptake and decreased lipid accumulation. What’s more, Pae elevated LDLR and GCK expressions as well as Akt phosphorylation, which was consistent with the in vivo results. Knockdown and inhibition experiments of Akt revealed that Pae regulated LDLR and GCK expressions through activation of Akt. Finally, molecular docking assay indicated the steady hydrogen bond was formed between Pae and Akt2. Experiments above suggested that Pae ameliorated glucose and lipid metabolism disorders and the underlying mechanism was closely related to the activation of Akt.
Collapse
Affiliation(s)
- Futian Xu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Haiming Xiao
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Renbin Liu
- Department of Traditional Chinese Medicine, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Yan Yang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Meng Zhang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology and Toxicology, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China.,Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Kühl M, Binner C, Jozwiak J, Fischer J, Hahn J, Addas A, Dinov B, Garbade J, Hindricks G, Borger M. Treatment of hypercholesterolaemia with PCSK9 inhibitors in patients after cardiac transplantation. PLoS One 2019; 14:e0210373. [PMID: 30650126 PMCID: PMC6335020 DOI: 10.1371/journal.pone.0210373] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
Background Hypercholesterolaemia is common in patients after cardiac transplantation. Monoclonal antibodies that inhibit proprotein convertase subtilisin-kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol levels and subsequently the risk of cardiovascular events in patients with dyslipidaemia. There are no published data on the effect of this medication class on cholesterol levels in patients after cardiac transplantation. Methods In this retrospective study we investigated patients who were treated with PCSK9 inhibitors either because of intolerance of statins or residual hypercholesterolaemia with evidence of cardiac allograft vasculopathy. We compared the data of patients prior to the start with these medications with their most recent dataset. Results Ten patients (nine men; mean age 58±6 years) underwent cardiac transplantation 8.3±4.5 (range 3–15) years ago. The treatment duration of Evolocumab or Alirocumab was on average 296±125 days and lead to a reduction of total Cholesterol (281±52 mg/dl to 197±36 mg/dl; p = 0.002) and LDL Cholesterol (170±22 mg/dl to 101±39 mg/dl; p = 0.001). No significant effects on HDL Cholesterol, BNP, Creatin Kinase or hepatic enzymes were noticed. There were no unplanned hospitalisations, episodes of rejections, change of ejection fraction or opportunistic infections. Both patients on Alirocumab developed liver pathologies: One patient died of hepatocellular carcinoma and the other developed hepatitis E. Conclusions Our study demonstrates that the PCSK9 inhibitors Evolocumab and Alirocumab lead to a significant reduction of LDL Cholesterol in heart transplantation recipients. No effect on cardiac function or episodes of rejections were noticed. Larger and long-term studies are needed to establish safety and efficacy of PCSK9 inhibitors after cardiac transplantation.
Collapse
Affiliation(s)
- Michael Kühl
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- * E-mail:
| | - Christian Binner
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Joanna Jozwiak
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Julia Fischer
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jochen Hahn
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Alaeldin Addas
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Boris Dinov
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
18
|
Zhuo JC, Cai DK, Xie KF, Gan HN, Li SS, Huang XJ, Huang D, Zhang CZ, Li RY, Chen YX, Zeng XH. Mechanism of YLTZ on glycolipid metabolism based on UPLC/TOF/MS metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1097-1098:128-141. [PMID: 30241074 DOI: 10.1016/j.jchromb.2018.08.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by dysfunction of glycolipid metabolism. YLTZ is used to treat hyperlipidemia, yet its hypolipidemic and hypoglycemic mechanism on T2DM are unknown. Thus, UPLC/TOF/MS was applied in this study to identify the potential bio-markers, and deduce the possible metabolic pathways. According to bio-indexes, the increased blood lipid levels, including TC, TG, LDL and FA, and the decreased HDL, the elevated glucose, reduced insulin level and impaired OGTT were observed in diabetic rat model. While YLTZ can decrease the lipid levels and glucose content, as well as increased insulin standards and improve OGTT. After data from UPLC/TOF/MS processed, 17 metabolites were obtained, including phospholipids (LPCs, PCs and PGP (18:1)), beta-oxidation production (HAA, VAG and CNE) and precursors (THA), bile acid (CA, CDCA and IDCA), hydrolysate of TG (MG (22:4)), glycometabolism (G6P), cholesterol-driven synthetics (ADO) and production of arachidonate acid (THETA). As a result, YLTZ was able to reduce LPCs, PCs, PGP (18:1), HAA, VAG, CNE, CA, ADO and THETA, as well as enhance MG (22:4) and G6P. After analyzing results, several metabolic pathways were deduced, which containing, cholesterol synthesis and elimination, FA beta-oxidation, TG hydrolysis, phospholipids synthesis, glycolysis, gluconeogenesis and inflammation. Consequently, YLTZ performed to prohibit the FA beta-oxidation, synthesis of cholesterol and phospholipids, gluconeogenesis and inflammation level, as well as promote TG hydrolysis, glycolysis and blood circulation. Hence, applying metabonomics in TCM research can uncover its pharmacological edges, elucidating comprehensively that YLTZ has capacity of hypolipidemic, hypoglycemic and promoting blood circulation, matching the effect of removing blood stasis, eliminating phlegm and dampness.
Collapse
Affiliation(s)
- Jun-Cheng Zhuo
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Da-Ke Cai
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Kai-Feng Xie
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Hai-Ning Gan
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Sha-Sha Li
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xue-Jun Huang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Dane Huang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Cheng-Zhe Zhang
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Ru-Yue Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China
| | - Yu-Xing Chen
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China.
| | - Xiao-Hui Zeng
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China; Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou, Guangdong 510095, China.
| |
Collapse
|
19
|
Wang X, Du H, Shao S, Bo T, Yu C, Chen W, Zhao L, Li Q, Wang L, Liu X, Su X, Sun M, Song Y, Gao L, Zhao J. Cyclophilin D deficiency attenuates mitochondrial perturbation and ameliorates hepatic steatosis. Hepatology 2018; 68:62-77. [PMID: 29356058 DOI: 10.1002/hep.29788] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/08/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023]
Abstract
Physiological opening of the mitochondrial permeability transition pore (mPTP) is indispensable for maintaining mitochondrial function and cell homeostasis, but the role of the mPTP and its initial factor, cyclophilin D (CypD), in hepatic steatosis is unclear. Here, we demonstrate that excess mPTP opening is mediated by an increase of CypD expression induced hepatic mitochondrial dysfunction. Notably, such mitochondrial perturbation occurred before detectable triglyceride accumulation in the liver of high-fat diet-fed mice. Moreover, either genetic knockout or pharmacological inhibition of CypD could ameliorate mitochondrial dysfunction, including excess mPTP opening and stress, and down-regulate the transcription of sterol regulatory element-binding protein-1c, a key factor of lipogenesis. In contrast, the hepatic steatosis in adenoviral overexpression of CypD-infected mice was aggravated relative to the control group. Blocking p38 mitogen-activated protein kinase or liver-specific Ire1α knockout could resist CypD-induced sterol regulatory element-binding protein-1c expression and steatosis. Importantly, CypD inhibitor applied prior to or after the onset of triglyceride deposition substantially prevented or ameliorated fatty liver. CONCLUSION CypD stimulates mPTP excessive opening, subsequently causing endoplasmic reticulum stress through p38 mitogen-activated protein kinase activation, and results in enhanced sterol regulatory element-binding protein-1c transcription and hepatic steatosis. (Hepatology 2018;68:62-77).
Collapse
Affiliation(s)
- Xiaolei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Heng Du
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX
| | - Shanshan Shao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lifang Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Li Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Physiology and Neurobiology and the Institute for Systems Genomics, University of Connecticut, Storrs, CT
| | - Xiaojing Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Xiaohui Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Mingqi Sun
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Yongfeng Song
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| | - Ling Gao
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
20
|
Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta-cell failure. Cell Commun Signal 2017; 15:47. [PMID: 29132395 PMCID: PMC5684747 DOI: 10.1186/s12964-017-0203-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND One of the most common side effects of the immunosuppressive drug tacrolimus (FK506) is the increased risk of new-onset diabetes mellitus. However, the molecular mechanisms underlying this association have not been fully clarified. METHODS We studied the effects of the therapeutic dose of tacrolimus on mitochondrial fitness in beta-cells. RESULTS We demonstrate that tacrolimus impairs glucose-stimulated insulin secretion (GSIS) in beta-cells through a previously unidentified mechanism. Indeed, tacrolimus causes a decrease in mitochondrial Ca2+ uptake, accompanied by altered mitochondrial respiration and reduced ATP production, eventually leading to impaired GSIS. CONCLUSION Our observations individuate a new fundamental mechanism responsible for the augmented incidence of diabetes following tacrolimus treatment. Indeed, this drug alters Ca2+ fluxes in mitochondria, thereby compromising metabolism-secretion coupling in beta-cells.
Collapse
|
21
|
Dron JS, Ho R, Hegele RA. Recent Advances in the Genetics of Atherothrombotic Disease and Its Determinants. Arterioscler Thromb Vasc Biol 2017; 37:e158-e166. [DOI: 10.1161/atvbaha.117.309934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jacqueline S. Dron
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rosettia Ho
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A. Hegele
- From the Department of Biochemistry (J.S.D, R.H., R.A.H.), Robarts Research Institute (J.S.D., R.H., R.A.H.), and Department of Medicine (R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
22
|
Affiliation(s)
- Maaike Kockx
- aANZAC Research Institute bDepartment of Cardiology, Concord Repatriation General Hospital; University of Sydney, Sydney, New South Wales, Australia
| | | |
Collapse
|