1
|
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 2024:S1043-2760(24)00296-0. [PMID: 39672762 DOI: 10.1016/j.tem.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Indian Institute of Technology Dharwad, Karnataka, India
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Kattih B, Fischer A, Muhly-Reinholz M, Tombor L, Nicin L, Cremer S, Zeiher AM, John D, Abplanalp WT, Dimmeler S. Inhibition of miR-92a normalizes vascular gene expression and prevents diastolic dysfunction in heart failure with preserved ejection fraction. J Mol Cell Cardiol 2024; 198:89-98. [PMID: 39592091 DOI: 10.1016/j.yjmcc.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a major public health burden with increasing prevalence but only few effective therapies. Endothelial dysfunction and inflammation are identified as pathophysiological drivers of HFpEF disease progression. MicroRNAs are increasingly recognized as key regulators of these pathological processes, while antimiR-based therapies have been emerged as promising therapeutics in mice and humans. Therefore, we tested whether miR-92a-3p inhibition is a promising therapeutic intervention to target HFpEF in vivo. By injection of locked nucleic acid (LNA)-based antimiR (LNA-92a) weekly, we demonstrate that inhibition of miR-92a-3p attenuates the development of diastolic dysfunction and left atrial dilation following experimental induction of HFpEF in mice. Indeed, LNA-92a depleted miR-92a-3p expression in the myocardium and peripheral blood, and derepressed predicted target genes in a cell type-specific manner. Furthermore, cell-type specific efficacy of LNA-92a treatment was assessed by single-nuclear RNA sequencing of HFpEF hearts either treated with LNA-92a or LNA-Control. Endothelial cells of LNA-92a treated mice showed normalized vascular gene expression and reduced gene signatures associated with endothelial-mesenchymal transition. CONCLUSION: This study demonstrates that LNA-based antimiR-92a is an effective therapeutic strategy to target diastolic dysfunction and left atrial dilation in HFpEF.
Collapse
Affiliation(s)
- Badder Kattih
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Ariane Fischer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Marion Muhly-Reinholz
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Lukas Tombor
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Luka Nicin
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Sebastian Cremer
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Goethe University Frankfurt, University Hospital, Department of Cardiology, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Andreas M Zeiher
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany
| | - David John
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Wesley Tyler Abplanalp
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; German Centre for Cardiovascular Research, Partner Site Rhine-Main, 60590 Frankfurt am Main, Germany; Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Voicu G, Mocanu CA, Safciuc F, Rebleanu D, Anghelache M, Cecoltan S, Droc I, Simionescu M, Manduteanu I, Calin M. VCAM-1 targeted nanocarriers of shRNA-Smad3 mitigate endothelial-to-mesenchymal transition triggered by high glucose concentrations and osteogenic factors in valvular endothelial cells. Int J Biol Macromol 2024; 281:136355. [PMID: 39374726 DOI: 10.1016/j.ijbiomac.2024.136355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Endothelial to mesenchymal transition (EndMT) of valvular endothelial cells (VEC) is a key process in the development and progression of calcific aortic valve disease (CAVD). High expression of the Smad3 transcription factor is crucial in the transition process. We hypothesize that silencing Smad3 could hinder EndMT and provide a novel treatment for CAVD. We aimed at developing nanoparticles encapsulating short-hairpin (sh)RNA sequences specific for Smad3 targeted to the aortic valve. We synthesized VCAM-1-targeted lipopolyplexes encapsulating shRNA-Smad3 plasmid (V-LPP/shSmad3) and investigated their potential to reduce the EndMT of human VEC. VEC incubation in a medium containing high glucose concentrations and osteogenic factors (HGOM) triggers EndMT and increased expression of Smad3. Exposed to lipopolyplexes, VEC took up efficiently the V-LPP/shSmad3. The latter reduced the EndMT process in VEC exposed to HGOM by downregulating the expression of αSMA and S100A4 mesenchymal markers and increasing the expression of the CD31 endothelial marker. In vivo, V-LPP/shSmad3 accumulated in the aortic root and aorta of a murine model of atherosclerosis complicated with diabetes, without affecting the liver and kidney function. The results suggest that targeting activated VEC with lipopolyplexes to silence Smad3 could be an effective, novel treatment for CAVD mediated by the EndMT process.
Collapse
Affiliation(s)
- Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Cristina Ana Mocanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Daniela Rebleanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Sergiu Cecoltan
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ionel Droc
- Central Military Hospital "Dr. Carol Davila", Cardiovascular Surgery Clinic, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568 Bucharest, Romania.
| |
Collapse
|
4
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
5
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
6
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Liu X, Zhang H, Fan Y, Cai D, Lei R, Wang Q, Li Y, Shen L, Gu Y, Zhang Q, Qi Z, Wang Z. SNORA28 Promotes Proliferation and Radioresistance in Colorectal Cancer Cells through the STAT3 Pathway by Increasing H3K9 Acetylation in the LIFR Promoter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405332. [PMID: 38924373 PMCID: PMC11347989 DOI: 10.1002/advs.202405332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Radiotherapy is essential for treating colorectal cancer (CRC), especially in advanced rectal cancer. However, the low radiosensitivity of CRC cells greatly limits radiotherapy efficacy. Small nucleolar RNAs (snoRNAs) are a class of noncoding RNA that primarily direct post-transcriptional modifications of ribosomal RNAs (rRNAs), small nuclear RNAs (snRNAs), and other cellular RNAs. While snoRNAs are involved in tumor progression and chemoresistance, their association with radiosensitivity remains largely unknown. Herein, SNORA28 is shown highly expressed in CRC and is positively associated with poor prognosis. Furthermore, SNORA28 overexpression enhances the growth and radioresistance of CRC cells in vitro and in vivo. Mechanistically, SNORA28 acts as a molecular decoy that recruits bromodomain-containing protein 4 (BRD4), which increases the level of H3K9 acetylation at the LIFR promoter region. This stimulates LIFR transcription, which in turn triggers the JAK1/STAT3 pathway, enhancing the proliferation and radioresistance of CRC cells. Overall, these results highlight the ability of snoRNAs to regulate radiosensitivity in tumor cells and affect histone acetylation modification in the promoter region of target genes, thus broadening the current knowledge of snoRNA biological functions and the mechanism underlying target gene regulation.
Collapse
Affiliation(s)
- Xin Liu
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Hong Zhang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Ying Fan
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Dan Cai
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
- Graduate Collaborative Training Base of Academy of Military SciencesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| | - Ridan Lei
- Department of Epidemiology and Health StatisticsXiangya School of Public HealthCentral South UniversityChangshaHunan410078China
| | - Qi Wang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Yaqiong Li
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Liping Shen
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Yongqing Gu
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Qingtong Zhang
- Department of Colorectal SurgeryLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityCancer Hospital of Dalian University of TechnologyShenyang110042China
| | - Zhenhua Qi
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
| | - Zhidong Wang
- Department of RadiobiologyBeijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijing100850China
- Graduate Collaborative Training Base of Academy of Military SciencesHengyang Medical SchoolUniversity of South ChinaHengyangHunan421001China
| |
Collapse
|
8
|
Laan SNJ, de Boer S, Dirven RJ, van Moort I, Kuipers TB, Mei H, Bierings R, Eikenboom J. Transcriptional and functional profiling identifies inflammation and endothelial-to-mesenchymal transition as potential drivers for phenotypic heterogeneity within a cohort of endothelial colony forming cells. J Thromb Haemost 2024; 22:2027-2038. [PMID: 38574861 DOI: 10.1016/j.jtha.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Endothelial colony-forming cells (ECFCs) derived from patients can be used to investigate pathogenic mechanisms of vascular diseases like von Willebrand disease. Considerable phenotypic heterogeneity has been observed between ECFC clones derived from healthy donors. This heterogeneity needs to be well understood in order to use ECFCs as endothelial models for disease. OBJECTIVES Therefore, we aimed to determine phenotypic and gene expression differences between control ECFCs. METHODS A total of 34 ECFC clones derived from 16 healthy controls were analyzed. The transcriptome of a selection of ECFC clones (n = 15) was analyzed by bulk RNA sequencing and gene set enrichment analysis. Gene expression was measured in all ECFC clones by quantitative polymerase chain reaction. Phenotypic profiling was performed and migration speed of the ECFCs was measured using confocal microscopy, followed by automated quantification of cell morphometrics and migration speed. RESULTS Through hierarchical clustering of RNA expression profiles, we could distinguish 2 major clusters within the ECFC cohort. Major differences were associated with proliferation and migration in cluster 1 and inflammation and endothelial-to-mesenchymal transition in cluster 2. Phenotypic profiling showed significantly more and smaller ECFCs in cluster 1, which contained more and longer Weibel-Palade bodies. Migration speed in cluster 1 was also significantly higher. CONCLUSION We observed a range of different RNA expression patterns between ECFC clones, mostly associated with inflammation and clear differences in Weibel-Palade body count and structure. We developed a quantitative polymerase chain reaction panel that can be used for the characterization of ECFC clones, which is essential for the correct analysis of pathogenic mechanisms in vascular disorders.
Collapse
Affiliation(s)
- Sebastiaan N J Laan
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands; Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands. https://twitter.com/laan_bas
| | - Suzan de Boer
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Richard J Dirven
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands
| | - Iris van Moort
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Thomas B Kuipers
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, the Netherlands
| | - Ruben Bierings
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Jeroen Eikenboom
- Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Centre, Leiden, the Netherlands.
| |
Collapse
|
9
|
Singh A, Bhatt KS, Nguyen HC, Frisbee JC, Singh KK. Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology. Int J Mol Sci 2024; 25:6180. [PMID: 38892367 PMCID: PMC11173124 DOI: 10.3390/ijms25116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Under different pathophysiological conditions, endothelial cells lose endothelial phenotype and gain mesenchymal cell-like phenotype via a process known as endothelial-to-mesenchymal transition (EndMT). At the molecular level, endothelial cells lose the expression of endothelial cell-specific markers such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and gain the expression of mesenchymal cell markers such as α-smooth muscle actin, N-cadherin, vimentin, fibroblast specific protein-1, and collagens. EndMT is induced by numerous different pathways triggered and modulated by multiple different and often redundant mechanisms in a context-dependent manner depending on the pathophysiological status of the cell. EndMT plays an essential role in embryonic development, particularly in atrioventricular valve development; however, EndMT is also implicated in the pathogenesis of several genetically determined and acquired diseases, including malignant, cardiovascular, inflammatory, and fibrotic disorders. Among cardiovascular diseases, aberrant EndMT is reported in atherosclerosis, pulmonary hypertension, valvular disease, fibroelastosis, and cardiac fibrosis. Accordingly, understanding the mechanisms behind the cause and/or effect of EndMT to eventually target EndMT appears to be a promising strategy for treating aberrant EndMT-associated diseases. However, this approach is limited by a lack of precise functional and molecular pathways, causes and/or effects, and a lack of robust animal models and human data about EndMT in different diseases. Here, we review different mechanisms in EndMT and the role of EndMT in various cardiovascular diseases.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Kriti S. Bhatt
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Hien C. Nguyen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada; (A.S.); (K.S.B.); (H.C.N.); (J.C.F.)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Fledderus J, Brouwer L, Kuiper T, Harmsen MC, Krenning G. H3K27Me3 abundance increases fibrogenesis during endothelial-to-mesenchymal transition via the silencing of microRNA-29c. Front Cardiovasc Med 2024; 11:1373279. [PMID: 38774662 PMCID: PMC11106376 DOI: 10.3389/fcvm.2024.1373279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/23/2024] [Indexed: 05/24/2024] Open
Abstract
Objective Endothelial-to-mesenchymal transition (EndMT) is a transdifferentiation process in which endothelial cells (ECs) adopt a mesenchymal-like phenotype. Over the past few years, it became clear that EndMT can contribute to several cardiovascular pathologies. However, the molecular pathways underlying the development of EndMT remain incompletely understood. Since the epigenetic enzyme Enhancer of Zeste Homolog 2 (EZH2) and its concomitant mark H3K27Me3 have been shown to be elevated in many cardiovascular diseases that associate with EndMT, we hypothesized that H3K27Me3 is a determinant for the susceptibility of EndMT. Methods To study the association between H3K27Me3 and EndMT, a knockdown model of EZH2 in human endothelial cells (HUVEC) was utilized to reduce H3K27Me3 abundance, followed by induction of EndMT using TGFβ1. The expression of molecular markers of EndMT and fibrogenesis were analysed. Results In cultured HUVECs, a reduction of H3K27Me3 abundance facilitates EndMT but mitigates fibrogenesis as shown by a decreased expression of collagen I and III. In HUVEC, H3K27Me3 abundance directly affects the expression of miR29c, a collagen-targeting miRNA. Additionally, knockdown of miR-29c in HUVEC with low H3K27Me3 abundance partly restored the expression of collagen I and III. Expectedly, in rats with perivascular fibrosis an increased abundance of H3K27Me3 associated with a decreased expression of miR-29c. Conclusion our data shows that endothelial fibrogenesis underlies an epigenetic regulatory pathway and we demonstrate that a decreased abundance of H3K27Me3 in ECs blunts fibrogenesis in part in a miR-29c dependent manner. Therefore, a reduction of H3K27Me3 could serve as a novel therapeutical strategy to mitigate fibrogenesis and may prove to be beneficial in fibrogenic diseases including atherosclerosis, cardiac fibrosis, and PAH.
Collapse
Affiliation(s)
- Jolien Fledderus
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Linda Brouwer
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Timara Kuiper
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Martin C. Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Medical Biology Section, Department Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Division Experimental Pharmacology, Department Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Hall IF, Kishta F, Xu Y, Baker AH, Kovacic JC. Endothelial to mesenchymal transition: at the axis of cardiovascular health and disease. Cardiovasc Res 2024; 120:223-236. [PMID: 38385523 PMCID: PMC10939465 DOI: 10.1093/cvr/cvae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 02/23/2024] Open
Abstract
Endothelial cells (ECs) line the luminal surface of blood vessels and play a major role in vascular (patho)-physiology by acting as a barrier, sensing circulating factors and intrinsic/extrinsic signals. ECs have the capacity to undergo endothelial-to-mesenchymal transition (EndMT), a complex differentiation process with key roles both during embryonic development and in adulthood. EndMT can contribute to EC activation and dysfunctional alterations associated with maladaptive tissue responses in human disease. During EndMT, ECs progressively undergo changes leading to expression of mesenchymal markers while repressing EC lineage-specific traits. This phenotypic and functional switch is considered to largely exist in a continuum, being characterized by a gradation of transitioning stages. In this report, we discuss process plasticity and potential reversibility and the hypothesis that different EndMT-derived cell populations may play a different role in disease progression or resolution. In addition, we review advancements in the EndMT field, current technical challenges, as well as therapeutic options and opportunities in the context of cardiovascular biology.
Collapse
Affiliation(s)
- Ignacio Fernando Hall
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Franceska Kishta
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yang Xu
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrew H Baker
- Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht 6229ER, The Netherlands
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
- Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
- St. Vincent’s Clinical School and University of New South Wales, 390 Victoria St, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
12
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
13
|
Li X, Luo Y, Ji D, Zhang Z, Luo S, Ma Y, Cao W, Cao C, Saw PE, Chen H, Wei Y. Maternal exposure to nano-titanium dioxide impedes fetal development via endothelial-to-mesenchymal transition in the placental labyrinth in mice. Part Fibre Toxicol 2023; 20:48. [PMID: 38072983 PMCID: PMC10712190 DOI: 10.1186/s12989-023-00549-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/07/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Extensive production and usage of commercially available products containing TiO2 NPs have led to accumulation in the human body. The deposition of TiO2 NPs has even been detected in the human placenta, which raises concerns regarding fetal health. Previous studies regarding developmental toxicity have frequently focused on TiO2 NPs < 50 nm, whereas the potential adverse effects of large-sized TiO2 NPs received less attention. Placental vasculature is essential for maternal-fetal circulatory exchange and ensuring fetal growth. This study explores the impacts of TiO2 NPs (100 nm in size) on the placenta and fetal development and elucidates the underlying mechanism from the perspective of placental vasculature. Pregnant C57BL/6 mice were exposed to TiO2 NPs by gavage at daily dosages of 10, 50, and 250 mg/kg from gestational day 0.5-16.5. RESULTS TiO2 NPs penetrated the placenta and accumulated in the fetal mice. The fetuses in the TiO2 NP-exposed groups exhibited a dose-dependent decrease in body weight and length, as well as in placental weight and diameter. In vivo imaging showed an impaired placental barrier, and pathological examinations revealed a disrupted vascular network of the labyrinth upon TiO2 NP exposure. We also found an increase in gene expression related to the transforming growth factor-β (TGF-β) -SNAIL pathway and the upregulation of mesenchymal markers, accompanied by a reduction in endothelial markers. In addition, TiO2 NPs enhanced the gene expression responsible for the endothelial-to-mesenchymal transition (EndMT) in cultured human umbilical vein endothelial cells, whereas SNAIL knockdown attenuated the induction of EndMT phenotypes. CONCLUSION Our study revealed that maternal exposure to 100 nm TiO2 NPs disrupts placental vascular development and fetal mice growth through aberrant activation of EndMT in the placental labyrinth. These data provide novel insight into the mechanisms of developmental toxicity posed by NPs.
Collapse
Affiliation(s)
- Xianjie Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yinger Luo
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Di Ji
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuyi Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shili Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Ya Ma
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wulan Cao
- Zhongshan People's Hospital, Zhongshan, 528400, China
| | - Chunwei Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Chen
- Department of Obstetrics and Gynaecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yanhong Wei
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
14
|
Wang E, Chen S, Wang H, Chen T, Chakrabarti S. Non-coding RNA-mediated endothelial-to-mesenchymal transition in human diabetic cardiomyopathy, potential regulation by DNA methylation. Cardiovasc Diabetol 2023; 22:303. [PMID: 37924123 PMCID: PMC10625293 DOI: 10.1186/s12933-023-02039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
AIMS Diabetic cardiomyopathy (DCM) is a major complication of diabetes and a risk factor for cardiovascular disease. Endothelial dysfunction is central to DCM, and endothelial-to-mesenchymal transition (EndMT) is a key form of endothelial dysfunction in diabetes. EndMT in DCM has been well-studied in model systems and has been found to be epigenetically regulated by non-coding RNAs (ncRNAs). However, EndMT in DCM and its associated epigenetic changes need further characterization in human patients. It is also not known if ncRNAs are affected by changes in DNA methylation in DCM. This study aims to confirm in human hearts, the findings from animal and cell studies, and potentially provide novel insight into interactions between DNA methylation and ncRNAs in EndMT in DCM. METHODS AND RESULTS Heart tissues were collected from autopsy patients, fixed in formalin, and embedded in paraffin. Thin sections from paraffin-embedded tissues were used for histology and immunofluorescence analyses, where we confirmed that diabetic patients showed increased cardiac fibrosis that EndMT had occurred. Tissue curls from the paraffin-embedded tissues were used for RT-qPCR and methylation analyses. RT-qPCR quantitatively showed that EndMT occurs in the hearts of diabetics, and that EndMT in human hearts corresponded to changes in key ncRNAs. Methylation analysis showed that some of the EndMT-related ncRNAs were regulated by DNA promoter methylation, while others may be regulated through different epigenetic mechanisms. CONCLUSIONS We show that EndMT is a relevant pathological process in human hearts during DCM, and that its occurrence coincides with changes in relevant ncRNAs. We further find that interplay between DNA methylation and certain ncRNAs involved in the regulation of EndMT may contribute to the observed changes in ncRNA expression. These findings reinforce the role of EndMT in patients afflicted with DCM and underscore the complexities and importance of the interactions between different facets of epigenetic regulation.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Shali Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Honglin Wang
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Tori Chen
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, Dental Science Building Room 4033, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
15
|
Pohl L, Schiessl IM. Endothelial cell plasticity in kidney fibrosis and disease. Acta Physiol (Oxf) 2023; 239:e14038. [PMID: 37661749 DOI: 10.1111/apha.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Renal endothelial cells demonstrate an impressive remodeling potential during angiogenic sprouting, vessel repair or while transitioning into mesenchymal cells. These different processes may play important roles in both renal disease progression or regeneration while underlying signaling pathways of different endothelial cell plasticity routes partly overlap. Angiogenesis contributes to wound healing after kidney injury and pharmaceutical modulation of angiogenesis may home a great therapeutic potential. Yet, it is not clear whether any differentiated endothelial cell can proliferate or whether regenerative processes are largely controlled by resident or circulating endothelial progenitor cells. In the glomerular compartment for example, a distinct endothelial progenitor cell population may remodel the glomerular endothelium after injury. Endothelial-to-mesenchymal transition (EndoMT) in the kidney is vastly documented and often associated with endothelial dysfunction, fibrosis, and kidney disease progression. Especially the role of EndoMT in renal fibrosis is controversial. Studies on EndoMT in vivo determined possible conclusions on the pathophysiological role of EndoMT in the kidney, but whether endothelial cells really contribute to kidney fibrosis and if not what other cellular and functional outcomes derive from EndoMT in kidney disease is unclear. Sequencing data, however, suggest no participation of endothelial cells in extracellular matrix deposition. Thus, more in-depth classification of cellular markers and the fate of EndoMT cells in the kidney is needed. In this review, we describe different signaling pathways of endothelial plasticity, outline methodological approaches and evidence for functional and structural implications of angiogenesis and EndoMT in the kidney, and eventually discuss controversial aspects in the literature.
Collapse
Affiliation(s)
- Layla Pohl
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
16
|
Yao F, Luo Y, Chen Y, Li Y, Hu X, You X, Li Z, Yu S, Tian D, Zheng M, Cheng L, Jing J. Myelin Debris Impairs Tight Junctions and Promotes the Migration of Microvascular Endothelial Cells in the Injured Spinal Cord. Cell Mol Neurobiol 2023; 43:741-756. [PMID: 35147836 DOI: 10.1007/s10571-022-01203-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/31/2022] [Indexed: 01/08/2023]
Abstract
Clearance of myelin debris caused by acute demyelination is an essential process for functional restoration following spinal cord injury (SCI). Microvascular endothelial cells, acting as "amateur" phagocytes, have been confirmed to engulf and degrade myelin debris, promoting the inflammatory response, robust angiogenesis, and persistent fibrosis. However, the effect of myelin debris engulfment on the function of endothelial tight junctions (TJs) remains unclear. Here, we demonstrate that myelin debris uptake impairs TJs and gap junctions of endothelial cells in the lesion core of the injured spinal cord and in vitro, resulting in increased permeability and leakage. We further show that myelin debris acts as an inducer to regulate the endothelial-to-mesenchymal transition in a dose-dependent manner and promotes endothelial cell migration through the PI3K/AKT and ERK signaling pathways. Together, our results indicate that myelin debris engulfment impairs TJs and promotes the migration of endothelial cells. Accelerating myelin debris clearance may help maintain blood-spinal cord barrier integrity, thus facilitating restoration of motor and sensory function following SCI.
Collapse
Affiliation(s)
- Fei Yao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yang Luo
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yihao Chen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Yiteng Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xuyang Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Xingyu You
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Ziyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Shuisheng Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Dasheng Tian
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Meige Zheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Li Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
17
|
Tsigkou V, Oikonomou E, Anastasiou A, Lampsas S, Zakynthinos GE, Kalogeras K, Katsioupa M, Kapsali M, Kourampi I, Pesiridis T, Marinos G, Vavuranakis MA, Tousoulis D, Vavuranakis M, Siasos G. Molecular Mechanisms and Therapeutic Implications of Endothelial Dysfunction in Patients with Heart Failure. Int J Mol Sci 2023; 24:ijms24054321. [PMID: 36901752 PMCID: PMC10001590 DOI: 10.3390/ijms24054321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Heart failure is a complex medical syndrome that is attributed to a number of risk factors; nevertheless, its clinical presentation is quite similar among the different etiologies. Heart failure displays a rapidly increasing prevalence due to the aging of the population and the success of medical treatment and devices. The pathophysiology of heart failure comprises several mechanisms, such as activation of neurohormonal systems, oxidative stress, dysfunctional calcium handling, impaired energy utilization, mitochondrial dysfunction, and inflammation, which are also implicated in the development of endothelial dysfunction. Heart failure with reduced ejection fraction is usually the result of myocardial loss, which progressively ends in myocardial remodeling. On the other hand, heart failure with preserved ejection fraction is common in patients with comorbidities such as diabetes mellitus, obesity, and hypertension, which trigger the creation of a micro-environment of chronic, ongoing inflammation. Interestingly, endothelial dysfunction of both peripheral vessels and coronary epicardial vessels and microcirculation is a common characteristic of both categories of heart failure and has been associated with worse cardiovascular outcomes. Indeed, exercise training and several heart failure drug categories display favorable effects against endothelial dysfunction apart from their established direct myocardial benefit.
Collapse
Affiliation(s)
- Vasiliki Tsigkou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Correspondence: ; Tel.: +30-69-4770-1299
| | - Artemis Anastasiou
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Stamatios Lampsas
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - George E. Zakynthinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Konstantinos Kalogeras
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Katsioupa
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Maria Kapsali
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Islam Kourampi
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Theodoros Pesiridis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Georgios Marinos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Michael-Andrew Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, 11527 Athens, Greece
| | - Manolis Vavuranakis
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
| | - Gerasimos Siasos
- 3rd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Sotiria Chest Disease Hospital, 11527 Athens, Greece
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
Fan M, Yang K, Wang X, Chen L, Gill PS, Ha T, Liu L, Lewis NH, Williams DL, Li C. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. SCIENCE ADVANCES 2023; 9:eadc9465. [PMID: 36735787 PMCID: PMC9897666 DOI: 10.1126/sciadv.adc9465] [Citation(s) in RCA: 105] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/03/2023] [Indexed: 06/01/2023]
Abstract
High levels of lactate are positively associated with the prognosis and mortality in patients with heart attack. Endothelial-to-mesenchymal transition (EndoMT) plays an important role in cardiac fibrosis. Here, we report that lactate exerts a previously unknown function that increases cardiac fibrosis and exacerbates cardiac dysfunction by promoting EndoMT following myocardial infarction (MI). Treatment of endothelial cells with lactate disrupts endothelial cell function and induces mesenchymal-like function following hypoxia by activating the TGF-β/Smad2 pathway. Mechanistically, lactate induces an association between CBP/p300 and Snail1, leading to lactylation of Snail1, a TGF-β transcription factor, through lactate transporter monocarboxylate transporter (MCT)-dependent signaling. Inhibiting Snail1 diminishes lactate-induced EndoMT and TGF-β/Smad2 activation after hypoxia/MI. The MCT inhibitor CHC mitigates lactate-induced EndoMT and Snail1 lactylation. Silence of MCT1 compromises lactate-promoted cardiac dysfunction and EndoMT after MI. We conclude that lactate acts as an important molecule that up-regulates cardiac EndoMT after MI via induction of Snail1 lactylation.
Collapse
Affiliation(s)
- Min Fan
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Kun Yang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - P. Spencer Gill
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tuanzhu Ha
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Li Liu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nicole H. Lewis
- Department of Medical Education, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L. Williams
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Chuanfu Li
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
- The Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
19
|
Aziz S, Yalan L, Raza MA, Lemin J, Akram HMB, Zhao W. GSK126 an inhibitor of epigenetic regulator EZH2 suppresses cardiac fibrosis by regulating the EZH2-PAX6-CXCL10 pathway. Biochem Cell Biol 2023; 101:87-100. [PMID: 36469862 DOI: 10.1139/bcb-2022-0224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Myocardial fibrosis is a common pathological companion of various cardiovascular diseases. To date, the role of enhancer of zeste homolog 2 (EZH2) in cancer has been well demonstrated including in renal carcinoma and its inhibitors have entered the stage of phase I/II clinical trials. However, the precise mechanism of EZH2 in cardiac diseases is largely unclear. In the current study, we first found that EZH2 expression was increased in Ang-II-treated cardiac fibroblasts (CFs) and mouse heart homogenates following isoproterenol (ISO) administration for 21 days, respectively. Ang-II induces CFs activation and increased collagen-I, collagen-III, α-SMA, EZH2, and trimethylates lysine 27 on histone 3 (H3K27me3) expressions can be reversed by EZH2 inhibitor (GSK126) and EZH2 siRNA. The ISO-induced cardiac hypertrophy, and fibrosis in vivo which were also related to the upregulation of EZH2 and its downstream target, H3K27me3, could be recovered by GSK126. Furthermore, the upregulation of EZH2 induces the decrease of paired box 6 (PAX6) and C-X-C motif ligand 10 (CXCL10) "which" were also reversed by GSK126 treatment. In summary, the present evidence strongly suggests that GSK126 could be a therapeutic intervention, blunting the development and progression of myocardial fibrosis in an EZH2-PAX6-CXCL10-dependent manner.
Collapse
Affiliation(s)
- Shireen Aziz
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Li Yalan
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Muhammad Ahmer Raza
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiao Lemin
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hafiz Muhamamd Bilal Akram
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Wen Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Sciences and Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| |
Collapse
|
20
|
He Q, Huo R, Wang J, Xu H, Zhao S, Zhang J, Sun Y, Jiao Y, Weng J, Zhao J, Cao Y. Exosomal miR-3131 derived from endothelial cells with KRAS mutation promotes EndMT by targeting PICK1 in brain arteriovenous malformations. CNS Neurosci Ther 2023; 29:1312-1324. [PMID: 36718590 PMCID: PMC10068464 DOI: 10.1111/cns.14103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 02/01/2023] Open
Abstract
AIMS To explore the underlying mechanism by which low-frequency KRAS mutations result in extensive EndMT occurrence. METHODS Exosomes derived from primarily cultured brain arteriovenous malformation (bAVMs) and human umbilical vein endothelial cells (HUVECs) transfected with KRASG12D , KRASWT , or KRASNC lentiviruses were isolated, and their effects on HUVECs were identified by western blotting and immunofluorescence staining. The expression levels of exosomal microRNAs (miRNAs) were evaluated by miRNA microarray, followed by functional experiments on miR-3131 and detection of its downstream target, and miR-3131 inhibitor in reversing the EndMT process induced by KRASG12D -transfected HUVECs and bAVM endothelial cells (ECs) were explored. RESULTS Exosomes derived from KRASG12D bAVM ECs and KRASG12D -transfected HUVECs promoted EndMT in HUVECs. MiR-3131 levels were highest in the exosomes of KRASG12D -transfected HUVECs, and HUVECs transfected with the miR-3131 mimic acquired mesenchymal phenotypes. RNA-seq and dual-luciferase reporter assays revealed that PICK1 is the direct downstream target of miR-3131. Exosomal miR-3131 was highly expressed in KRASG12D bAVMexos compared with non-KRAS-mutant bAVMexos or HUVECexos . Finally, a miR-3131 inhibitor reversed EndMT in HUVECs treated with exosomes or the supernatant of KRASG12D -transfected HUVECs and KRASG12D bAVM ECs. CONCLUSION Exosomal miR-3131 promotes EndMT in KRAS-mutant bAVMs, and miR-3131 might be a potential biomarker and therapeutic target in KRASG12D -mutant bAVMs.
Collapse
Affiliation(s)
- Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shaozhi Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junze Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yingfan Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
21
|
Wang E, Wang H, Chakrabarti S. Endothelial-to-mesenchymal transition: An underappreciated mediator of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1050540. [PMID: 36777351 PMCID: PMC9911675 DOI: 10.3389/fendo.2023.1050540] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Diabetes and its complications represent a great burden on the global healthcare system. Diabetic complications are fundamentally diseases of the vasculature, with endothelial cells being the centerpiece of early hyperglycemia-induced changes. Endothelial-to-mesenchymal transition is a tightly regulated process that results in endothelial cells losing endothelial characteristics and developing mesenchymal traits. Although endothelial-to-mesenchymal transition has been found to occur within most of the major complications of diabetes, it has not been a major focus of study or a common target in the treatment or prevention of diabetic complications. In this review we summarize the importance of endothelial-to-mesenchymal transition in each major diabetic complication, examine specific mechanisms at play, and highlight potential mechanisms to prevent endothelial-to-mesenchymal transition in each of the major chronic complications of diabetes.
Collapse
|
22
|
Gonzalez C, Cimini M, Cheng Z, Benedict C, Wang C, Trungcao M, Mallaredy V, Rajan S, Garikipati VNS, Kishore R. Role of circular RNA cdr1as in modulation of macrophage phenotype. Life Sci 2022; 309:121003. [PMID: 36181865 PMCID: PMC9888537 DOI: 10.1016/j.lfs.2022.121003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 02/02/2023]
Abstract
AIMS Macrophages are crucial for the initiation and resolution of an inflammatory response. Non-coding circular RNAs are ubiquitously expressed in mammalian tissue, highly conserved among species, and recently implicated in the regulation of macrophage activation. We sought to determine whether circRNAs modulate monocyte/macrophage biology and function. MATERIALS AND METHODS We performed circRNA microarray analyses to assess transcriptome changes using RNA isolated from bone marrow derived macrophages polarized to a pro-inflammatory phenotype (INFγ + TNFα) or an anti-inflammatory phenotype (IL-10, IL-4, and TGF-β). Among differentially expressed circRNAs, circ-Cdr1as was chosen for further investigation. Additionally, we performed loss or gain of function studies to investigate if circ-Cdr1as is involved in phenotypic switching. For gain of function, we overexpressed circ-Cdr1as using pc3.1 plasmid with laccase2 flanking regions to promote circularization. For loss of function, we used a lentiviral short hairpin RNA targeting the circ-Cdr1as splicing junction. KEY FINDINGS Among circRNAs that are highly conserved and differentially expressed in pro- and anti-inflammatory lineages, circ-Cdr1as was one of the most downregulated in pro-inflammatory macrophages and significantly upregulated in anti-inflammatory macrophages in vitro. Overexpression of circ-Cdr1as increased transcription of anti-inflammatory markers and percentage of CD206+ cells in naïve and pro-inflammatory macrophages in vitro. Meanwhile, knockdown decreased transcription of anti-inflammatory markers and increased the percentage of CD86+ cells in naïve and anti-inflammatory macrophages in vitro. SIGNIFICANCE This study suggests that circ-Cdr1as plays a key role in regulating anti-inflammatory phenotype of macrophages and may potentially be developed as an anti-inflammatory regulator in tissue inflammation.
Collapse
Affiliation(s)
- Carolina Gonzalez
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America,Corresponding author at: Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953 3500 N Broad Street, Philadelphia, PA 19140, United States of America. (C. Gonzalez), (R. Kishore)
| | - Maria Cimini
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Zhongjian Cheng
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Cindy Benedict
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Chunlin Wang
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - May Trungcao
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Vandana Mallaredy
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Sudarsan Rajan
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America
| | - Venkata Naga Srikanth Garikipati
- Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Raj Kishore
- Center of Translational Medicine Temple University School of Medicine, Philadelphia, PA, United States of America,Corresponding author at: Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, MERB-953 3500 N Broad Street, Philadelphia, PA 19140, United States of America. (C. Gonzalez), (R. Kishore)
| |
Collapse
|
23
|
Liu M, Long X, Xu J, Chen M, Yang H, Guo X, Kang J, Ouyang Y, Luo G, Yang S, Zhou H. Hypertensive heart disease and myocardial fibrosis: How traditional Chinese medicine can help addressing unmet therapeutical needs. Pharmacol Res 2022; 185:106515. [DOI: 10.1016/j.phrs.2022.106515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
|
24
|
Zhang X, Li Z, Liu X, Qin X, Luo J, Zhang W, Liu B, Wei Y. ZPI prevents ox-LDL-mediated endothelial injury leading to inhibition of EndMT, inflammation, apoptosis, and oxidative stress through activating Pi3k/Akt signal pathway. Drug Dev Res 2022; 83:1212-1225. [PMID: 35656597 DOI: 10.1002/ddr.21952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/09/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-mediated endothelial dysfunction exerts an essential role in the development of atherosclerosis. Protein Z-dependent protease inhibitor (ZPI), a member of the serine protease inhibitor superfamily, could inhibit the function of activated coagulation factor X (FXa) via interaction with protein Z (PZ). Studies have pointed out that ZPI was statistically related to atherosclerotic diseases, which may have a robust cardiovascular protective effect. However, the underlying mechanism of ZPI on ox-LDL-mediated endothelial injury requires further elucidation. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (100 μg/ml) and ZPI (10 μg/ml). Cell viability was measured by the Cell Counting Kit-8 (CCK-8) assay. Cell apoptosis, oxidative stress, and endothelial-to-mesenchymal transition (EndMT) were analyzed by immunofluorescence (IF). Cell migration was measured using a wound-healing assay. Quantitative real-time polymerase chain reaction and western blot analysis were performed to determine messenger RNA and protein expression. Ox-LDL (100 μg/ml, 48 h) significantly reduced cell viability and migration, increased EndMT, inflammation, apoptosis, and oxidative stress. The related protein expression of phosphatidylinositol 3 kinase/protein kinase B (Pi3k/Akt) signal pathway in HUVECs was also simultaneously decreased. We also discovered that ZPI treatment could prevent ox-LDL-mediated endothelial injury through the improvement of cell viability and alleviation of apoptosis, oxidative stress, EndMT, and inflammation. Thus, the protective effect of ZPI on HUVECs may be mediated by activation of the Pi3k/Akt signal pathway. ZPI may exert an important protective role in HUVECs dysfunction triggered by ox-LDL via activation of the Pi3k/Akt signal pathway. Therefore, ZPI may possess potential therapeutic effects on atherosclerotic endothelial injury-related diseases.
Collapse
Affiliation(s)
- Xingxu Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangdong Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoming Qin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenming Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Wei
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Pilard M, Ollivier EL, Gourdou-Latyszenok V, Couturaud F, Lemarié CA. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:864735. [PMID: 35528838 PMCID: PMC9068971 DOI: 10.3389/fcvm.2022.864735] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.
Collapse
|
26
|
Pandya Thakkar N, Pereira BMV, Katakia YT, Ramakrishnan SK, Thakar S, Sakhuja A, Rajeev G, Soorya S, Thieme K, Majumder S. Elevated H3K4me3 Through MLL2-WDR82 upon Hyperglycemia Causes Jagged Ligand Dependent Notch Activation to Interplay with Differentiation State of Endothelial Cells. Front Cell Dev Biol 2022; 10:839109. [PMID: 35392173 PMCID: PMC8982561 DOI: 10.3389/fcell.2022.839109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is a hallmark of diabetes-associated vascular complications. Epigenetic mechanisms emerged as one of the key pathways to regulate diabetes-associated complications. In the current study, we aimed to determine how abrupt changes in histone 3 lysine 4 tri-methylation (H3K4me3) upon hyperglycemia exposure reprograms endothelial cells to undergo EndMT. Through in vitro studies, we first establish that intermittent high-glucose exposure to EC most potently induced partial mesenchyme-like characteristics compared with transient or constant high-glucose-challenged endothelial cells. In addition, glomerular endothelial cells of BTBR Ob/Ob mice also exhibited mesenchymal-like characteristics. Intermittent hyperglycemia-dependent induction of partial mesenchyme-like phenotype of endothelial cells coincided with an increase in H3K4me3 level in both macro- and micro-vascular EC due to selective increase in MLL2 and WDR82 protein of SET1/COMPASS complex. Such an endothelial-specific heightened H3K4me3 level was also detected in intermittent high-glucose-exposed rat aorta and in kidney glomeruli of Ob/Ob mice. Elevated H3K4me3 enriched in the promoter regions of Notch ligands Jagged1 and Jagged2, thus causing abrupt expression of these ligands and concomitant activation of Notch signaling upon intermittent hyperglycemia challenge. Pharmacological inhibition and/or knockdown of MLL2 in cells in vitro or in tissues ex vivo normalized intermittent high-glucose-mediated increase in H3K4me3 level and further reversed Jagged1 and Jagged2 expression, Notch activation and further attenuated acquisition of partial mesenchyme-like phenotype of endothelial cells. In summary, the present study identifies a crucial role of histone methylation in hyperglycemia-dependent reprograming of endothelial cells to undergo mesenchymal transition and indicated that epigenetic pathways contribute to diabetes-associated vascular complications.
Collapse
Affiliation(s)
- Niyati Pandya Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Beatriz Maria Veloso Pereira
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Yash T. Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Shyam Kumar Ramakrishnan
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Gayathry Rajeev
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - S. Soorya
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
| | - Karina Thieme
- Laboratório de Bases Celulares e Moleculares da Fisiologia Renal, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India
- *Correspondence: Syamantak Majumder,
| |
Collapse
|
27
|
Misir S, Wu N, Yang BB. Specific expression and functions of circular RNAs. Cell Death Differ 2022; 29:481-491. [PMID: 35169296 PMCID: PMC8901656 DOI: 10.1038/s41418-022-00948-7] [Citation(s) in RCA: 176] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, circular RNAs (circRNAs), a new class of RNA molecules characterized by their covalently closed circular structure, have become a new research paradigm in RNA biology. Many circRNAs are conserved among eukaryotes, localize in specific subcellular compartments, and play different biological roles. Accumulating evidence shows that circRNAs regulate a diversity of cellular processes by acting as miRNA sponges, anchors for circRNA binding proteins (cRBPs), transcriptional regulators, molecular scaffolds, and sources for translation of small proteins/peptides. The emergence of the biological functions of circRNAs has brought a new perspective to our understanding of cellular physiology and disease pathogenesis. Recent studies have shown that the expression of circRNAs is tissue- and cell type-specific and specifically regulated through development or disease progression, where they exert specific biological functions. However, the mechanisms underlying these remain largely unknown. A deeper understanding of how the specific expression of circRNAs is regulated to exert specific biological functions will enable the use of circRNA as a biomarker in clinical practice and the development of new therapeutic approaches. This review aims to summarize recent developments in circRNA biogenesis, functions, and molecular mechanisms. We also provide some specific circRNAs as examples to show their tissue-specific distribution and evaluate the possibility of applying circRNA technologies in molecular research and therapeutics.
Collapse
Affiliation(s)
- Sema Misir
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nan Wu
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Burton B. Yang
- grid.17063.330000 0001 2157 2938Sunnybrook Research Institute, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
28
|
Wang J, Zhang Z, Liang C, Lv T, Yu H, Ren S, Lin P, Du G, Sun L. Targeting Myadm to Intervene Pulmonary Hypertension on Rats Before Pregnancy Alleviates the Effect on Their Offspring's Cardiac-Cerebral Systems. Front Pharmacol 2022; 12:791370. [PMID: 35115938 PMCID: PMC8804385 DOI: 10.3389/fphar.2021.791370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
Pregnancy with pulmonary hypertension (PH) seriously threatens the life and safety of mothers and infants. Here, the long-term effect of maternal PH on the postpartum growth of rat offspring was focused for the first time, as well as explored the role of Myadm in PH rats before pregnancy based upon the previous findings. Patients with PH are prone to hypoxemia, leading to insufficient placental structure and function, which affects the organ function of fetuses, followed by evidence that differently expressed genes (DEGs) existed in the heart of maternal PH newborn rats and enriched in pathways related to cardiac and nerve development on human infants with similar birth outcome: low birth weight (LBW). LBW was one of the possible birth outcomes of pregnancy with PH, especially severe PH, accompanied by evidence that offspring derived from mothers with PH presented lower birth weights and slower growth rates than those derived from normal control mothers in a rat model. Besides, maternal PH rat offspring showed cardiac remodeling and a significant elevation of the expression levels of hypoxia- and inflammation-related markers in the cerebral cortex at both 10 and 14 weeks of age, respectively. What is more, the previous studies found that the overexpression of Myadm could result in the remodeling of the pulmonary artery. And targeting Myadm to intervene PH before pregnancy could alleviate sustained low weight growth in maternal PH rat offspring, and the pathological changes of the cardiac–cerebral system caused by maternal PH, including enlarged right heart cavity, loss of cardiomyocytes, abnormal heart index, as well as cerebral cortex hypoxia and the inflammatory state as they grew up to a certain extent. The findings show the pathological significance of maternal PH on offspring growth and the cardiac–cerebral development in a rat model, as well as point out the potential treatment target, which may provide a further reference for pregnancy outcomes in women with PH and healthy development of offspring to some extent.
Collapse
Affiliation(s)
- Jingrong Wang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Zirui Zhang
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Cui Liang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Tingting Lv
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Haoying Yu
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Shuyue Ren
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Peirong Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing, China
| | - Guanhua Du
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| | - Lan Sun
- Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.,The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
| |
Collapse
|
29
|
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 2022; 20:13. [PMID: 35090496 PMCID: PMC8796413 DOI: 10.1186/s12964-021-00809-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Collapse
Affiliation(s)
- Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
30
|
Deshpande RP, Sharma S, Liu Y, Pandey PR, Pei X, Wu K, Wu SY, Tyagi A, Zhao D, Mo YY, Watabe K. LncRNA IPW inhibits growth of ductal carcinoma in situ by downregulating ID2 through miR-29c. Breast Cancer Res 2022; 24:6. [PMID: 35078502 PMCID: PMC8787949 DOI: 10.1186/s13058-022-01504-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/11/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Ductal carcinoma in situ (DCIS) of breast is the noninvasive lesion that has propensity to progress to the malignant form. At present, it is still unknown which lesions can potentially progress to invasive forms. In this study, we aimed to identify key lncRNAs involved in DCIS growth. METHODS We employ disease-related lncProfiler array to identify IPW in specimens of DCIS and matching control samples and validate the observations in three DCIS-non-tumorigenic cell lines. Further, we examine the mechanism of IPW action and the downstream signaling in in vitro and in vivo assays. Importantly, we screened a library containing 390 natural compounds to identify candidate compound selectively inhibiting IPW low DCIS cells. RESULTS We identified lncRNA IPW as a novel tumor suppressor critical for inhibiting DCIS growth. Ectopic expression of IPW in DCIS cells strongly inhibited cell proliferation, colony formation and cell cycle progression while silencing IPW in primary breast cells promoted their growth. Additionally, orthotropic implantation of cells with ectopic expression of IPW exhibited decreased tumor growth in vivo. Mechanistically, IPW epigenetically enhanced miR-29c expression by promoting H3K4me3 enrichment in its promoter region. Furthermore, we identified that miR-29c negatively regulated a stemness promoting gene, ID2, and diminished self-renewal ability of DCIS cells. Importantly, we screened a library containing 390 natural compounds and identified toyocamycin as a compound that selectively inhibited the growth of DCIS with low expression of IPW, while it did not affect DCIS with high IPW expression. Toyocamycin also suppressed genes associated with self-renewal ability and inhibited DCIS growth in vivo. CONCLUSION Our findings revealed a critical role of the IPW-miR-29c-ID2 axis in DCIS formation and suggested potential clinical use of toyocamycin for the treatment of DCIS.
Collapse
MESH Headings
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Carcinoma, Intraductal, Noninfiltrating/drug therapy
- Carcinoma, Intraductal, Noninfiltrating/genetics
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Inhibitor of Differentiation Protein 2/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
Collapse
Affiliation(s)
| | | | - Yin Liu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Puspa Raj Pandey
- Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Xinhong Pei
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Kerui Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Shih-Ying Wu
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Abhishek Tyagi
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Dan Zhao
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kounosuke Watabe
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
31
|
Phosphate and Endothelial Function: How Sensing of Elevated Inorganic Phosphate Concentration Generates Signals in Endothelial Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1362:85-98. [DOI: 10.1007/978-3-030-91623-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Hudson J, Farkas L. Epigenetic Regulation of Endothelial Dysfunction and Inflammation in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms222212098. [PMID: 34829978 PMCID: PMC8617605 DOI: 10.3390/ijms222212098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022] Open
Abstract
Once perceived as a disorder treated by vasodilation, pulmonary artery hypertension (PAH) has emerged as a pulmonary vascular disease with severe endothelial cell dysfunction. In the absence of a cure, many studies seek to understand the detailed mechanisms of EC regulation to potentially create more therapeutic options for PAH. Endothelial dysfunction is characterized by complex phenotypic changes including unchecked proliferation, apoptosis-resistance, enhanced inflammatory signaling and metabolic reprogramming. Recent studies have highlighted the role of epigenetic modifications leading to pro-inflammatory response pathways, endothelial dysfunction, and the progression of PAH. This review summarizes the existing literature on epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, which can lead to aberrant endothelial function. Our goal is to develop a conceptual framework for immune dysregulation and epigenetic changes in endothelial cells in the context of PAH. These studies as well as others may lead to advances in therapeutics to treat this devastating disease.
Collapse
|
33
|
Kuo HF, Liu IF, Li CY, Tsai CS, Chen YH, Lian WS, Lin TC, Liu YR, Lee TY, Huang CY, Hsieh CC, Hsu CH, Lin FY, Liu PL. Endocardial Endothelial Dysfunction and Unknown Polymorphic Composite Accumulation in Heart Failure. Biomedicines 2021; 9:biomedicines9101465. [PMID: 34680582 PMCID: PMC8533412 DOI: 10.3390/biomedicines9101465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 01/03/2023] Open
Abstract
The accumulation of unknown polymorphic composites in the endocardium damages the endocardial endothelium (EE). However, the composition and role of unknown polymorphic composites in heart failure (HF) progression remain unclear. Here, we aimed to explore composite deposition during endocardium damage and HF progression. Adult male Sprague–Dawley rats were divided into two HF groups—angiotensin II-induced HF and left anterior descending artery ligation-induced HF. Heart tissues from patients who had undergone coronary artery bypass graft surgery (non-HF) and those with dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) were collected. EE damage, polymorphic unknown composite accumulation, and elements in deposits were examined. HF progression reduced the expression of CD31 in the endocardium, impaired endocardial integrity, and exposed the myofibrils and mitochondria. The damaged endocardial surface showed the accumulation of unknown polymorphic composites. In the animal HF model, especially HF caused by myocardial infarction, the weight and atomic percentages of O, Na, and N in the deposited composites were significantly higher than those of the other groups. The deposited composites in the human HF heart section (DCM) had a significantly higher percentage of Na and S than the other groups, whereas the percentage of C and Na in the DCM and ICM groups was significantly higher than those of the control group. HF causes widespread EE dysfunction, and EndMT was accompanied by polymorphic composites of different shapes and elemental compositions, which further damage and deteriorate heart function.
Collapse
Affiliation(s)
- Hsuan-Fu Kuo
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-F.K.); (C.-Y.L.); (T.-C.L.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Fan Liu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Heart Center, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-F.K.); (C.-Y.L.); (T.-C.L.)
| | - Chien-Sung Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei 114, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan;
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostic, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Tzu-Chieh Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (H.-F.K.); (C.-Y.L.); (T.-C.L.)
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ru Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-R.L.); (T.-Y.L.); (C.-Y.H.)
| | - Tsung-Ying Lee
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-R.L.); (T.-Y.L.); (C.-Y.H.)
| | - Chi-Yuan Huang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-R.L.); (T.-Y.L.); (C.-Y.H.)
| | - Chong-Chao Hsieh
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-C.H.); (C.-H.H.); (F.-Y.L.); (P.-L.L.)
| | - Chih-Hsin Hsu
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 740, Taiwan
- Correspondence: (C.-C.H.); (C.-H.H.); (F.-Y.L.); (P.-L.L.)
| | - Feng-Yen Lin
- Department of Internal Medicine and Taipei Heart Institute, Taipei Medical University, Taipei 106, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei 106, Taiwan
- Correspondence: (C.-C.H.); (C.-H.H.); (F.-Y.L.); (P.-L.L.)
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-R.L.); (T.-Y.L.); (C.-Y.H.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (C.-C.H.); (C.-H.H.); (F.-Y.L.); (P.-L.L.)
| |
Collapse
|
34
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
35
|
Yang Y, Lei W, Jiang S, Ding B, Wang C, Chen Y, Shi W, Wu Z, Tian Y. CircRNAs: Decrypting the novel targets of fibrosis and aging. Ageing Res Rev 2021; 70:101390. [PMID: 34118443 DOI: 10.1016/j.arr.2021.101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Fibrosis is a typical aging-related pathological process involving almost all organs. It is usually initiated by organic injury and leads to the gradual decline of organ function or even loss. Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts without a 5' cap or 3' tail which draw increasing attention. In particular, circRNAs have been identified to be involved in the multifaceted processes of fibrosis in various organs, including the heart, liver, lung, and kidney. As more and more circRNAs are functionally characterized, they have become novel therapies for fibrosis. In this review, we systematically summarized current studies regarding the roles of circRNAs in fibrosis and shed light on the basis of circRNAs as a potential treatment for fibrosis.
Collapse
|
36
|
Knockdown of Salusin- β Improves Cardiovascular Function in Myocardial Infarction-Induced Chronic Heart Failure Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8896226. [PMID: 34422210 PMCID: PMC8373485 DOI: 10.1155/2021/8896226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/18/2022]
Abstract
Salusin-β is a biologically active peptide with 20 amino acids that exerts several cardiovascular activity-regulating effects, such as regulating vascular endothelial function and the proliferation of vascular smooth muscle cells. However, the regulatory effects of salusin-β in myocardial infarction-induced chronic heart failure (CHF) are still unknown. The current study is aimed at investigating the effects of silencing salusin-β on endothelial function, cardiac function, vascular and myocardial remodeling, and its underlying signaling pathways in CHF rats induced by coronary artery ligation. CHF and sham-operated (Sham) rats were subjected to tail vein injection of adenoviral vectors encoding salusin-β shRNA or a control-shRNA. The coronary artery (CA), pulmonary artery (PA), and mesenteric artery (MA) were isolated from rats, and isometric tension measurements of arteries were performed. Compared with Sham rats, the plasma salusin-β, leptin and visfatin levels and the salusin-β protein expression levels of CA, PA, and MA were increased, while the acetylcholine- (ACh-) induced endothelium-dependent vascular relaxation of CA, PA, and MA was attenuated significantly in CHF rats and was improved significantly by salusin-β gene knockdown. Salusin-β knockdown also improved cardiac function and vascular and myocardial remodeling, increased endothelial nitric oxide synthase (eNOS) activity and nitric oxide (NO) levels, and decreased NAD(P)H oxidase activity, NOX-2 and NOX-4 expression, and reactive oxygen species (ROS) levels in arteries in CHF rats. The effects of salusin-β knockdown in CHF rats were attenuated significantly by pretreatment with the NOS inhibitor L-NAME. These results indicate that silencing salusin-β contributes to the improvement of endothelial function, cardiac function, and cardiovascular remodeling in CHF by inhibiting NAD(P)H oxidase-ROS generation and activating eNOS-NO production.
Collapse
|
37
|
Fan Y, Shao J, Wei S, Song C, Li Y, Jiang S. Self-eating and Heart: The Emerging Roles of Autophagy in Calcific Aortic Valve Disease. Aging Dis 2021; 12:1287-1303. [PMID: 34341709 PMCID: PMC8279526 DOI: 10.14336/ad.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/01/2021] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a self-degradative pathway by which subcellular elements are broken down intracellularly to maintain cellular homeostasis. Cardiac autophagy commonly decreases with aging and is accompanied by the accumulation of misfolded proteins and dysfunctional organelles, which are undesirable to the cell. Reduction of autophagy over time leads to aging-related cardiac dysfunction and is inversely related to longevity. However, despite the increasing interest in autophagy in cardiac diseases and aging, the process remains an undervalued and disregarded object in calcific valvular disease. Neither the nature through which autophagy is triggered nor the interplay between autophagic machinery and targeted molecules during aortic valve calcification are fully understood. Recently, the upregulation of autophagy has been shown to result in cardioprotective effects against cell death as well as its origin. Here, we review the evidence that shows how autophagy can be both beneficial and detrimental as it pertains to aortic valve calcification in the heart.
Collapse
Affiliation(s)
- Yunlong Fan
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiakang Shao
- 1Medical School of Chinese PLA, Beijing 100853, China
| | - Shixiong Wei
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Song
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| | - Yanan Li
- 1Medical School of Chinese PLA, Beijing 100853, China
| | - Shengli Jiang
- 1Medical School of Chinese PLA, Beijing 100853, China.,2Department of Cardiovascular Surgery, the First Medical Centre of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
38
|
Liu HT, Zhou ZX, Ren Z, Yang S, Liu LS, Wang Z, Wei DH, Ma XF, Ma Y, Jiang ZS. EndMT: Potential Target of H 2S against Atherosclerosis. Curr Med Chem 2021; 28:3666-3680. [PMID: 33200693 DOI: 10.2174/0929867327999201116194634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 10/04/2020] [Accepted: 10/04/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a chronic arterial wall illness that forms atherosclerotic plaques within the arteries. Plaque formation and endothelial dysfunction are atherosclerosis' characteristics. It is believed that the occurrence and development of atherosclerosis mainly include endothelial cell damage, lipoprotein deposition, inflammation and fibrous cap formation, but its molecular mechanism has not been elucidated. Therefore, protecting the vascular endothelium from damage is one of the key factors against atherosclerosis. The factors and processes involved in vascular endothelial injury are complex. Finding out the key factors and mechanisms of atherosclerosis caused by vascular endothelial injury is an important target for reversing and preventing atherosclerosis. Changes in cell adhesion are the early characteristics of EndMT, and cell adhesion is related to vascular endothelial injury and atherosclerosis. Recent researches have exhibited that endothelial-mesenchymal transition (EndMT) can urge atherosclerosis' progress, and it is expected that inhibition of EndMT will be an object for anti-atherosclerosis. We speculate whether inhibition of EndMT can become an effective target for reversing atherosclerosis by improving cell adhesion changes and vascular endothelial injury. Studies have shown that H2S has a strong cardiovascular protective effect. As H2S has anti- inflammatory, anti-oxidant, inhibiting foam cell formation, regulating ion channels and enhancing cell adhesion and endothelial functions, the current research on H2S in cardiovascular aspects is increasing, but anti-atherosclerosis's molecular mechanism and the function of H2S in EndMT have not been explicit. In order to explore the mechanism of H2S against atherosclerosis, to find an effective target to reverse atherosclerosis, we sum up the progress of EndMT promoting atherosclerosis, and Hydrogen sulfide's potential anti- EndMT effect is discussed in this review.
Collapse
Affiliation(s)
- Hui-Ting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Sai Yang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zuo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Dang-Heng Wei
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Xiao-Feng Ma
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang City, Hunan Province 421001, China
| | - Yun Ma
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, China
| |
Collapse
|
39
|
Testai L, Brancaleone V, Flori L, Montanaro R, Calderone V. Modulation of EndMT by Hydrogen Sulfide in the Prevention of Cardiovascular Fibrosis. Antioxidants (Basel) 2021; 10:antiox10060910. [PMID: 34205197 PMCID: PMC8229400 DOI: 10.3390/antiox10060910] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/23/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
Endothelial mesenchymal transition (EndMT) has been described as a fundamental process during embryogenesis; however, it can occur also in adult age, underlying pathological events, including fibrosis. Indeed, during EndMT, the endothelial cells lose their specific markers, such as vascular endothelial cadherin (VE-cadherin), and acquire a mesenchymal phenotype, expressing specific products, such as α-smooth muscle actin (α-SMA) and type I collagen; moreover, the integrity of the endothelium is disrupted, and cells show a migratory, invasive and proliferative phenotype. Several stimuli can trigger this transition, but transforming growth factor (TGF-β1) is considered the most relevant. EndMT can proceed in a canonical smad-dependent or non-canonical smad-independent manner and ultimately regulate gene expression of pro-fibrotic machinery. These events lead to endothelial dysfunction and atherosclerosis at the vascular level as well as myocardial hypertrophy and fibrosis. Indeed, EndMT is the mechanism which promotes the progression of cardiovascular disorders following hypertension, diabetes, heart failure and also ageing. In this scenario, hydrogen sulfide (H2S) has been widely described for its preventive properties, but its role in EndMT is poorly investigated. This review is focused on the evaluation of the putative role of H2S in the EndMT process.
Collapse
Affiliation(s)
- Lara Testai
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
- Correspondence:
| | - Vincenzo Brancaleone
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Lorenzo Flori
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (V.B.); (R.M.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (L.F.); (V.C.)
- Interdepartmental Center of Ageing, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
40
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
41
|
Yang X, Yang Y, Guo J, Meng Y, Li M, Yang P, Liu X, Aung LHH, Yu T, Li Y. Targeting the epigenome in in-stent restenosis: from mechanisms to therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1136-1160. [PMID: 33664994 PMCID: PMC7896131 DOI: 10.1016/j.omtn.2021.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coronary artery disease (CAD) is one of the most common causes of death worldwide. The introduction of percutaneous revascularization has revolutionized the therapy of patients with CAD. Despite the advent of drug-eluting stents, restenosis remains the main challenge in treating patients with CAD. In-stent restenosis (ISR) indicates the reduction in lumen diameter after percutaneous coronary intervention, in which the vessel's lumen re-narrowing is attributed to the aberrant proliferation and migration of vascular smooth muscle cells (VSMCs) and dysregulation of endothelial cells (ECs). Increasing evidence has demonstrated that epigenetics is involved in the occurrence and progression of ISR. In this review, we provide the latest and comprehensive analysis of three separate but related epigenetic mechanisms regulating ISR, namely, DNA methylation, histone modification, and non-coding RNAs. Initially, we discuss the mechanism of restenosis. Furthermore, we discuss the biological mechanism underlying the diverse epigenetic modifications modulating gene expression and functions of VSMCs, as well as ECs in ISR. Finally, we discuss potential therapeutic targets of the small molecule inhibitors of cardiovascular epigenetic factors. A more detailed understanding of epigenetic regulation is essential for elucidating this complex biological process, which will assist in developing and improving ISR therapy.
Collapse
Affiliation(s)
- Xi Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, People’s Republic of China
| | - Junjie Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Yuanyuan Meng
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Panyu Yang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
| | - Xin Liu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao 266021, People’s Republic of China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Road No. 59 Haier, Qingdao 266100, Shandong, People’s Republic of China
| |
Collapse
|
42
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
43
|
Clinical Implications of Uric Acid in Heart Failure: A Comprehensive Review. Life (Basel) 2021; 11:life11010053. [PMID: 33466609 PMCID: PMC7828696 DOI: 10.3390/life11010053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Affecting more than 26 million people worldwide and with rising prevalence, heart failure (HF) represents a major global health problem. Hence, further research is needed in order to abate poor HF outcomes and mitigate significant expenses that burden health care systems. Based on available data, experts agree that there is an urgent need for a cost-effective prognostic biomarker in HF. Although a significant number of biomarkers have already been investigated in this setting, the clinical utility of adding biomarker evaluation to routine HF care still remains ambiguous. Specifically, in this review we focused on uric acid (UA), a purine metabolism detriment whose role as cardiovascular risk factor has been exhaustingly debated for decades. Multiple large population studies indicate that UA is an independent predictor of mortality in acute and chronic HF, making it a significant prognostic factor in both settings. High serum levels have been also associated with an increased incidence of HF, thus expanding the clinical utility of UA. Importantly, emerging data suggests that UA is also implicated in the pathogenesis of HF, which sheds light on UA as a feasible therapeutic target. Although to date clinical studies have not been able to prove the benefits of xanthine oxidase in HF patients, we discuss the putative role of UA and xanthine oxidase in the pathophysiology of HF as a therapeutic target.
Collapse
|
44
|
Chen D, Zhang C, Chen J, Yang M, Afzal TA, An W, Maguire EM, He S, Luo J, Wang X, Zhao Y, Wu Q, Xiao Q. miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts. J Pathol 2020; 253:209-224. [PMID: 33125708 PMCID: PMC7839516 DOI: 10.1002/path.5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence has suggested a critical role for endothelial‐to‐mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA‐200c‐3p (miR‐200c‐3p) has been implicated in epithelial‐to‐mesenchymal transition. However, the functional role of miR‐200c‐3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR‐200c‐3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR‐200c‐3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR‐200c‐3p overexpression on EndoMT, and the inhibitory effect of miR‐200c‐3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y‐box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR‐200c‐3p expression was dramatically up‐regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR‐200c‐3p inhibition in grafted arteries significantly up‐regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR‐200c‐3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR‐200c‐3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR‐200c‐3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tayyab A Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhao
- Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
45
|
Xu F, He L, Zhan X, Chen J, Xu H, Huang X, Li Y, Zheng X, Lin L, Chen Y. DNA methylation-based lung adenocarcinoma subtypes can predict prognosis, recurrence, and immunotherapeutic implications. Aging (Albany NY) 2020; 12:25275-25293. [PMID: 33234739 PMCID: PMC7803536 DOI: 10.18632/aging.104129] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
The marked heterogeneity of lung adenocarcinoma (LUAD) makes its diagnosis and treatment difficult. In addition, the aberrant DNA methylation profile contributes to tumor heterogeneity and alters the immune response. We used DNA methylation array data from publicly available databases to establish a predictive model for LUAD prognosis. Thirty-three methylation sites were identified as specific prognostic biomarkers, independent of patients' clinical characteristics. These methylation profiles were used to identify potential drug candidates and study the immune microenvironment of LUAD and response to immunotherapy. When compared with the high-risk group, the low-risk group had a lower recurrence rate and favorable prognosis. The tumor microenvironment differed between the two groups as reflected by the higher number of resting dendritic cells and a lower number of monocytes and resting mast cells in the low-risk group. Moreover, low-risk patients reported higher immune and stromal scores, lower tumor purity, and higher expression of HLA genes. Low-risk patients responded well to immunotherapy due to higher expression of immune checkpoint molecules and lower stemness index. Thus, our model predicted a favorable prognosis and increased overall survival for patients in the low-risk methylation group. Further, this model could provide potential drug targets to develop effective immunotherapies for LUAD.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lulu He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Zhan
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiexin Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Huan Xu
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoling Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yangyi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaohe Zheng
- Department of Respiratory Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yongsong Chen
- Department of Endocrinology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
46
|
Yuan C, Ni L, Zhang C, Hu X, Wu X. Vascular calcification: New insights into endothelial cells. Microvasc Res 2020; 134:104105. [PMID: 33189731 DOI: 10.1016/j.mvr.2020.104105] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Vascular calcification, a common pathological basis of vascular disease, is caused by various diseases and is an independent risk factor for cardiovascular events. Therefore, elucidating the pathogenesis of vascular calcification has significant clinical benefits. It is generally believed that vascular calcification is similar to the processes of bone development and cartilage formation. The transformation of vascular smooth muscle cells into osteoblast- and chondrocyte-like cells is a key event. However, recent studies have found that under certain conditions, endothelial cells participate in vascular calcification via endothelial-mesenchymal transition, cytokine secretion, extracellular vesicle synthesis, angiogenesis regulation and hemodynamics. This review aims to explore the relationship between endothelial cells and vascular calcification and to provide a theoretical basis and new ideas for the active prevention and treatment of vascular calcification in the clinic.
Collapse
Affiliation(s)
- Cheng Yuan
- Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Lihua Ni
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China
| | - Changjiang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Xiaorong Hu
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan 430071, PR China.
| | - Xiaoyan Wu
- Department of Nephrology, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
47
|
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, Aung LHH, Li PF, Yu T, Chu XM. NLRP3 inflammasome in endothelial dysfunction. Cell Death Dis 2020; 11:776. [PMID: 32948742 PMCID: PMC7501262 DOI: 10.1038/s41419-020-02985-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Inflammasomes are a class of cytosolic protein complexes. They act as cytosolic innate immune signal receptors to sense pathogens and initiate inflammatory responses under physiological and pathological conditions. The NLR-family pyrin domain-containing protein 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex. Its activation triggers the cleavage of pro-interleukin (IL)-1β and pro-IL-18, which are mediated by caspase-1, and secretes mature forms of these mediators from cells to promote the further inflammatory process and oxidative stress. Simultaneously, cells undergo pro-inflammatory programmed cell death, termed pyroptosis. The danger signals for activating NLRP3 inflammasome are very extensive, especially reactive oxygen species (ROS), which act as an intermediate trigger to activate NLRP3 inflammasome, exacerbating subsequent inflammatory cascades and cell damage. Vascular endothelium at the site of inflammation is actively involved in the regulation of inflammation progression with important implications for cardiovascular homeostasis as a dynamically adaptable interface. Endothelial dysfunction is a hallmark and predictor for cardiovascular ailments or adverse cardiovascular events, such as coronary artery disease, diabetes mellitus, hypertension, and hypercholesterolemia. The loss of proper endothelial function may lead to tissue swelling, chronic inflammation, and the formation of thrombi. As such, elimination of endothelial cell inflammation or activation is of clinical relevance. In this review, we provided a comprehensive perspective on the pivotal role of NLRP3 inflammasome activation in aggravating oxidative stress and endothelial dysfunction and the possible underlying mechanisms. Furthermore, we highlighted the contribution of noncoding RNAs to NLRP3 inflammasome activation-associated endothelial dysfunction, and outlined potential clinical drugs targeting NLRP3 inflammasome involved in endothelial dysfunction. Collectively, this summary provides recent developments and perspectives on how NLRP3 inflammasome interferes with endothelial dysfunction and the potential research value of NLRP3 inflammasome as a potential mediator of endothelial dysfunction.
Collapse
Affiliation(s)
- Baochen Bai
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yanyan Yang
- Department of lmmunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Qi Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Min Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Lynn Htet Htet Aung
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
- Department of Cardiac Ultrasound, The Affiliated hospital of Qingdao University, Qingdao, 266000, China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, 266032, China.
| |
Collapse
|
48
|
Wang B, Ge Z, Wu Y, Zha Y, Zhang X, Yan Y, Xie Y. MFGE8 is down-regulated in cardiac fibrosis and attenuates endothelial-mesenchymal transition through Smad2/3-Snail signalling pathway. J Cell Mol Med 2020; 24:12799-12812. [PMID: 32945126 PMCID: PMC7686985 DOI: 10.1111/jcmm.15871] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Endothelial‐mesenchymal transition (EndMT) is a major source of transformed cardiac fibroblasts, which is reported to play a key role in cardiac fibrosis (CF), a pathogenesis of cardiovascular diseases such as heart failure, myocardial infarction and atrial fibrillation. Nonetheless, the specific mechanism underlying the progression of EndMT to CF is still largely unknown. In this study, we aimed to investigate the role of milk fat globule‐EGF factor 8 (MFGE8), a kind of soluble glycoprotein, in TGF‐β1‐induced EndMT. In animal experiments, the expression of MFGE8 was found down‐regulated in the left ventricle and aorta of rats after transverse aortic constriction (TAC) compared with the sham group, especially in endothelial cells (ECs). In in vitro cultured ECs, silencing MFGE8 with small interfering RNA (siRNA) was found to promote the process of TGF‐β1‐induced EndMT, whereas administration of recombinant human MFGE8 (rh‐MFGE8) attenuated the process. Moreover, activated Smad2/3 signalling pathway after TGF‐β1 treatment and EndMT‐related transcription factors, such as Snail, Twist and Slug, was potentiated by MFGE8 knock‐down but inhibited by rh‐MFGE8. In conclusion, our experiments indicate that MFGE8 might play a protective role in TGF‐β1‐induced EndMT and might be a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Wu
- Department of Nutriology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yafang Zha
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yexiang Yan
- Department of Cardiology, Shanghai Tenth People's Hospital Chongming Branch, Shanghai, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Cardiology, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Disease-Associated Circular RNAs: From Biology to Computational Identification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6798590. [PMID: 32908906 PMCID: PMC7450300 DOI: 10.1155/2020/6798590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
Circular RNAs (circRNAs) are endogenous RNAs with a covalently closed continuous loop, generated through various backsplicing events of pre-mRNA. An accumulating number of studies have shown that circRNAs are potential biomarkers for major human diseases such as cancer and Alzheimer's disease. Thus, identification and prediction of human disease-associated circRNAs are of significant importance. To this end, a computational analysis-assisted strategy is indispensable to detect, verify, and quantify circRNAs for downstream applications. In this review, we briefly introduce the biology of circRNAs, including the biogenesis, characteristics, and biological functions. In addition, we outline about 30 recent bioinformatic analysis tools that are publicly available for circRNA study. Principles for applying these computational strategies and considerations will be briefly discussed. Lastly, we give a complete survey on more than 20 key computational databases that are frequently used. To our knowledge, this is the most complete and updated summary on publicly available circRNA resources. In conclusion, this review summarizes key aspects of circRNA biology and outlines key computational strategies that will facilitate the genome-wide identification and prediction of circRNAs.
Collapse
|
50
|
Borovac JA, D'Amario D, Bozic J, Glavas D. Sympathetic nervous system activation and heart failure: Current state of evidence and the pathophysiology in the light of novel biomarkers. World J Cardiol 2020; 12:373-408. [PMID: 32879702 PMCID: PMC7439452 DOI: 10.4330/wjc.v12.i8.373] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/19/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome characterized by the activation of at least several neurohumoral pathways that have a common role in maintaining cardiac output and adequate perfusion pressure of target organs and tissues. The sympathetic nervous system (SNS) is upregulated in HF as evident in dysfunctional baroreceptor and chemoreceptor reflexes, circulating and neuronal catecholamine spillover, attenuated parasympathetic response, and augmented sympathetic outflow to the heart, kidneys and skeletal muscles. When these sympathoexcitatory effects on the cardiovascular system are sustained chronically they initiate the vicious circle of HF progression and become associated with cardiomyocyte apoptosis, maladaptive ventricular and vascular remodeling, arrhythmogenesis, and poor prognosis in patients with HF. These detrimental effects of SNS activity on outcomes in HF warrant adequate diagnostic and treatment modalities. Therefore, this review summarizes basic physiological concepts about the interaction of SNS with the cardiovascular system and highlights key pathophysiological mechanisms of SNS derangement in HF. Finally, special emphasis in this review is placed on the integrative and up-to-date overview of diagnostic modalities such as SNS imaging methods and novel laboratory biomarkers that could aid in the assessment of the degree of SNS activation and provide reliable prognostic information among patients with HF.
Collapse
Affiliation(s)
- Josip Anđelo Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
| | - Domenico D'Amario
- Department of Cardiovascular and Thoracic Sciences, IRCCS Fondazione Policlinico A. Gemelli, Universita Cattolica Sacro Cuore, Rome 00168, Italy
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Duska Glavas
- Working Group on Heart Failure of Croatian Cardiac Society, Zagreb 10000, Croatia
- Clinic for Cardiovascular Diseases, University Hospital of Split, Split 21000, Croatia
| |
Collapse
|