1
|
Zhang D, Tu H, Hu W, Li Y, Wadman MC, Li YL. Hydrogen Peroxide-Induced Re-Expression of Repressor Element 1-Silencing Transcription Factor Contributes to Cardiac Vagal Dysfunction in Type 2 Diabetes Mellitus. Antioxidants (Basel) 2025; 14:588. [PMID: 40427470 PMCID: PMC12108343 DOI: 10.3390/antiox14050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Diabetes mellitus, especially type 2 diabetes mellitus (T2DM), is a major health problem worldwide and has become a leading cause of mortality. As a common complication of patients with T2DM, cardiac autonomic dysfunction (including sympathetic overactivation and reduced vagal tone) is associated with a higher risk of arrhythmia-related sudden cardiac death. Our previous study found that T2DM-elevated hydrogen peroxide (H2O2) levels in atrioventricular ganglion (AVG) neurons contribute to the decrease in cardiac vagal function and ventricular arrhythmogenesis through inhibition of N-type Ca2+ channels (Cav2.2). In the present study, treatment with exogenous H2O2 in differentiated NG108-15 cells increased REST expression and decreased Cav2.2-α expression. Adenoviral catalase gene transfection into the AVG neurons significantly reduced the REST levels elevated by a high-fat diet plus streptozotocin-induced T2DM. Lentiviral REST shRNA transfection markedly increased Cav2.2-α expression in the AVG neurons from T2DM rats. REST shRNA also activated N-type Ca2+ channels and increased cell excitability of AVG neurons in T2DM rats. Additionally, REST shRNA markedly improved cardiac vagal activation in T2DM rats. The present study suggests that the H2O2-REST-Cav2.2 channel signaling axis could be a potential therapeutic target to normalize cardiac vagal dysfunction and its related cardiac complications in T2DM.
Collapse
Affiliation(s)
- Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
| | - Wenfeng Hu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
| | - Yu Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
| | - Michael C. Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (D.Z.); (H.T.)
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
2
|
Yeh SJ, Lung CW, Jan YK, Lee LL, Wang YC, Liau BY. The relationship between cardiovagal baroreflex and cerebral autoregulation in postural orthostatic tachycardia disorder using advanced cross-correlation function. Sci Rep 2024; 14:25158. [PMID: 39448789 PMCID: PMC11502671 DOI: 10.1038/s41598-024-77065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) presents excessive orthostatic tachycardia and orthostatic intolerance. POTS is a common and therapeutically challenging condition affecting numerous people worldwide. As many disease entities can be confused with POTS, it becomes critical to identify this syndrome. Moreover, unbalanced autonomic nervous activity can induce cardiovascular diseases and influence the bio-feedback mechanism: Baroreflex (BR) and cerebral autoregulation (CA). BR and CA are important bio-mechanisms that maintain a stable circulatory system via the autonomic nervous system. Therefore, an impaired autonomic nervous system would lead to imbalanced BRS and CA. Consequently, we propose an advanced cross-correlation function (ACCF) time-domain approach to analyze baroreflex and cerebral autoregulation using physiological signals. This study assesses relation changes in BR and CA using ACCF in POTS for early clinical detection and diagnosis. The ACCF analysis results has thresholds that reveal that the BR of healthy and POTS groups present significantly different maximum CCF values (p < 0.05). The complete CCF index shows that the BR phase changes significantly into phase lag in the POTS group. Although CA analysis using the maximum CCF index was mildly weak, it did not differ in the POTS group. Thus, POTS only affects BR. An increasing sympathetic activity might induce an unbalanced baroreflex effect and increase cerebral vasomotor tone with CA. Maximum CCF value correlation coefficients between BR and CA indicated positive in POTS groups and negative in the healthy group. It could be speculated that the sympathetic nervous system compensates to improve BR function, which remains CA function. The advantage of this ACCF algorithm is that it helps observe BR and CA for early detection.
Collapse
Affiliation(s)
- Shoou-Jeng Yeh
- Section of Neurology and Neurophysiology, Cheng-Ching General Hospital, 40764, Taichung, Taiwan
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, 41354, Taichung, Taiwan
- Rehabilitation Engineering Lab, Kinesiology & Community Health, Computational Science & Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Kinesiology & Community Health, Computational Science & Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Lin-Lin Lee
- Department of Nursing, Hungkuang University, Taichung, 433304, Taiwan
| | - Yao-Chin Wang
- Department of Electronic Engineering, Cheng Shiu University, 833301, Kaoshiung, Taiwan
- Department of Computer Science and Information Engineering, Cheng Shiu University, 833301, Kaoshiung, Taiwan
| | - Ben-Yi Liau
- Department of Automatic Control Engineering, Feng Chia University, Taichung, 407102, Taiwan.
| |
Collapse
|
3
|
Dogan NB, Yasar HY, Kilicaslan B. Cardioprotective Effects of Sodium-Glucose Cotransporter 2 Inhibitors and Their Possible Association With Normalization of the Circadian Index of Heart Rhythm. Tex Heart Inst J 2023; 50:e238196. [PMID: 38083821 PMCID: PMC10751477 DOI: 10.14503/thij-23-8196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND Updated recommendations for the treatment of heart failure with reduced ejection fraction (HFrEF) include sodium-glucose cotransporter 2 (SGLT2) inhibitors and other long-established HFrEF therapies. These drugs' mechanisms of action have yet to be fully clarified. OBJECTIVE This study evaluated the effects of SGLT2 inhibitors on the modulation of autonomic function at 1 month beyond conventional HF therapy. METHODS This single-center, observational, prospective study was conducted from January 2020 to December 2022. Patients with type 2 diabetes who had ischemic HFrEF and met the study criteria were considered for SGLT2 inhibitor treatment with empagliflozin or dapagliflozin. Changes in the circadian index were used as the primary outcome to assess the early effects of SGLT2 inhibitors on autonomic function. Changes in functional effort capacity and laboratory findings were also evaluated. Participants' circadian index was measured by a 24-hour rhythm Holter monitoring recorder (BTL-08 Holter H100). A symptom-limited treadmill test assessed patients' effort capacities. Tests were repeated after 1 month of therapy. RESULTS The mean (SD) age of the 151 participants was 56.95 (7.29) years; their mean (SD) left ventricular EF was 35.69% (7.10%), and 95 participants were men (62.9%). From baseline to 1 month, mean (SD) daytime heart rate (80.63 [9.17] vs 77.67 [8.04] beats per minute; P = .004) and nighttime heart rate (76.83 [11.34] vs 73.81 [10.25] beats per minute; P = .03) decreased significantly. Variation in the circadian indexes (mean [SD], 1.04 [0.02] vs 1.10 [0.04]; P < .001) was statistically significant, favoring increased modulation of autonomic function. The increases in exercise duration (mean [SD], 8.88 [3.69] minutes and median [IQR], 8.81 [5.76-12.13] minutes vs 9.72 [3.14] and 9.59 [7.24-12.22] minutes; P = .04) and exercise capacity (mean [SD], 203.38 [65.18] m and median [IQR], 119.22 [149.43-259.15] m vs 335.61 [51.39] and 325.79 [293.59-376.91] m; P < .001] were also significant. CONCLUSION The use of SGLT2 inhibitors during early treatment can favorably affect both autonomic dysfunction and functional effort capacity of patients with type 2 diabetes with ischemic HFrEF.
Collapse
Affiliation(s)
- Nazile Bilgin Dogan
- Department of Cardiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Hamiyet Yilmaz Yasar
- Department of Endocrinology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| | - Baris Kilicaslan
- Department of Cardiology, University of Health Sciences Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
4
|
Samora M, Huo Y, McCuller RK, Chidurala S, Stanhope KL, Havel PJ, Stone AJ, Harrison ML. Spontaneous baroreflex sensitivity is attenuated in male UCD-type 2 diabetes mellitus rats: A link between metabolic and autonomic dysfunction. Auton Neurosci 2023; 249:103117. [PMID: 37657371 PMCID: PMC11613953 DOI: 10.1016/j.autneu.2023.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Patients with type 2 diabetes mellitus (T2DM) have impaired arterial baroreflex function, which may be linked to the co-existence of obesity. However, the role of obesity and its related metabolic impairments on baroreflex dysfunction in T2DM is unknown. This study aimed to investigate the role of visceral fat and adiponectin, the most abundant cytokine produced by adipocytes, on baroreflex dysfunction in T2DM rats. Experiments were performed in adult male UCD-T2DM rats assigned to the following experimental groups (n = 6 in each): prediabetic (Pre), diabetes-onset (T0), 4 weeks after onset (T4), and 12 weeks after onset (T12). Age-matched healthy Sprague-Dawley rats were used as controls. Rats were anesthetized and blood pressure was directly measured on a beat-to-beat basis to assess spontaneous baroreflex sensitivity (BRS) using the sequence technique. Dual-energy X-ray absorptiometry (DEXA) was used to assess body composition. Data are presented as mean ± SD. BRS was significantly lower in T2DM rats compared with controls at T0 (T2D: 3.7 ± 3.2 ms/mmHg vs Healthy: 16.1 ± 8.4 ms/mmHg; P = 0.01), but not at T12 (T2D: 13.4 ± 8.1 ms/mmHg vs Healthy: 9.2 ± 6.0 ms/mmHg; P = 0.16). T2DM rats had higher visceral fat mass, adiponectin, and insulin concentrations compared with control rats (all P < 0.01). Changes in adiponectin and insulin concentrations over the measured time-points mirrored one another and were opposite those of the BRS in T2DM rats. These findings demonstrate that obesity-related metabolic impairments may contribute to an attenuated spontaneous BRS in T2DM, suggesting a link between metabolic and autonomic dysfunction.
Collapse
Affiliation(s)
- Milena Samora
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Yu Huo
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Richard K McCuller
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Suchit Chidurala
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, United States
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California Davis, Davis, CA, United States
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Michelle L Harrison
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
5
|
Blonde L, Umpierrez GE, Reddy SS, McGill JB, Berga SL, Bush M, Chandrasekaran S, DeFronzo RA, Einhorn D, Galindo RJ, Gardner TW, Garg R, Garvey WT, Hirsch IB, Hurley DL, Izuora K, Kosiborod M, Olson D, Patel SB, Pop-Busui R, Sadhu AR, Samson SL, Stec C, Tamborlane WV, Tuttle KR, Twining C, Vella A, Vellanki P, Weber SL. American Association of Clinical Endocrinology Clinical Practice Guideline: Developing a Diabetes Mellitus Comprehensive Care Plan-2022 Update. Endocr Pract 2022; 28:923-1049. [PMID: 35963508 PMCID: PMC10200071 DOI: 10.1016/j.eprac.2022.08.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The objective of this clinical practice guideline is to provide updated and new evidence-based recommendations for the comprehensive care of persons with diabetes mellitus to clinicians, diabetes-care teams, other health care professionals and stakeholders, and individuals with diabetes and their caregivers. METHODS The American Association of Clinical Endocrinology selected a task force of medical experts and staff who updated and assessed clinical questions and recommendations from the prior 2015 version of this guideline and conducted literature searches for relevant scientific papers published from January 1, 2015, through May 15, 2022. Selected studies from results of literature searches composed the evidence base to update 2015 recommendations as well as to develop new recommendations based on review of clinical evidence, current practice, expertise, and consensus, according to established American Association of Clinical Endocrinology protocol for guideline development. RESULTS This guideline includes 170 updated and new evidence-based clinical practice recommendations for the comprehensive care of persons with diabetes. Recommendations are divided into four sections: (1) screening, diagnosis, glycemic targets, and glycemic monitoring; (2) comorbidities and complications, including obesity and management with lifestyle, nutrition, and bariatric surgery, hypertension, dyslipidemia, retinopathy, neuropathy, diabetic kidney disease, and cardiovascular disease; (3) management of prediabetes, type 2 diabetes with antihyperglycemic pharmacotherapy and glycemic targets, type 1 diabetes with insulin therapy, hypoglycemia, hospitalized persons, and women with diabetes in pregnancy; (4) education and new topics regarding diabetes and infertility, nutritional supplements, secondary diabetes, social determinants of health, and virtual care, as well as updated recommendations on cancer risk, nonpharmacologic components of pediatric care plans, depression, education and team approach, occupational risk, role of sleep medicine, and vaccinations in persons with diabetes. CONCLUSIONS This updated clinical practice guideline provides evidence-based recommendations to assist with person-centered, team-based clinical decision-making to improve the care of persons with diabetes mellitus.
Collapse
Affiliation(s)
| | | | - S Sethu Reddy
- Central Michigan University, Mount Pleasant, Michigan
| | | | | | | | | | | | - Daniel Einhorn
- Scripps Whittier Diabetes Institute, La Jolla, California
| | | | | | - Rajesh Garg
- Lundquist Institute/Harbor-UCLA Medical Center, Torrance, California
| | | | | | | | | | | | - Darin Olson
- Colorado Mountain Medical, LLC, Avon, Colorado
| | | | | | - Archana R Sadhu
- Houston Methodist; Weill Cornell Medicine; Texas A&M College of Medicine; Houston, Texas
| | | | - Carla Stec
- American Association of Clinical Endocrinology, Jacksonville, Florida
| | | | - Katherine R Tuttle
- University of Washington and Providence Health Care, Seattle and Spokane, Washington
| | | | | | | | - Sandra L Weber
- University of South Carolina School of Medicine-Greenville, Prisma Health System, Greenville, South Carolina
| |
Collapse
|
6
|
Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul 2022; 56:284-294. [DOI: 10.2478/enr-2022-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Several cross-sectional trials have revealed increased arterial stiffness connected with the cardiac autonomic neuropathy in types 2 and 1 diabetic patients. The pathophysiological relationship between arterial stiffness and autonomic dysfunction in diabetes mellitus is still underinvestigated and the question whether the presence of cardiac autonomic neuropathy leads to arterial stiffening or increased arterial stiffness induced autonomic nervous system impairment is still open. Both arterial stiffness and dysfunction of the autonomic nervous system have common pathogenetic pathways, counting state of the chronic hyperinsulinemia and hyperglycemia, increased formation of advanced glycation end products, activation of protein kinase C, development of endothelial dysfunction, and chronic low-grade inflammation. Baroreceptor dysfunction is thought to be one of the possible reasons for the arterial wall stiffening development and progression. On the contrary, violated autonomic nervous system function can affect the vascular tone and by this way alter the large arteries walls elastic properties. Another possible mechanism of attachment and/or development of arterial stiffness is the increased heart rate and autonomic dysfunction corresponding progression. This minireview analyzes the current state of the relationship between the diabetes mellitus and the arterial stiffness. Particular attention is paid to the analysis, interpretation, and application of the results obtained in patients with type 2 diabetes mellitus and diabetic cardiac autonomic neuropathy.
Collapse
|
7
|
Moreno Velásquez I, Jaeschke L, Steinbrecher A, Boeing H, Keil T, Janke J, Pischon T. Association of general and abdominal adiposity with postural changes in systolic blood pressure: results from the NAKO pretest and MetScan studies. Hypertens Res 2022; 45:1964-1976. [PMID: 36180592 DOI: 10.1038/s41440-022-01029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/20/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022]
Abstract
The association between anthropometric measurements and postural changes in systolic blood pressure (SBP) has not been frequently reported. This study aimed to investigate the association of body mass index (BMI) and waist circumference (WC) with postural changes in SBP in two German cross-sectional studies. Data were derived from 506 participants of the population-based German National Cohort (NAKO) pretest and from 511 participants of the convenience sample-based MetScan studies. Linear regression models were used to estimate the association between BMI and WC with the difference between standing and sitting SBP (dSBP). Odds ratios (ORs) for an increase (dSBP > 10 mmHg) or decrease (dSBP ≤ -10 mmHg) in dSBP were calculated using logistic regression. The results were pooled by meta-analysis using an inverse variance model. In pooled analysis, a 5 kg/m2 higher BMI was associated with a 1.46 mmHg (95% confidence interval (CI) 0.98-1.94) higher dSBP, while a 5 cm higher WC was associated with a 0.51 mmHg (95% CI 0.32-0.69) higher dSBP. BMI or WC were associated with a higher odds of an increase in dSBP (adjusted OR, 1.71; 95% CI 1.36-2.14 per 5 kg/m2 higher BMI and 1.22; 95% CI 1.05-1.40 per 5 cm higher WC) but with a reduced odds of a decline in dSBP (adjusted OR, 0.67; 95% CI 0.44-1.00 per 5 kg/m2 higher BMI and 0.84; 95% CI 0.72-0.99 per 5 cm higher WC). The associations between WC and dSBP were no longer statistically significant after BMI adjustments. In conclusion, higher BMI and higher WC were associated with higher postural increases in SBP; however, WC was not related to postural changes in SBP once adjusted for BMI.
Collapse
Affiliation(s)
- Ilais Moreno Velásquez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.
| | - Lina Jaeschke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| | - Astrid Steinbrecher
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany
| | - Heiner Boeing
- Department of Epidemiology (closed), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany.,State Institute of Health, Bavarian Health and Food Safety Authority, Bad Kissingen, Germany
| | - Jürgen Janke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany.,Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Core Facility Biobank Berlin, Berlin, Germany
| | - Tobias Pischon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Molecular Epidemiology Research Group, Berlin, Germany.,Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biobank Technology Platform, Berlin, Germany.,Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Core Facility Biobank Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
8
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Casey DP. Dietary Inorganic Nitrate/Nitrite Supplementation Reduces Central and Peripheral Blood Pressure in Patients With Type 2 Diabetes Mellitus. Am J Hypertens 2022; 35:803-809. [PMID: 35639721 PMCID: PMC9434218 DOI: 10.1093/ajh/hpac068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/10/2022] [Accepted: 05/24/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes mellitus (T2DM) have increased cardiovascular risk due to elevated blood pressure (BP). As low levels of nitric oxide (NO) may contribute to increased BP, we determined if increasing NO bioavailability via eight weeks of supplementation with beetroot juice containing inorganic nitrate/nitrite (4.03 mmol nitrate, 0.29 mmol nitrite) improves peripheral and central BP relative to nitrate/nitrite-depleted beetroot juice. METHODS Peripheral and central BP were assessed at heart-level in supine subjects using a brachial artery catheter and applanation tonometry, respectively. RESULTS Nitrate/nitrite supplementation reduced peripheral systolic BP (148 ± 16 to 142 ± 18 mm Hg, P < 0.05) but not placebo (150 ± 19 to 149 ± 17 mm Hg, P = 0.93); however, diastolic BP was unaffected (supplement-by-time P = 0.08). Central systolic BP (131 ± 16 to 127 ± 17 mm Hg) and augmented pressure (13.3 ± 6.6 to 11.6 ± 6.9 mm Hg, both P < 0.05) were reduced after nitrate/nitrite, but not placebo (134 ± 17 to 135 ± 16 mm Hg, P = 0.62; 14.1 ± 6.6 to 15.2 ± 7.4 mm Hg, P = 0.20); central diastolic BP was unchanged by the interventions (supplement-by-time P = 0.16). Inorganic nitrate/nitrite also reduced AIx (24.3 ± 9.9% to 21.0 ± 9.6%) whereas no changes were observed following placebo (24.6 ± 9.3% to 25.6 ± 9.9%, P = 0.46). CONCLUSIONS Inorganic nitrate/nitrite supplementation improves peripheral and central BP as well as AIx in T2DM. CLINICAL TRIALS REGISTRATION Trial Number NCT02804932.
Collapse
Affiliation(s)
- Joshua M Bock
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William E Hughes
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Andrew J Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Darren P Casey
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
9
|
Yeh SJ, Lung CW, Jan YK, Liau BY. Advanced Cross-Correlation Function Application to Identify Arterial Baroreflex Sensitivity Variations From Healthy to Diabetes Mellitus. Front Neurosci 2022; 16:812302. [PMID: 35757548 PMCID: PMC9226378 DOI: 10.3389/fnins.2022.812302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic disease characterized by elevated blood glucose levels, which leads over time to serious damage to the heart, blood vessels, eyes, kidneys, and nerves. DM is of two types–types 1 or 2. In type 1, there is a problem with insulin secretion, and in type 2–insulin resistance. About 463 million people worldwide have diabetes, and 80% of the majority live in low- and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. Autonomic neuropathy (AN) is one of the common diabetic complications, leading to failure in blood pressure (BP) control and causing cardiovascular disease. Therefore, early detection of AN becomes crucial to optimize treatment. We propose an advanced cross-correlation function (ACCF) between BP and heart rate with suitable threshold parameters to analyze and detect early changes in baroreflex sensitivity (BRS) in DM with AN (DM+). We studied heart rate (HR) and systolic BP responses during tilt in 16 patients with diabetes mellitus only (DM−), 19 diabetes mellitus with autonomic dysfunction (DM+), and 10 healthy subjects. The ACCF analysis revealed that the healthy and DM groups had different filtered percentages of significant maximum cross-correlation function (CCF) value (p < 0.05), and the maximum CCF value after thresholds was significantly reduced during tilt in the DM+ group (p < 0.05). The maximum CCF index, a parameter for the phase between HR and BP, separated the healthy group from the DM groups (p < 0.05). Due to the maximum CCF index in DM groups being located in the positive range and significantly different from healthy ones, it could be speculated that BRS dysfunction in DM and AN could cause a phase change from lead to lag. ACCF could detect and separate DM+ from DM groups. This fact could represent an advantage of the ACCF algorithm. A common cross-correlation analysis was not easy to distinguish between DM− and DM+. This pilot study demonstrates that ACCF analysis with suitable threshold parameters could explore hidden changes in baroreflex control in DM+ and DM−. Furthermore, the superiority of this ACCF algorithm is useful in distinguishing whether AN is present or not in DM.
Collapse
Affiliation(s)
- Shoou-Jeng Yeh
- Section of Neurology and Neurophysiology, Cheng-Ching General Hospital, Taichung, Taiwan
| | - Chi-Wen Lung
- Department of Creative Product Design, Asia University, Taichung, Taiwan.,Rehabilitation Engineering Laboratory, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Yih-Kuen Jan
- Rehabilitation Engineering Laboratory, Kinesiology and Community Health, Computational Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Ben-Yi Liau
- Department of Biomedical Engineering, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
10
|
Novel Application of Multiscale Cross-Approximate Entropy for Assessing Early Changes in the Complexity between Systolic Blood Pressure and ECG R-R Intervals in Diabetic Rats. ENTROPY 2022; 24:e24040473. [PMID: 35455136 PMCID: PMC9032476 DOI: 10.3390/e24040473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Cardiac autonomic neuropathy (CAN) is a common complication of diabetes mellitus, and can be assessed using heart rate variability (HRV) and the correlations between systolic blood pressure (SBP) and ECG R-R intervals (RRIs), namely baroreflex sensitivity (BRS). In this study, we propose a novel parameter for the nonlinear association between SBP and RRIs based on multiscale cross-approximate entropy (MS-CXApEn). Sixteen male adult Wistar Kyoto rats were equally divided into two groups: streptozotocin-induced diabetes and age-matched controls. RRIs and SBP were acquired in control rats and the diabetic rats at the onset of hyperglycemia and insulin-treated euglycemia to determine HRV by the ratio of low-frequency to high-frequency power (LF/HF) and Poincaré plot as SSR (SD1/SD2), BRS, and MS-CXApEn. SSR and BRS were not significantly different among the three groups. The LF/HF was significantly higher in the hyperglycemic diabetics than those in the controls and euglycemic diabetic rats. MS-CXApEn was higher in the diabetic hyperglycemic rats than the control rats from scales 2 to 10, and approached the values of controls in diabetic euglycemic rats at scales 9 and 10. Conclusions: We propose MS-CXApEn as a novel parameter to quantify the dynamic nonlinear interactions between SBP and RRIs that reveals more apparent changes in early diabetic rats. Furthermore, changes in this parameter were related to correction of hyperglycemia and could be useful for detecting and assessing CAN in early diabetes.
Collapse
|
11
|
Al Kury LT, Chacar S, Alefishat E, Khraibi AA, Nader M. Structural and Electrical Remodeling of the Sinoatrial Node in Diabetes: New Dimensions and Perspectives. Front Endocrinol (Lausanne) 2022; 13:946313. [PMID: 35872997 PMCID: PMC9302195 DOI: 10.3389/fendo.2022.946313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
The sinoatrial node (SAN) is composed of highly specialized cells that mandate the spontaneous beating of the heart through self-generation of an action potential (AP). Despite this automaticity, the SAN is under the modulation of the autonomic nervous system (ANS). In diabetes mellitus (DM), heart rate variability (HRV) manifests as a hallmark of diabetic cardiomyopathy. This is paralleled by an impaired regulation of the ANS, and by a pathological remodeling of the pacemaker structure and function. The direct effect of diabetes on the molecular signatures underscoring this pathology remains ill-defined. The recent focus on the electrical currents of the SAN in diabetes revealed a repressed firing rate of the AP and an elongation of its tracing, along with conduction abnormalities and contractile failure. These changes are blamed on the decreased expression of ion transporters and cell-cell communication ports at the SAN (i.e., HCN4, calcium and potassium channels, connexins 40, 45, and 46) which further promotes arrhythmias. Molecular analysis crystallized the RGS4 (regulator of potassium currents), mitochondrial thioredoxin-2 (reactive oxygen species; ROS scavenger), and the calcium-dependent calmodulin kinase II (CaMKII) as metabolic culprits of relaying the pathological remodeling of the SAN cells (SANCs) structure and function. A special attention is given to the oxidation of CaMKII and the generation of ROS that induce cell damage and apoptosis of diabetic SANCs. Consequently, the diabetic SAN contains a reduced number of cells with significant infiltration of fibrotic tissues that further delay the conduction of the AP between the SANCs. Failure of a genuine generation of AP and conduction of their derivative waves to the neighboring atrial myocardium may also occur as a result of the anti-diabetic regiment (both acute and/or chronic treatments). All together, these changes pose a challenge in the field of cardiology and call for further investigations to understand the etiology of the structural/functional remodeling of the SANCs in diabetes. Such an understanding may lead to more adequate therapies that can optimize glycemic control and improve health-related outcomes in patients with diabetes.
Collapse
Affiliation(s)
- Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| | - Stephanie Chacar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Moni Nader
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Lina T. Al Kury, ; Moni Nader,
| |
Collapse
|
12
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
13
|
Ren J, Qin L, Li X, Zhao R, Wu Z, Ma Y. Effect of dietary sodium restriction on blood pressure in type 2 diabetes: A meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis 2021; 31:1653-1661. [PMID: 33838996 DOI: 10.1016/j.numecd.2021.02.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
AIMS Although current guidelines recommend reduction of salt intake in patients with diabetes, the benefits of reducing salt intake in people with type 2 diabetes mellitus (T2DM) lack clear evidence. Therefore, we performed a meta-analysis of available randomized controlled trials (RCTs) of sodium restriction and blood pressure (BP) in patients with T2DM. DATA SYNTHESIS We performed a systematic search of the online databases that evaluated the effect of dietary sodium restriction on BP in patients with T2DM. Sodium intake was expressed by 24 h urinary sodium excretion (UNaV). Q statistics and I2 were used to explore between-study heterogeneity. A random-effects model was used in the presence of significant heterogeneity; otherwise, a fixed-effects model was applied. Eight RCTs with 10 trials (7 cross-over and 3 parallel designs) were included in the meta-analysis. Compared with ordinary sodium intake, dietary sodium restriction significantly decreased UNaV (weighted mean difference, WMD: -38.430 mmol/24 h; 95% CI: -41.665 mmol/24 h to -35.194 mmol/24 h). Sodium restriction significantly lowered systolic BP (WMD: -5.574 mm Hg; 95% CI: -8.314 to -2.834 mm Hg; I2 = 0.0%) and diastolic BP (WMD: -1.675 mm Hg; 95% CI: -3.199 to -0.150 mm Hg; I2 = 0.0%) with low heterogeneity among the studies. No publication bias was found from Begg's and Egger's tests. CONCLUSIONS Sodium restriction significantly reduces SBP and DBP in patients with T2DM.
Collapse
Affiliation(s)
- Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Xiang Li
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ran Zhao
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhixing Wu
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Province Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
14
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
15
|
Silva LRB, Gentil P, Seguro CS, de Oliveira GT, Silva MS, Zamunér AR, Beltrame T, Rebelo ACS. High Fasting Glycemia Predicts Impairment of Cardiac Autonomic Control in Adults With Type 2 Diabetes: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 12:760292. [PMID: 34858333 PMCID: PMC8630737 DOI: 10.3389/fendo.2021.760292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is characterized by a metabolic disorder that elevates blood glucose concentration. Chronic hyperglycemia has been associated with several complications in patients with T2D, one of which is cardiac autonomic dysfunction that can be assessed from heart rate variability (HRV) and heart rate recovery (HRR) response, both associated with many aspects of health and fitness, including severe cardiovascular outcomes. OBJECTIVE To evaluate the effects of T2D on cardiac autonomic modulation by means of HRV and HRR measurements. MATERIALS AND METHODS This study has an observational with case-control characteristic and involved ninety-three middle-aged adults stratified into two groups (control group - CG, n = 34; diabetes group - DG, n = 59). After signing the free and informed consent form, the patients were submitted to the evaluation protocols, performed biochemical tests to confirm the diagnosis of T2D, collection of R-R intervals for HRV analysis and cardiopulmonary effort test to quantify HRR. RESULTS At rest, the DG showed a reduction in global HRV (SDNN= 19.31 ± 11.72 vs CG 43.09 ± 12.74, p < 0.0001), lower parasympathetic modulation (RMSSD= 20.49 ± 14.68 vs 52.41 ± 19.50, PNN50 = 4.76 ± 10.53 vs 31.24 ± 19.24, 2VD%= 19.97 ± 10.30 vs 28.81 ± 9.77, p < 0.0001 for both indices) and higher HRrest when compared to CG. After interruption of physical exercise, a slowed heart rate response was observed in the DG when compared to the CG. Finally, a simple linear regression showed that fasting glycemia was able to predict cardiac autonomic involvement in volunteers with T2D. CONCLUSION Patients with T2D presented lower parasympathetic modulation at rest and slowed HRR after physical exercise, which may be associated with higher cardiovascular risks. The findings show the glycemic profile as an important predictor of impaired cardiac autonomic modulation.
Collapse
Affiliation(s)
- Lucas Raphael Bento Silva
- Department of Physical Education, Araguaia University Center, Goiânia, Brazil
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
- *Correspondence: Lucas Raphael Bento Silva,
| | - Paulo Gentil
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
- Faculty of Physical Education and Dance, Federal University of Goias, Goiânia, Brazil
- Hypertension League, Federal University of Goias, Goiânia, Brazil
| | - Camila Simões Seguro
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | | | - Maria Sebastiana Silva
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
- Faculty of Physical Education and Dance, Federal University of Goias, Goiânia, Brazil
| | - Antônio Roberto Zamunér
- Laboratory of Clinical Research in Kinesiology, Department of Kinesiology, Universidad Católica del Maule, Talca, Chile
| | - Thomas Beltrame
- Institute of Computing, University of Campinas, São Paulo, Brazil
- Department of Physical Therapy, Federal University of São Carlos, São Paulo, Brazil
| | - Ana Cristina Silva Rebelo
- Post-Graduate Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
- Faculty of Physical Education and Dance, Federal University of Goias, Goiânia, Brazil
- Department of Morphology, Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
16
|
Bakkar NMZ, Dwaib HS, Fares S, Eid AH, Al-Dhaheri Y, El-Yazbi AF. Cardiac Autonomic Neuropathy: A Progressive Consequence of Chronic Low-Grade Inflammation in Type 2 Diabetes and Related Metabolic Disorders. Int J Mol Sci 2020; 21:9005. [PMID: 33260799 PMCID: PMC7730941 DOI: 10.3390/ijms21239005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac autonomic neuropathy (CAN) is one of the earliest complications of type 2 diabetes (T2D), presenting a silent cause of cardiovascular morbidity and mortality. Recent research relates the pathogenesis of cardiovascular disease in T2D to an ensuing chronic, low-grade proinflammatory and pro-oxidative environment, being the hallmark of the metabolic syndrome. Metabolic inflammation emerges as adipose tissue inflammatory changes extending systemically, on the advent of hyperglycemia, to reach central regions of the brain. In light of changes in glucose and insulin homeostasis, dysbiosis or alteration of the gut microbiome (GM) emerges, further contributing to inflammatory processes through increased gut and blood-brain barrier permeability. Interestingly, studies reveal that the determinants of oxidative stress and inflammation progression exist at the crossroad of CAN manifestations, dictating their evolution along the natural course of T2D development. Indeed, sympathetic and parasympathetic deterioration was shown to correlate with markers of adipose, vascular, and systemic inflammation. Additionally, evidence points out that dysbiosis could promote a sympatho-excitatory state through differentially affecting the secretion of hormones and neuromodulators, such as norepinephrine, serotonin, and γ-aminobutyric acid, and acting along the renin-angiotensin-aldosterone axis. Emerging neuronal inflammation and concomitant autophagic defects in brainstem nuclei were described as possible underlying mechanisms of CAN in experimental models of metabolic syndrome and T2D. Drugs with anti-inflammatory characteristics provide potential avenues for targeting pathways involved in CAN initiation and progression. The aim of this review is to delineate the etiology of CAN in the context of a metabolic disorder characterized by elevated oxidative and inflammatory load.
Collapse
Affiliation(s)
- Nour-Mounira Z. Bakkar
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Haneen S. Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
| | - Souha Fares
- Rafic Hariri School of Nursing, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon;
| | - Ali H. Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha 2713, Qatar
| | - Yusra Al-Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, UAE
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh 1107 2020, Beirut 11-0236, Lebanon; (N.-M.Z.B.); (H.S.D.); (A.H.E.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
17
|
Nashawi M, Sheikh O, Battisha A, Ghali A, Chilton R. Neural tone and cardio-renal outcomes in patients with type 2 diabetes mellitus: a review of the literature with a focus on SGLT2 inhibitors. Heart Fail Rev 2020; 26:643-652. [PMID: 33169337 DOI: 10.1007/s10741-020-10046-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
Recent clinical trials involving the systemic effects of sodium-glucose cotransporter 2 inhibitors (SGLT2i) have revealed beneficial outcomes pertaining to the microvascular sequelae of type 2 diabetes mellitus (T2DM) such as nephropathy, as well as macrovascular effects such as major adverse cardiovascular effects (MACE). Such findings have spurred the elevation of these agents to level A-tiers of recommendation within clinical guidelines addressing the management of complicated T2DM. While the mechanisms of SGLTi (-flozin drugs) are still being elucidated, a paucity of data exists within the literature appraising the role of neuromodulation and associated mechanisms in the aforementioned outcome studies. Given the role of the nervous system in orchestrating the pathologic processes that hamper cardio-renal status, insight into this topic offers an expanded perspective on T2DM. In this review we investigate the mechanisms by which SGLTi improve cardio-renal function in T2DM patients with emphases on neural tone and nervous system physiology.
Collapse
Affiliation(s)
- Mouhamed Nashawi
- Division of Medicine-Cardiology, UT Health San Antonio, 7872, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| | - Omar Sheikh
- Division of Medicine-Cardiology, UT Health San Antonio, 7872, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Ayman Battisha
- Department of Internal Medicine, University of Massachusetts Medical School-Bay State, 759 Chestnut Street, Springfield, MA, 01199, USA
| | - Abdullah Ghali
- Division of Medicine-Cardiology, UT Health San Antonio, 7872, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Robert Chilton
- Division of Medicine-Cardiology, UT Health San Antonio, 7872, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|