1
|
Wass SY, Sun H, Tchou G, Liu N, Van Wagoner DR, Chung MK, Barnard J, Smith JD. Transcriptomic Insights into the Atrial Fibrillation Susceptibility Locus near the MYOZ1 and SYNPO2L Genes. Int J Mol Sci 2024; 25:10309. [PMID: 39408638 PMCID: PMC11477451 DOI: 10.3390/ijms251910309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Genome-wide association studies have identified a locus on chromosome 10q22, where many co-inherited single nucleotide polymorphisms (SNPs) are associated with atrial fibrillation (AF). This study seeks to identify the impact of this locus on gene expression at the transcript isoform level in human left atria and to gain insight into potential causal variants. Bulk RNA sequencing was analyzed to identify myozenin 1 (MYOZ1) and synaptopodin 2-like (SYNPO2L) transcript isoforms and the association of common SNPs in this region with transcript isoform expression levels. Chromatin marks were used to suggest candidate regulatory SNPs in this region. Protein amino acid changes were examined for predicted functional consequences. Transfection of MYOZ1 and two SYNPO2L isoforms were performed to localize their encoded proteins in cardiomyocytes derived from stem cells. We identified one MYOZ1 transcript isoform and four SYNPO2L transcript isoforms, two of which encode proteins, while the other two encode long noncoding RNAs (lncRNAs). The risk allele of the strongest AF susceptibility SNP on chromosome 10q22 is associated with decreased MYOZ1 expression and increased expression of the two SNYPO2L lncRNA isoforms. There are many SNPs co-inherited with the top AF-associated SNP due to linkage disequilibrium (LD), including rs11000728, which we propose as the MYOZ1 regulatory SNP, confirmed by reporter gene transfection. In addition, this LD block includes three missense SNPs in the SYNPO2L gene, with the minor protective haplotype predicted to be detrimental to protein function. MYOZ1 and both protein isoforms of SYNPO2L were localized to the sarcomere. This is a complex locus with the potential for several SNPs in a haplotype to alter AF susceptibility by opposing effects on MYOZ1 and SYNPO2L lncRNA expression, along with effects on SYNPO2L protein function.
Collapse
Affiliation(s)
- Sojin Y. Wass
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Han Sun
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Gregory Tchou
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nana Liu
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - David R. Van Wagoner
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mina K. Chung
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Departments of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
2
|
Beylerli O, Ju J, Beilerli A, Gareev I, Shumadalova A, Ilyasova T, Bai Y, Yang B. The roles of long noncoding RNAs in atrial fibrillation. Noncoding RNA Res 2023; 8:542-549. [PMID: 37602317 PMCID: PMC10432912 DOI: 10.1016/j.ncrna.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that often occurs in patients with structural heart disease and is a significant cause of morbidity and mortality in clinical settings. AF is typically associated with significant changes of both the structure of the atria and the cardiac conduction system. AF can result in reduced heart function, heart failure, and various other complications. Current drug therapy for AF patients is often ineffective and may have adverse effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure carries potential risks and may lead to postoperative recurrence, limiting the clinical benefits to some extent. Therefore, in-depth research into the molecular mechanisms of AF and exploration of new treatment strategies based on research findings are prerequisites for improving the treatment of AF and the associated cardiac conditions. Long noncoding RNAs (lncRNAs) are a new class of noncoding RNA (ncRNAs) with a length exceeding 200 nt, which regulate gene expression at multiple levels. Increasing evidence suggests that lncRNAs participate in many pathological processes of AF initiation, development, and maintenance, such as structural remodeling, electrical remodeling, renin-angiotensin system anomalies, and intracellular calcium deregulation s. LncRNAs that play key roles in structural and electrical remodeling may become molecular markers and targets for AF diagnosis and treatment, respectively, while lncRNAs critical to autonomic nervous system remodeling may bring new insights into the prognosis and recurrence of AF. This review article provides a synopsis on the up-to-date research findings relevant to the roles of lncRNAs in AF.
Collapse
Affiliation(s)
- Ozal Beylerli
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
3
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
4
|
Wass SY, Offerman EJ, Sun H, Hsu J, Rennison JH, Cantlay CC, McHale ML, Gillinov AM, Moravec C, Smith JD, Van Wagoner DR, Barnard J, Chung MK. Novel functional atrial fibrillation risk genes and pathways identified from coexpression analyses in human left atria. Heart Rhythm 2023; 20:1219-1226. [PMID: 37329937 PMCID: PMC10527093 DOI: 10.1016/j.hrthm.2023.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/17/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Genomewide association studies have associated >100 genetic loci with atrial fibrillation (AF), but establishing causal genes contributing to AF remains challenging. OBJECTIVE The purpose of this study was to determine candidate novel causal genes and mechanistic pathways associated with AF risk loci by incorporating gene expression and coexpression analyses and to provide a resource for functional studies and targeting of AF-associated genes. METHODS Cis-expression quantitative trait loci were identified for candidate genes near AF risk variants in human left atrial tissues. Coexpression partners were identified for each candidate gene. Weighted gene coexpression network analysis (WGCNA) identified modules and modules with overrepresentation of candidate AF genes. Ingenuity pathway analysis (IPA) was applied to the coexpression partners of each candidate gene. IPA and gene set over representation analysis were applied to each WGCNA module. RESULTS One hundred sixty-six AF-risk single nucleotide polymorphisms were located in 135 loci. Eighty-one novel genes not previously annotated as putative AF risk genes were identified. IPA identified mitochondrial dysfunction, oxidative stress, epithelial adherens junction signaling, and sirtuin signaling as the most frequent significant pathways. WGCNA characterized 64 modules (candidate AF genes overrepresented in 8), represented by cell injury, death, stress, developmental, metabolic/mitochondrial, transcription/translation, and immune activation/inflammation regulatory pathways. CONCLUSION Candidate gene coexpression analyses suggest significant roles for cellular stress and remodeling in AF, supporting a dual risk model for AF: Genetic susceptibility to AF may not manifest until later in life, when cellular stressors overwhelm adaptive responses. These analyses also provide a novel resource to guide functional studies on potential causal AF genes.
Collapse
Affiliation(s)
- Sojin Youn Wass
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Erik J Offerman
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Han Sun
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Jeffrey Hsu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Julie H Rennison
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Catherine C Cantlay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Meghan L McHale
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - A Marc Gillinov
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiothoracic Surgery, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - Christine Moravec
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Jonathan D Smith
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio
| | - David R Van Wagoner
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Mina K Chung
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio; Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
5
|
Lal JC, Mao C, Zhou Y, Gore-Panter SR, Rennison JH, Lovano BS, Castel L, Shin J, Gillinov AM, Smith JD, Barnard J, Van Wagoner DR, Luo Y, Cheng F, Chung MK. Transcriptomics-based network medicine approach identifies metformin as a repurposable drug for atrial fibrillation. Cell Rep Med 2022; 3:100749. [PMID: 36223777 PMCID: PMC9588904 DOI: 10.1016/j.xcrm.2022.100749] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity and mortality. This study demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug targets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36-0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine methodologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.
Collapse
Affiliation(s)
- Jessica C. Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Chengsheng Mao
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA
| | - Shamone R. Gore-Panter
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Julie H. Rennison
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beth S. Lovano
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Laurie Castel
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jiyoung Shin
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
| | - A. Marc Gillinov
- Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jonathan D. Smith
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - David R. Van Wagoner
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Yuan Luo
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA,Corresponding author
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., NE5-305, Cleveland, OH 44195, USA,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA,Corresponding author
| | - Mina K. Chung
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA,Cardiovascular Medicine, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, OH 44195, USA,Corresponding author
| |
Collapse
|
6
|
Epigenetic regulation in cardiovascular disease: mechanisms and advances in clinical trials. Signal Transduct Target Ther 2022; 7:200. [PMID: 35752619 PMCID: PMC9233709 DOI: 10.1038/s41392-022-01055-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetics is closely related to cardiovascular diseases. Genome-wide linkage and association analyses and candidate gene approaches illustrate the multigenic complexity of cardiovascular disease. Several epigenetic mechanisms, such as DNA methylation, histone modification, and noncoding RNA, which are of importance for cardiovascular disease development and regression. Targeting epigenetic key enzymes, especially the DNA methyltransferases, histone methyltransferases, histone acetylases, histone deacetylases and their regulated target genes, could represent an attractive new route for the diagnosis and treatment of cardiovascular diseases. Herein, we summarize the knowledge on epigenetic history and essential regulatory mechanisms in cardiovascular diseases. Furthermore, we discuss the preclinical studies and drugs that are targeted these epigenetic key enzymes for cardiovascular diseases therapy. Finally, we conclude the clinical trials that are going to target some of these processes.
Collapse
|
7
|
Blackwell DJ, Schmeckpeper J, Knollmann BC. Animal Models to Study Cardiac Arrhythmias. Circ Res 2022; 130:1926-1964. [PMID: 35679367 DOI: 10.1161/circresaha.122.320258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
8
|
Pulido-Quetglas C, Johnson R. Designing libraries for pooled CRISPR functional screens of long noncoding RNAs. Mamm Genome 2022; 33:312-327. [PMID: 34533605 PMCID: PMC9114037 DOI: 10.1007/s00335-021-09918-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/09/2021] [Indexed: 02/01/2023]
Abstract
Human and other genomes encode tens of thousands of long noncoding RNAs (lncRNAs), the vast majority of which remain uncharacterised. High-throughput functional screening methods, notably those based on pooled CRISPR-Cas perturbations, promise to unlock the biological significance and biomedical potential of lncRNAs. Such screens are based on libraries of single guide RNAs (sgRNAs) whose design is critical for success. Few off-the-shelf libraries are presently available, and lncRNAs tend to have cell-type-specific expression profiles, meaning that library design remains in the hands of researchers. Here we introduce the topic of pooled CRISPR screens for lncRNAs and guide readers through the three key steps of library design: accurate annotation of transcript structures, curation of optimal candidate sets, and design of sgRNAs. This review is a starting point and reference for researchers seeking to design custom CRISPR screening libraries for lncRNAs.
Collapse
Affiliation(s)
- Carlos Pulido-Quetglas
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland.
- School of Biology and Environmental Science, University College Dublin, Dublin, D04 V1W8, Ireland.
- Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
9
|
Lozano-Velasco E, Garcia-Padilla C, del Mar Muñoz-Gallardo M, Martinez-Amaro FJ, Caño-Carrillo S, Castillo-Casas JM, Sanchez-Fernandez C, Aranega AE, Franco D. Post-Transcriptional Regulation of Molecular Determinants during Cardiogenesis. Int J Mol Sci 2022; 23:ijms23052839. [PMID: 35269981 PMCID: PMC8911333 DOI: 10.3390/ijms23052839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular development is initiated soon after gastrulation as bilateral precardiac mesoderm is progressively symmetrically determined at both sides of the developing embryo. The precardiac mesoderm subsequently fused at the embryonic midline constituting an embryonic linear heart tube. As development progress, the embryonic heart displays the first sign of left-right asymmetric morphology by the invariably rightward looping of the initial heart tube and prospective embryonic ventricular and atrial chambers emerged. As cardiac development progresses, the atrial and ventricular chambers enlarged and distinct left and right compartments emerge as consequence of the formation of the interatrial and interventricular septa, respectively. The last steps of cardiac morphogenesis are represented by the completion of atrial and ventricular septation, resulting in the configuration of a double circuitry with distinct systemic and pulmonary chambers, each of them with distinct inlets and outlets connections. Over the last decade, our understanding of the contribution of multiple growth factor signaling cascades such as Tgf-beta, Bmp and Wnt signaling as well as of transcriptional regulators to cardiac morphogenesis have greatly enlarged. Recently, a novel layer of complexity has emerged with the discovery of non-coding RNAs, particularly microRNAs and lncRNAs. Herein, we provide a state-of-the-art review of the contribution of non-coding RNAs during cardiac development. microRNAs and lncRNAs have been reported to functional modulate all stages of cardiac morphogenesis, spanning from lateral plate mesoderm formation to outflow tract septation, by modulating major growth factor signaling pathways as well as those transcriptional regulators involved in cardiac development.
Collapse
Affiliation(s)
- Estefania Lozano-Velasco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Carlos Garcia-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Department of Anatomy, Embryology and Zoology, School of Medicine, University of Extremadura, 06006 Badajoz, Spain
| | - Maria del Mar Muñoz-Gallardo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Francisco Jose Martinez-Amaro
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Sheila Caño-Carrillo
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Juan Manuel Castillo-Casas
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
| | - Cristina Sanchez-Fernandez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Amelia E. Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (C.G.-P.); (M.d.M.M.-G.); (F.J.M.-A.); (S.C.-C.); (J.M.C.-C.); (C.S.-F.); (A.E.A.)
- Fundación Medina, 18007 Granada, Spain
- Correspondence:
| |
Collapse
|
10
|
Lizunkova P, Engdahl E, Borbély G, Gennings C, Lindh C, Bornehag CG, Rüegg J. A Mixture of Endocrine Disrupting Chemicals Associated with Lower Birth Weight in Children Induces Adipogenesis and DNA Methylation Changes in Human Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms23042320. [PMID: 35216435 PMCID: PMC8879125 DOI: 10.3390/ijms23042320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Endocrine Disrupting Chemicals (EDCs) are man-made compounds that alter functions of the endocrine system. Environmental mixtures of EDCs might have adverse effects on human health, even though their individual concentrations are below regulatory levels of concerns. However, studies identifying and experimentally testing adverse effects of real-life mixtures are scarce. In this study, we aimed at evaluating an epidemiologically identified EDC mixture in an experimental setting to delineate its cellular and epigenetic effects. The mixture was established using data from the Swedish Environmental Longitudinal Mother and child Asthma and allergy (SELMA) study where it was associated with lower birth weight, an early marker for prenatal metabolic programming. This mixture was then tested for its ability to change metabolic programming of human mesenchymal stem cells. In these cells, we assessed if the mixture induced adipogenesis and genome-wide DNA methylation changes. The mixture increased lipid droplet accumulation already at concentrations corresponding to levels measured in the pregnant women of the SELMA study. Furthermore, we identified differentially methylated regions in genes important for adipogenesis and thermogenesis. This study shows that a mixture reflecting human real-life exposure can induce molecular and cellular changes during development that could underlie adverse outcomes.
Collapse
Affiliation(s)
- Polina Lizunkova
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Elin Engdahl
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
| | - Gábor Borbély
- The Swedish Toxicology Sciences Research Center (Swetox), 15257 Södertälje, Sweden;
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, 22363 Lund, Sweden;
| | - Carl-Gustaf Bornehag
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (C.G.); (C.-G.B.)
- Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden; (P.L.); (E.E.)
- Correspondence: ; Tel.: +46-73-7121592
| |
Collapse
|
11
|
García-Padilla C, Domínguez JN, Lodde V, Munk R, Abdelmohsen K, Gorospe M, Jiménez-Sábado V, Ginel A, Hove-Madsen L, Aránega AE, Franco D. Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation. FASEB J 2022; 36:e22051. [PMID: 34861058 PMCID: PMC8684585 DOI: 10.1096/fj.202100844rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/03/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.
Collapse
Affiliation(s)
- Carlos García-Padilla
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N. Domínguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Valeria Lodde
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging IRP, National Institutes of Health, Baltimore, Maryland, USA
| | | | - Antonino Ginel
- Department Cardiac Surgery, Hospital de Sant Pau, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain
| | - Leif Hove-Madsen
- CIBERCV, Barcelona, Spain,Biomedical Research Institute IIB Sant Pau, Barcelona, Spain,Biomedical Research Institute Barcelona (IIBB-CSIC), Barcelona, Spain
| | - Amelia E. Aránega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
12
|
Zhou Y, Fang Y, Dai C, Wang Y. PiRNA pathway in the cardiovascular system: a novel regulator of cardiac differentiation, repair and regeneration. J Mol Med (Berl) 2021; 99:1681-1690. [PMID: 34533602 DOI: 10.1007/s00109-021-02132-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 07/18/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a novel group of small non-coding RNA molecules with lengths of 21-35 nucleotides, first identified from the germline. PiRNAs and their associated PIWI clade Argonaute proteins constitute a key part of the piRNA pathway, with the best-known biological function to silence transposable elements in germ cells. The piRNA pathway, in fact, is not exclusive to the germline. Somatic functions of piRNAs have been recorded since their first discovery. To date, involvement of the piRNA pathway has been identified within the biological functions of genome rearrangement, epigenetic regulation, protein regulation in the germline and/or the soma transcriptionally or post-transcriptionally. Emerging evidence has shown that the piRNA pathway is essential for the normal function of the cardiovascular system and that its abnormal expression is correlated with cardiovascular dysfunction, although comprehensive roles of the piRNA pathway in the cardiovascular system and underlying mechanisms remain unclear. In this review, we discuss current findings of piRNA pathway expression in cardiac cell types and their potential functions in cardiac differentiation, repair and regeneration, thus providing new insights into cardiovascular disease development associated with the piRNA pathway.
Collapse
Affiliation(s)
- Yuling Zhou
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
- The School of Economics, Xiamen University, Xiamen, China
| | - Ya Fang
- School of Public Health, Key Laboratory of Health Technology Assessment of Fujian Province University, Xiamen University, Xiang'an South Road, Xiang'an District, Xiamen, 361102, Fujian, China
| | - Cuilian Dai
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital Xiamen University, Xiamen, China.
| |
Collapse
|
13
|
Yu B, Xie C, Yu S, Hu Y. Long noncoding RNA and atrial fibrillation. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:877-883. [PMID: 34565733 PMCID: PMC10929980 DOI: 10.11817/j.issn.1672-7347.2021.200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 11/03/2022]
Abstract
Atrial fibrillation (AF), a common arrhythmia that usually occurs in patients with heart disease, is one of the leading causes for mortality and disability worldwide. Current drug therapy for AF patients lacks sufficient efficacy and has side effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure is associated with potential risks and postoperative recurrence, limiting the clinical benefits for AF patients. Therefore, it is necessary to expand our understanding about the underlying molecular mechanism of AF and to explore the new therapeutic strategies. Long noncoding RNA (lncRNA) is a set of noncoding RNA longer than 200 nucleotides. Growing evidence indicates that lncRNA is involved in numerous pathophysiological processes of AF, such as structural remodeling, electrical remodeling, renin-angiotensin system, abnormal calcium regulation, etc. In addition, lncRNA involved in structural remodeling and electrical remodeling has the potential to be a novel target for the diagnosis and treatment of AF, and lncRNA involved in autonomic nerve remodeling may bring new enlightenment for the prognosis and recurrence of AF.
Collapse
Affiliation(s)
- Boyao Yu
- Xiangya School of Medicine, Central South University, Changsha 410013.
| | - Chunfan Xie
- Basic Medical School, Changsha Medical University, Changsha 410219
| | - Siyang Yu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Yongbin Hu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
Moukette B, Barupala NP, Aonuma T, Sepulveda M, Kawaguchi S, Kim IM. Interactions between noncoding RNAs as epigenetic regulatory mechanisms in cardiovascular diseases. Methods Cell Biol 2021; 166:309-348. [PMID: 34752338 DOI: 10.1016/bs.mcb.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardiovascular diseases (CVDs) represent the foremost cause of mortality in the United States and worldwide. It is estimated that CVDs account for approximately 17.8 million deaths each year. Despite the advances made in understanding cellular mechanisms and gene mutations governing the pathophysiology of CVDs, they remain a significant cause of mortality and morbidity. A major segment of mammalian genomes encodes for genes that are not further translated into proteins. The roles of the majority of such noncoding ribonucleic acids (RNAs) have been puzzling for a long time. However, it is becoming increasingly clear that noncoding RNAs (ncRNAs) are dynamically expressed in different cell types and have a comprehensive selection of regulatory roles at almost every step involved in DNAs, RNAs and proteins. Indeed, ncRNAs regulate gene expression through epigenetic interactions, through direct binding to target sequences, or by acting as competing endogenous RNAs. The profusion of ncRNAs in the cardiovascular system suggests that they may modulate complex regulatory networks that govern cardiac physiology and pathology. In this review, we summarize various functions of ncRNAs and highlight the recent literature on interactions between ncRNAs with an emphasis on cardiovascular disease regulation. Furthermore, as the broad-spectrum of ncRNAs potentially establishes new avenues for therapeutic development targeting CVDs, we discuss the innovative prospects of ncRNAs as therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Bruno Moukette
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Nipuni P Barupala
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tatsuya Aonuma
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Marisa Sepulveda
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Satoshi Kawaguchi
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Il-Man Kim
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States; Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN, United States; Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
15
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
16
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Qin Y, Gao P, Yu S, Li J, Huang Y, Jia D, Tang Z, Li P, Liu F, Liu M. A large deletion spanning PITX2 and PANCR in a Chinese family with Axenfeld-Rieger syndrome. Mol Vis 2020; 26:670-678. [PMID: 33088171 PMCID: PMC7553719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Purpose To identify the genetic cause in a four-generation Chinese family with Axenfeld-Rieger syndrome (ARS). Methods The family members received clinical examinations of the eye, tooth, periumbilical skin, and heart. Sanger sequencing and whole-exome sequencing (WES) were performed to screen potential mutations. The genomic deletion region around the PITX2 gene was estimated from single nucleotide polymorphism (SNP) data from WES and then confirmed with "quantitative PCR (qPCR) using a set of primers. The DNA breakpoint was further identified with long-range PCR and Sanger sequencing. Results Symptoms including anterior segment dysplasia of the eye (iris dysplasia, multiple pupils, and posterior embryotoxon), dental dysplasia, and periumbilical skin redundancy were present in all of the affected individuals. Three of them had glaucoma. Corneal abnormalities (inferior sclerocornea, corneal endothelial dystrophy, and central corneal scar) were seen in most of the affected individuals. Cataract, limited eye movement, electrocardiographic abnormalities, intellectual disability, and recurrent miscarriages were observed in some of the affected individuals. No mutations in the coding and exon-intron adjacent regions of the PITX2 and FOXC1 genes were identified with Sanger sequencing. According to the SNP data from WES, we suspected that there might be a deletion region (at most 1.6 Mb) around the PITX2 gene. With the use of qPCR and long-range PCR, we identified a 53,840 bp deletion (chr4: 111,535,454-111,588,933) spanning PITX2 and PANCR. The genomic deletion cosegregated with the major ARS symptoms observed in the family members. Conclusions With the help of WES, qPCR, and long-range PCR, we identified a genomic deletion encompassing PITX2 and the adjacent noncoding gene PANCR in a Chinese family with ARS. The clinical features of the affected individuals are reported. This work may broaden understanding of the phenotypic and mutational spectrums related to ARS.
Collapse
Affiliation(s)
- Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pang Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jingzhen Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yuwen Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Danna Jia
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Pengcheng Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
18
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Reyat JS, Chua W, Cardoso VR, Witten A, Kastner PM, Kabir SN, Sinner MF, Wesselink R, Holmes AP, Pavlovic D, Stoll M, Kääb S, Gkoutos GV, de Groot JR, Kirchhof P, Fabritz L. Reduced left atrial cardiomyocyte PITX2 and elevated circulating BMP10 predict atrial fibrillation after ablation. JCI Insight 2020; 5:139179. [PMID: 32814717 PMCID: PMC7455124 DOI: 10.1172/jci.insight.139179] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUNDGenomic and experimental studies suggest a role for PITX2 in atrial fibrillation (AF). To assess if this association is relevant for recurrent AF in patients, we tested whether left atrial PITX2 affects recurrent AF after AF ablation.METHODSmRNA concentrations of PITX2 and its cardiac isoform, PITX2c, were quantified in left atrial appendages (LAAs) from patients undergoing thoracoscopic AF ablation, either in whole LAA tissue (n = 83) or in LAA cardiomyocytes (n = 52), and combined with clinical parameters to predict AF recurrence. Literature suggests that BMP10 is a PITX2-repressed, atrial-specific, secreted protein. BMP10 plasma concentrations were combined with 11 cardiovascular biomarkers and clinical parameters to predict recurrent AF after catheter ablation in 359 patients.RESULTSReduced concentrations of cardiomyocyte PITX2, but not whole LAA tissue PITX2, were associated with AF recurrence after thoracoscopic AF ablation (16% decreased recurrence per 2-(ΔΔCt) increase in PITX2). RNA sequencing, quantitative PCR, and Western blotting confirmed that BMP10 is one of the most PITX2-repressed atrial genes. Left atrial size (HR per mm increase [95% CI], 1.055 [1.028, 1.082]); nonparoxysmal AF (HR 1.672 [1.206, 2.318]), and elevated BMP10 (HR 1.339 [CI 1.159, 1.546] per quartile increase) were predictive of recurrent AF. BMP10 outperformed 11 other cardiovascular biomarkers in predicting recurrent AF.CONCLUSIONSReduced left atrial cardiomyocyte PITX2 and elevated plasma concentrations of the PITX2-repressed, secreted atrial protein BMP10 identify patients at risk of recurrent AF after ablation.TRIAL REGISTRATIONClinicalTrials.gov NCT01091389, NL50069.018.14, Dutch National Registry of Clinical Research Projects EK494-16.FUNDINGBritish Heart Foundation, European Union (H2020), Leducq Foundation.
Collapse
Affiliation(s)
| | | | - Victor R. Cardoso
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Anika Witten
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
| | | | | | - Moritz F. Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Robin Wesselink
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | | | | | - Monika Stoll
- Institute of Human Genetics, Genetic Epidemiology, WWU Münster, Münster, Germany
- Cardiovascular Research Institute Maastricht, Genetic Epidemiology and Statistical Genetics, Maastricht University, Maastricht, Netherlands
| | - Stefan Kääb
- Department of Medicine I, University Hospital Munich, Ludwig Maximilian University of Munich (LMU), Munich, Germany
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
| | - Georgios V. Gkoutos
- Institute of Cardiovascular Sciences and
- Institute of Cancer and Genomics Sciences, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham, United Kingdom
- Health Data Research Midlands, Birmingham, United Kingdom
| | - Joris R. de Groot
- Department of Cardiology, Amsterdam University Medical Center (UMC), University of Amsterdam, Heart Center, Amsterdam, Netherlands
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
- University Heart and Vascular Center, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
- German Center for Cardiovascular Research, partner site Hamburg/Kiel/Lübeck, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences and
- Atrial Fibrillation NETwork (AFNET), Münster, Germany
- Department of Cardiology, University Hospitals Birmingham (UHB) and Sandwell and West Birmingham (SWBH) NHS Trusts, Birmingham, United Kingdom
| |
Collapse
|
20
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
21
|
Franco D, Aranega A, Dominguez JN. Non-coding RNAs and Atrial Fibrillation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:311-325. [PMID: 32285421 DOI: 10.1007/978-981-15-1671-9_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation is the most frequent type of cardiac arrhythmia in humans, with an estimate incidence of 1-2% in the general population, rising up to 8-10% in the elderly. Cardiovascular risk factors such as diabetes, obesity, hypertension and hyperthyroidism can increase the occurrence of AF. The onset of AF triggers additional AF episodes, leading to structural and electrical remodeling of the diseased heart. Understanding the molecular bases of atrial fibrillation have greatly advance over the last decade demonstrating a pivotal role of distinct ion channels in AF pathophysiology. A new scenario has opened on the understanding of the molecular mechanisms underlying AF, with the discovery of non-coding RNAs and their wide implication in multiple disease states, including cardiac arrhythmogenic pathologies. microRNAs are small non-coding RNAs of 22-24 nucleotides that are capable of regulating gene expression by interacting with the mRNA transcript 3'UTRs and promoting mRNA degradation and/or protein translation blockage. Long non-coding RNAs are a more diverse group of non-coding RNAs, providing transcriptional and post-transcriptional roles and subclassified according to their functional properties. In this chapter we summarized current state-of-the-art knowledge on the functional of microRNAs and long non-coding RNAs as well as their cross-talk regulatory mechanisms in atrial fibrillation.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Dominguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
22
|
Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm 2020; 17:1043-1049. [DOI: 10.1016/j.hrthm.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
23
|
Yeh CF, Chang YCE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases. J Biomed Sci 2020; 27:48. [PMID: 32241300 PMCID: PMC7114803 DOI: 10.1186/s12929-020-00647-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
With the advances in deep sequencing-based transcriptome profiling technology, it is now known that human genome is transcribed more pervasively than previously thought. Up to 90% of the human DNA is transcribed, and a large proportion of the human genome is transcribed as long noncoding RNAs (lncRNAs), a heterogenous group of non-coding transcripts longer than 200 nucleotides. Emerging evidence suggests that lncRNAs are functional and contribute to the complex regulatory networks involved in cardiovascular development and diseases. In this article, we will review recent evidence on the roles of lncRNAs in the biological processes of cardiovascular development and disorders. The potential applications of lncRNAs as biomarkers and targets for therapeutics are also discussed.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Yu-Chen Eugene Chang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Cheng-Yuan Lu
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Department of Medicine, I-Shou University School of Medicine, Kaohsiung, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan. .,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.
| |
Collapse
|
24
|
Shi X, Shao X, Liu B, Lv M, Pandey P, Guo C, Zhang R, Zhang Y. Genome-wide screening of functional long noncoding RNAs in the epicardial adipose tissues of atrial fibrillation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165757. [PMID: 32147422 DOI: 10.1016/j.bbadis.2020.165757] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmias, and patients with AF are facing increased risk of heart failure and ischemic stroke. However, the AF pathogenesis, especially the long noncoding RNAs (lncRNA)-related mechanism, has not been fully understood. In this study, we collected RNA sequencing data of the epicardial adipose tissues (EAT) from 6 AF and 6 sinus rhythm (SR) to identify the differentially expressed protein-coding genes (PCGs) and lncRNAs. Functionally, the differentially expressed PCGs were significantly enriched in bone development disease, chronic kidney failure, and kidney disease. Particularly, we found that homeobox (HOX) genes, especially the antisense RNAs, HOTAIRM1, HOXA-AS2 and HOXB-AS2, were significantly downregulated in EAT of AF. The biological function predictions for the dysregulated lncRNAs revealed that TNF signaling pathway was the most frequent pathway that the lncRNAs might participate in. In addition, SNHG16 and RP11-471B22.2 might participate in TGF-beta signaling and ECM-receptor interaction by interacting with the proteins involved in the pathways, respectively. Collectively, we provided some potentially pathogenic lncRNAs in AF, which might be useful for the related researchers to study their functionality and develop new therapeutics.
Collapse
Affiliation(s)
- Xin Shi
- Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xuelian Shao
- School of Life Sciences, Fudan University, Shanghai, China
| | - Ban Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengwei Lv
- Shanghai East Hospital of Clinical Medical College, Nanjing Medical University, Shanghai, China; Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pratik Pandey
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| | - Yangyang Zhang
- Department of Cardiovascular Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Pereira IT, Spangenberg L, Cabrera G, Dallagiovanna B. Polysome-associated lncRNAs during cardiomyogenesis of hESCs. Mol Cell Biochem 2020; 468:35-45. [PMID: 32125578 DOI: 10.1007/s11010-020-03709-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/22/2020] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been found to be involved in many biological processes, including the regulation of cell differentiation, but a complete characterization of lncRNA is still lacking. Additionally, there is evidence that lncRNAs interact with ribosomes, raising questions about their functions in cells. Here, we used a developmentally staged protocol to induce cardiogenic commitment of hESCs and then investigated the differential association of lncRNAs with polysomes. Our results identified lncRNAs in both the ribosome-free and polysome-bound fractions during cardiogenesis and showed a very well-defined temporal lncRNA association with polysomes. Clustering of lncRNAs was performed according to the gene expression patterns during the five timepoints analyzed. In addition, differential lncRNA recruitment to polysomes was observed when comparing the differentially expressed lncRNAs in the ribosome-free and polysome-bound fractions or when calculating the polysome-bound vs ribosome-free ratio. The association of lncRNAs with polysomes could represent an additional cytoplasmic role of lncRNAs, e.g., in translational regulation of mRNA expression.
Collapse
Affiliation(s)
- Isabela Tiemy Pereira
- Basic Stem-Cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil
| | - Lucia Spangenberg
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Guillermo Cabrera
- Bioinformatics Unit, Institut Pasteur de Montevideo, Mataojo 2020, 11400, Montevideo, Uruguay
| | - Bruno Dallagiovanna
- Basic Stem-Cell Biology Laboratory, Instituto Carlos Chagas - FIOCRUZ-PR, Rua Professor Algacyr Munhoz Mader, 3775, Curitiba, PR, 81.350-010, Brazil.
| |
Collapse
|
26
|
Bai J, Lu Y, Lo A, Zhao J, Zhang H. PITX2 upregulation increases the risk of chronic atrial fibrillation in a dose-dependent manner by modulating IKs and ICaL -insights from human atrial modelling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:191. [PMID: 32309338 PMCID: PMC7154416 DOI: 10.21037/atm.2020.01.90] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Functional analysis has shown that the paired-like homeodomain transcription factor 2 (PITX2) overexpression associated with atrial fibrillation (AF) leads to the slow delayed rectifier K+ current (IKs) increase and the L-type Ca2+ current (ICaL) reduction observed in isolated right atrial myocytes from chronic AF (CAF) patients. Through multiscale computational models, this study aimed to investigate the functional impact of the PITX2 overexpression on atrial electrical activity. Methods The well-known Courtemanche-Ramirez-Nattel (CRN) model of human atrial action potentials (APs) was updated to incorporate experimental data on alterations in IKs and ICaL due to the PITX2 overexpression. These cell models for sinus rhythm (SR) and CAF were then incorporated into homogeneous multicellular one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) tissue models. The proarrhythmic effects of the PITX2 overexpression were quantified with ion current profiles, AP morphology, AP duration (APD) restitution, conduction velocity restitution (CVR), wavelength (WL), vulnerable window (VW) for unidirectional conduction block, and minimal substrate size required to induce re-entry. Dynamic behaviors of spiral waves were characterized by measuring lifespan (LS), tip patterns and dominant frequencies. Results The IKs increase and the ICaL decrease arising from the PITX2 overexpression abbreviated APD and flattened APD restitution (APDR) curves in single cells. It reduced WL and increased CV at high excitation rates at the 1D tissue level. Although it had no effects on VW for initiating spiral waves, it decreased the minimal substrate size necessary to sustain re-entry. It also stabilized and accelerated spiral waves in 2D and 3D tissue models. Conclusions Electrical remodeling (IKs and ICaL) due to the PITX2 overexpression increases susceptibility to AF due to increased tissue vulnerability, abbreviated APD, shortened WL and altered CV, which, in combination, facilitate initiation and maintenance of spiral waves.
Collapse
Affiliation(s)
- Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Andy Lo
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Henggui Zhang
- Biological Physics Group, School of Physics & Astronomy, University of Manchester, Manchester, UK
| |
Collapse
|
27
|
George MR, Duan Q, Nagle A, Kathiriya IS, Huang Y, Rao K, Haldar SM, Bruneau BG. Minimal in vivo requirements for developmentally regulated cardiac long intergenic non-coding RNAs. Development 2019; 146:dev.185314. [PMID: 31784461 DOI: 10.1242/dev.185314] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022]
Abstract
Long intergenic non-coding RNAs (lincRNAs) have been implicated in gene regulation, but their requirement for development needs empirical interrogation. We computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2, which we named Handlr (Hand2-associated lincRNA), Rubie and Atcayos We genetically ablated these six lincRNAs in mouse, which suggested genomic regulatory roles for four of the cohort. However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription in the regulation of topologically associated genes. However, the individual importance of developmentally specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.
Collapse
Affiliation(s)
- Matthew R George
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | | | - Irfan S Kathiriya
- Gladstone Institutes, San Francisco, CA 94158, USA.,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA 94158, USA
| | - Yu Huang
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Kavitha Rao
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Saptarsi M Haldar
- Gladstone Institutes, San Francisco, CA 94158, USA.,Division of Cardiology, Department of Medicine, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Benoit G Bruneau
- Gladstone Institutes, San Francisco, CA 94158, USA .,Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA.,Program in Developmental and Stem Cell Biology, University of California, San Francisco, CA 94143, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
28
|
Sweta S, Dudnakova T, Sudheer S, Baker AH, Bhushan R. Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Front Cell Dev Biol 2019; 7:228. [PMID: 31681761 PMCID: PMC6813187 DOI: 10.3389/fcell.2019.00228] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The early mammalian embryo is characterized by the presence of three germ layers-the outer ectoderm, middle mesoderm and inner endoderm. The mesoderm is organized into paraxial, intermediate and lateral plate mesoderm. The musculature, vasculature and heart of the adult body are the major derivatives of mesoderm. Tracing back the developmental process to generate these specialized tissues has sparked much interest in the field of regenerative medicine focusing on generating specialized tissues to treat patients with degenerative diseases. Several Long Non-Coding RNAs (lncRNAs) have been identified as regulators of development, proliferation and differentiation of various tissues of mesodermal origin. A better understanding of lncRNAs that can regulate the development of these tissues will open potential avenues for their therapeutic utility and enhance our knowledge about disease progression and development. In this review, we aim to summarize the functions and mechanisms of lncRNAs regulating the early mesoderm differentiation, development and homeostasis of skeletal muscle and cardiovascular system with an emphasis on their therapeutic potential.
Collapse
Affiliation(s)
- Sweta Sweta
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Tatiana Dudnakova
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Smita Sudheer
- Department of Genomic Science, Central University of Kerala, Kasaragod, India
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Raghu Bhushan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
29
|
Zheng GZ, Li W, Liu ZY. Alternative role of noncoding RNAs: coding and noncoding properties. J Zhejiang Univ Sci B 2019; 20:920-927. [PMID: 31595728 DOI: 10.1631/jzus.b1900336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Noncoding RNAs (ncRNAs) have played a critical role in cellular biological functions. Recently, some peptides or proteins originating from annotated ncRNAs were identified in organism development and various diseases. Here, we briefly review several novel peptides translated by annotated ncRNAs and related key functions. In addition, we summarize the potential mechanism of bifunctional ncRNAs and propose a specific "switch" triggering the transformation from the noncoding to the coding state under certain stimuli or cellular stress. The coding properties of ncRNAs and their peptide products may provide a novel horizon in proteomic research and can be regarded as a potential therapeutic target for the treatment of various diseases.
Collapse
Affiliation(s)
- Gui-Zhen Zheng
- Department of Emergency Internal Medicine, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Wei Li
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Zhi-Yong Liu
- Department of Laboratory Diagnostics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,Kunming General Hospital of Chengdu Military Command, Kunming 650032, China
| |
Collapse
|
30
|
The Functions of Long Non-Coding RNA during Embryonic Cardiovascular Development and Its Potential for Diagnosis and Treatment of Congenital Heart Disease. J Cardiovasc Dev Dis 2019; 6:jcdd6020021. [PMID: 31159401 PMCID: PMC6616656 DOI: 10.3390/jcdd6020021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Congenital heart disease (CHD) arises due to errors during the embryonic development of the heart, a highly regulated process involving an interplay between cell-intrinsic transcription factor expression and intercellular signalling mediated by morphogens. Emerging evidence indicates that expression of these protein-coding genes is controlled by a plethora of previously unappreciated non-coding RNAs operating in complex feedback-control circuits. In this review, we consider the contribution of long non-coding RNA (lncRNA) to embryonic cardiovascular development before discussing applications to CHD diagnostics and therapeutics. We discuss the process of lineage restriction during cardiovascular progenitor cell differentiation, as well as the subsequent patterning of the cardiogenic progenitor fields, taking as an example the regulation of NODAL signalling in left-right patterning of the heart. lncRNA are a highly versatile group. Nuclear lncRNA can target specific genomic sequences and recruit chromatin remodelling complexes. Some nuclear lncRNA are transcribed from enhancers and regulate chromatin looping. Cytoplasmic lncRNA act as endogenous competitors for micro RNA, as well as binding and sequestering signalling proteins. We discuss features of lncRNA that limit their study by conventional methodology and suggest solutions to these problems.
Collapse
|
31
|
|
32
|
Evolutionary Patterns of Non-Coding RNA in Cardiovascular Biology. Noncoding RNA 2019; 5:ncrna5010015. [PMID: 30709035 PMCID: PMC6468844 DOI: 10.3390/ncrna5010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVDs) affect the heart and the vascular system with a high prevalence and place a huge burden on society as well as the healthcare system. These complex diseases are often the result of multiple genetic and environmental risk factors and pose a great challenge to understanding their etiology and consequences. With the advent of next generation sequencing, many non-coding RNA transcripts, especially long non-coding RNAs (lncRNAs), have been linked to the pathogenesis of CVD. Despite increasing evidence, the proper functional characterization of most of these molecules is still lacking. The exploration of conservation of sequences across related species has been used to functionally annotate protein coding genes. In contrast, the rapid evolutionary turnover and weak sequence conservation of lncRNAs make it difficult to characterize functional homologs for these sequences. Recent studies have tried to explore other dimensions of interspecies conservation to elucidate the functional role of these novel transcripts. In this review, we summarize various methodologies adopted to explore the evolutionary conservation of cardiovascular non-coding RNAs at sequence, secondary structure, syntenic, and expression level.
Collapse
|
33
|
Interplay between cardiac transcription factors and non-coding RNAs in predisposing to atrial fibrillation. J Mol Med (Berl) 2018; 96:601-610. [DOI: 10.1007/s00109-018-1647-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
|
34
|
Barichello S, Roberts JD, Backx P, Boyle PM, Laksman Z. Personalizing therapy for atrial fibrillation: the role of stem cell and in silico disease models. Cardiovasc Res 2018; 114:931-943. [DOI: 10.1093/cvr/cvy090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/06/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Scott Barichello
- University of British Columbia, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | | | - Patrick M Boyle
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University
| | - Zachary Laksman
- Division of Cardiology, University of British Columbia, 211-1033 Davie Street Vancouver, BC V6E 1M7, Canada
| |
Collapse
|
35
|
García-Padilla C, Aránega A, Franco D. The role of long non-coding RNAs in cardiac development and disease. AIMS GENETICS 2018; 5:124-140. [PMID: 31435517 PMCID: PMC6698576 DOI: 10.3934/genet.2018.2.124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Cells display a set of RNA molecules at one time point, reflecting thus the cellular transcriptional steady state, configuring therefore its transcriptome. It is basically composed of two different classes of RNA molecules; protein-coding RNAs (cRNAs) and protein non-coding RNAs (ncRNAs). Sequencing of the human genome and subsequently the ENCODE project identified that more than 80% of the genome is transcribed in some type of RNA. Importantly, only 3% of these transcripts correspond to protein-coding RNAs, pointing that ncRNAs are as important or even more as cRNAs. ncRNAs have pivotal roles in development, differentiation and disease. Non-coding RNAs can be classified into two distinct classes according to their length; i.e., small (<200 nt) and long (>200 nt) noncoding RNAs. The structure, biogenesis and functional roles of small non-coding RNA have been widely studied, particularly for microRNAs (miRNAs). In contrast to microRNAs, our current understanding of long non-coding RNAs (lncRNAs) is limited. In this manuscript, we provide state-of-the art review of the functional roles of long non-coding RNAs during cardiac development as well as an overview of the emerging role of these ncRNAs in distinct cardiac diseases.
Collapse
Affiliation(s)
| | | | - Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaén, Jaén, Spain
| |
Collapse
|
36
|
Affiliation(s)
- Jordi Heijman
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Jean-Baptiste Guichard
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Dobromir Dobrev
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| | - Stanley Nattel
- From the Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, The Netherlands (J.H.); Department of Medicine, Montreal Heart Institute and Université de Montréal, Canada (J.-B.G., S.N.); University Hospital of Saint-Étienne, University Jean Monnet, Saint-Étienne, France (J.-B.G.); Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen (D.D., S.N.); and
| |
Collapse
|
37
|
Banerjee P, Surendran H, Bharti K, Morishita K, Varshney A, Pal R. Long Noncoding RNA RP11-380D23.2 Drives Distal-Proximal Patterning of the Lung by Regulating PITX2 Expression. Stem Cells 2018; 36:218-229. [PMID: 29143419 DOI: 10.1002/stem.2740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/18/2017] [Accepted: 10/23/2017] [Indexed: 02/01/2023]
Abstract
Early lung development is a tightly orchestrated process encompassing (a) formation of definitive endoderm, (b) anteriorization of definitive endoderm, followed by (c) specification and maturation of both proximal and distal lung precursors. Several reports detailing the interaction of genes and proteins during lung development are available; however, studies reporting the role(s) of long noncoding RNAs (lncRNA) in lung morphogenesis are limited. To investigate this, we tailored a protocol for differentiation of human-induced pluripotent stem cells into distal and proximal lung progenitors to mimic in vivo lung development. The authenticity of differentiated cells was confirmed by expression of key lung markers such as FoxA2, Sox-17, Nkx2.1, Pitx2, FoxJ1, CC10, SPC, and via scanning as well as transmission electron microscopy. We employed next generation sequencing to identify lncRNAs and categorized them based on their proximity to genes essential for lung morphogenesis. In-depth bioinformatical analysis of the sequencing data enabled identification of a novel lncRNA, RP11-380D23.2, which is located upstream of PITX2 and includes a binding site for PARP1. Chromatin immunoprecipitation and other relevant studies revealed that PARP1 is a repressor for PITX2. Whole genome microarray analysis of RP11-380D23.2/PITX2 knockdown populations of progenitors demonstrated enrichment in proximal progenitors and indicated altered distal-proximal patterning. Dysregulation of WNT effectors in both knockdowns highlighted direct modulation of PITX2 by RP11-380D23.2. Most of these results were validated in four independent hiPSC lines (including a patient-specific CFTR mutant line). Taken together, these findings offer a mechanistic explanation underpinning the role of RP11-380D23.2 during lung morphogenesis via WNT signaling. Stem Cells 2018;36:218-229.
Collapse
Affiliation(s)
- Poulomi Banerjee
- School of Regenerative Medicine, Manipal University, Bangalore, Karnataka, India
| | - Harshini Surendran
- School of Regenerative Medicine, Manipal University, Bangalore, Karnataka, India
| | - Kapil Bharti
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Kaoru Morishita
- Departments of Pharmacology and Toxicology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, Haryana, India
| | - Anurag Varshney
- Departments of Pharmacology and Toxicology, Daiichi Sankyo India Pharma Private Limited, Gurgaon, Haryana, India
| | - Rajarshi Pal
- School of Regenerative Medicine, Manipal University, Bangalore, Karnataka, India
- Centre for Cellular and Molecular Platforms (C-CAMP), NCBS-TIFR Campus, Eyestem Research, Bangalore, Karnataka, India
- School of Life Sciences, TransDisciplinary University, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Song W, Sun Y, Lin J, Bi X. Current research on head and neck cancer-associated long noncoding RNAs. Oncotarget 2018; 9:1403-1425. [PMID: 29416703 PMCID: PMC5787447 DOI: 10.18632/oncotarget.22608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancers (HNC) are one of the ten leading cancers worldwide, including a range of malignant tumors arising from the upper neck. Due to the complex mechanisms of HNC and lack of effective biomarkers, the 5-year survival rate of HNC has been low and the mortality rate has been high in recent decades. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 bps, are a focus of current cancer research, closely related to tumor biology. LncRNAs have been revealed to be aberrantly expressed in various types of HNC, and the dysregulated lncRNAs participate in HNC progression and induce malignant behavior by modulating gene expression at diverse levels. This review will focus on the functions and molecular mechanisms of dysregulated lncRNAs in HNC tumorigenesis and progression, as well as their diagnostic, therapeutic or prognostic implications in HNC.
Collapse
Affiliation(s)
- Wei Song
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yimin Sun
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jie Lin
- Department of Dental Anesthesiology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaoqin Bi
- Department of Head and Neck Oncology, West China Hospital of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
39
|
Abstract
Atrial fibrillation (AF) is a common clinical arrhythmia that appears to be highly heritable, despite representing a complex interplay of several disease processes that generally do not manifest until later in life. In this manuscript, we will review the genetic basis of this complex trait established through studies of familial AF, linkage and candidate gene studies of common AF, genome wide association studies (GWAS) of common AF, and transcriptomic studies of AF. Since AF is associated with a five-fold increase in the risk of stroke, we also review the intersection of common genetic factors associated with both of these conditions. Similarly, we highlight the intersection of common genetic markers associated with some risk factors for AF, such as hypertension and obesity, and AF. Lastly, we describe a paradigm where genetic factors predispose to the risk of AF, but which may require additional stress and trigger factors in older age to allow for the clinical manifestation of AF.
Collapse
Affiliation(s)
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart & Vascular Institute, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave., J2-2, Cleveland, OH, 44195, USA.
| |
Collapse
|
40
|
Syeda F, Kirchhof P, Fabritz L. PITX2-dependent gene regulation in atrial fibrillation and rhythm control. J Physiol 2017; 595:4019-4026. [PMID: 28217939 PMCID: PMC5471504 DOI: 10.1113/jp273123] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/17/2017] [Indexed: 01/15/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia. Better prevention and treatment of AF are needed to reduce AF-associated morbidity and mortality. There are several major mechanisms that cause AF in patients, including a genetic predisposition to develop AF. Genome-wide association studies have identified genetic variants associated with AF populations, with the strongest hits clustering on chromosome 4q25, close to the gene for the homeobox transcription factor PITX2. The effect of these common gene variants on cardiac PITX2 mRNA is currently under study. PITX2 protein regulates right-left differentiation of the embryonic heart, thorax and aorta. PITX2 is expressed in the adult left atrium, but much less so in other heart chambers. Pitx2 deficiency results in electrical and structural remodelling, and impaired repair of the heart in murine models, all of which may influence AF through divergent mechanisms. PITX2 levels and single nucleotide polymorphisms on chromosome 4q25 may also be a predictor of the effectiveness of anti-arrhythmic drug therapy.
Collapse
Affiliation(s)
- Fahima Syeda
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Paulus Kirchhof
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of CardiologySWBTBirminghamUK
| | - Larissa Fabritz
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUHB NHS TrustBirminghamUK
- Department of Cardiovascular Medicine, Division of RhythmologyUniversity Hospital MünsterMünsterGermany
| |
Collapse
|
41
|
Altered long non-coding RNA expression profile in rabbit atria with atrial fibrillation: TCONS_00075467 modulates atrial electrical remodeling by sponging miR-328 to regulate CACNA1C. J Mol Cell Cardiol 2017; 108:73-85. [PMID: 28546098 DOI: 10.1016/j.yjmcc.2017.05.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 02/01/2023]
Abstract
Electrical remodeling has been reported to play a major role in the initiation and maintenance of atrial fibrillation (AF). Long non-coding RNAs (lncRNAs) have been increasingly recognized as contributors to the pathology of heart diseases. However, the roles and mechanisms of lncRNAs in electrical remodeling during AF remain unknown. In this study, the lncRNA expression profiles of right atria were investigated in AF and non-AF rabbit models by using RNA sequencing technique and validated using quantitative real-time polymerase chain reaction (qRT-PCR). A total of 99,843 putative new lncRNAs were identified, in which 1220 differentially expressed transcripts exhibited >2-fold change. Bioinformatics analysis was conducted to predict the functions and interactions of the aberrantly expressed genes. On the basis of a series of filtering pipelines, one lncRNA, TCONS_00075467, was selected to explore its effects and mechanisms on electrical remodeling. The atrial effective refractory period was shortened in vivo and the L-type calcium current and action potential duration were decreased in vitro by silencing of TCONS_00075467 with lentiviruses. Besides, the expression of miRNA-328 was negatively correlated with TCONS_00075467. We further demonstrated that TCONS_00075467 could sponge miRNA-328 in vitro and in vivo to regulate the downstream protein coding gene CACNA1C. In addition, miRNA-328 could partly reverse the effects of TCONS_00075467 on electrical remodeling. In summary, dysregulated lncRNAs may play important roles in modulating electrical remodeling during AF. Our study may facilitate the mechanism studies of lncRNAs in AF pathogenesis and provide potential therapeutic targets for AF.
Collapse
|
42
|
Sailer V, Holmes EE, Gevensleben H, Goltz D, Dröge F, de Vos L, Franzen A, Schröck F, Bootz F, Kristiansen G, Schröck A, Dietrich D. PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma. Oncotarget 2016; 7:75827-75838. [PMID: 27716615 PMCID: PMC5342781 DOI: 10.18632/oncotarget.12417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck region (HNSCC) is a common malignant disease accompanied by a high risk of local or distant recurrence after curative-intent treatment. Biomarkers that allow for the prediction of disease outcome can guide clinicians with respect to treatment and surveillance strategies. Here, the methylation status of PITX2 and an adjacent lncRNA (PANCR) were evaluated for their ability to predict overall survival in HNSCC patients. RESULTS PITX2 hypermethylation was associated with a better overall survival (hazard ratio, HR = 0.51, 95%CI: 0.35-0.74, p<0.001), while PANCR hypermethylation was significantly associated with an increased risk of death (HR = 1.64, 95%CI: 1.12-2.39, p=0.010). METHODS Quantitative, methylation-specific real-time PCR assays for PITX2 and PANCR were employed to measure bisulfite-converted DNA from formalin-fixed, paraffin-embedded (FFPE) tissues in a cohort of 399 patients with localized or locally advanced HNSCC who received curative-intent treatment (surgery with optional adjuvant radiochemotherapy or definite radiochemotherapy). CONCLUSIONS PITX2 and PANCR methylation status were shown to be independent predictors for overall survival in HNSCC patients. Tissue-based methylation testing could therefore potentially be employed to identify patients with a high risk for death who might benefit from a more radical or alternative treatment.
Collapse
Affiliation(s)
- Verena Sailer
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, New York, NY, USA
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Englander Institute for Precision Medicine, New York, NY, USA
| | - Emily Eva Holmes
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | | | - Diane Goltz
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Freya Dröge
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luka de Vos
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Alina Franzen
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Friederike Schröck
- Department of Addictive Disorders and Addiction Medicine, LVR Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Andreas Schröck
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| |
Collapse
|
43
|
Frank S, Aguirre A, Hescheler J, Kurian L. A lncRNA Perspective into (Re)Building the Heart. Front Cell Dev Biol 2016; 4:128. [PMID: 27882316 PMCID: PMC5101577 DOI: 10.3389/fcell.2016.00128] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/26/2016] [Indexed: 11/30/2022] Open
Abstract
Our conception of the human genome, long focused on the 2% that codes for proteins, has profoundly changed since its first draft assembly in 2001. Since then, an unanticipatedly expansive functionality and convolution has been attributed to the majority of the genome that is transcribed in a cell-type/context-specific manner into transcripts with no apparent protein coding ability. While the majority of these transcripts, currently annotated as long non-coding RNAs (lncRNAs), are functionally uncharacterized, their prominent role in embryonic development and tissue homeostasis, especially in the context of the heart, is emerging. In this review, we summarize and discuss the latest advances in understanding the relevance of lncRNAs in (re)building the heart.
Collapse
Affiliation(s)
- Stefan Frank
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of CologneCologne, Germany; Institute for Neurophysiology, University of CologneCologne, Germany; Center for Molecular Medicine (CMMC), University of CologneCologne, Germany
| | - Aitor Aguirre
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego La Jolla, CA, USA
| | - Juergen Hescheler
- Institute for Neurophysiology, University of Cologne Cologne, Germany
| | - Leo Kurian
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of CologneCologne, Germany; Institute for Neurophysiology, University of CologneCologne, Germany; Center for Molecular Medicine (CMMC), University of CologneCologne, Germany
| |
Collapse
|
44
|
Uhl B, Dietrich D, Branchi V, Semaan A, Schaefer P, Gevensleben H, Rostamzadeh B, Lingohr P, Schäfer N, Kalff JC, Kristiansen G, Matthaei H. DNA Methylation of PITX2 and PANCR Is Prognostic for Overall Survival in Patients with Resected Adenocarcinomas of the Biliary Tract. PLoS One 2016; 11:e0165769. [PMID: 27798672 PMCID: PMC5087948 DOI: 10.1371/journal.pone.0165769] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTC) are rare but highly aggressive malignant epithelial tumors. In order to improve the outcome in this lethal disease, novel biomarkers for diagnosis, prognosis, and therapy response prediction are urgently needed. DNA promoter methylation of PITX2 variants (PITX2ab, PITX2c) and intragenic methylation of the PITX2 adjacent non-coding RNA (PANCR) were investigated by methylations-specific qPCR assays in formalin-fixed paraffin-embedded tissue from 80 patients after resection for BTC. Results were correlated with clinicopathologic data and outcome. PITX2 variants and PANCR showed significant hypermethylation in tumor vs. normal adjacent tissue (p < 0.001 and p = 0.015), respectively. In survival analysis, dichotomized DNA methylation of variant PITX2c and PANCR were significantly associated with overall survival (OS). Patients with high tumor methylation levels of PITX2c had a shorter OS compared to patients with low methylation (12 vs. 40 months OS; HR 2.48 [1.38-4.48], p = 0.002). In contrast, PANCR hypermethylation was associated with prolonged survival (25 vs. 19 months OS; HR 0.54 [0.30-0.94], p = 0.015) and qualified as an independent prognostic factor on multivariate analysis. The biomarkers investigated in this study may help to identify BTC subpopulations at risk for worse survival. Further studies are needed to evaluate if PITX2 might be a clinically useful biomarker for an optimized and individualized treatment.
Collapse
Affiliation(s)
- Barbara Uhl
- Institute of Pathology, University of Bonn, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University of Bonn, Bonn, Germany
- Department of Otolaryngology, Head and Neck Surgery, University Hospital Bonn, Germany
| | | | | | | | | | - Babak Rostamzadeh
- Department of Neuroradiology, Katharinenhospital, Klinikum Stuttgart, Stuttgart, Germany
| | | | - Nico Schäfer
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Jörg C. Kalff
- Department of Surgery, University of Bonn, Bonn, Germany
| | | | - Hanno Matthaei
- Department of Surgery, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Syeda F, Holmes AP, Yu TY, Tull S, Kuhlmann SM, Pavlovic D, Betney D, Riley G, Kucera JP, Jousset F, de Groot JR, Rohr S, Brown NA, Fabritz L, Kirchhof P. PITX2 Modulates Atrial Membrane Potential and the Antiarrhythmic Effects of Sodium-Channel Blockers. J Am Coll Cardiol 2016; 68:1881-1894. [PMID: 27765191 PMCID: PMC5075046 DOI: 10.1016/j.jacc.2016.07.766] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 07/05/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na+)-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS Flecainide 1 μmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c+/-). Resting membrane potential was more depolarized in Pitx2c+/- atria, and TWIK-related acid-sensitive K+ channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c+/- atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF.
Collapse
Affiliation(s)
- Fahima Syeda
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ting Y Yu
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Physical Sciences of Imaging in the Biomedical Sciences, School of Chemistry, University of Birmingham, Birmingham, United Kingdom
| | - Samantha Tull
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Betney
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Genna Riley
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jan P Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Florian Jousset
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joris R de Groot
- Heart Center, Department of Cardiology, Academisch Medisch Centrum, Amsterdam, the Netherlands
| | - Stephan Rohr
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Nigel A Brown
- St. George's Hospital Medical School, University of London, London, United Kingdom
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany; Atrial Fibrillation NETwork, Muenster, Germany; University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany; Atrial Fibrillation NETwork, Muenster, Germany; University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom; Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom.
| |
Collapse
|
46
|
Holmes AP, Kirchhof P. Pitx2 Adjacent Noncoding RNA: A New, Long, Noncoding Kid on the 4q25 Block. Circ Arrhythm Electrophysiol 2016; 9:e003808. [PMID: 26783234 DOI: 10.1161/circep.115.003808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Andrew P Holmes
- From the Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom (A.P.H., P.K.); Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (P.K.); Department of Cardiology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom (P.K.); and Department of Cardiovascular Medicine, University Hospital Muenster; and Atrial Fibrillation NETwork, Muenster, Germany (P.K.)
| | - Paulus Kirchhof
- From the Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom (A.P.H., P.K.); Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (P.K.); Department of Cardiology, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, United Kingdom (P.K.); and Department of Cardiovascular Medicine, University Hospital Muenster; and Atrial Fibrillation NETwork, Muenster, Germany (P.K.).
| |
Collapse
|