1
|
Lopez-Medina AI, Campos-Staffico AM, Chahal CAA, Jacoby JP, Volkers I, Berenfeld O, Luzum JA. Polygenic risk score for drug-induced long QT syndrome: independent validation in a real-world patient cohort. Pharmacogenet Genomics 2025; 35:45-56. [PMID: 39470415 PMCID: PMC11543509 DOI: 10.1097/fpc.0000000000000548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
OBJECTIVE Drug-induced long QT syndrome (diLQTS) is an adverse reaction from over 150 FDA-approved medications, posing the risk of triggering torsades de pointes and sudden death. While common genetic variants may modestly impact QT interval individually, their collective effect can significantly amplify risk of diLQTS. Consequently, this study aimed to validate a polygenic risk score (PRS) for diLQTS previously proposed by Strauss et al . METHODS A retrospective cohort study was conducted utilizing patients from the Michigan Genomics Initiative prescribed 27 high-risk QT-prolonging drugs and an ECG during the prescription. The primary outcome was marked prolongation of the QTc interval (either >60 ms change from baseline or >500 ms absolute value) during treatment with a high-risk QT-prolonging drug. RESULTS The primary outcome occurred in 12.0% of n = 6070 self-reported White, 12.4% of 558 African American, and 8.2% of 110 Asian patients. The PRS significantly associated with diLQTS in White patients [adjusted odds ratio = 1.44 (95% CI: 1.09-1.89); P = 0.009]. However the study lacked sufficient statistical power to confirm the PRS as a risk factor in African Americans [adjusted odds ratio = 2.18 (95% CI: 0.98-5.49); P = 0.073] and Asians [adjusted odds ratio = 3.21 (95% CI: 0.69-16.87); P = 0.139] due to smaller sample sizes in these groups. CONCLUSION The previously published PRS for diLQTS was validated in a large, real-world cohort, demonstrating its potential as a tool for identifying high-risk patients. Incorporating this PRS into routine clinical practice could enable proactive measures to prevent life-threatening diLQTS.
Collapse
Affiliation(s)
- Ana I Lopez-Medina
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Choudhary Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA. Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA. Department of Cardiology, Barts Heart Centre, London, UK, Queen Mary University of London, London, UK
| | - Juliet P. Jacoby
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| | - Isabella Volkers
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| | - Omer Berenfeld
- Center for Arrhythmia Research, Departments of Internal Medicine – Cardiology, Biomedical Engineering, and Applied Physics. University of Michigan, Ann Arbor, MI, United States
| | - Jasmine A. Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Simon ST, Lin M, Trinkley KE, Aleong R, Rafaels N, Crooks KR, Reiter MJ, Gignoux CR, Rosenberg MA. A polygenic risk score for the QT interval is an independent predictor of drug-induced QT prolongation. PLoS One 2024; 19:e0303261. [PMID: 38885227 PMCID: PMC11182491 DOI: 10.1371/journal.pone.0303261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/23/2024] [Indexed: 06/20/2024] Open
Abstract
Drug-induced QT prolongation (diLQTS), and subsequent risk of torsade de pointes, is a major concern with use of many medications, including for non-cardiac conditions. The possibility that genetic risk, in the form of polygenic risk scores (PGS), could be integrated into prediction of risk of diLQTS has great potential, although it is unknown how genetic risk is related to clinical risk factors as might be applied in clinical decision-making. In this study, we examined the PGS for QT interval in 2500 subjects exposed to a known QT-prolonging drug on prolongation of the QT interval over 500ms on subsequent ECG using electronic health record data. We found that the normalized QT PGS was higher in cases than controls (0.212±0.954 vs. -0.0270±1.003, P = 0.0002), with an unadjusted odds ratio of 1.34 (95%CI 1.17-1.53, P<0.001) for association with diLQTS. When included with age and clinical predictors of QT prolongation, we found that the PGS for QT interval provided independent risk prediction for diLQTS, in which the interaction for high-risk diagnosis or with certain high-risk medications (amiodarone, sotalol, and dofetilide) was not significant, indicating that genetic risk did not modify the effect of other risk factors on risk of diLQTS. We found that a high-risk cutoff (QT PGS ≥ 2 standard deviations above mean), but not a low-risk cutoff, was associated with risk of diLQTS after adjustment for clinical factors, and provided one method of integration based on the decision-tree framework. In conclusion, we found that PGS for QT interval is an independent predictor of diLQTS, but that in contrast to existing theories about repolarization reserve as a mechanism of increasing risk, the effect is independent of other clinical risk factors. More work is needed for external validation in clinical decision-making, as well as defining the mechanism through which genes that increase QT interval are associated with risk of diLQTS.
Collapse
Affiliation(s)
- Steven T. Simon
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Meng Lin
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Katy E. Trinkley
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado, Aurora, CO, United States of America
| | - Ryan Aleong
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Nicholas Rafaels
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Kristy R. Crooks
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Michael J. Reiter
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Christopher R. Gignoux
- Colorado Center for Personalized Medicine, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Michael A. Rosenberg
- Division of Cardiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
3
|
Zhang M, Hillegass WB, Yu X, Majumdar S, Daryl Pollard J, Jackson E, Knudson J, Wolfe D, Kato GJ, Maher JF, Mei H. Genetic variants and effect modifiers of QT interval prolongation in patients with sickle cell disease. Gene 2024; 890:147824. [PMID: 37741592 DOI: 10.1016/j.gene.2023.147824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sickle cell disease (SCD) is a common inherited blood disorder among African Americans (AA), with premature mortality which has been associated with prolongation of the heart rate-corrected QT interval (QTc), a known risk factor for sudden cardiac death. Although numerous genetic variants have been identified as contributors to QT interval prolongation in the general population, their impact on SCD patients remains unclear. This study used an unweighted polygenic risk score (PRS) to validate the previously identified associations between SNPs and QTc interval in SCD patients, and to explore possible interactions with other factors that prolong QTc interval in AA individuals with SCD. METHODS In SCD patients, candidate genetic variants associated with the QTc interval were genotyped. To identify any risk SNPs that may be correlated with QTc interval prolongation, linear regression was employed, and an unweighted PRS was subsequently constructed. The effect of PRS on the QTc interval was evaluated using linear regression, while stratification analysis was used to assess the influence of serum alanine transaminase (ALT), a biomarker for liver disease, on the PRS effect. We also evaluated the PRS with the two subcomponents of QTc, the QRS and JTc intervals. RESULTS Out of 26 candidate SNPs, five risk SNPs were identified for QTc duration under the recessive model. For every unit increase in PRS, the QTc interval prolonged by 4.0 ms (95% CI: [2.0, 6.1]; p-value: <0.001) in the additive model and 9.4 ms in the recessive model (95% CI: [4.6, 14.1]; p-value: <0.001). Serum ALT showed a modification effect on PRS-QTc prolongation under the recessive model. In the normal ALT group, each PRS unit increased QTc interval by 11.7 ms (95% CI: [6.3, 17.1]; p-value: 2.60E-5), whereas this effect was not observed in the elevated ALT group (0.9 ms; 95% CI: [-7.0, 8.8]; p-value: 0.823). CONCLUSION Several candidate genetic variants are associated with QTc interval prolongation in SCD patients, and serum ALT acts as a modifying factor. The association of a CPS1 gene variant in both QTc and JTc duration adds to NOS1AP as evidence of involvement of the urea cycle and nitric oxide metabolism in cardiac repolarization in SCD. Larger replication studies are needed to confirm these findings and elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Mengna Zhang
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William B Hillegass
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Xue Yu
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Suvankar Majumdar
- Division of Hematology, Children's National Hospital, Washington, DC, USA
| | - J Daryl Pollard
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Erin Jackson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jarrod Knudson
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Douglas Wolfe
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Joseph F Maher
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Internal Medicine/Cancer Genetics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Hao Mei
- Department of Data Science, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
4
|
Krijger Juárez C, Amin AS, Offerhaus JA, Bezzina CR, Boukens BJ. Cardiac Repolarization in Health and Disease. JACC Clin Electrophysiol 2023; 9:124-138. [PMID: 36697193 DOI: 10.1016/j.jacep.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022]
Abstract
Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.
Collapse
Affiliation(s)
- Christian Krijger Juárez
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Hoffmann TJ, Lu M, Oni-Orisan A, Lee C, Risch N, Iribarren C. A large genome-wide association study of QT interval length utilizing electronic health records. Genetics 2022; 222:iyac157. [PMID: 36271874 PMCID: PMC9713425 DOI: 10.1093/genetics/iyac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/22/2022] [Indexed: 12/13/2022] Open
Abstract
QT interval length is an important risk factor for adverse cardiovascular outcomes; however, the genetic architecture of QT interval remains incompletely understood. We conducted a genome-wide association study of 76,995 ancestrally diverse Kaiser Permanente Northern California members enrolled in the Genetic Epidemiology Research on Adult Health and Aging cohort using 448,517 longitudinal QT interval measurements, uncovering 9 novel variants, most replicating in 40,537 individuals in the UK Biobank and Population Architecture using Genomics and Epidemiology studies. A meta-analysis of all 3 cohorts (n = 117,532) uncovered an additional 19 novel variants. Conditional analysis identified 15 additional variants, 3 of which were novel. Little, if any, difference was seen when adjusting for putative QT interval lengthening medications genome-wide. Using multiple measurements in Genetic Epidemiology Research on Adult Health and Aging increased variance explained by 163%, and we show that the ≈6 measurements in Genetic Epidemiology Research on Adult Health and Aging was equivalent to a 2.4× increase in sample size of a design with a single measurement. The array heritability was estimated at ≈17%, approximately half of our estimate of 36% from family correlations. Heritability enrichment was estimated highest and most significant in cardiovascular tissue (enrichment 7.2, 95% CI = 5.7-8.7, P = 2.1e-10), and many of the novel variants included expression quantitative trait loci in heart and other relevant tissues. Comparing our results to other cardiac function traits, it appears that QT interval has a multifactorial genetic etiology.
Collapse
Affiliation(s)
- Thomas J Hoffmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Meng Lu
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Akinyemi Oni-Orisan
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Catherine Lee
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Neil Risch
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA
| |
Collapse
|
6
|
Zang X, Zhang S, Li S, Wang X, Song W, Chen K, Ma J, Tu X, Xia Y, Zhao Y, Gao C. Evaluating Common NOS1AP Variants in Patients with Implantable Cardioverter Defibrillators for Secondary Prevention : Evaluating SNPs in NOS1AP. J Interv Card Electrophysiol 2022; 64:793-800. [PMID: 35353321 DOI: 0.1007/s10840-022-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 08/11/2024]
Abstract
BACKGROUND Recent research has found that single nucleotide polymorphisms (SNPs) in the nitric oxide synthase 1 adaptor protein (NOS1AP) gene are associated with altered QT intervals and sudden cardiac death (SCD). However, the clinical utility and implications of NOS1AP SNPs remain unclear. Thus, this study aimed to explore the influence of NOS1AP SNPs in patients with implantable cardioverter defibrillator (ICD) for secondary prevention. METHODS We conducted a case-control study to evaluate the most studied SNPs in NOS1AP (rs12143842, rs10494366, rs12567209, and rs16847548) in patients with ICD for secondary prevention. Patients were followed for up to 36 months from the time of ICD implantation. ICD interrogation data at 3 and 12 months, including rapid ventricular arrhythmia episodes and appropriate therapies, were then analyzed. RESULTS: A significant association was observed between rs10494366 and ICD recipients who experienced appropriate therapies. After a mean follow-up time of 31.70 ± 9.15 months, we detected significant differences among the three rs10494366 genotype groups in the distribution of ICD shocks and appropriate therapies, as well as in the correlation of rs10494366 and ICD shocks. According to Kaplan-Meier and Cox regression analyses, patients with the TT genotype had a higher risk of SCD than those with the GG genotype. CONCLUSIONS The present study revealed that NOS1AP SNP rs10494366 was associated with appropriate therapies. Specifically, the TT genotype increased ICD shocks and SCD risk in patients with ICD for secondary prevention for the first time.
Collapse
Affiliation(s)
- Xiaobiao Zang
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Shulong Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sisi Li
- Gannan Medical University, Jiangxi, China
| | - Xianqing Wang
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Weifeng Song
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Ke Chen
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Jifang Ma
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Xia
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yonghui Zhao
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China.
| | - Chuanyu Gao
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China.
| |
Collapse
|
7
|
Chang KC, Chen KW, Huang CL, Liao WL, Wu MY, Lin YK, Shiao YT, Chung WH, Lin YN, Lane HY. Association of a Common NOS1AP Variant with Attenuation of QTc Prolongation in Men with Heroin Dependence Undergoing Methadone Treatment. J Pers Med 2022; 12:jpm12050835. [PMID: 35629257 PMCID: PMC9143734 DOI: 10.3390/jpm12050835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The effects of methadone-induced severe prolongation of the corrected QT interval (QTc) and sudden cardiac death appear unpredictable and sex-dependent. Genetic polymorphisms in the nitric oxide synthase 1 adaptor protein (NOS1AP) have been implicated in QTc prolongation in general populations. We investigated whether common NOS1AP variants interact with methadone in relation to QTc prolongation in patients with heroin dependence. Methods: We genotyped 17 NOS1AP variants spanning the entire gene in heroin-dependent patients who received a 12-lead electrocardiography (ECG) examination both at baseline and during maintenance methadone treatment in Cohort 1 and only during maintenance methadone treatment in Cohort 2. The QT interval was measured automatically by the Marquette 12SL program, and was corrected for heart rate using Bazett’s formula. Results: Cohort 1 consisted of 122 patients (age: 37.65 ± 8.05 years, 84% male, methadone dosage: 42.54 ± 22.17 mg/day), and Cohort 2 comprised of 319 patients (age: 36.9 ± 7.86 years, 82% male, methadone dosage: 26.08 ± 15.84 mg/day), with complete genotyping data for analyses. Before methadone, the QTc intervals increased with increasing age (r = 0.3541, p < 0.001); the age-adjusted QTc showed dose-dependent prolongation in men (r = 0.6320, p < 0.001), but abbreviation in women (r = −0.5348, p = 0.018) in Cohort 1. The pooled genotype-specific analysis of the two cohorts revealed that the QTc interval was significantly shorter in male carriers of the rs164148 AA variant than in male carriers of the reference GG genotype (GG: n = 262, QTc = 423 ± 1.4 ms; AA: n = 10, QTc = 404.1 ± 7 ms, p = 0.009), according to univariate analysis. The QTc remained shorter in male carriers of the rs164148 AA variant compared to GG genotype (423 ± 1.4 ms vs. 405.9 ± 6.9 ms, p = 0.016) in multivariate analysis after adjusting for age and methadone dosage. A cut-off QTc interval of <410 ms identifies 100% of AA carriers compared to none of GG carriers when receiving a daily methadone dosage of 30.6 ± 19.3 mg. There was no significant gene-drug interaction in contributing to the adjusted QTc (p = 0.2164) in male carriers of the rs164148 variants. Conclusions: Carriers of a common NOS1AP rs164148 AA genotype variant were associated with a shorter QTc interval in men receiving maintenance methadone treatment. This genetic polymorphism attenuates the QTc-prolonging effect by methadone, and thus may explain at least in part the unpredictable and heterogeneous risks for severe QTc prolongation and sudden cardiac death in patients on methadone.
Collapse
Affiliation(s)
- Kuan-Cheng Chang
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 404332, Taiwan; (K.-W.C.); (Y.-K.L.); (W.-H.C.); (Y.-N.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
- Correspondence: ; Tel.: +886-4-22052121 (ext. 2626); Fax: +886-4-22065593
| | - Ke-Wei Chen
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 404332, Taiwan; (K.-W.C.); (Y.-K.L.); (W.-H.C.); (Y.-N.L.)
| | - Chieh-Liang Huang
- Department of Addiction Treatment, Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nan-Tou County 54249, Taiwan;
| | - Wen-Ling Liao
- Center for Personalized Medicine, China Medical University Hospital, Taichung 404332, Taiwan;
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404333, Taiwan
| | - Mei-Yao Wu
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan;
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yu-Kai Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 404332, Taiwan; (K.-W.C.); (Y.-K.L.); (W.-H.C.); (Y.-N.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
| | - Yi-Tzone Shiao
- Center of Institutional Research and Development, Asia University, Taichung 413305, Taiwan;
| | - Wei-Hsin Chung
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 404332, Taiwan; (K.-W.C.); (Y.-K.L.); (W.-H.C.); (Y.-N.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
| | - Yen-Nien Lin
- Division of Cardiovascular Medicine, Department of Medicine, China Medical University Hospital, Taichung 404332, Taiwan; (K.-W.C.); (Y.-K.L.); (W.-H.C.); (Y.-N.L.)
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404333, Taiwan;
- Department of Psychiatry, China Medical University Hospital, Taichung 404332, Taiwan
| |
Collapse
|
8
|
Zang X, Zhang S, Li S, Wang X, Song W, Chen K, Ma J, Tu X, Xia Y, Zhao Y, Gao C. Evaluating Common NOS1AP Variants in Patients with Implantable Cardioverter Defibrillators for Secondary Prevention : Evaluating SNPs in NOS1AP. J Interv Card Electrophysiol 2022; 64:793-800. [PMID: 35353321 DOI: 10.1007/s10840-022-01137-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent research has found that single nucleotide polymorphisms (SNPs) in the nitric oxide synthase 1 adaptor protein (NOS1AP) gene are associated with altered QT intervals and sudden cardiac death (SCD). However, the clinical utility and implications of NOS1AP SNPs remain unclear. Thus, this study aimed to explore the influence of NOS1AP SNPs in patients with implantable cardioverter defibrillator (ICD) for secondary prevention. METHODS We conducted a case-control study to evaluate the most studied SNPs in NOS1AP (rs12143842, rs10494366, rs12567209, and rs16847548) in patients with ICD for secondary prevention. Patients were followed for up to 36 months from the time of ICD implantation. ICD interrogation data at 3 and 12 months, including rapid ventricular arrhythmia episodes and appropriate therapies, were then analyzed. RESULTS: A significant association was observed between rs10494366 and ICD recipients who experienced appropriate therapies. After a mean follow-up time of 31.70 ± 9.15 months, we detected significant differences among the three rs10494366 genotype groups in the distribution of ICD shocks and appropriate therapies, as well as in the correlation of rs10494366 and ICD shocks. According to Kaplan-Meier and Cox regression analyses, patients with the TT genotype had a higher risk of SCD than those with the GG genotype. CONCLUSIONS The present study revealed that NOS1AP SNP rs10494366 was associated with appropriate therapies. Specifically, the TT genotype increased ICD shocks and SCD risk in patients with ICD for secondary prevention for the first time.
Collapse
Affiliation(s)
- Xiaobiao Zang
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Shulong Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Sisi Li
- Gannan Medical University, Jiangxi, China
| | - Xianqing Wang
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Weifeng Song
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Ke Chen
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Jifang Ma
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, China
| | - Yunlong Xia
- First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yonghui Zhao
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China.
| | - Chuanyu Gao
- Department of Cardiology, Peoples Hospital of Zhengzhou University Henan Provincial Peoples Hospital, Fuwai Central China Cardiovascular Hospital, Henan Province, Zhengzhou, China.
| |
Collapse
|
9
|
Cross B, Turner R, Pirmohamed M. Polygenic risk scores: An overview from bench to bedside for personalised medicine. Front Genet 2022; 13:1000667. [PMID: 36437929 PMCID: PMC9692112 DOI: 10.3389/fgene.2022.1000667] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Since the first polygenic risk score (PRS) in 2007, research in this area has progressed significantly. The increasing number of SNPs that have been identified by large scale GWAS analyses has fuelled the development of a myriad of PRSs for a wide variety of diseases and, more recently, to PRSs that potentially identify differential response to specific drugs. PRSs constitute a composite genomic biomarker and potential applications for PRSs in clinical practice encompass risk prediction and disease screening, early diagnosis, prognostication, and drug stratification to improve efficacy or reduce adverse drug reactions. Nevertheless, to our knowledge, no PRSs have yet been adopted into routine clinical practice. Beyond the technical considerations of PRS development, the major challenges that face PRSs include demonstrating clinical utility and circumnavigating the implementation of novel genomic technologies at scale into stretched healthcare systems. In this review, we discuss progress in developing disease susceptibility PRSs across multiple medical specialties, development of pharmacogenomic PRSs, and future directions for the field.
Collapse
Affiliation(s)
- Benjamin Cross
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Richard Turner
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Khan SU, Khan MZ, Raghu Subramanian C, Riaz H, Khan MU, Lone AN, Khan MS, Benson EM, Alkhouli M, Blaha MJ, Blumenthal RS, Gulati M, Michos ED. Participation of Women and Older Participants in Randomized Clinical Trials of Lipid-Lowering Therapies: A Systematic Review. JAMA Netw Open 2020; 3:e205202. [PMID: 32437574 PMCID: PMC7243092 DOI: 10.1001/jamanetworkopen.2020.5202] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Randomized clinical trials (RCTs) of lipid-lowering therapies form the evidence base for national and international guidelines. However, concerns exist that women and older patients are underrepresented in RCTs. OBJECTIVE To determine the trends of representation of women and older patients (≥65 years) in RCTs of lipid-lowering therapies from 1990 to 2018. DATA SOURCES The electronic databases of MEDLINE and ClinicalTrials.gov were searched from January 1990 through December 2018. STUDY SELECTION RCTs of lipid-lowering therapies with sample sizes of at least 1000 patients and follow-up periods of at least 1 year were included. DATA EXTRACTION AND SYNTHESIS Two independent investigators abstracted the data on a standard data collection form. MAIN OUTCOMES AND MEASURES Patterns of representation of women and older adults were examined overall in lipid-lowering RCTs and according to RCT-level specific characteristics. The participation-to-prevalence ratio (PPR) metric was used to estimate the representation of women compared with their share of disease burden. RESULTS A total of 60 RCTs with 485 409 participants were included. The median (interquartile range) number of participants per trial was 5264 (1062-27 564). Overall, representation of women was 28.5% (95% CI, 24.4%-32.4%). There was an increase in the enrollment of women from the period 1990 to 1994 (19.5%; 95% CI, 18.4%-20.5%) to the period 2015 to 2018 (33.6%; 95% CI, 33.4%-33.8%) (P for trend = .01). Among common limiting factors were inclusion of only postmenopausal women or surgically sterile women (28.3%; 95% CI, 18.5%-40.7%) or exclusion of pregnant (23.3%; 95% CI, 14.4%-35.4%) and lactating (16.6%; 95% CI, 9.3%-28.1%) women. Women were underrepresented compared with their disease burden in lipid RCTs of diabetes (PPR, 0.74), heart failure (PPR, 0.27), stable coronary heart disease (PPR, 0.48), and acute coronary syndrome (PPR, 0.51). Only 23 RCTs with 263 628 participants reported the proportion of older participants. Overall representation of older participants was 46.7% (95% CI, 46.5%-46.9%), which numerically increased from 31.6% (95% CI, 30.8%-32.3%) in the period 1995 to 1998 to 46.2% (95% CI, 46.0%-46.5%) in the period 2015 to 2018 (P for trend = .43). A total of 53.0% (95% CI, 41.8%-65.3%) and 36.6% (95% CI, 25.6% to 49.3%) trials reported outcomes according to sex and older participants, respectively, which did not improve over time. CONCLUSIONS AND RELEVANCE In this systematic review of RCTs of lipid-lowering therapies, the enrollment of women and older participants increased over time, but women and older participants remained consistently underrepresented. This limits the evidence base for efficacy and safety in these subgroups.
Collapse
Affiliation(s)
- Safi U. Khan
- Department of Medicine, West Virginia University, Morgantown
| | | | | | - Haris Riaz
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | - Eve-Marie Benson
- Johns Hopkins School of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, Maryland
| | - Mohamad Alkhouli
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J. Blaha
- Johns Hopkins School of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, Maryland
| | - Roger S. Blumenthal
- Johns Hopkins School of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, Maryland
| | - Martha Gulati
- Division of Cardiology, University of Arizona College of Medicine, Phoenix
| | - Erin D. Michos
- Johns Hopkins School of Medicine, Ciccarone Center for the Prevention of Cardiovascular Disease, Baltimore, Maryland
| |
Collapse
|
11
|
Zang X, Li S, Zhao Y, Chen K, Wang X, Song W, Ma J, Tu X, Xia Y, Zhang S, Gao C. Systematic Meta-Analysis of the Association Between a Common NOS1AP Genetic Polymorphism, the QTc Interval, and Sudden Death. Int Heart J 2019; 60:1083-1090. [PMID: 31447468 DOI: 10.1536/ihj.19-024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Contemporary studies have identified rs10494366 in the nitric oxide synthase 1 adaptor protein (NOS1AP) gene as a new genetic marker in modulating the QT interval and sudden cardiac death (SCD) in general populations. However, the conclusions were not coincident. Therefore, we conducted for the first time a system evaluation of the relativity of rs10494366, the QT interval, and sudden death by meta-analysis. In our study, the meta-analysis displayed the GG genotype of rs10494366 correlated with the QT interval in women with no heterogeneity, and in diabetes mellitus (DM) patients with minor heterogeneity. In the Caucasian population, the correlation of rs10494366 and sudden death was significant. The heterogeneity referred to the relevance between rs10494366 and sudden death in the Asian population. In conclusion, the minor allele of rs10494366 may have an impact on the QT interval in women or DM patients and may have a potential role in sudden death in the Caucasian population.
Collapse
Affiliation(s)
- Xiaobiao Zang
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | | | - Yonghui Zhao
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | - Ke Chen
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | - Xianqing Wang
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | - Weifeng Song
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | - Jifang Ma
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology
| | - Yunlong Xia
- First Affiliated Hospital of Dalian Medical University
| | - Shulong Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University
| | - Chuanyu Gao
- Zhengzhou University People's Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou University
| |
Collapse
|
12
|
Tahhan AS, Vaduganathan M, Greene SJ, Fonarow GC, Fiuzat M, Jessup M, Lindenfeld J, O’Connor CM, Butler J. Enrollment of Older Patients, Women, and Racial and Ethnic Minorities in Contemporary Heart Failure Clinical Trials. JAMA Cardiol 2018; 3:1011-1019. [DOI: 10.1001/jamacardio.2018.2559] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ayman Samman Tahhan
- Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Muthiah Vaduganathan
- Brigham and Women’s Hospital Heart and Vascular Center, Harvard Medical School, Boston, Massachusetts
| | - Stephen J. Greene
- Duke Clinical Research Institute and Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Gregg C. Fonarow
- Ahmanson-University of California, Los Angeles Cardiomyopathy Center, University of California, Los Angeles
- Section Editor, JAMA Cardiology
| | - Mona Fiuzat
- Duke Clinical Research Institute and Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | | | | | | | - Javed Butler
- Department of Medicine, University of Mississippi, Jackson
| |
Collapse
|
13
|
Genomic approaches for the elucidation of genes and gene networks underlying cardiovascular traits. Biophys Rev 2018; 10:1053-1060. [PMID: 29934864 PMCID: PMC6082306 DOI: 10.1007/s12551-018-0435-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/13/2018] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies have shed light on the association between natural genetic variation and cardiovascular traits. However, linking a cardiovascular trait associated locus to a candidate gene or set of candidate genes for prioritization for follow-up mechanistic studies is all but straightforward. Genomic technologies based on next-generation sequencing technology nowadays offer multiple opportunities to dissect gene regulatory networks underlying genetic cardiovascular trait associations, thereby aiding in the identification of candidate genes at unprecedented scale. RNA sequencing in particular becomes a powerful tool when combined with genotyping to identify loci that modulate transcript abundance, known as expression quantitative trait loci (eQTL), or loci modulating transcript splicing known as splicing quantitative trait loci (sQTL). Additionally, the allele-specific resolution of RNA-sequencing technology enables estimation of allelic imbalance, a state where the two alleles of a gene are expressed at a ratio differing from the expected 1:1 ratio. When multiple high-throughput approaches are combined with deep phenotyping in a single study, a comprehensive elucidation of the relationship between genotype and phenotype comes into view, an approach known as systems genetics. In this review, we cover key applications of systems genetics in the broad cardiovascular field.
Collapse
|
14
|
Rosenberg MA, Lubitz SA, Lin H, Kosova G, Castro VM, Huang P, Ellinor PT, Perlis RH, Newton-Cheh C. Validation of Polygenic Scores for QT Interval in Clinical Populations. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001724. [PMID: 28986454 DOI: 10.1161/circgenetics.117.001724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Polygenic risk scores (PGS) enable rapid estimation of genome-wide susceptibility for traits, which may be useful in clinical settings, such as prediction of QT interval. In this study, we sought to validate PGS for QT interval in 2 real-world cohorts of European ancestry (EA) and African ancestry (AA). METHODS AND RESULTS Two thousand nine hundred and fifteen participants of EA and 366 of AA in the MGH CAMP study (Cardiology and Metabolic Patient) were genotyped on a genome-wide array and imputed to the 1000 Genomes reference panel. An additional 820 EA and 57 AA participants in the Partners Biobank were genotyped and used for validation. PGS were created for each individual using effect estimates from association tests with QT interval obtained from prior genome-wide association studies, with variants selected based from multiple significance thresholds in the original study. In regression models, clinical variables explained ≈9% to 10% of total variation in resting QTc in EA individuals and ≈12% to 18% in AA individuals. The PGS significantly increased variation explained at most significance thresholds (P<0.001), with a trend toward increased variation explained at more stringent P value cut points in the CAMP EA cohort (P<0.05). In AA individuals, PGS provided no improvement in variation explained at any significance threshold. CONCLUSIONS For individuals of European descent, PGS provided a significant increase in variation in QT interval explained compared with a model with only nongenetic factors at nearly every significance level. There was no apparent benefit gained by relaxing the significance threshold from conventional genome-wide significance (P<5×10-8).
Collapse
Affiliation(s)
- Michael A Rosenberg
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.).
| | - Steven A Lubitz
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Honghuang Lin
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Gulum Kosova
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Victor M Castro
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Paul Huang
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Patrick T Ellinor
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Roy H Perlis
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| | - Christopher Newton-Cheh
- From the University of Colorado School of Medicine, Aurora (M.A.R.); Massachusetts General Hospital, Boston (S.A.L., G.K., V.M.C., P.H., P.T.E., R.H.P., C.N.-C.); and Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, MA (H.L.)
| |
Collapse
|
15
|
Méndez-Giráldez R, Gogarten SM, Below JE, Yao J, Seyerle AA, Highland HM, Kooperberg C, Soliman EZ, Rotter JI, Kerr KF, Ryckman KK, Taylor KD, Petty LE, Shah SJ, Conomos MP, Sotoodehnia N, Cheng S, Heckbert SR, Sofer T, Guo X, Whitsel EA, Lin HJ, Hanis CL, Laurie CC, Avery CL. GWAS of the electrocardiographic QT interval in Hispanics/Latinos generalizes previously identified loci and identifies population-specific signals. Sci Rep 2017; 7:17075. [PMID: 29213071 PMCID: PMC5719082 DOI: 10.1038/s41598-017-17136-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/21/2017] [Indexed: 01/08/2023] Open
Abstract
QT interval prolongation is a heritable risk factor for ventricular arrhythmias and can predispose to sudden death. Most genome-wide association studies (GWAS) of QT were performed in European ancestral populations, leaving other groups uncharacterized. Herein we present the first QT GWAS of Hispanic/Latinos using data on 15,997 participants from four studies. Study-specific summary results of the association between 1000 Genomes Project (1000G) imputed SNPs and electrocardiographically measured QT were combined using fixed-effects meta-analysis. We identified 41 genome-wide significant SNPs that mapped to 13 previously identified QT loci. Conditional analyses distinguished six secondary signals at NOS1AP (n = 2), ATP1B1 (n = 2), SCN5A (n = 1), and KCNQ1 (n = 1). Comparison of linkage disequilibrium patterns between the 13 lead SNPs and six secondary signals with previously reported index SNPs in 1000G super populations suggested that the SCN5A and KCNE1 lead SNPs were potentially novel and population-specific. Finally, of the 42 suggestively associated loci, AJAP1 was suggestively associated with QT in a prior East Asian GWAS; in contrast BVES and CAP2 murine knockouts caused cardiac conduction defects. Our results indicate that whereas the same loci influence QT across populations, population-specific variation exists, motivating future trans-ethnic and ancestrally diverse QT GWAS.
Collapse
Affiliation(s)
| | | | - Jennifer E Below
- The Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Amanda A Seyerle
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.,Division of Epidemiology and Community, University of Minnesota, Minneapolis, MN, USA
| | - Heather M Highland
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elsayed Z Soliman
- Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston-Salem, NC, USA.,Epidemiological Cardio Research Center (EPICARE), Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kathleen F Kerr
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Kelli K Ryckman
- Departments of Epidemiology and Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lauren E Petty
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, USA.,Center for Precision Medicine, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Sanjiv J Shah
- Division of Cardiology, Bluhm Cardiovascular Institute, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew P Conomos
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Susan Cheng
- Brigham and Women's Hospital, Division of Cardiovascular Medicine, Boston, MA, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA.,Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tamar Sofer
- Department of Biostatistics, University of Washington, Seattle, WA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,Division of Medical Genetics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Craig L Hanis
- Human Genetics Center, University of Texas, Health Science Center at Houston, Houston, TX, USA
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA. .,Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Cunha MLR, Meijers JCM, Rosendaal FR, Vlieg AVH, Reitsma PH, Middeldorp S. Whole exome sequencing in thrombophilic pedigrees to identify genetic risk factors for venous thromboembolism. PLoS One 2017; 12:e0187699. [PMID: 29117201 PMCID: PMC5695603 DOI: 10.1371/journal.pone.0187699] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Family studies have shown a strong heritability component for venous thromboembolism (VTE), but established genetic risk factors are present in only half of VTE patients. AIM To identify genetic risk factors in two large families with unexplained hereditary VTE. METHODS We performed whole exome sequencing in 10 affected relatives of two unrelated families with an unexplained tendency for VTE. We prioritized variants shared by all affected relatives from both families, and evaluated these in the remaining affected and unaffected individuals. We prioritized variants based on 3 different filter strategies: variants within candidate genes, rare variants across the exome, and SNPs present in patients with familial VTE and with low frequency in the general population. We used whole exome sequencing data available from 96 unrelated VTE cases with a positive family history of VTE from an affected sib study (the GIFT study) to identify additional carriers and compared the risk-allele frequencies with the general population. Variants found in only one individual were also retained for further analysis. Finally, we assessed the association of these variants with VTE in a population-based case-control study (the MEGA study) with 4,291 cases and 4,866 controls. RESULTS Six variants remained as putative disease-risk candidates. These variants are located in 6 genes spread among 3 different loci: 2p21 (PLEKHH2 NM_172069:c.3105T>C, LRPPRC rs372371276, SRBD1 rs34959371), 5q35.2 (UNC5A NM_133369.2:c.1869+23C>A), and 17q25.1 (GPRC5C rs142232982, RAB37 rs556450784). In GIFT, additional carriers were identified only for the variants located in the 2p21 locus. In MEGA, additional carriers for several of these variants were identified in both cases and controls, without a difference in prevalence; no carrier of the UNC5A variant was present. CONCLUSION Despite sequencing of several individuals from two thrombophilic families resulting in 6 candidate variants, we were unable to confirm their relevance as novel thrombophilic defects.
Collapse
Affiliation(s)
- Marisa L. R. Cunha
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Joost C. M. Meijers
- Department of Experimental Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Plasma Proteins, Sanquin, Amsterdam, the Netherlands
| | - Frits R. Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Astrid van Hylckama Vlieg
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Pieter H. Reitsma
- Department of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia Middeldorp
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Noordam R, Sitlani CM, Avery CL, Stewart JD, Gogarten SM, Wiggins KL, Trompet S, Warren HR, Sun F, Evans DS, Li X, Li J, Smith AV, Bis JC, Brody JA, Busch EL, Caulfield MJ, Chen YDI, Cummings SR, Cupples LA, Duan Q, Franco OH, Méndez-Giráldez R, Harris TB, Heckbert SR, van Heemst D, Hofman A, Floyd JS, Kors JA, Launer LJ, Li Y, Li-Gao R, Lange LA, Lin HJ, de Mutsert R, Napier MD, Newton-Cheh C, Poulter N, Reiner AP, Rice KM, Roach J, Rodriguez CJ, Rosendaal FR, Sattar N, Sever P, Seyerle AA, Slagboom PE, Soliman EZ, Sotoodehnia N, Stott DJ, Stürmer T, Taylor KD, Thornton TA, Uitterlinden AG, Wilhelmsen KC, Wilson JG, Gudnason V, Jukema JW, Laurie CC, Liu Y, Mook-Kanamori DO, Munroe PB, Rotter JI, Vasan RS, Psaty BM, Stricker BH, Whitsel EA. A genome-wide interaction analysis of tricyclic/tetracyclic antidepressants and RR and QT intervals: a pharmacogenomics study from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. J Med Genet 2017; 54:313-323. [PMID: 28039329 PMCID: PMC5406254 DOI: 10.1136/jmedgenet-2016-104112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 11/11/2016] [Accepted: 12/06/2016] [Indexed: 01/17/2023]
Abstract
BACKGROUND Increased heart rate and a prolonged QT interval are important risk factors for cardiovascular morbidity and mortality, and can be influenced by the use of various medications, including tricyclic/tetracyclic antidepressants (TCAs). We aim to identify genetic loci that modify the association between TCA use and RR and QT intervals. METHODS AND RESULTS We conducted race/ethnic-specific genome-wide interaction analyses (with HapMap phase II imputed reference panel imputation) of TCAs and resting RR and QT intervals in cohorts of European (n=45 706; n=1417 TCA users), African (n=10 235; n=296 TCA users) and Hispanic/Latino (n=13 808; n=147 TCA users) ancestry, adjusted for clinical covariates. Among the populations of European ancestry, two genome-wide significant loci were identified for RR interval: rs6737205 in BRE (β=56.3, pinteraction=3.9e-9) and rs9830388 in UBE2E2 (β=25.2, pinteraction=1.7e-8). In Hispanic/Latino cohorts, rs2291477 in TGFBR3 significantly modified the association between TCAs and QT intervals (β=9.3, pinteraction=2.55e-8). In the meta-analyses of the other ethnicities, these loci either were excluded from the meta-analyses (as part of quality control), or their effects did not reach the level of nominal statistical significance (pinteraction>0.05). No new variants were identified in these ethnicities. No additional loci were identified after inverse-variance-weighted meta-analysis of the three ancestries. CONCLUSIONS Among Europeans, TCA interactions with variants in BRE and UBE2E2 were identified in relation to RR intervals. Among Hispanic/Latinos, variants in TGFBR3 modified the relation between TCAs and QT intervals. Future studies are required to confirm our results.
Collapse
Affiliation(s)
- Raymond Noordam
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Christy L Avery
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - James D Stewart
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kerri L Wiggins
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Stella Trompet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Helen R Warren
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Fangui Sun
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jin Li
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Albert V Smith
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - Joshua C Bis
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Evan L Busch
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - L Adrienne Cupples
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Qing Duan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institue on Aging, Bethesda, MD, USA
| | - Susan R Heckbert
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - James S Floyd
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Jan A Kors
- Department of Medical Informatics, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography, and Biometry, National Institue on Aging, Bethesda, MD, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina, NC, USA
| | - Ruifang Li-Gao
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Leslie A Lange
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Henry J Lin
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
- Division of Medical Genetics, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, USA
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Melanie D Napier
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher Newton-Cheh
- Framingham Heart Study, Framingham, MA, USA
- Cardiovascular Research Center & Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Neil Poulter
- International Centre for Circulatory Health, Imperial College London, W2 1PG, UK
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jeffrey Roach
- Research Computing Center, University of North Carolina, Chapel Hill, NC, USA
| | - Carlos J Rodriguez
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom
| | - Peter Sever
- International Centre for Circulatory Health, Imperial College London, W2 1PG, UK
| | - Amanda A Seyerle
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - P Eline Slagboom
- Department of Medical Statistics and Bioinformatics, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Elsayed Z Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nona Sotoodehnia
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Til Stürmer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Pharmacoepidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kirk C Wilhelmsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- The Renaissance Computing Institute, Chapel Hill, NC, USA
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, Reykavik, Iceland
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, the Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Cathy C Laurie
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
- Department of BESC, Epidemiology Section, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Ramachandran S Vasan
- Framingham Heart Study, Framingham, MA, USA
- Department of Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - Bruce M Psaty
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
- Group Health Research Institue, Group Health Cooperative, Seattle, WA, USA
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, the Netherlands
- Inspectorate of Health Care, Utrecht, the Netherlands
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Avery CL, Wassel CL, Richard MA, Highland HM, Bien S, Zubair N, Soliman EZ, Fornage M, Bielinski SJ, Tao R, Seyerle AA, Shah SJ, Lloyd-Jones DM, Buyske S, Rotter JI, Post WS, Rich SS, Hindorff LA, Jeff JM, Shohet RV, Sotoodehnia N, Lin DY, Whitsel EA, Peters U, Haiman CA, Crawford DC, Kooperberg C, North KE. Fine mapping of QT interval regions in global populations refines previously identified QT interval loci and identifies signals unique to African and Hispanic descent populations. Heart Rhythm 2017; 14:572-580. [PMID: 27988371 PMCID: PMC5448160 DOI: 10.1016/j.hrthm.2016.12.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND The electrocardiographically measured QT interval (QT) is heritable and its prolongation is an established risk factor for several cardiovascular diseases. Yet, most QT genetic studies have been performed in European ancestral populations, possibly reducing their global relevance. OBJECTIVE To leverage diversity and improve biological insight, we fine mapped 16 of the 35 previously identified QT loci (46%) in populations of African American (n = 12,410) and Hispanic/Latino (n = 14,837) ancestry. METHODS Racial/ethnic-specific multiple linear regression analyses adjusted for heart rate and clinical covariates were examined separately and in combination after inverse-variance weighted trans-ethnic meta-analysis. RESULTS The 16 fine-mapped QT loci included on the Illumina Metabochip represented 21 independent signals, of which 16 (76%) were significantly (P-value≤9.1×10-5) associated with QT. Through sequential conditional analysis we also identified three trans-ethnic novel SNPs at ATP1B1, SCN5A-SCN10A, and KCNQ1 and three Hispanic/Latino-specific novel SNPs at NOS1AP and SCN5A-SCN10A (two novel SNPs) with evidence of associations with QT independent of previous identified GWAS lead SNPs. Linkage disequilibrium patterns helped to narrow the region likely to contain the functional variants at several loci, including NOS1AP, USP50-TRPM7, and PRKCA, although intervals surrounding SLC35F1-PLN and CNOT1 remained broad in size (>100 kb). Finally, bioinformatics-based functional characterization suggested a regulatory function in cardiac tissues for the majority of independent signals that generalized and the novel SNPs. CONCLUSION Our findings suggest that a majority of identified SNPs implicate gene regulatory dysfunction in QT prolongation, that the same loci influence variation in QT across global populations, and that additional, novel, population-specific QT signals exist.
Collapse
Affiliation(s)
| | - Christina L Wassel
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Melissa A Richard
- Institute of Molecular Medicine and; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | | | - Stephanie Bien
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Niha Zubair
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Elsayed Z Soliman
- Department of Epidemiology and Prevention, Epidemiological Cardiology Research Center and; Department of Internal Medicine, Section on Cardiology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Myriam Fornage
- Institute of Molecular Medicine and; Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | | | | | - Sanjiv J Shah
- Department of Preventive Medicine and; Department of Medicine, Northwestern University Feinberg School of Medicine and
| | - Donald M Lloyd-Jones
- Department of Preventive Medicine and; Department of Medicine, Northwestern University Feinberg School of Medicine and
| | - Steven Buyske
- Department of Statistics and Biostatistics and; Department of Genetics, Rutgers University, Piscataway, New Jersey
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California
| | - Wendy S Post
- Department of Medicine and; Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Lucia A Hindorff
- National Institutes of Health, National Human Genome Research Institute, Office of Population Genomics, Bethesda, Maryland
| | - Janina M Jeff
- Genetics and Genomic Sciences, The Charles Bronfman Institute for Personalized Medicine, The Center for Statistical Genetics, and The Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ralph V Shohet
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, Washington
| | | | | | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine and; Norris Comprehensive Cancer Center, University of Southern California, Pasadena, California
| | - Dana C Crawford
- Department of Epidemiology and Biostatistics, Institute for Computational Biology, Case Western Reserve University, Cleveland, Ohio
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kari E North
- Department of Epidemiology; Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
19
|
Strauss DG, Vicente J, Johannesen L, Blinova K, Mason JW, Weeke P, Behr ER, Roden DM, Woosley R, Kosova G, Rosenberg MA, Newton-Cheh C. Common Genetic Variant Risk Score Is Associated With Drug-Induced QT Prolongation and Torsade de Pointes Risk: A Pilot Study. Circulation 2017; 135:1300-1310. [PMID: 28213480 DOI: 10.1161/circulationaha.116.023980] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 01/26/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Drug-induced QT interval prolongation, a risk factor for life-threatening ventricular arrhythmias, is a potential side effect of many marketed and withdrawn medications. The contribution of common genetic variants previously associated with baseline QT interval to drug-induced QT prolongation and arrhythmias is not known. METHODS We tested the hypothesis that a weighted combination of common genetic variants contributing to QT interval at baseline, identified through genome-wide association studies, can predict individual response to multiple QT-prolonging drugs. Genetic analysis of 22 subjects was performed in a secondary analysis of a randomized, double-blind, placebo-controlled, crossover trial of 3 QT-prolonging drugs with 15 time-matched QT and plasma drug concentration measurements. Subjects received single doses of dofetilide, quinidine, ranolazine, and placebo. The outcome was the correlation between a genetic QT score comprising 61 common genetic variants and the slope of an individual subject's drug-induced increase in heart rate-corrected QT (QTc) versus drug concentration. RESULTS The genetic QT score was correlated with drug-induced QTc prolongation. Among white subjects, genetic QT score explained 30% of the variability in response to dofetilide (r=0.55; 95% confidence interval, 0.09-0.81; P=0.02), 23% in response to quinidine (r=0.48; 95% confidence interval, -0.03 to 0.79; P=0.06), and 27% in response to ranolazine (r=0.52; 95% confidence interval, 0.05-0.80; P=0.03). Furthermore, the genetic QT score was a significant predictor of drug-induced torsade de pointes in an independent sample of 216 cases compared with 771 controls (r2=12%, P=1×10-7). CONCLUSIONS We demonstrate that a genetic QT score comprising 61 common genetic variants explains a significant proportion of the variability in drug-induced QT prolongation and is a significant predictor of drug-induced torsade de pointes. These findings highlight an opportunity for recent genetic discoveries to improve individualized risk-benefit assessment for pharmacological therapies. Replication of these findings in larger samples is needed to more precisely estimate variance explained and to establish the individual variants that drive these effects. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01873950.
Collapse
Affiliation(s)
- David G Strauss
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.).
| | - Jose Vicente
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Lars Johannesen
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Ksenia Blinova
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Jay W Mason
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Peter Weeke
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Elijah R Behr
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Dan M Roden
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Ray Woosley
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Gulum Kosova
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Michael A Rosenberg
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.)
| | - Christopher Newton-Cheh
- From Office of Clinical Pharmacology, Center for Drug Evaluation and Research (D.G.S., J.V., L.J.) and Office of Science and Engineering Laboratories, Center for Devices and Radiological Health (D.G.S., J.V., L.J., K.B.), US Food and Drug Administration, Silver Spring, MD; BSICoS Group, Aragón Institute for Engineering Research (I3A), IIS Aragón, University of Zaragoza, Spain (J.V.); Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden (L.J.); Division of Cardiology, University of Utah, Salt Lake City (J.W.M.); Spaulding Clinical Research, West Bend, WI (J.W.M.); Departments of Medicine (P.W., D.R.), Pharmacology (D.R.), and Biomedical Informatics (D.R.), Vanderbilt University Medical Center, Nashville, TN; Department of Cardiology, Copenhagen University Hospital, Gentofte, Denmark (P.W.); Cardiology Clinical Academic Group, St. George's University of London, London, UK (E.R.B.); AZCERT, Inc, Oro Valley, AZ (R.W.); Center for Genomic Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (G.K., M.A.R., C.N.-C.); Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge (G.K., M.A.R., C.N.-C.); and Division of Cardiac Electrophysiology, Veterans Administration Hospital System of Boston, Harvard Medical School, West Roxbury, MA (M.A.R.).
| |
Collapse
|
20
|
Evans DS, Avery CL, Nalls MA, Li G, Barnard J, Smith EN, Tanaka T, Butler AM, Buxbaum SG, Alonso A, Arking DE, Berenson GS, Bis JC, Buyske S, Carty CL, Chen W, Chung MK, Cummings SR, Deo R, Eaton CB, Fox ER, Heckbert SR, Heiss G, Hindorff LA, Hsueh WC, Isaacs A, Jamshidi Y, Kerr KF, Liu F, Liu Y, Lohman KK, Magnani JW, Maher JF, Mehra R, Meng YA, Musani SK, Newton-Cheh C, North KE, Psaty BM, Redline S, Rotter JI, Schnabel RB, Schork NJ, Shohet RV, Singleton AB, Smith JD, Soliman EZ, Srinivasan SR, Taylor HA, Van Wagoner DR, Wilson JG, Young T, Zhang ZM, Zonderman AB, Evans MK, Ferrucci L, Murray SS, Tranah GJ, Whitsel EA, Reiner AP, Sotoodehnia N. Fine-mapping, novel loci identification, and SNP association transferability in a genome-wide association study of QRS duration in African Americans. Hum Mol Genet 2016; 25:4350-4368. [PMID: 27577874 PMCID: PMC5291202 DOI: 10.1093/hmg/ddw284] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 12/14/2022] Open
Abstract
The electrocardiographic QRS duration, a measure of ventricular depolarization and conduction, is associated with cardiovascular mortality. While single nucleotide polymorphisms (SNPs) associated with QRS duration have been identified at 22 loci in populations of European descent, the genetic architecture of QRS duration in non-European populations is largely unknown. We therefore performed a genome-wide association study (GWAS) meta-analysis of QRS duration in 13,031 African Americans from ten cohorts and a transethnic GWAS meta-analysis with additional results from populations of European descent. In the African American GWAS, a single genome-wide significant SNP association was identified (rs3922844, P = 4 × 10-14) in intron 16 of SCN5A, a voltage-gated cardiac sodium channel gene. The QRS-prolonging rs3922844 C allele was also associated with decreased SCN5A RNA expression in human atrial tissue (P = 1.1 × 10-4). High density genotyping revealed that the SCN5A association region in African Americans was confined to intron 16. Transethnic GWAS meta-analysis identified novel SNP associations on chromosome 18 in MYL12A (rs1662342, P = 4.9 × 10-8) and chromosome 1 near CD1E and SPTA1 (rs7547997, P = 7.9 × 10-9). The 22 QRS loci previously identified in populations of European descent were enriched for significant SNP associations with QRS duration in African Americans (P = 9.9 × 10-7), and index SNP associations in or near SCN5A, SCN10A, CDKN1A, NFIA, HAND1, TBX5 and SETBP1 replicated in African Americans. In summary, rs3922844 was associated with QRS duration and SCN5A expression, two novel QRS loci were identified using transethnic meta-analysis, and a significant proportion of QRS-SNP associations discovered in populations of European descent were transferable to African Americans when adequate power was achieved.
Collapse
Affiliation(s)
- Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA .
| | - Christy L Avery
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Guo Li
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John Barnard
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Erin N Smith
- Department of Pediatrics and Rady Children's Hospital, University of California at San Diego, School of Medicine, La Jolla, CA, USA
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anne M Butler
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah G Buxbaum
- Center of Excellence in Minority Health and Health Disparities, Jackson State University, Jackson, MS, USA
- Department of Epidemiology and Biostatistics, Jackson State University School of Public Health (Initiative), Jackson, MS, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gerald S Berenson
- Department of Medicine and Cardiology, Tulane University, New Orleans, LA, USA
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Steven Buyske
- Department of Statistics and Biostatistics and Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Cara L Carty
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University, New Orleans, LA, USA
| | - Mina K Chung
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles B Eaton
- Departments of Family Medicine and Epidemiology, Alpert Medical School, Brown University, Providence, RI, USA
| | - Ervin R Fox
- Department of Medicine, Division of Cardiovascular Disease, University of Mississippi Medical Center, Jackson, MS, USA
| | - Susan R Heckbert
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Gerardo Heiss
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lucia A Hindorff
- National Institutes of Health, National Human Genome Research Institute, Office of Population Genomics, Bethesda, MD, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- CARIM School for Cardiovascular Diseases, Maastricht Centre for Systems Biology (MaCSBio), Dept. of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Yalda Jamshidi
- Cardiogenetics Lab, Institute of Cardiovascular and Cell Sciences, St George's University of London, UK
| | - Kathleen F Kerr
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Felix Liu
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Kurt K Lohman
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Jared W Magnani
- Department of Medicine, Division of Cardiology, University of Pittsburgh Medical Center Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph F Maher
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Reena Mehra
- Program for Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yan A Meng
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Solomon K Musani
- Cardiovascular Research Center and Center for Human Genetic Research, Massachusetts General Hospital and Harvard Medical School, Boston,MA, USA
| | - Christopher Newton-Cheh
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Kari E North
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Department of Health Services, University of Washington, Seattle, WA, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
- Department of Medicine, Division of Sleep Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Susan Redline
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute and Departments of Medicine and Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jerome I Rotter
- University Heart Center Hamburg and German Center for Cardiovascular Research, Hamburg, Germany
| | | | - Nicholas J Schork
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Ralph V Shohet
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan D Smith
- Epidemiological Cardiology Research Center (EPICARE), Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Elsayed Z Soliman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Herman A Taylor
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - David R Van Wagoner
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James G Wilson
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Taylor Young
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, MS, USA
| | - Zhu-Ming Zhang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alan B Zonderman
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Michele K Evans
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sarah S Murray
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Gregory J Tranah
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Membership of the CHARGE QRS Consortium is provided in the acknowledgements and
| | - Alex P Reiner
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nona Sotoodehnia
- Department of Epidemiology, University of Washington, Seattle, WA, USA .
- Division of Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
21
|
|
22
|
Abstract
A prolonged QT interval is an important risk factor for ventricular arrhythmias and sudden cardiac death. QT prolongation can be caused by drugs. There are multiple risk factors for drug-induced QT prolongation, including genetic variation. QT prolongation is one of the most common reasons for withdrawal of drugs from the market, despite the fact that these drugs may be beneficial for certain patients and not harmful in every patient. Identifying genetic variants associated with drug-induced QT prolongation might add to tailored pharmacotherapy and prevent beneficial drugs from being withdrawn unnecessarily. In this review, our objective was to provide an overview of the genetic background of drug-induced QT prolongation, distinguishing pharmacokinetic and pharmacodynamic pathways. Pharmacokinetic-mediated genetic susceptibility is mainly characterized by variation in genes encoding drug-metabolizing cytochrome P450 enzymes or drug transporters. For instance, the P-glycoprotein drug transporter plays a role in the pharmacokinetic susceptibility of drug-induced QT prolongation. The pharmacodynamic component of genetic susceptibility is mainly characterized by genes known to be associated with QT interval duration in the general population and genes in which the causal mutations of congenital long QT syndromes are located. Ethnicity influences susceptibility to drug-induced QT interval prolongation, with Caucasians being more sensitive than other ethnicities. Research on the association between pharmacogenetic interactions and clinical endpoints such as sudden cardiac death is still limited. Future studies in this area could enable us to determine the risk of arrhythmias more adequately in clinical practice.
Collapse
|
23
|
Dumitrescu L, Restrepo NA, Goodloe R, Boston J, Farber-Eger E, Pendergrass SA, Bush WS, Crawford DC. Towards a phenome-wide catalog of human clinical traits impacted by genetic ancestry. BioData Min 2015; 8:35. [PMID: 26566401 PMCID: PMC4642611 DOI: 10.1186/s13040-015-0068-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/02/2015] [Indexed: 01/13/2023] Open
Abstract
Background Racial/ethnic differences for commonly measured clinical variables are well documented, and it has been postulated that population-specific genetic factors may play a role. The genetic heterogeneity of admixed populations, such as African Americans, provides a unique opportunity to identify genomic regions and variants associated with the clinical variability observed for diseases and traits across populations. Method To begin a systematic search for these population-specific genomic regions at the phenome-wide scale, we determined the relationship between global genetic ancestry, specifically European and African ancestry, and clinical variables measured in a population of African Americans from BioVU, Vanderbilt University’s biorepository linked to de-identified electronic medical records (EMRs) as part of the Epidemiologic Architecture using Genomics and Epidemiology (EAGLE) study. Through billing (ICD-9) codes, procedure codes, labs, and clinical notes, 36 common clinical and laboratory variables were mined from the EMR, including body mass index (BMI), kidney traits, lipid levels, blood pressure, and electrocardiographic measurements. A total of 15,863 DNA samples from non-European Americans were genotyped on the Illumina Metabochip containing ~200,000 variants, of which 11,166 were from African Americans. Tests of association were performed to examine associations between global ancestry and the phenotype of interest. Results Increased European ancestry, and conversely decreased African ancestry, was most strongly correlated with an increase in QRS duration, consistent with previous observations that African Americans tend to have shorter a QRS duration compared with European Americans. Despite known racial/ethnic disparities in blood pressure, European and African ancestry was neither associated with diastolic nor systolic blood pressure measurements. Conclusion Collectively, these results suggest that this clinical population can be used to identify traits in which population differences may be due, in part, to population-specific genetics. Electronic supplementary material The online version of this article (doi:10.1186/s13040-015-0068-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Logan Dumitrescu
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Nicole A Restrepo
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Robert Goodloe
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Jonathan Boston
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Eric Farber-Eger
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA
| | - Sarah A Pendergrass
- Center for Systems Genomics, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802 USA
| | - William S Bush
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Suite 2527, Cleveland, OH 44106 USA
| | - Dana C Crawford
- Institute for Computational Biology, Department of Epidemiology and Biostatistics, Case Western Reserve University, Wolstein Research Building, 2103 Cornell Road, Suite 2527, Cleveland, OH 44106 USA
| |
Collapse
|
24
|
Increase of Heart Rate and QTc by Amitriptyline, But Not by Venlafaxine, Is Correlated to Serum Concentration. J Clin Psychopharmacol 2015; 35:460-3. [PMID: 26035054 DOI: 10.1097/jcp.0000000000000336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Electrocardiographic pathologies are a common problem during antidepressant treatment. The authors investigated the association of serum concentrations of antidepressants and heart rate, QT, and QTc. Polymorphisms of NOS1AP (nitric oxide synthase 1 adaptor protein) rs10494366 and rs12143842 as potential influence factors also were considered. In the amitriptyline sample (n = 59), significant Spearman ρ correlations were found between serum concentration and QTc (r = 0.333, P = 0.010), as well as heart rate (r = 0.407, P = 0.001). Patients with a serum concentration greater than the therapeutic range (>200 ng/mL) exhibit significantly higher heart rates (87.0 ± 13.3 vs 80.0 ± 13.9, U test P = 0.011) and higher QTc values (443.8 ± 28.8 vs 427.9 ± 20.6, U test P = 0.022). Excluding the 26 patients with a serum concentration greater than the therapeutic range, patients with rs12143842 risk alleles exhibit higher heart rates and as a trend lower QT intervals with no difference in QTc. In the venlafaxine sample (n = 81), no significant association between serum concentration and heart rate, QT, or QTc was revealed. In summary, the risk for relevant electrocardiographic alterations induced by tricyclic antidepressants, such as amitriptyline, is dependent on serum concentrations. NOS1AP polymorphisms may be a genetic vulnerability factor.
Collapse
|
25
|
Banerji J. Asparaginase treatment side-effects may be due to genes with homopolymeric Asn codons (Review-Hypothesis). Int J Mol Med 2015; 36:607-26. [PMID: 26178806 PMCID: PMC4533780 DOI: 10.3892/ijmm.2015.2285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/15/2015] [Indexed: 12/14/2022] Open
Abstract
The present treatment of childhood T-cell leukemias involves the systemic administration of prokary-otic L-asparaginase (ASNase), which depletes plasma Asparagine (Asn) and inhibits protein synthesis. The mechanism of therapeutic action of ASNase is poorly understood, as are the etiologies of the side-effects incurred by treatment. Protein expression from genes bearing Asn homopolymeric coding regions (N-hCR) may be particularly susceptible to Asn level fluctuation. In mammals, N-hCR are rare, short and conserved. In humans, misfunctions of genes encoding N-hCR are associated with a cluster of disorders that mimic ASNase therapy side-effects which include impaired glycemic control, dislipidemia, pancreatitis, compromised vascular integrity, and neurological dysfunction. This paper proposes that dysregulation of Asn homeostasis, potentially even by ASNase produced by the microbiome, may contribute to several clinically important syndromes by altering expression of N-hCR bearing genes. By altering amino acid abundance and modulating ribosome translocation rates at codon repeats, the microbiomic environment may contribute to genome decoding and to shaping the proteome. We suggest that impaired translation at poly Asn codons elevates diabetes risk and severity.
Collapse
Affiliation(s)
- Julian Banerji
- Center for Computational and Integrative Biology, MGH, Simches Research Center, Boston, MA 02114, USA
| |
Collapse
|
26
|
Swerdlow DI, Hingorani AD, Humphries SE. Genetic Risk Factors and Mendelian Randomization in Cardiovascular Disease. Curr Cardiol Rep 2015; 17:33. [DOI: 10.1007/s11886-015-0584-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
Schmitz B, De Maria R, Gatsios D, Chrysanthakopoulou T, Landolina M, Gasparini M, Campolo J, Parolini M, Sanzo A, Galimberti P, Bianchi M, Lenders M, Brand E, Parodi O, Lunati M, Brand SM. Identification of Genetic Markers for Treatment Success in Heart Failure Patients. ACTA ACUST UNITED AC 2014; 7:760-70. [DOI: 10.1161/circgenetics.113.000384] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background—
Cardiac resynchronization therapy (CRT) can improve ventricular size, shape, and mass and reduce mitral regurgitation by reverse remodeling of the failing ventricle. About 30% of patients do not respond to this therapy for unknown reasons. In this study, we aimed at the identification and classification of CRT responder by the use of genetic variants and clinical parameters.
Methods and Results—
Of 1421 CRT patients, 207 subjects were consecutively selected, and CRT responder and nonresponder were matched for their baseline parameters before CRT. Treatment success of CRT was defined as a decrease in left ventricular end-systolic volume >15% at follow-up echocardiography compared with left ventricular end-systolic volume at baseline. All other changes classified the patient as CRT nonresponder. A genetic association study was performed, which identified 4 genetic variants to be associated with the CRT responder phenotype at the allelic (
P
<0.035) and genotypic (
P
<0.031) level: rs3766031 (
ATPIB1
), rs5443 (
GNB3
), rs5522 (
NR3C2
), and rs7325635 (
TNFSF11
). Machine learning algorithms were used for the classification of CRT patients into responder and nonresponder status, including combinations of the identified genetic variants and clinical parameters.
Conclusions—
We demonstrated that rule induction algorithms can successfully be applied for the classification of heart failure patients in CRT responder and nonresponder status using clinical and genetic parameters. Our analysis included information on alleles and genotypes of 4 genetic loci, rs3766031 (
ATPIB1
), rs5443 (
GNB3
), rs5522 (
NR3C2
), and rs7325635 (
TNFSF11
), pathophysiologically associated with remodeling of the failing ventricle.
Collapse
Affiliation(s)
- Boris Schmitz
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Renata De Maria
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Dimitris Gatsios
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Theodora Chrysanthakopoulou
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Maurizio Landolina
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Maurizio Gasparini
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Jonica Campolo
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Marina Parolini
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Antonio Sanzo
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Paola Galimberti
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Michele Bianchi
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Malte Lenders
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Eva Brand
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Oberdan Parodi
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Maurizio Lunati
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| | - Stefan-Martin Brand
- From the Institute of Sports Medicine, Molecular Genetics of Cardiovascular Disease (B.S., S.-M.B.) and Internal Medicine D, Department of Nephrology, Hypertension and Rheumatology (B.S., M. Lenders, E.B.), University Hospital Münster, Münster, Germany; Cardiothoracic and Vascular Department, CNR Institute of Clinical Physiology, Niguarda Ca’ Granda Hospital, Milan, Italy (R.D.M., J.C., M.P., O.P.); University of Ioannina, Department of Biomedical Research, Ioannina University Campus (D.G.); Neuron
| |
Collapse
|
28
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
29
|
Seyerle AA, Young AM, Jeff JM, Melton PE, Jorgensen NW, Lin Y, Carty CL, Deelman E, Heckbert SR, Hindorff LA, Jackson RD, Martin LW, Okin PM, Perez MV, Psaty BM, Soliman EZ, Whitsel EA, North KE, Laston S, Kooperberg C, Avery CL. Evidence of heterogeneity by race/ethnicity in genetic determinants of QT interval. Epidemiology 2014; 25:790-8. [PMID: 25166880 PMCID: PMC4380285 DOI: 10.1097/ede.0000000000000168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND QT interval (QT) prolongation is an established risk factor for ventricular tachyarrhythmia and sudden cardiac death. Previous genome-wide association studies in populations of the European descent have identified multiple genetic loci that influence QT, but few have examined these loci in ethnically diverse populations. METHODS Here, we examine the direction, magnitude, and precision of effect sizes for 21 previously reported SNPs from 12 QT loci, in populations of European (n = 16,398), African (n = 5,437), American Indian (n = 5,032), Hispanic (n = 1,143), and Asian (n = 932) descent as part of the Population Architecture using Genomics and Epidemiology (PAGE) study. Estimates obtained from linear regression models stratified by race/ethnicity were combined using inverse-variance weighted meta-analysis. Heterogeneity was evaluated using Cochran's Q test. RESULTS Of 21 SNPs, 7 showed consistent direction of effect across all 5 populations, and an additional 9 had estimated effects that were consistent across 4 populations. Despite consistent direction of effect, 9 of 16 SNPs had evidence (P < 0.05) of heterogeneity by race/ethnicity. For these 9 SNPs, linkage disequilibrium plots often indicated substantial variation in linkage disequilibrium patterns among the various racial/ethnic groups, as well as possible allelic heterogeneity. CONCLUSIONS These results emphasize the importance of analyzing racial/ethnic groups separately in genetic studies. Furthermore, they underscore the possible utility of trans-ethnic studies to pinpoint underlying casual variants influencing heritable traits such as QT.
Collapse
Affiliation(s)
- Amanda A Seyerle
- From the aDepartment of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC; bDivision of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; cCharles Bronfman Institute of Personalized Medicine, Mount Sinai School of Medicine, New York, NY; dCentre for Genetic Origins of Health and Disease, University of Western Australia, Crawley, Australia; eDepartment of Biostatistics, University of Washington, Seattle, WA; fInformation Sciences Institute and Computer Science Department, University of Southern California, Marina Del Rey, CA; gDepartment of Epidemiology, University of Washington, Seattle, WA; hCardiovascular Health Research Unit, University of Washington, Seattle, WA; iGroup Health Research Institute, Group Health Cooperative, Seattle, WA; jOffice of Population Genomics, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD; kDepartment of Internal Medicine, Ohio State Medical Center, Columbus, OH; lDivision of Cardiology, George Washington University, Washington, DC; mDepartment of Medicine, Weill Cornell Medical College, New York, NY; nDivision of Cardiovascular Medicine, Stanford University, Stanford, CA; oDivision of Medicine, University of Washington, Seattle, WA; pDivision of Health Services, University of Washington, Seattle, WA; qEpidemiological Cardiology Research Center (EPICARE), Wake Forest School of Medicine, Winston-Salem, NC; rDepartment of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC; and sDepartment of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ilkhanoff L, Arking DE, Lemaitre RN, Alonso A, Chen LY, Durda P, Hesselson SE, Kerr KF, Magnani JW, Marcus GM, Schnabel RB, Smith JG, Soliman EZ, Reiner AP, Sotoodehnia N. A common SCN5A variant is associated with PR interval and atrial fibrillation among African Americans. J Cardiovasc Electrophysiol 2014; 25:1150-7. [PMID: 25065297 PMCID: PMC4454499 DOI: 10.1111/jce.12483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 12/19/2022]
Abstract
OBJECTIVE We examined the association of rs7626962 (S1103Y) or rs7629265, a variant in high linkage disequilibrium with S1103Y (r(2) = 0.87 - 1), with sudden cardiac death (SCD) and atrial fibrillation (AF) among African Americans. BACKGROUND The SCN5A missense variant S1103Y has been associated with SCD among African Americans in small case-control studies, but larger population-based studies are needed to validate these findings. The association of this variant with AF has not been fully explored. METHODS Using genotyping data on over 7,000 African Americans from 5 cohorts (Atherosclerosis Risk in Communities [ARIC], Cleveland Family Study [CFS], Jackson Heart Study [JHS], Multi-Ethnic Study of Atherosclerosis [MESA], Cardiovascular Health Study [CHS]), we examined the association of rs7629265 with electrocardiographic PR, QRS, and QT intervals, and with incident AF and SCD. We examined association of S1103Y (rs7626962) with SCD using a population-based case-control study of SCD Cardiac Arrest Blood Study (CABS). RESULTS Meta-analyses across 5 cohorts demonstrated that rs7629265 was significantly associated with PR duration (β = -4.1 milliseconds; P = 2.2×10(-6) ), but not significantly associated with QRS or QT intervals. In meta-analyses of prospectively followed ARIC and CHS participants (n = 3,656), rs7629265 was associated with increased AF risk (n = 299 AF cases; HR = 1.74, P = 1.9 × 10(-4) ). By contrast, rs7629265 was not significantly associated with SCD risk in ARIC (n = 83 SCD cases; P = 0.30) or CHS (n = 54 SCD cases; P = 0.47). Similarly, S1103Y was not significantly associated with SCD risk in CABS (n = 225 SCD cases; P = 0.29). CONCLUSION The common SCN5A variant, rs7629265, is associated with increased AF risk and shorter PR interval among African Americans. In contrast to prior reports, we found no evidence of association of rs7629265 or rs7626962 (S1103Y) with SCD risk in the general population.
Collapse
Affiliation(s)
- Leonard Ilkhanoff
- Northwestern University; Department of Medicine, Division of Cardiology, Section of Electrophysiology, Chicago, IL
| | - Dan E. Arking
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | - Alvaro Alonso
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Lin Y. Chen
- Cardiac Arrhythmia Center, Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Peter Durda
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT
| | - Stephanie E. Hesselson
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, and Diabetes and Obesity Division, The Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kathleen F. Kerr
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA
| | - Jared W. Magnani
- Boston University and NHLBI’s Framingham Heart Study, Framingham, MA
| | - Gregory M. Marcus
- Division of Cardiology, Electrophysiology Section, University of California, San Francisco, CA
| | - Renate B. Schnabel
- Boston University and NHLBI’s Framingham Heart Study, Framingham, MA
- Department of General and Interventional Cardiology, University Heart Center Hamburg-Eppendorf, Germany
| | - J. Gustav Smith
- Broad Institute of Harvard & Massachusetts Institute of Technology, Cambridge, MA
- Department of Cardiology, Faculty of Medicine, Lund University, Lund, Sweden
| | - Elsayed Z. Soliman
- Epidemiological Cardiology Research Center (EPICARE), Wake Forest University School of Medicine, Winston Salem, NC
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
31
|
Wen W, Zheng W, Okada Y, Takeuchi F, Tabara Y, Hwang JY, Dorajoo R, Li H, Tsai FJ, Yang X, He J, Wu Y, He M, Zhang Y, Liang J, Guo X, Sheu WHH, Delahanty R, Guo X, Kubo M, Yamamoto K, Ohkubo T, Go MJ, Liu JJ, Gan W, Chen CC, Gao Y, Li S, Lee NR, Wu C, Zhou X, Song H, Yao J, Lee IT, Long J, Tsunoda T, Akiyama K, Takashima N, Cho YS, Ong RT, Lu L, Chen CH, Tan A, Rice TK, Adair LS, Gui L, Allison M, Lee WJ, Cai Q, Isomura M, Umemura S, Kim YJ, Seielstad M, Hixson J, Xiang YB, Isono M, Kim BJ, Sim X, Lu W, Nabika T, Lee J, Lim WY, Gao YT, Takayanagi R, Kang DH, Wong TY, Hsiung CA, Wu IC, Juang JMJ, Shi J, Choi BY, Aung T, Hu F, Kim MK, Lim WY, Wang TD, Shin MH, Lee J, Ji BT, Lee YH, Young TL, Shin DH, Chun BY, Cho MC, Han BG, Hwu CM, Assimes TL, Absher D, Yan X, Kim E, Kuo JZ, Kwon S, Taylor KD, Chen YDI, Rotter JI, Qi L, Zhu D, Wu T, Mohlke KL, Gu D, Mo Z, Wu JY, Lin X, Miki T, Tai ES, Lee JY, Kato N, Shu XO, Tanaka T. Meta-analysis of genome-wide association studies in East Asian-ancestry populations identifies four new loci for body mass index. Hum Mol Genet 2014; 23:5492-504. [PMID: 24861553 PMCID: PMC4168820 DOI: 10.1093/hmg/ddu248] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 03/22/2014] [Accepted: 05/19/2014] [Indexed: 12/28/2022] Open
Abstract
Recent genetic association studies have identified 55 genetic loci associated with obesity or body mass index (BMI). The vast majority, 51 loci, however, were identified in European-ancestry populations. We conducted a meta-analysis of associations between BMI and ∼2.5 million genotyped or imputed single nucleotide polymorphisms among 86 757 individuals of Asian ancestry, followed by in silico and de novo replication among 7488-47 352 additional Asian-ancestry individuals. We identified four novel BMI-associated loci near the KCNQ1 (rs2237892, P = 9.29 × 10(-13)), ALDH2/MYL2 (rs671, P = 3.40 × 10(-11); rs12229654, P = 4.56 × 10(-9)), ITIH4 (rs2535633, P = 1.77 × 10(-10)) and NT5C2 (rs11191580, P = 3.83 × 10(-8)) genes. The association of BMI with rs2237892, rs671 and rs12229654 was significantly stronger among men than among women. Of the 51 BMI-associated loci initially identified in European-ancestry populations, we confirmed eight loci at the genome-wide significance level (P < 5.0 × 10(-8)) and an additional 14 at P < 1.0 × 10(-3) with the same direction of effect as reported previously. Findings from this analysis expand our knowledge of the genetic basis of obesity.
Collapse
Affiliation(s)
- Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Yukinori Okada
- Laboratory for Statistical Analysis, Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Joo-Yeon Hwang
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, UK
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Fuu-Jen Tsai
- School of Chinese Medicine, Department of Medical Genetics, Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Ying Wu
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Meian He
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yi Zhang
- State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Institute of Hypertension, Shanghai, China
| | - Jun Liang
- Department of Endocrinology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Affiliated Hospital of Southeast University, Xuzhou, Jiangsu 221009, China
| | - Xiuqing Guo
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Wayne Huey-Herng Sheu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, National Defense Medical Center, College of Medicine, Taipei, Taiwan, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ryan Delahanty
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | - Ken Yamamoto
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takayoshi Ohkubo
- Department of Planning for Drug Development and Clinical Evaluation, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan, Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Min Jin Go
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Jian Jun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Gan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Ching-Chu Chen
- School of Chinese Medicine, Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Yong Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China, College of General Practice, Guangxi Medical University, Nanning, Guangxi, China
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu, Philippines
| | - Chen Wu
- State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueya Zhou
- Bioinformatics Division, Tsinghua National Laboratory of Information Science and Technology, Beijing, China
| | - Huaidong Song
- State Key Laboratory of Medical Genomics, Ruijin Hospital, Molecular Medical Center, Shanghai Institute of Endocrinology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yao
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - I-Te Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | | | - Koichi Akiyama
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Naoyuki Takashima
- Department of Health Science, Shiga University of Medical Science, Otsu, Japan
| | - Yoon Shin Cho
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea, Department of Biomedical Science, Hallym University, Gangwon-do, Republic of Korea
| | - Rick Th Ong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore, NUS Graduate School for Integrative Science and Engineering, Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Ling Lu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Chien-Hsiun Chen
- School of Chinese Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Aihua Tan
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Treva K Rice
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda S Adair
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Lixuan Gui
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | | | - Wen-Jane Lee
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Department of Social Work, Tunghai University, Taichung, Taiwan
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Minoru Isomura
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | - Young Jin Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Mark Seielstad
- Institute of Human Genetics, University of California, San Francisco, USA
| | - James Hixson
- Human Genetics Center, University of Texas School of Public Health, Houston, TX, USA
| | - Yong-Bing Xiang
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bong-Jo Kim
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Xueling Sim
- Centre for Molecular Epidemiology, National University of Singapore, Singapore, Singapore
| | - Wei Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Toru Nabika
- Department of Functional Pathology, Shimane University School of Medicine, Izumo, Japan
| | - Juyoung Lee
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | | | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dae-Hee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - I-Chien Wu
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Jyh-Ming Jimmy Juang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA
| | - Bo Youl Choi
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore, Department of Ophthalmology, Yong Loo Lin School of Medicine
| | - Frank Hu
- Department of Epidemiology, Department of Nutrition, Harvard University School of Public Health, Boston, MA, USA
| | - Mi Kyung Kim
- Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | | | - Tzung-Dao Wang
- Cardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Young-Hoon Lee
- Department of Preventive Medicine & Institute of Wonkwang Medical Science, Wonkwang University College of Medicine, Iksan, Republic of Korea
| | - Terri L Young
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA, Division of Neuroscience, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Dong Hoon Shin
- Department of Preventive Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Byung-Yeol Chun
- Department of Preventive Medicine, School of Medicine, and Health Promotion Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Myeong-Chan Cho
- National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Bok-Ghee Han
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Chii-Min Hwu
- School of Medicine, National Yang-Ming University, Taipei, Taiwan, Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Xiaofei Yan
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Eric Kim
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Jane Z Kuo
- NShiley Eye Center, Department of Ophthalmology, University of California at San Diego, La Jolla, CA, USA
| | - Soonil Kwon
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Kent D Taylor
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Yii-Der I Chen
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Jerome I Rotter
- Los Angeles Biomedical Research Institute and Department of Pediatrics, Harbor-UCLA Medical Center, Institute for Translational Genomics and Populations Sciences, Torrance, CA, USA
| | - Lu Qi
- Department of Nutrition, Harvard University School of Public Health, Boston, MA, USA, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Dingliang Zhu
- State Key Laboratory of Medical Genetics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, Shanghai Institute of Hypertension, Shanghai, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Dongfeng Gu
- Department of Evidence Based Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, and National Center for Cardiovascular Diseases, Beijing, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi, China, Institute of Urology and Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jer-Yuarn Wu
- School of Chinese Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai 200031, China
| | - Tetsuro Miki
- Department of Geriatric Medicine, Ehime University Graduate School of Medicine, Toon, Japan
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and National University Health System, Singapore, Singapore Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Jong-Young Lee
- Center for Genome Science, National Institute of Health, Osong Health Technology Administration Complex, Chungcheongbuk-do, Republic of Korea
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37203, USA,
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, Laboratory for Cardiovascular Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan, Division of Disease Diversity, Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Scannell Bryan M, Argos M, Pierce B, Tong L, Rakibuz-Zaman M, Ahmed A, Rahman M, Islam T, Yunus M, Parvez F, Roy S, Jasmine F, Baron JA, Kibriya MG, Ahsan H. Genome-wide association studies and heritability estimates of body mass index related phenotypes in Bangladeshi adults. PLoS One 2014; 9:e105062. [PMID: 25133637 PMCID: PMC4136799 DOI: 10.1371/journal.pone.0105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
Many health outcomes are influenced by a person's body mass index, as well as by the trajectory of body mass index through a lifetime. Although previous research has established that body mass index related traits are influenced by genetics, the relationship between these traits and genetics has not been well characterized in people of South Asian ancestry. To begin to characterize this relationship, we analyzed the association between common genetic variation and five phenotypes related to body mass index in a population-based sample of 5,354 Bangladeshi adults. We discovered a significant association between SNV rs347313 (intron of NOS1AP) and change in body mass index in women over two years. In a linear mixed-model, the G allele was associated with an increase of 0.25 kg/m2 in body mass index over two years (p-value of 2.3·10−8). We also estimated the heritability of these phenotypes from our genotype data. We found significant estimates of heritability for all of the body mass index-related phenotypes. Our study evaluated the genetic determinants of body mass index related phenotypes for the first time in South Asians. The results suggest that these phenotypes are heritable and some of this heritability is driven by variation that differs from those previously reported. We also provide evidence that the genetic etiology of body mass index related traits may differ by ancestry, sex, and environment, and consequently that these factors should be considered when assessing the genetic determinants of the risk of body mass index-related disease.
Collapse
Affiliation(s)
- Molly Scannell Bryan
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Maria Argos
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Brandon Pierce
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Lin Tong
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | | | | | | | | | - Muhammad Yunus
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University, New York, New York, United States of America
| | - Shantanu Roy
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Farzana Jasmine
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - John A. Baron
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Muhammad G. Kibriya
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
| | - Habibul Ahsan
- Department of Health Studies, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
33
|
Abstract
There is an increased risk of sudden cardiac death (SCD) and sudden cardiac arrest (SCA), in African Americans, the basis of which is likely multifactorial. African Americans have higher rates of traditional cardiac risk factors including hypertension, left ventricular hypertrophy, diabetes, coronary heart disease, and heart failure. There are also significant disparities in health care delivery. While these factors undoubtedly affect health outcomes, there is also growing evidence that genetics may have a significant impact as well. In this paper, we discuss data and hypotheses in support of both sides of the controversy around racial differences in SCD/SCA.
Collapse
|
34
|
Sano M, Kamitsuji S, Kamatani N, Hong KW, Han BG, Kim Y, Kim JW, Aizawa Y, Fukuda K. Genome-wide association study of electrocardiographic parameters identifies a new association for PR interval and confirms previously reported associations. Hum Mol Genet 2014; 23:6668-76. [PMID: 25055868 DOI: 10.1093/hmg/ddu375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous reports have described several associations of PR, QRS, QT and heart rate with genomic variations by genome-wide association studies (GWASs). In the present study, we examined the association of ∼2.5 million SNPs from 2994 Japanese healthy volunteers obtained from the JPDSC database with electrocardiographic parameters. We confirmed associations of PR interval, QRS duration and QT interval in individuals of Japanese ancestry with 11 of the 45 SNPs (6 of 20 for QT, 5 of 19 for PR and 0 of 6 for QRS) observed among individuals of European, African and Asian (Indian and Korean) ancestries. Those results indicate that many of the electrocardiographic associations with genes are shared by different ethnic groups including Japanese. Possible novel associations found in this study were validated by Korean data. As a result, we identified a novel association of SNP rs4952632[G] (maps near SLC8A1, sodium-calcium exchanger) (P = 7.595 × 10(-6)) with PR interval in Japanese individuals, and replication testing among Koreans confirmed the association of the same SNP with prolonged PR interval. Meta-analysis of the Japanese and Korean datasets demonstrated highly significant associations of SNP rs4952632[G] with a 2.325-ms (95% CI, 1.693-2.957 ms) longer PR interval per minor allele copy (P = 5.598 × 10(-13)). Cell-type-specific SLC8A1 knockout mice have demonstrated a regulatory role of sodium-calcium exchanger in automaticity and conduction in sinoatrial node, atrium and atrioventricular node. Our findings support a functional role of sodium-calcium exchanger in human atrial and atrioventricular nodal conduction as suggested by genetically modified mouse models.
Collapse
Affiliation(s)
- Motoaki Sano
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan,
| | | | | | - Kyung-Won Hong
- Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon 363-951, Korea and
| | - Bok-Ghee Han
- Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon 363-951, Korea and
| | - Yeonjung Kim
- Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongwon 363-951, Korea and
| | - Jong Wook Kim
- Department of Internal Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Yoshiyasu Aizawa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
35
|
Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, Sotoodehnia N, Rossin EJ, Morley M, Wang X, Johnson AD, Lundby A, Gudbjartsson DF, Noseworthy PA, Eijgelsheim M, Bradford Y, Tarasov KV, Dörr M, Müller-Nurasyid M, Lahtinen AM, Nolte IM, Smith AV, Bis JC, Isaacs A, Newhouse SJ, Evans DS, Post WS, Waggott D, Lyytikäinen LP, Hicks AA, Eisele L, Ellinghaus D, Hayward C, Navarro P, Ulivi S, Tanaka T, Tester DJ, Chatel S, Gustafsson S, Kumari M, Morris RW, Naluai ÅT, Padmanabhan S, Kluttig A, Strohmer B, Panayiotou AG, Torres M, Knoflach M, Hubacek JA, Slowikowski K, Raychaudhuri S, Kumar RD, Harris TB, Launer LJ, Shuldiner AR, Alonso A, Bader JS, Ehret G, Huang H, Kao WHL, Strait JB, Macfarlane PW, Brown M, Caulfield MJ, Samani NJ, Kronenberg F, Willeit J, Smith JG, Greiser KH, Meyer Zu Schwabedissen H, Werdan K, Carella M, Zelante L, Heckbert SR, Psaty BM, Rotter JI, Kolcic I, Polašek O, Wright AF, Griffin M, Daly MJ, Arnar DO, Hólm H, Thorsteinsdottir U, Denny JC, Roden DM, Zuvich RL, Emilsson V, Plump AS, Larson MG, O'Donnell CJ, Yin X, Bobbo M, D'Adamo AP, Iorio A, Sinagra G, Carracedo A, Cummings SR, Nalls MA, Jula A, Kontula KK, Marjamaa A, Oikarinen L, Perola M, Porthan K, Erbel R, Hoffmann P, Jöckel KH, Kälsch H, Nöthen MM, den Hoed M, Loos RJF, Thelle DS, Gieger C, Meitinger T, Perz S, Peters A, Prucha H, Sinner MF, Waldenberger M, de Boer RA, Franke L, van der Vleuten PA, Beckmann BM, Martens E, Bardai A, Hofman N, Wilde AAM, Behr ER, Dalageorgou C, Giudicessi JR, Medeiros-Domingo A, Barc J, Kyndt F, Probst V, Ghidoni A, Insolia R, Hamilton RM, Scherer SW, Brandimarto J, Margulies K, Moravec CE, del Greco M F, Fuchsberger C, O'Connell JR, Lee WK, Watt GCM, Campbell H, Wild SH, El Mokhtari NE, Frey N, Asselbergs FW, Mateo Leach I, Navis G, van den Berg MP, van Veldhuisen DJ, Kellis M, Krijthe BP, Franco OH, Hofman A, Kors JA, Uitterlinden AG, Witteman JCM, Kedenko L, Lamina C, Oostra BA, Abecasis GR, Lakatta EG, Mulas A, Orrú M, Schlessinger D, Uda M, Markus MRP, Völker U, Snieder H, Spector TD, Ärnlöv J, Lind L, Sundström J, Syvänen AC, Kivimaki M, Kähönen M, Mononen N, Raitakari OT, Viikari JS, Adamkova V, Kiechl S, Brion M, Nicolaides AN, Paulweber B, Haerting J, Dominiczak AF, Nyberg F, Whincup PH, Hingorani AD, Schott JJ, Bezzina CR, Ingelsson E, Ferrucci L, Gasparini P, Wilson JF, Rudan I, Franke A, Mühleisen TW, Pramstaller PP, Lehtimäki TJ, Paterson AD, Parsa A, Liu Y, van Duijn CM, Siscovick DS, Gudnason V, Jamshidi Y, Salomaa V, Felix SB, Sanna S, Ritchie MD, Stricker BH, Stefansson K, Boyer LA, Cappola TP, Olsen JV, Lage K, Schwartz PJ, Kääb S, Chakravarti A, Ackerman MJ, Pfeufer A, de Bakker PIW, Newton-Cheh C. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat Genet 2014; 46:826-36. [PMID: 24952745 PMCID: PMC4124521 DOI: 10.1038/ng.3014] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal Mendelian Long QT Syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals we identified 35 common variant QT interval loci, that collectively explain ∼8-10% of QT variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 novel QT loci in 298 unrelated LQTS probands identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode for proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies novel candidate genes for ventricular arrhythmias, LQTS,and SCD.
Collapse
Affiliation(s)
- Dan E Arking
- 1] Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2]
| | - Sara L Pulit
- 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands. [4]
| | - Lia Crotti
- 1] Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy. [2] Center for Cardiac Arrhythmias of Genetic Origin, Istituto di Ricerca e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy. [3] Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pim van der Harst
- 1] Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. [2] Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia B Munroe
- 1] Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK. [2] Barts and the London Genome Centre, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Tamara T Koopmann
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nona Sotoodehnia
- 1] Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Cardiology Division, University of Washington, Seattle, Washington, USA
| | - Elizabeth J Rossin
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Morley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinchen Wang
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts, USA
| | - Alicia Lundby
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. [3] The Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter A Noseworthy
- 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark Eijgelsheim
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yuki Bradford
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Sciences, Human Cardiovascular Studies Unit, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | - Marcus Dörr
- 1] Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany. [2] DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Martina Müller-Nurasyid
- 1] Department of Medicine I, University Hospital Munich, Ludwig Maximilians Universität, Munich, Germany. [2] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Epidemiology, Ludwig Maximilians Universität, Munich, Germany. [3] Institute of Genetic Epidemiology, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany. [4] Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig Maximilians Universität, Munich, Germany. [5] DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Annukka M Lahtinen
- 1] Research Programs Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland. [2] Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Albert Vernon Smith
- 1] Icelandic Heart Association, Kopavogur, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Aaron Isaacs
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stephen J Newhouse
- Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Wendy S Post
- 1] Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. [2] Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daryl Waggott
- Informatics and Biocomputing Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Andrew A Hicks
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany)
| | - Lewin Eisele
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Caroline Hayward
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Pau Navarro
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Sheila Ulivi
- Institute for Maternal and Child Health, "Burlo Garofolo" Trieste, Trieste, Italy
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - David J Tester
- 1] Department of Pediatrics, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA. [2] Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Stéphanie Chatel
- 1] Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Université de Nantes, Nantes, France. [2] Institut du Thorax, INSERM UMR1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Stefan Gustafsson
- 1] Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. [2] Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Meena Kumari
- Institute of Cardiovascular Science, University College London, London, UK
| | - Richard W Morris
- Department of Primary Care and Population Health, University College London, Royal Free Campus, London, UK
| | - Åsa T Naluai
- 1] Department of Medical and Clinical Genetics, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden. [2] Biobanking and Molecular Resource Infrastructure of Sweden (BBMRI), Gothenburg, Sweden
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Bernhard Strohmer
- Second Department of Internal Medicine, Paracelsus Medical University/Salzburger Landeskliniken, Salzburg, Austria
| | - Andrie G Panayiotou
- 1] Cyprus International Institute for Environmental and Public Health in association with the Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus. [2] Cyprus Cardiovascular and Educational Research Trust, Nicosia, Cyprus
| | - Maria Torres
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Michael Knoflach
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Jaroslav A Hubacek
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kamil Slowikowski
- 1] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [2] Harvard Bioinformatics and Integrative Genomics, Boston, Massachusetts, USA
| | - Soumya Raychaudhuri
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA. [3] Partners HealthCare Center for Personalized Genetic Medicine, Boston, Massachusetts, USA. [4] Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, Massachusetts, USA. [5] Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK
| | - Runjun D Kumar
- 1] Computational and Systems Biology Program, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri, USA. [2] Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Lenore J Launer
- Laboratory of Epidemiology, Demography and Biometry, National Institute on Aging, Bethesda, Maryland, USA
| | - Alan R Shuldiner
- 1] Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA. [2] Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, Maryland, USA. [3] Geriatric Research and Education Clinical Center, Veterans Administration Medical Center, Baltimore, Maryland, USA
| | - Alvaro Alonso
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Georg Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hailiang Huang
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Harvard Medical School, Boston, Massachusetts, USA
| | - W H Linda Kao
- Department of Epidemiology, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - James B Strait
- 1] Laboratory of Cardiovascular Sciences, Human Cardiovascular Studies Unit, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA. [2] Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Peter W Macfarlane
- Electrocardiology, University of Glasgow Institute of Cardiovascular and Medical Sciences, Royal Infirmary, Glasgow, UK
| | - Morris Brown
- Clinical Pharmacology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Mark J Caulfield
- Clinical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Nilesh J Samani
- Department of Cardiovascular Science, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Johann Willeit
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | - J Gustav Smith
- 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [4] Department of Cardiology, Lund University, Lund, Sweden
| | - Karin H Greiser
- 1] Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Halle, Germany. [2] Division of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | | | - Karl Werdan
- Department of Medicine III, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Massimo Carella
- Medical Genetics Unit, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Leopoldo Zelante
- Medical Genetics Unit, Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Susan R Heckbert
- 1] Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Bruce M Psaty
- 1] Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington, USA. [3] Department of Health Services, University of Washington, Seattle, Washington, USA. [4] Group Health Research Institute, Group Health Cooperative, Seattle, Washington, USA. [5] Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Ozren Polašek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
| | - Alan F Wright
- Medical Research Council (MRC) Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - Maura Griffin
- Vascular Screening and Diagnostic Centre, London, UK
| | - Mark J Daly
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - David O Arnar
- Department of Medicine, Division of Cardiology, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | | | - Joshua C Denny
- 1] Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. [2] Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Dan M Roden
- 1] Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA. [2] Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA. [3] Office of Personalized Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Rebecca L Zuvich
- Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Martin G Larson
- 1] National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts, USA. [2] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA. [3] Department of Mathematics and Statistics, Boston University, Boston, Massachusetts, USA
| | - Christopher J O'Donnell
- 1] National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts, USA. [2] Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiaoyan Yin
- 1] National Heart, Lung, and Blood Institute (NHLBI) Framingham Heart Study, Framingham, Massachusetts, USA. [2] Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Marco Bobbo
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Adamo P D'Adamo
- 1] Institute for Maternal and Child Health, "Burlo Garofolo" Trieste, Trieste, Italy. [2] Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Annamaria Iorio
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular Department, Ospedali Riuniti and University of Trieste, Trieste, Italy
| | - Angel Carracedo
- 1] Grupo de Medicina Xenómica, Centro Nacional de Genotipado, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidade de Santiago de Compostela, Santiago de Compostela, Spain. [2] Fundación Publica Galega de Medicina Xenómica, Servicio Galego de Saude, Santiago de Compostela, Spain. [3] Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, California, USA
| | - Michael A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, US National Institutes of Health, Bethesda, Maryland, USA
| | - Antti Jula
- Chronic Disease Epidemiology and Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Kimmo K Kontula
- Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Annukka Marjamaa
- 1] Research Programs Unit, Molecular Medicine, University of Helsinki, Helsinki, Finland. [2] Department of Medicine, Helsinki University Central Hospital, Helsinki, Finland
| | - Lasse Oikarinen
- Department of Medicine, Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Markus Perola
- 1] Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland. [2] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland. [3] Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Kimmo Porthan
- Department of Medicine, Division of Cardiology, Helsinki University Central Hospital, Helsinki, Finland
| | - Raimund Erbel
- Department of Cardiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- 1] Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. [2] Institute of Human Genetics, University of Bonn, Bonn, Germany. [3] Division of Medical Genetics, University Hospital Basel, Basel, Switzerland. [4] Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Hagen Kälsch
- Department of Cardiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Markus M Nöthen
- 1] Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. [2] Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Marcel den Hoed
- 1] Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Ruth J F Loos
- 1] MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. [2] Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. [3] Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dag S Thelle
- 1] Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway. [2] Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum Munich-German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Meitinger
- 1] DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. [2] Institute of Human Genetics, Technische Universität München, Munich, Germany. [3] Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Siegfried Perz
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- 1] DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany. [2] Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Hanna Prucha
- 1] Christine Kühne-Center for Allergy and Education, Munich, Germany. [2] Department of Dermatology and Allergy, Technische Universität München, Munich, Germany
| | - Moritz F Sinner
- Department of Medicine I, University Hospital Munich, Ludwig Maximilians Universität, Munich, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pieter A van der Vleuten
- 1] Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands. [2] Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Britt Maria Beckmann
- Department of Medicine I, University Hospital Munich, Ludwig Maximilians Universität, Munich, Germany
| | - Eimo Martens
- 1] Department of Medicine I, University Hospital Munich, Ludwig Maximilians Universität, Munich, Germany. [2] Department of Medicine, Hospital of Friedberg, Friedberg, Germany
| | - Abdennasser Bardai
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Nynke Hofman
- Department of Clinical Genetics, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- 1] Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands. [2] Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, Jeddah, Saudi Arabia
| | - Elijah R Behr
- Cardiovascular and Cell Sciences Institute, St George's University of London, London, UK
| | | | - John R Giudicessi
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Argelia Medeiros-Domingo
- Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Julien Barc
- Institut du Thorax, INSERM UMR1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Florence Kyndt
- 1] Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Université de Nantes, Nantes, France. [2] Institut du Thorax, INSERM UMR1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Vincent Probst
- 1] Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Université de Nantes, Nantes, France. [2] Institut du Thorax, INSERM UMR1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Alice Ghidoni
- 1] Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy. [2] Center for Cardiac Arrhythmias of Genetic Origin, Istituto di Ricerca e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Roberto Insolia
- 1] Department of Molecular Medicine, Section of Cardiology, University of Pavia, Pavia, Italy. [2] Center for Cardiac Arrhythmias of Genetic Origin, Istituto di Ricerca e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Robert M Hamilton
- 1] The Labatt Family Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. [2] Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jeffrey Brandimarto
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christine E Moravec
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fabiola del Greco M
- Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany)
| | - Christian Fuchsberger
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey R O'Connell
- 1] Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA. [2] Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Wai K Lee
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Graham C M Watt
- General Practice and Primary Care, University of Glasgow, Glasgow, UK
| | - Harry Campbell
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah H Wild
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Nour E El Mokhtari
- Biobank PopGen, Institute of Experimental Medicine, Christian Albrechts University of Kiel, Kiel, Germany
| | - Norbert Frey
- Department of Internal Medicine III, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Folkert W Asselbergs
- 1] Durrer Center for Cardiogenetic Research, Interuniversity Cardiology Institute of The Netherlands-Netherlands Heart Institute, Utrecht, The Netherlands. [2] Department of Cardiology, Division of Heart and Lungs, University Medical Centre Utrecht, Utrecht, The Netherlands. [3] Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
| | - Irene Mateo Leach
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maarten P van den Berg
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Manolis Kellis
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bouwe P Krijthe
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | - Oscar H Franco
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | - Albert Hofman
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | - Jan A Kors
- Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands. [3] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jacqueline C M Witteman
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands
| | - Lyudmyla Kedenko
- First Department of Internal Medicine, Paracelsus Medical University/Salzburger Landeskliniken, Salzburg, Austria
| | - Claudia Lamina
- Division of Genetic Epidemiology, Innsbruck Medical University, Innsbruck, Austria
| | - Ben A Oostra
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, Human Cardiovascular Studies Unit, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Marco Orrú
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - David Schlessinger
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, US National Institutes of Health, Baltimore, Maryland, USA
| | - Manuela Uda
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Marcello R P Markus
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- 1] DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany. [2] Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University Greifswald, Greifswald, Germany
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Johan Ärnlöv
- 1] Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] School of Health and Social Sciences, Dalarna University, Falun, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mika Kivimaki
- Institute of Cardiovascular Science, University College London, London, UK
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and University of Tampere School of Medicine, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Olli T Raitakari
- 1] Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland. [2] Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Jorma S Viikari
- Department of Medicine, Turku University Hospital and University of Turku, Turku, Finland
| | - Vera Adamkova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Stefan Kiechl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Brion
- 1] Grupo de Medicina Xenómica, Centro Nacional de Genotipado, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidade de Santiago de Compostela, Santiago de Compostela, Spain. [2] Xenética de Enfermidades Cardiovasculares e Oftalmolóxicas, Complexo Hospitalario Universitario de Santiago de Compostela, Servicio Galego de Saude, Santiago de Compostela, Spain
| | - Andrew N Nicolaides
- 1] Cyprus Cardiovascular and Educational Research Trust, Nicosia, Cyprus. [2] Vascular Screening and Diagnostic Centre, London, UK
| | - Bernhard Paulweber
- First Department of Internal Medicine, Paracelsus Medical University/Salzburger Landeskliniken, Salzburg, Austria
| | - Johannes Haerting
- Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna F Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Fredrik Nyberg
- 1] Department of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. [2] Global Epidemiology, AstraZeneca Research and Development, Mölndal, Sweden
| | - Peter H Whincup
- Division of Population Health Sciences and Education, St George's University of London, London, UK
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
| | - Jean-Jacques Schott
- 1] Institut du Thorax, Centre Hospitalier Universitaire de Nantes, Université de Nantes, Nantes, France. [2] Institut du Thorax, INSERM UMR1087, CNRS UMR 6291, Université de Nantes, Nantes, France
| | - Connie R Bezzina
- Heart Failure Research Center, Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik Ingelsson
- 1] Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden. [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Paolo Gasparini
- 1] Institute for Maternal and Child Health, "Burlo Garofolo" Trieste, Trieste, Italy. [2] Clinical Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - James F Wilson
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Thomas W Mühleisen
- 1] Department of Genomics, Life and Brain Center, University of Bonn, Bonn, Germany. [2] Institute of Human Genetics, University of Bonn, Bonn, Germany. [3] Institute of Neuroscience and Medicine (INM-1), Structural and Functional Organization of the Brain, Genomic Imaging, Research Centre Juelich, Juelich, Germany
| | - Peter P Pramstaller
- 1] Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany). [2] Department of Neurology, University of Lübeck, Lübeck, Germany. [3] Department of Neurology, General Central Hospital, Bolzano, Italy
| | - Terho J Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Andrew D Paterson
- Genetics and Genome Biology Program, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Afshin Parsa
- 1] Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA. [2] Program for Personalized and Genomic Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, North Carolina, USA
| | | | - David S Siscovick
- 1] Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Epidemiology, University of Washington, Seattle, Washington, USA. [3] Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Vilmundur Gudnason
- 1] Icelandic Heart Association, Kopavogur, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Yalda Jamshidi
- Human Genetics Research Centre, St George's University of London, London, UK
| | - Veikko Salomaa
- Chronic Disease Epidemiology and Prevention Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Stephan B Felix
- 1] Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany. [2] DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Cagliari, Italy
| | - Marylyn D Ritchie
- Center for Systems Genomics, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Bruno H Stricker
- 1] Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands. [2] Netherlands Consortium for Healthy Aging (NCHA), Leiden, The Netherlands. [3] Department of Medical Informatics, Erasmus Medical Center, Rotterdam, The Netherlands. [4] Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands. [5] Inspectorate of Health Care, The Hague, The Netherlands
| | - Kari Stefansson
- 1] deCODE genetics, Reykjavik, Iceland. [2] Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas P Cappola
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Lage
- 1] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA. [3] Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark. [4] Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark. [5] Pediatric Surgical Research Laboratories, MassGeneral Hospital for Children, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto di Ricerca e Cura a Carattere Scientifico Istituto Auxologico Italiano, Milan, Italy
| | - Stefan Kääb
- 1] Department of Medicine I, University Hospital Munich, Ludwig Maximilians Universität, Munich, Germany. [2] DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael J Ackerman
- 1] Department of Pediatrics, Division of Pediatric Cardiology, Mayo Clinic, Rochester, Minnesota, USA. [2] Windland Smith Rice Sudden Death Genomics Laboratory, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA. [3] Department of Medicine, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA. [4]
| | - Arne Pfeufer
- 1] Center for Biomedicine, European Academy Bozen/Bolzano (EURAC), Bolzano, Italy (affiliated institute of the University of Lübeck, Lübeck, Germany). [2] Institute of Human Genetics, Technische Universität München, Munich, Germany. [3] Institute for Bioinformatics and Systems Biology, Helmholtz Zentrum, Munich, Germany. [4]
| | - Paul I W de Bakker
- 1] Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands. [2] Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands. [3]
| | - Christopher Newton-Cheh
- 1] Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Harvard Medical School, Boston, Massachusetts, USA. [4] Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA. [5]
| |
Collapse
|
36
|
Chang KC, Sasano T, Wang YC, Huang SKS. Nitric Oxide Synthase 1 Adaptor Protein, an Emerging New Genetic Marker for QT Prolongation and Sudden Cardiac Death. ACTA CARDIOLOGICA SINICA 2013; 29:217-225. [PMID: 27122710 PMCID: PMC4804833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/26/2013] [Indexed: 06/05/2023]
Abstract
UNLABELLED Sudden cardiac death (SCD) is defined as sudden unexplained death due to cardiac causes with an acute change in cardiovascular status within 1 hour of onset of symptoms. Alternatively, in unwitnessed cases, SCD can also be defined as a person last seen functionally normal 24 hours before being found dead. Despite significant advances in understanding the pathophysiology of cardiovascular diseases and the resultant improvement in resuscitation science, SCD remains a major healthcare challenge worldwide. Although the most pronounced risk factor for SCD is the presence of coronary artery disease in the setting of a depressed left ventricular function, most deaths occur in the larger, lower-risk subgroups where genetic variations and other conditions may be the precipitating factors in triggering SCD. Recently, a common genetic variation in a neuronal nitric oxide synthase regulator, nitric oxide synthase 1 adaptor protein (NOS1AP) also known as carboxyl-terminal PDZ ligand of neuronal nitric oxide synthase protein (CAPON) gene, has been identified as a new genetic marker in modulating QT interval prolongation and SCD in general populations. Animal study revealed that NOS1AP is expressed in the heart and interacts with NOS1-NO pathways to modulate cardiac repolarization via suppressing the sarcolemmal L-type calcium current and enhancing the IKr current. This important genetic implication was soon replicated in other racial/ethnic populations and extended to a variety of clinical settings including diabetes mellitus, coronary artery disease, myocardial infarction, and congenital or drug-induced long QT syndrome. The purpose of this review aims to provide up-to-date information about the emerging new genetic marker, NOS1AP, in relation to QT prolongation and SCD. KEY WORDS NOS1AP; QT interval; Sudden cardiac death.
Collapse
Affiliation(s)
- Kuan-Cheng Chang
- Division of Cardiology, Department of Medicine, China Medical University Hospital
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Tetsuo Sasano
- Department of Biofunctional Informatics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yu-Chen Wang
- Division of Cardiology, Department of Medicine, China Medical University Hospital
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Shoei K. Stephen Huang
- Section of Cardiac Electrophysiology and Pacing, Scott & White Healthcare, Texas A & M University College of Medicine, Temple, TX, USA
| |
Collapse
|