1
|
Han YS, Pakkam M, Fogarty MJ, Sieck GC, Brozovich FV. Alterations in cardiac contractile and regulatory proteins contribute to age-related cardiac dysfunction in male rats. Physiol Rep 2024; 12:e70012. [PMID: 39169429 PMCID: PMC11338742 DOI: 10.14814/phy2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in β-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in β-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Madona Pakkam
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Frank V. Brozovich
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
2
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
3
|
Park E, Yang CR, Raghuram V, Chen L, Chou CL, Knepper MA. Using CRISPR-Cas9/phosphoproteomics to identify substrates of calcium/calmodulin-dependent kinase 2δ. J Biol Chem 2023; 299:105371. [PMID: 37865316 PMCID: PMC10783575 DOI: 10.1016/j.jbc.2023.105371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/23/2023] Open
Abstract
Ca2+/Calmodulin-dependent protein kinase 2 (CAMK2) family proteins are involved in the regulation of cellular processes in a variety of tissues including brain, heart, liver, and kidney. One member, CAMK2δ (CAMK2D), has been proposed to be involved in vasopressin signaling in the renal collecting duct, which controls water excretion through regulation of the water channel aquaporin-2 (AQP2). To identify CAMK2D target proteins in renal collecting duct cells (mpkCCD), we deleted Camk2d and carried out LC-MS/MS-based quantitative phosphoproteomics. Specifically, we used CRISPR/Cas9 with two different guide RNAs targeting the CAMK2D catalytic domain to create multiple CAMK2D KO cell lines. AQP2 protein abundance was lower in the CAMK2D KO cells than in CAMK2D-intact controls. AQP2 phosphorylation at Ser256 and Ser269 (normalized for total AQP2) was decreased. However, trafficking of AQP2 to and from the apical plasma membrane was sustained. Large-scale quantitative phosphoproteomic analysis (TMT-labeling) in the presence of the vasopressin analog dDAVP (0.1 nM, 30 min) allowed quantification of 11,570 phosphosites of which 169 were significantly decreased, while 206 were increased in abundance in CAMK2D KO clones. These data are available for browsing or download at https://esbl.nhlbi.nih.gov/Databases/CAMK2D-proteome/. Motif analysis of the decreased phosphorylation sites revealed a target preference of -(R/K)-X-X-p(S/T)-X-(D/E), matching the motif identified in previous in vitro phosphorylation studies using recombinant CAMK2D. Thirty five of the significantly downregulated phosphorylation sites in CAMK2D KO cells had exactly this motif and are judged to be likely direct CAMK2D targets. This adds to the list of known CAMK2D target proteins found in prior reductionist studies.
Collapse
Affiliation(s)
- Euijung Park
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Beghi S, Furmanik M, Jaminon A, Veltrop R, Rapp N, Wichapong K, Bidar E, Buschini A, Schurgers LJ. Calcium Signalling in Heart and Vessels: Role of Calmodulin and Downstream Calmodulin-Dependent Protein Kinases. Int J Mol Sci 2022; 23:ijms232416139. [PMID: 36555778 PMCID: PMC9783221 DOI: 10.3390/ijms232416139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is the major cause of death worldwide. The success of medication and other preventive measures introduced in the last century have not yet halted the epidemic of cardiovascular disease. Although the molecular mechanisms of the pathophysiology of the heart and vessels have been extensively studied, the burden of ischemic cardiovascular conditions has risen to become a top cause of morbidity and mortality. Calcium has important functions in the cardiovascular system. Calcium is involved in the mechanism of excitation-contraction coupling that regulates numerous events, ranging from the production of action potentials to the contraction of cardiomyocytes and vascular smooth muscle cells. Both in the heart and vessels, the rise of intracellular calcium is sensed by calmodulin, a protein that regulates and activates downstream kinases involved in regulating calcium signalling. Among them is the calcium calmodulin kinase family, which is involved in the regulation of cardiac functions. In this review, we present the current literature regarding the role of calcium/calmodulin pathways in the heart and vessels with the aim to summarize our mechanistic understanding of this process and to open novel avenues for research.
Collapse
Affiliation(s)
- Sofia Beghi
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-3408473527
| | - Malgorzata Furmanik
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Armand Jaminon
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Rogier Veltrop
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Nikolas Rapp
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Kanin Wichapong
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 11A, 43124 Parma, Italy
| | - Leon J. Schurgers
- Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
6
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
7
|
Abstract
Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.
Collapse
Affiliation(s)
- Arianne Papa
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jared Kushner
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA;
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Hanft LM, Fitzsimons DP, Hacker TA, Moss RL, McDonald KS. Cardiac MyBP-C phosphorylation regulates the Frank-Starling relationship in murine hearts. J Gen Physiol 2021; 153:e202012770. [PMID: 33646280 PMCID: PMC7927661 DOI: 10.1085/jgp.202012770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The Frank-Starling relationship establishes that elevated end-diastolic volume progressively increases ventricular pressure and stroke volume in healthy hearts. The relationship is modulated by a number of physiological inputs and is often depressed in human heart failure. Emerging evidence suggests that cardiac myosin-binding protein-C (cMyBP-C) contributes to the Frank-Starling relationship. We measured contractile properties at multiple levels of structural organization to determine the role of cMyBP-C and its phosphorylation in regulating (1) the sarcomere length dependence of power in cardiac myofilaments and (2) the Frank-Starling relationship in vivo. We compared transgenic mice expressing wild-type cMyBP-C on the null background, which have ∼50% phosphorylated cMyBP-C (Controls), to transgenic mice lacking cMyBP-C (KO) and to mice expressing cMyBP-C that have serine-273, -282, and -302 mutated to aspartate (cMyBP-C t3SD) or alanine (cMyBP-C t3SA) on the null background to mimic either constitutive PKA phosphorylation or nonphosphorylated cMyBP-C, respectively. We observed a continuum of length dependence of power output in myocyte preparations. Sarcomere length dependence of power progressively increased with a rank ordering of cMyBP-C KO = cMyBP-C t3SA < Control < cMyBP-C t3SD. Length dependence of myofilament power translated, at least in part, to hearts, whereby Frank-Starling relationships were steepest in cMyBP-C t3SD mice. The results support the hypothesis that cMyBP-C and its phosphorylation state tune sarcomere length dependence of myofibrillar power, and these regulatory processes translate across spatial levels of myocardial organization to control beat-to-beat ventricular performance.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Daniel P. Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Timothy A. Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
9
|
Solís C, Solaro RJ. Novel insights into sarcomere regulatory systems control of cardiac thin filament activation. J Gen Physiol 2021; 153:211903. [PMID: 33740037 PMCID: PMC7988513 DOI: 10.1085/jgp.202012777] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Our review focuses on sarcomere regulatory mechanisms with a discussion of cardiac-specific modifications to the three-state model of thin filament activation from a blocked to closed to open state. We discuss modulation of these thin filament transitions by Ca2+, by crossbridge interactions, and by thick filament–associated proteins, cardiac myosin–binding protein C (cMyBP-C), cardiac regulatory light chain (cRLC), and titin. Emerging evidence supports the idea that the cooperative activation of the thin filaments despite a single Ca2+ triggering regulatory site on troponin C (cTnC) cannot be considered in isolation of other functional domains of the sarcomere. We discuss long- and short-range interactions among these domains with the regulatory units of thin filaments, including proteins at the barbed end at the Z-disc and the pointed end near the M-band. Important to these discussions is the ever-increasing understanding of the role of cMyBP-C, cRLC, and titin filaments. Detailed knowledge of these control processes is critical to the understanding of mechanisms sustaining physiological cardiac state with varying hemodynamic load, to better defining genetic and acquired cardiac disorders, and to developing targets for therapies at the level of the sarcomeres.
Collapse
Affiliation(s)
- Christopher Solís
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| | - R John Solaro
- University of Illinois at Chicago, College of Medicine, Department of Physiology and Biophysics and Center for Cardiovascular Research, Chicago, IL
| |
Collapse
|
10
|
Giles J, Fitzsimons DP, Patel JR, Knudtsen C, Neuville Z, Moss RL. cMyBP-C phosphorylation modulates the time-dependent slowing of unloaded shortening in murine skinned myocardium. J Gen Physiol 2021; 153:e202012782. [PMID: 33566084 PMCID: PMC7879488 DOI: 10.1085/jgp.202012782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
In myocardium, phosphorylation of cardiac myosin-binding protein-C (cMyBP-C) is thought to modulate the cooperative activation of the thin filament by binding to myosin and/or actin, thereby regulating the probability of cross-bridge binding to actin. At low levels of Ca2+ activation, unloaded shortening velocity (Vo) in permeabilized cardiac muscle is comprised of an initial high-velocity phase and a subsequent low-velocity phase. The velocities in these phases scale with the level of activation, culminating in a single high-velocity phase (Vmax) at saturating Ca2+. To test the idea that cMyBP-C phosphorylation contributes to the activation dependence of Vo, we measured Vo before and following treatment with protein kinase A (PKA) in skinned trabecula isolated from mice expressing either wild-type cMyBP-C (tWT), nonphosphorylatable cMyBP-C (t3SA), or phosphomimetic cMyBP-C (t3SD). During maximal Ca2+ activation, Vmax was monophasic and not significantly different between the three groups. Although biphasic shortening was observed in all three groups at half-maximal activation under control conditions, the high- and low-velocity phases were faster in the t3SD myocardium compared with values obtained in either tWT or t3SA myocardium. Treatment with PKA significantly accelerated both the high- and low-velocity phases in tWT myocardium but had no effect on Vo in either the t3SD or t3SA myocardium. These results can be explained in terms of a model in which the level of cMyBP-C phosphorylation modulates the extent and rate of cooperative spread of myosin binding to actin.
Collapse
Affiliation(s)
- Jasmine Giles
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID
| | - Jitandrakumar R. Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Chloe Knudtsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Zander Neuville
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, and the University of Wisconsin Cardiovascular Research Center, Madison, WI
| |
Collapse
|
11
|
Richards DA, Aronovitz MJ, Liu P, Martin GL, Tam K, Pande S, Karas RH, Bloomfield DM, Mendelsohn ME, Blanton RM. CRD-733, a Novel PDE9 (Phosphodiesterase 9) Inhibitor, Reverses Pressure Overload-Induced Heart Failure. Circ Heart Fail 2021; 14:e007300. [PMID: 33464954 DOI: 10.1161/circheartfailure.120.007300] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Augmentation of NP (natriuretic peptide) receptor and cyclic guanosine monophosphate (cGMP) signaling has emerged as a therapeutic strategy in heart failure (HF). cGMP-specific PDE9 (phosphodiesterase 9) inhibition increases cGMP signaling and attenuates stress-induced hypertrophic heart disease in preclinical studies. A novel cGMP-specific PDE9 inhibitor, CRD-733, is currently being advanced in human clinical studies. Here, we explore the effects of chronic PDE9 inhibition with CRD-733 in the mouse transverse aortic constriction pressure overload HF model. METHODS Adult male C57BL/6J mice were subjected to transverse aortic constriction and developed significant left ventricular (LV) hypertrophy after 7 days (P<0.001). Mice then received daily treatment with CRD-733 (600 mg/kg per day; n=10) or vehicle (n=17), alongside sham-operated controls (n=10). RESULTS CRD-733 treatment reversed existing LV hypertrophy compared with vehicle (P<0.001), significantly improved LV ejection fraction (P=0.009), and attenuated left atrial dilation (P<0.001), as assessed by serial echocardiography. CRD-733 prevented elevations in LV end diastolic pressures (P=0.037) compared with vehicle, while lung weights, a surrogate for pulmonary edema, were reduced to sham levels. Chronic CRD-733 treatment increased plasma cGMP levels compared with vehicle (P<0.001), alongside increased phosphorylation of Ser273 of cardiac myosin binding protein-C, a cGMP-dependent protein kinase I phosphorylation site. CONCLUSIONS The PDE9 inhibitor, CRD-733, improves key hallmarks of HF including LV hypertrophy, LV dysfunction, left atrial dilation, and pulmonary edema after pressure overload in the mouse transverse aortic constriction HF model. Additionally, elevated plasma cGMP may be used as a biomarker of target engagement. These findings support future investigation into the therapeutic potential of CRD-733 in human HF.
Collapse
Affiliation(s)
- Daniel A Richards
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Mark J Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Peiwen Liu
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| | - Gregory L Martin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Kelly Tam
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Suchita Pande
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.)
| | | | | | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (D.A.R., M.J.A., G.L.M., K.T., S.P., R.H.K., R.M.B.).,Graduate School of Biomedical Sciences, Tufts University, Boston, MA (P.L., R.M.B.)
| |
Collapse
|
12
|
Main A, Fuller W, Baillie GS. Post-translational regulation of cardiac myosin binding protein-C: A graphical review. Cell Signal 2020; 76:109788. [DOI: 10.1016/j.cellsig.2020.109788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 01/01/2023]
|
13
|
Abstract
Cyclic GMP (cGMP) represents a classic intracellular second messenger molecule. Over the past 2 decades, important discoveries have identified that cGMP signaling becomes deranged in heart failure (HF) and that cGMP and its main kinase effector, protein kinase G, generally oppose the biological abnormalities contributing to HF, in experimental studies. These findings have influenced the design of clinical trials of cGMP-augmenting drugs in HF patients. At present, the trial results of cGMP-augmenting therapies in HF remain mixed. As detailed in this review, strong evidence now exists that protein kinase G opposes pathologic cardiac remodeling through regulation of diverse biological processes and myocardial substrates. Potential reasons for the failures of cGMP-augmenting drugs in HF may be related to biological mechanisms opposing cGMP or because of certain features of clinical trials, all of which are discussed.
Collapse
|
14
|
Li J, Mamidi R, Doh CY, Holmes JB, Bharambe N, Ramachandran R, Stelzer JE. AAV9 gene transfer of cMyBPC N-terminal domains ameliorates cardiomyopathy in cMyBPC-deficient mice. JCI Insight 2020; 5:130182. [PMID: 32750038 PMCID: PMC7526450 DOI: 10.1172/jci.insight.130182] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/29/2020] [Indexed: 01/05/2023] Open
Abstract
Decreased cardiac myosin-binding protein C (cMyBPC) expression due to inheritable mutations is thought to contribute to the hypertrophic cardiomyopathy (HCM) phenotype, suggesting that increasing cMyBPC content is of therapeutic benefit. In vitro assays show that cMyBPC N-terminal domains (NTDs) contain structural elements necessary and sufficient to modulate actomyosin interactions, but it is unknown if they can regulate in vivo myocardial function. To test whether NTDs can recapitulate the effects of full-length (FL) cMyBPC in rescuing cardiac function in a cMyBPC-null mouse model of HCM, we assessed the efficacy of AAV9 gene transfer of a cMyBPC NTD that contained domains C0C2 and compared its therapeutic potential with AAV9-FL gene replacement. AAV9 vectors were administered systemically at neonatal day 1, when early-onset disease phenotypes begin to manifest. A comprehensive analysis of in vivo and in vitro function was performed following cMyBPC gene transfer. Our results show that a systemic injection of AAV9-C0C2 significantly improved cardiac function (e.g., 52.24 ± 1.69 ejection fraction in the C0C2-treated group compared with 40.07 ± 1.97 in the control cMyBPC–/– group, P < 0.05) and reduced the histopathologic signs of cardiomyopathy. Furthermore, C0C2 significantly slowed and normalized the accelerated cross-bridge kinetics found in cMyBPC–/– control myocardium, as evidenced by a 32.41% decrease in the rate of cross-bridge detachment (krel). Results indicate that C0C2 can rescue biomechanical defects of cMyBPC deficiency and that the NTD may be a target region for therapeutic myofilament kinetic manipulation. Cardiac function improves following AAV9-mediated delivery of the C0C2 domains of cardiac myosin-binding protein C in a mouse model of hypertrophic cardiomyopathy.
Collapse
|
15
|
Arif M, Nabavizadeh P, Song T, Desai D, Singh R, Bazrafshan S, Kumar M, Wang Y, Gilbert RJ, Dhandapany PS, Becker RC, Kranias EG, Sadayappan S. Genetic, clinical, molecular, and pathogenic aspects of the South Asian-specific polymorphic MYBPC3 Δ25bp variant. Biophys Rev 2020; 12:1065-1084. [PMID: 32656747 PMCID: PMC7429610 DOI: 10.1007/s12551-020-00725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.
Collapse
Affiliation(s)
- Mohammed Arif
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| | - Pooneh Nabavizadeh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Darshini Desai
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Rohit Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Sholeh Bazrafshan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mohit Kumar
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI, 02908, USA
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Medicine, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, 45267, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| |
Collapse
|
16
|
Kumar M, Haghighi K, Kranias EG, Sadayappan S. Phosphorylation of cardiac myosin-binding protein-C contributes to calcium homeostasis. J Biol Chem 2020; 295:11275-11291. [PMID: 32554466 DOI: 10.1074/jbc.ra120.013296] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac myosin-binding protein-C (cMyBP-C) is highly phosphorylated under basal conditions. However, its phosphorylation level is decreased in individuals with heart failure. The necessity of cMyBP-C phosphorylation for proper contractile function is well-established, but the physiological and pathological consequences of decreased cMyBP-C phosphorylation in the heart are not clear. Herein, using intact adult cardiomyocytes from mouse models expressing phospho-ablated (AAA) and phosphomimetic (DDD) cMyBP-C as well as controls, we found that cMyBP-C dephosphorylation is sufficient to reduce contractile parameters and calcium kinetics associated with prolonged decay time of the calcium transient and increased diastolic calcium levels. Isoproterenol stimulation reversed the depressive contractile and Ca2+-kinetic parameters. Moreover, caffeine-induced calcium release yielded no difference between AAA/DDD and controls in calcium content of the sarcoplasmic reticulum. On the other hand, sodium-calcium exchanger function and phosphorylation levels of calcium-handling proteins were significantly decreased in AAA hearts compared with controls. Stress conditions caused increases in both spontaneous aftercontractions in AAA cardiomyocytes and the incidence of arrhythmias in vivo compared with the controls. Treatment with omecamtiv mecarbil, a positive cardiac inotropic drug, rescued the contractile deficit in AAA cardiomyocytes, but not the calcium-handling abnormalities. These findings indicate a cascade effect whereby cMyBP-C dephosphorylation causes contractile defects, which then lead to calcium-cycling abnormalities, resulting in aftercontractions and increased incidence of cardiac arrhythmias under stress conditions. We conclude that improvement of contractile deficits alone without improving calcium handling may be insufficient for effective management of heart failure.
Collapse
Affiliation(s)
- Mohit Kumar
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kobra Haghighi
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Heart, Lung, and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA .,Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Reil JC, Reil GH, Kovács Á, Sequeira V, Waddingham MT, Lodi M, Herwig M, Ghaderi S, Kreusser MM, Papp Z, Voigt N, Dobrev D, Meyhöfer S, Langer HF, Maier LS, Linz D, Mügge A, Hohl M, Steendijk P, Hamdani N. CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect. J Physiol 2020; 598:3129-3153. [PMID: 32394454 DOI: 10.1113/jp279607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The Anrep effect represents the alteration of left ventricular (LV) contractility to acutely enhanced afterload in a few seconds, thereby preserving stroke volume (SV) at constant preload. As a result of the missing preload stretch in our model, the Anrep effect differs from the slow force response and has a different mechanism. The Anrep effect demonstrated two different phases. First, the sudden increased afterload was momentary equilibrated by the enhanced LV contractility as a result of higher power strokes of strongly-bound myosin cross-bridges. Second, the slightly delayed recovery of SV is perhaps dependent on Ca2+ /calmodulin-dependent protein kinase II activation caused by oxidation and myofilament phosphorylation (cardiac myosin-binding protein-C, myosin light chain 2), maximizing the recruitment of available strongly-bound myosin cross-bridges. Short-lived oxidative stress might present a new facet of subcellular signalling with respect to cardiovascular regulation. Relevance for human physiology was demonstrated by echocardiography disclosing the Anrep effect in humans during handgrip exercise. ABSTRACT The present study investigated whether oxidative stress and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) activity are involved in triggering the Anrep effect. LV pressure-volume (PV) analyses of isolated, preload controlled working hearts were performed at two afterload levels (60 and 100 mmHg) in C57BL/6N wild-type (WT) and CaMKII-double knockout mice (DKOCaMKII ). In snap-frozen WT hearts, force-pCa relationship, H2 O2 generation, CaMKII oxidation and phosphorylation of myofilament and Ca2+ handling proteins were assessed. Acutely raised afterload showed significantly increased wall stress, H2 O2 generation and LV contractility in the PV diagram with an initial decrease and recovery of stroke volume, whereas end-diastolic pressure and volume, as well as heart rate, remained constant. Afterload induced increase in LV contractility was blunted in DKOCaMKII -hearts. Force development of single WT cardiomyocytes was greater with elevated afterload at submaximal Ca2+ concentration and associated with increases in CaMKII oxidation and phosphorylation of cardiac-myosin binding protein-C, myosin light chain and Ca2+ handling proteins. CaMKII activity is involved in the regulation of the Anrep effect and associates with stimulation of oxidative stress, presumably starting a cascade of CaMKII oxidation with downstream phosphorylation of myofilament and Ca2+ handling proteins. These mechanisms improve LV inotropy and preserve stroke volume within few seconds.
Collapse
Affiliation(s)
- Jan-Christian Reil
- Klinik für Innere Medizin II, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitäres Herzzentrum Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Oldenburg, Germany
| | - Árpád Kovács
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Mark T Waddingham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Maria Lodi
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Melissa Herwig
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Shahrooz Ghaderi
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Michael M Kreusser
- Departments of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany and German Center for Diabetes Research, Neuherberg, Germany
| | - Harald F Langer
- Klinik für Innere Medizin II, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitäres Herzzentrum Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lars S Maier
- Klinik und Poliklinik für innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Dominik Linz
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Mathias Hohl
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Paul Steendijk
- Departments of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany.,Department Clinical Pharmacology, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
18
|
Rosas PC, Warren CM, Creed HA, Trzeciakowski JP, Solaro RJ, Tong CW. Cardiac Myosin Binding Protein-C Phosphorylation Mitigates Age-Related Cardiac Dysfunction: Hope for Better Aging? JACC Basic Transl Sci 2019; 4:817-830. [PMID: 31998850 PMCID: PMC6978553 DOI: 10.1016/j.jacbts.2019.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation prevents aging-related cardiac dysfunction. We tested this hypothesis by aging genetic mouse models of hypophosphorylated cMyBP-C, wild-type equivalent, and phosphorylated-mimetic cMyBP-C for 18 to 20 months. Phosphorylated-mimetic cMyBP-C mice exhibited better survival, better preservation of systolic and diastolic functions, and unchanging wall thickness. Wild-type equivalent mice showed decreasing cMyBP-C phosphorylation along with worsening cardiac function and hypertrophy approaching those found in hypophosphorylated cMyBP-C mice. Intact papillary muscle experiments suggested that cMyBP-C phosphorylation increased cross-bridge detachment rates as the underlying mechanism. Thus, phosphorylating cMyBP-C is a novel mechanism with potential to treat aging-related cardiac dysfunction.
Collapse
Key Words
- 3SA, mutated 3 serines to 3 alanines to mimic hypophosphorylated cardiac myosin binding protein-C (S273A, S282A, and S302A)
- 3SD, mutated 3 serines to 3 aspartic acids to mimic phosphorylated cMyBP-C (S273D, S282D, and S302D)
- ANOVA, analysis of variance
- EF, ejection fraction
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- HOP, hydroxyproline
- LV, left ventricular
- aging
- cMyBP-C, cardiac myosin binding protein-C
- cTnI, cardiac troponin I
- cardiac myosin binding protein-C
- dyastolic dysfunction
- heart failure
- phosphorylation
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chad M. Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Heidi A. Creed
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
| | - Jerome P. Trzeciakowski
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Carl W. Tong
- Department of Medical Physiology, Texas A and M University Health Science Center, College of Medicine, College Station, Texas
- Catholic Health Initiatives-St. Joseph Health, Bryan, Texas
| |
Collapse
|
19
|
Nabiev SR, Kopylova GV, Shchepkin DV. The Effect of Cardiac Myosin-Binding Protein C on Calcium Regulation of the Actin–Myosin Interaction Depends on Myosin Light Chain Isoforms. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s000635091905018x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Clark JA, Weiss JD, Campbell SG. A Microwell Cell Capture Device Reveals Variable Response to Dobutamine in Isolated Cardiomyocytes. Biophys J 2019; 117:1258-1268. [PMID: 31537313 DOI: 10.1016/j.bpj.2019.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Isolated ventricular cardiomyocytes exhibit substantial cell-to-cell variability, even when obtained from the same small volume of myocardium. In this study, we investigated the possibility that cardiomyocyte responses to β-adrenergic stimulus are also highly heterogeneous. To achieve the throughput and measurement duration desired for these experiments, we designed and validated a novel microwell system that immobilizes and uniformly orients isolated adult cardiomyocytes. In this configuration, detailed drug responses of dozens of cells can be followed for intervals exceeding 1 h. At the conclusion of an experiment, specific cells can also be harvested via a precision aspirator for single-cell gene expression profiling. Using this system, we followed changes in Ca2+ signaling and contractility of individual cells under sustained application of either dobutamine or omecamtiv mecarbil. Both compounds increased average cardiomyocyte contractility over the course of an hour, but responses of individual cells to dobutamine were significantly more variable. Surprisingly, some dobutamine-treated cardiomyocytes augmented Ca2+ release without increasing contractility. Other cells responded with increased contractility despite unchanged Ca2+ release. Single-cell gene expression analysis revealed significant co-expression of β-adrenergic pathway genes PKA regulatory subunit type I, PKA regulatory subunit type II, and Ca2+/calmodulin-dependent protein kinase II across cardiomyocytes. Other data supported a connection between the effects of dobutamine on relaxation rate and the expression of protein phosphatase 2. These findings suggest that variable drug responses among cells are not merely experimental artifacts. By enabling direct comparison of the functional behavior of an individual cell and the genes it expresses, this new system constitutes a unique tool for interrogating cardiomyocyte drug responses and discovering the genes that modulate them.
Collapse
|
21
|
Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc Natl Acad Sci U S A 2019; 116:15485-15494. [PMID: 31308242 PMCID: PMC6681757 DOI: 10.1073/pnas.1903033116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) is a key regulator of myocardial contractility, and dephosphorylation of cMyBP-C is associated with heart failure. However, the molecular mechanisms underlying contractile regulation by cMyBP-C phosphorylation are poorly understood. We describe the kinase specificity of the multiple phosphorylation sites on cMyBP-C and show that they are interdependent and have distinct effects on the structure of the thin and thick filaments. The results lead to a model of regulation by cMyBP-C phosphorylation through altered affinity of cMyBP-C’s N terminus for thin and thick filaments, as well as their structures and associated regulatory states. Impairment of these mechanisms is likely to underlie the functional effects of mutations in filament proteins associated with cardiomyopathy. The heart’s response to varying demands of the body is regulated by signaling pathways that activate protein kinases which phosphorylate sarcomeric proteins. Although phosphorylation of cardiac myosin binding protein-C (cMyBP-C) has been recognized as a key regulator of myocardial contractility, little is known about its mechanism of action. Here, we used protein kinase A (PKA) and Cε (PKCε), as well as ribosomal S6 kinase II (RSK2), which have different specificities for cMyBP-C’s multiple phosphorylation sites, to show that individual sites are not independent, and that phosphorylation of cMyBP-C is controlled by positive and negative regulatory coupling between those sites. PKA phosphorylation of cMyBP-C’s N terminus on 3 conserved serine residues is hierarchical and antagonizes phosphorylation by PKCε, and vice versa. In contrast, RSK2 phosphorylation of cMyBP-C accelerates PKA phosphorylation. We used cMyBP-C’s regulatory N-terminal domains in defined phosphorylation states for protein–protein interaction studies with isolated cardiac native thin filaments and the S2 domain of cardiac myosin to show that site-specific phosphorylation of this region of cMyBP-C controls its interaction with both the actin-containing thin and myosin-containing thick filaments. We also used fluorescence probes on the myosin-associated regulatory light chain in the thick filaments and on troponin C in the thin filaments to monitor structural changes in the myofilaments of intact heart muscle cells associated with activation of myocardial contraction by the N-terminal region of cMyBP-C in its different phosphorylation states. Our results suggest that cMyBP-C acts as a sarcomeric integrator of multiple signaling pathways that determines downstream physiological function.
Collapse
|
22
|
Cardiac myosin binding protein-C phosphorylation regulates the super-relaxed state of myosin. Proc Natl Acad Sci U S A 2019; 116:11731-11736. [PMID: 31142654 DOI: 10.1073/pnas.1821660116] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) accelerates cardiac contractility. However, the mechanisms by which cMyBP-C phosphorylation increases contractile kinetics have not been fully elucidated. In this study, we tested the hypothesis that phosphorylation of cMyBP-C releases myosin heads from the inhibited super-relaxed state (SRX), thereby determining the fraction of myosin available for contraction. Mice with various alanine (A) or aspartic acid (D) substitutions of the three main phosphorylatable serines of cMyBP-C (serines 273, 282, and 302) were used to address the association between cMyBP-C phosphorylation and SRX. Single-nucleotide turnover in skinned ventricular preparations demonstrated that phosphomimetic cMyBP-C destabilized SRX, whereas phospho-ablated cMyBP-C had a stabilizing effect on SRX. Strikingly, phosphorylation at serine 282 site was found to play a critical role in regulating the SRX. Treatment of WT preparations with protein kinase A (PKA) reduced the SRX, whereas, in nonphosphorylatable cMyBP-C preparations, PKA had no detectable effect. Mice with stable SRX exhibited reduced force production. Phosphomimetic cMyBP-C with reduced SRX exhibited increased rates of tension redevelopment and reduced binding to myosin. We also used recombinant myosin subfragment-2 to disrupt the endogenous interaction between cMyBP-C and myosin and observed a significant reduction in the population of SRX myosin. This peptide also increased force generation and rate of tension redevelopment in skinned fibers. Taken together, this study demonstrates that the phosphorylation-dependent interaction between cMyBP-C and myosin is a determinant of the fraction of myosin available for contraction. Furthermore, the binding between cMyBP-C and myosin may be targeted to improve contractile function.
Collapse
|
23
|
Zhang Y, Wang WE, Zhang X, Li Y, Chen B, Liu C, Ai X, Zhang X, Tian Y, Zhang C, Tang M, Szeto C, Hua X, Xie M, Zeng C, Wu Y, Zhou L, Zhu W, Yu D, Houser SR, Chen X. Cardiomyocyte PKA Ablation Enhances Basal Contractility While Eliminates Cardiac β-Adrenergic Response Without Adverse Effects on the Heart. Circ Res 2019; 124:1760-1777. [PMID: 30982412 DOI: 10.1161/circresaha.118.313417] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE PKA (Protein Kinase A) is a major mediator of β-AR (β-adrenergic) regulation of cardiac function, but other mediators have also been suggested. Reduced PKA basal activity and activation are linked to cardiac diseases. However, how complete loss of PKA activity impacts on cardiac physiology and if it causes cardiac dysfunction have never been determined. OBJECTIVES We set to determine how the heart adapts to the loss of cardiomyocyte PKA activity and if it elicits cardiac abnormalities. METHODS AND RESULTS (1) Cardiac PKA activity was almost completely inhibited by expressing a PKA inhibitor peptide in cardiomyocytes (cPKAi) in mice; (2) cPKAi reduced basal phosphorylation of 2 myofilament proteins (TnI [troponin I] and cardiac myosin binding protein C), and one longitudinal SR (sarcoplasmic reticulum) protein (PLB [phospholamban]) but not of the sarcolemmal proteins (Cav1.2 α1c and PLM [phospholemman]), dyadic protein RyR2, and nuclear protein CREB (cAMP response element binding protein) at their PKA phosphorylation sites; (3) cPKAi increased the expression of CaMKII (Ca2+/calmodulin-dependent kinase II), the Cav1.2 β subunits and current, but decreased CaMKII phosphorylation and CaMKII-mediated phosphorylation of PLB and RyR2; (4) These changes resulted in significantly enhanced myofilament Ca2+ sensitivity, prolonged contraction, slowed relaxation but increased myocyte Ca2+ transient and contraction amplitudes; (5) Isoproterenol-induced PKA and CaMKII activation and their phosphorylation of proteins were prevented by cPKAi; (6) cPKAi abolished the increases of heart rate, and cardiac and myocyte contractility by a β-AR agonist (isoproterenol), showing an important role of PKA and a minimal role of PKA-independent β-AR signaling in acute cardiac regulation; (7) cPKAi mice have partial exercise capability probably by enhancing vascular constriction and ventricular filling during β-AR stimulation; and (8) cPKAi mice did not show any cardiac functional or structural abnormalities during the 1-year study period. CONCLUSIONS PKA activity suppression induces a unique Ca2+ handling phenotype, eliminates β-AR regulation of heart rates and cardiac contractility but does not cause cardiac abnormalities.
Collapse
Affiliation(s)
- Ying Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University (Y.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Wei Eric Wang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiaoying Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Ying Li
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- The General Hospital of The PLA Rocket Force, Beijing, China (Y.L.)
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, François M. Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine (B.C.)
| | - Chong Liu
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, Second Military Medical University, Shanghai (C.L.)
| | - Xiaojie Ai
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University (X.A.)
| | - Xiaoxiao Zhang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | - Ying Tian
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
| | - Chen Zhang
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Mingxin Tang
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Christopher Szeto
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiang Hua
- Fox Chase Cancer Center, Philadelphia, PA (X.H.)
| | - Mingxin Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan (X.Z., M.X.)
| | | | - Yingjie Wu
- Institute of Genome Engineered Animal Models for Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Liaoning (Y.W.)
| | - Lin Zhou
- Cardiology, Daping Hospital, Third Military Medical University, Chongqing (Y.Z., W.E.W., C. Zeng, L.Z.)
| | - Weizhong Zhu
- Department of Pharmacology, Center for Translational Medicine (Y.T., W.Z.), Temple University School of Medicine, Philadelphia, PA
- Pharmacology, School of Pharmacy, Nantong University, Jiangsu (W.Z.)
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA (D.Y.)
| | - Steven R Houser
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| | - Xiongwen Chen
- Department of Physiology and Cardiovascular Research Center (Y.Z., W.E.W., X.Z., Y.L., C.L., X.A., X.Z., C.Z., M.T., C.S., S.R.H., X.C.), Temple University School of Medicine, Philadelphia, PA
| |
Collapse
|
24
|
Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 127:246-259. [PMID: 30633874 DOI: 10.1016/j.yjmcc.2019.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is upregulated in diabetes and significantly contributes to cardiac remodeling with increased risk of cardiac arrhythmias. Diabetes is frequently associated with atrial fibrillation, coronary artery disease, and heart failure, which may further enhance CaMKII. Activation of CaMKII occurs downstream of neurohormonal stimulation (e.g. via G-protein coupled receptors) and involve various posttranslational modifications including autophosphorylation, oxidation, S-nitrosylation and O-GlcNAcylation. CaMKII signaling regulates diverse cellular processes in a spatiotemporal manner including excitation-contraction and excitation-transcription coupling, mechanics and energetics in cardiac myocytes. Chronic activation of CaMKII results in cellular remodeling and ultimately arrhythmogenic alterations in Ca2+ handling, ion channels, cell-to-cell coupling and metabolism. This review addresses the detrimental effects of the upregulated CaMKII signaling to enhance the arrhythmogenic substrate and trigger mechanisms in the heart. We also briefly summarize preclinical studies using kinase inhibitors and genetically modified mice targeting CaMKII in diabetes. The mechanistic understanding of CaMKII signaling, cardiac remodeling and arrhythmia mechanisms may reveal new therapeutic targets and ultimately better treatment in diabetes and heart disease in general.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA.
| | - Julie Bossuyt
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| |
Collapse
|
25
|
Giles J, Patel JR, Miller A, Iverson E, Fitzsimons D, Moss RL. Recovery of left ventricular function following in vivo reexpression of cardiac myosin binding protein C. J Gen Physiol 2019; 151:77-89. [PMID: 30573635 PMCID: PMC6314388 DOI: 10.1085/jgp.201812238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023] Open
Abstract
The loss of cardiac myosin binding protein C (cMyBP-C) results in left ventricular dilation, cardiac hypertrophy, and impaired ventricular function in both constitutive and conditional cMyBP-C knockout (MYBPC3 null) mice. It remains unclear whether the structural and functional phenotypes expressed in the MYBPC3 null mouse are reversible, which is an important question, since reduced expression of cMyBP-C is an important cause of hypertrophic cardiomyopathy in humans. To investigate this question, we generated a cardiac-specific transgenic mouse model using a Tet-Off inducible system to permit the controlled expression of WT cMyBP-C on the MYBPC3 null background. Functional Tet-Off mice expressing WT cMyBP-C (FT-WT) were generated by crossing tetracycline transactivator mice with responder mice carrying the WT cMyBP-C transgene. Prior to dietary doxycycline administration, cMyBP-C was expressed at normal levels in FT-WT myocardium, which exhibited similar levels of steady-state force and in vivo left ventricular function as WT mice. Introduction of dietary doxycycline for four weeks resulted in a partial knockdown of cMyBP-C expression and commensurate impairment of systolic and diastolic function to levels approaching those observed in MYBPC 3 null mice. Subsequent withdrawal of doxycycline from the diet resulted in the reexpression of cMyBP-C to levels comparable to those observed in WT mice, along with near-complete recovery of in vivo ventricular function. These results show that the cardiac phenotypes associated with MYBPC3 null mice are reversible. Our work also validates the use of the Tet-Off inducible system as a means to study the mechanisms underlying hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Jasmine Giles
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Adam Miller
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Elizabeth Iverson
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Daniel Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
- University of Wisconsin Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
26
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
27
|
Bussey CT, Erickson JR. Physiology and pathology of cardiac CaMKII. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Tong CW, Dusio GF, Govindan S, Johnson DW, Kidwell DT, De La Rosa LM, Rosas PC, Liu Y, Ebert E, Newell-Rogers MK, Michel JB, Trzeciakowski JP, Sadayappan S. Usefulness of Released Cardiac Myosin Binding Protein-C as a Predictor of Cardiovascular Events. Am J Cardiol 2017; 120:1501-1507. [PMID: 28847594 PMCID: PMC6034604 DOI: 10.1016/j.amjcard.2017.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/11/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a heart muscle-specific thick filament protein. Elevated level of serum cMyBP-C is an indicator of early myocardial infarction (MI), but its value as a predictor of future cardiovascular disease is unknown. Based on the presence of significant amount of cMyBP-C in the serum of previous study subjects independent of MI, we hypothesized that circulating cMyBP-C is a sensitive indicator of ongoing cardiovascular stress and disease. To test this hypothesis, 75 men and 83 women of similar ages were recruited for a prospective study. They underwent exercise stress echocardiography to provide pre- and poststress blood samples for subsequent determination of serum cMyBP-C levels. The subjects were followed for 1 to 1.5 years. Exercise stress increased serum cMyBP-C in all subjects. Twenty-seven primary events (such as death, MI, revascularization, invasive cardiovascular procedure, or cardiovascular-related hospitalization) and 7 critical events (CE; such as death, MI, stroke, or pulmonary embolism) occurred. After adjusting for sex and cardiovascular risk factors with multivariate Cox regression, a 96% sensitive prestress cMyBP-C threshold carried a hazard ratio of 8.1 with p = 0.041 for primary events. Most subjects (6 of 7) who had CE showed normal ejection fraction on echocardiography. Prestress cMyBP-C demonstrated area under receiver operating curve of 0.91 and multivariate Cox regression hazard ratio of 13.8 (p = 0.000472) for CE. Thus, basal cMyBP-C levels reflected susceptibility for a variety of cardiovascular diseases. Together with its high sensitivity, cMyBP-C holds potential as a screening biomarker for the existence of severe cardiovascular diseases.
Collapse
Affiliation(s)
- Carl W Tong
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, Texas; Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | | | - Suresh Govindan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois
| | - Dustin W Johnson
- Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | - David T Kidwell
- Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | - Lisa M De La Rosa
- Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | - Paola C Rosas
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, Texas
| | - Yang Liu
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, Texas
| | - Elizabeth Ebert
- Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | - M Karen Newell-Rogers
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, Texas
| | - Jeffrey B Michel
- Baylor Scott & White Health-Central Texas, Internal Medicine/Cardiology Division, Temple, Texas
| | - Jerome P Trzeciakowski
- Department of Medical Physiology, Texas A&M University Health Science Center College of Medicine, Temple, Texas
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois; Department of Internal Medicine, Heart, Lung and Vascular Institute, Cardiovascular Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
29
|
Mamidi R, Gresham KS, Li J, Stelzer JE. Cardiac myosin binding protein-C Ser 302 phosphorylation regulates cardiac β-adrenergic reserve. SCIENCE ADVANCES 2017; 3:e1602445. [PMID: 28345052 PMCID: PMC5345928 DOI: 10.1126/sciadv.1602445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 05/22/2023]
Abstract
Phosphorylation of cardiac myosin binding protein-C (MyBP-C) modulates cardiac contractile function; however, the specific roles of individual serines (Ser) within the M-domain that are targets for β-adrenergic signaling are not known. Recently, we demonstrated that significant accelerations in in vivo pressure development following β-agonist infusion can occur in transgenic (TG) mouse hearts expressing phospho-ablated Ser282 (that is, TGS282A) but not in hearts expressing phospho-ablation of all three serines [that is, Ser273, Ser282, and Ser302 (TG3SA)], suggesting an important modulatory role for other Ser residues. In this regard, there is evidence that Ser302 phosphorylation may be a key contributor to the β-agonist-induced positive inotropic responses in the myocardium, but its precise functional role has not been established. Thus, to determine the in vivo and in vitro functional roles of Ser302 phosphorylation, we generated TG mice expressing nonphosphorylatable Ser302 (that is, TGS302A). Left ventricular pressure-volume measurements revealed that TGS302A mice displayed no accelerations in the rate of systolic pressure rise and an inability to maintain systolic pressure following dobutamine infusion similar to TG3SA mice, implicating Ser302 phosphorylation as a critical regulator of enhanced systolic performance during β-adrenergic stress. Dynamic strain-induced cross-bridge (XB) measurements in skinned myocardium isolated from TGS302A hearts showed that the molecular basis for impaired β-adrenergic-mediated enhancements in systolic function is due to the absence of protein kinase A-mediated accelerations in the rate of cooperative XB recruitment. These results demonstrate that Ser302 phosphorylation regulates cardiac contractile reserve by enhancing contractile responses during β-adrenergic stress.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth S. Gresham
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Corresponding author.
| |
Collapse
|
30
|
Kensler RW, Craig R, Moss RL. Phosphorylation of cardiac myosin binding protein C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci U S A 2017; 114:E1355-E1364. [PMID: 28167762 PMCID: PMC5338423 DOI: 10.1073/pnas.1614020114] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cardiac myosin binding protein C (cMyBP-C) has a key regulatory role in cardiac contraction, but the mechanism by which changes in phosphorylation of cMyBP-C accelerate cross-bridge kinetics remains unknown. In this study, we isolated thick filaments from the hearts of mice in which the three serine residues (Ser273, Ser282, and Ser302) that are phosphorylated by protein kinase A in the m-domain of cMyBP-C were replaced by either alanine or aspartic acid, mimicking the fully nonphosphorylated and the fully phosphorylated state of cMyBP-C, respectively. We found that thick filaments from the cMyBP-C phospho-deficient hearts had highly ordered cross-bridge arrays, whereas the filaments from the cMyBP-C phospho-mimetic hearts showed a strong tendency toward disorder. Our results support the hypothesis that dephosphorylation of cMyBP-C promotes or stabilizes the relaxed/superrelaxed quasi-helical ordering of the myosin heads on the filament surface, whereas phosphorylation weakens this stabilization and binding of the heads to the backbone. Such structural changes would modulate the probability of myosin binding to actin and could help explain the acceleration of cross-bridge interactions with actin when cMyBP-C is phosphorylated because of, for example, activation of β1-adrenergic receptors in myocardium.
Collapse
Affiliation(s)
- Robert W Kensler
- Department of Anatomy and Neurobiology, University of Puerto Rico Medical School, San Juan, PR 00936;
| | - Roger Craig
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Richard L Moss
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705
| |
Collapse
|
31
|
Gresham KS, Mamidi R, Li J, Kwak H, Stelzer JE. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output. J Appl Physiol (1985) 2016; 122:520-530. [PMID: 27909224 DOI: 10.1152/japplphysiol.00306.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/dtmax and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca2+ activation compared with SAL-treated mice but unaltered myofilament Ca2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output.NEW & NOTEWORTHY Posttranslational modifications to sarcomeric regulatory proteins provide a mechanism to modulate cardiac function in response to stress. In this study, we demonstrate that neurohormonal stress produces modifications to myosin-binding protein C and troponin I, including a reduction in protein expression within the sarcomere and increased phosphorylation of the remaining protein, which serve to enhance cross-bridge kinetics and increase cardiac output. These findings highlight the importance of sarcomeric regulatory protein modifications in modulating ventricular function during cardiac stress.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Hyerin Kwak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
32
|
Gresham KS, Stelzer JE. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J Physiol 2016; 594:669-86. [PMID: 26635197 DOI: 10.1113/jp270959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS β-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the β-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased β-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. β-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following β-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in β-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the β-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced β-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
33
|
|
34
|
Cardiac myosin-binding protein C: A protein once at loose ends finds its regulatory groove. Proc Natl Acad Sci U S A 2016; 113:3133-5. [PMID: 26966230 DOI: 10.1073/pnas.1602568113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function. Proc Natl Acad Sci U S A 2016; 113:3239-44. [PMID: 26908872 DOI: 10.1073/pnas.1522236113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.
Collapse
|
36
|
Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 2016; 7:38. [PMID: 26913007 PMCID: PMC4753332 DOI: 10.3389/fphys.2016.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-phosphorylatable cMyBP-C [Ser to Ala substitutions at residues Ser273, Ser282, and Ser302 (i.e., 3SA)], at sarcomere length (SL) 1.9 μm or 2.1μm, prior and following protein kinase A (PKA) treatment. Steady-state force generation measurements revealed a blunting in the length-dependent increase in myofilament Ca(2+)-sensitivity of force generation (pCa50) following an increase in SL in 3SA skinned myocardium compared to WT skinned myocardium. Dynamic XB behavior was assessed at submaximal Ca(2+)-activations by imposing an acute rapid stretch of 2% of initial muscle length, and measuring both the magnitudes and rates of resultant phases of force decay due to strain-induced XB detachment and delayed force rise due to recruitment of additional XBs with increased SL (i.e., stretch activation). The magnitude (P2) and rate of XB detachment (k rel) following stretch was significantly reduced in 3SA skinned myocardium compared to WT skinned myocardium at short and long SL, and prior to and following PKA treatment. Furthermore, the length-dependent acceleration of k rel due to decreased SL that was observed in WT skinned myocardium was abolished in 3SA skinned myocardium. PKA treatment accelerated the rate of XB recruitment (k df) following stretch at both SL's in WT but not in 3SA skinned myocardium. The amplitude of the enhancement in force generation above initial pre-stretch steady-state levels (P3) was not different between WT and 3SA skinned myocardium at any condition measured. However, the magnitude of the entire delayed force phase which can dip below initial pre-stretch steady-state levels (Pdf) was significantly lower in 3SA skinned myocardium under all conditions, in part due to a reduced magnitude of XB detachment (P2) in 3SA skinned myocardium compared to WT skinned myocardium. These findings demonstrate that cMyBP-C phospho-ablation regulates SL- and PKA-mediated effects on XB kinetics in the myocardium, which would be expected to contribute to the regulation of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Sujeet Verma
- Department of Horticultural Science, Institute of Food and Agricultural Sciences Gulf Coast Research and Education Center, University of Florida Wimauma, FL, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
37
|
Sánchez-Marteles M, Rubio Gracia J, Giménez López I. Pathophysiology of acute heart failure: A world to know. Rev Clin Esp 2016. [DOI: 10.1016/j.rceng.2015.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Sánchez-Marteles M, Rubio Gracia J, Giménez López I. Pathophysiology of acute heart failure: a world to know. Rev Clin Esp 2015; 216:38-46. [PMID: 26541707 DOI: 10.1016/j.rce.2015.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Our understanding of the pathophysiological mechanisms of heart failure (HF) has changed considerably in recent years, progressing from a merely haemodynamic viewpoint to a concept of systemic and multifactorial involvement in which numerous mechanisms interact and concatenate. The effects of these mechanisms go beyond the heart itself, to other organs of vital importance such as the kidneys, liver and lungs. Despite this, the pathophysiology of acute HF still has aspects that elude our deeper understanding. Haemodynamic overload, venous congestion, neurohormonal systems, natriuretic peptides, inflammation, oxidative stress and its repercussion on cardiac and vascular remodelling are currently considered the main players in acute HF. Starting with the concept of acute HF, this review provides updates on the various mechanisms involved in this disease.
Collapse
Affiliation(s)
- M Sánchez-Marteles
- Servicio de Medicina Interna. Hospital Clínico Universitario Lozano Blesa, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, España.
| | - J Rubio Gracia
- Servicio de Medicina Interna. Hospital Clínico Universitario Lozano Blesa, Zaragoza, España; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, España
| | - I Giménez López
- Departamento de Farmacología y Fisiología, Universidad de Zaragoza, Zaragoza, España; Instituto Aragonés de Ciencias de la Salud, Instituto de Investigación Sanitaria de Aragón, España
| |
Collapse
|
39
|
Thoonen R, Giovanni S, Govindan S, Lee DI, Wang GR, Calamaras TD, Takimoto E, Kass DA, Sadayappan S, Blanton RM. Molecular Screen Identifies Cardiac Myosin-Binding Protein-C as a Protein Kinase G-Iα Substrate. Circ Heart Fail 2015; 8:1115-22. [PMID: 26477830 DOI: 10.1161/circheartfailure.115.002308] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/08/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pharmacological activation of cGMP-dependent protein kinase G I (PKGI) has emerged as a therapeutic strategy for humans with heart failure. However, PKG-activating drugs have been limited by hypotension arising from PKG-induced vasodilation. PKGIα antiremodeling substrates specific to the myocardium might provide targets to circumvent this limitation, but currently remain poorly understood. METHODS AND RESULTS We performed a screen for myocardial proteins interacting with the PKGIα leucine zipper (LZ)-binding domain to identify myocardial-specific PKGI antiremodeling substrates. Our screen identified cardiac myosin-binding protein-C (cMyBP-C), a cardiac myocyte-specific protein, which has been demonstrated to inhibit cardiac remodeling in the phosphorylated state, and when mutated leads to hypertrophic cardiomyopathy in humans. GST pulldowns and precipitations with cGMP-conjugated beads confirmed the PKGIα-cMyBP-C interaction in myocardial lysates. In vitro studies demonstrated that purified PKGIα phosphorylates the cMyBP-C M-domain at Ser-273, Ser-282, and Ser-302. cGMP induced cMyBP-C phosphorylation at these residues in COS cells transfected with PKGIα, but not in cells transfected with LZ mutant PKGIα, containing mutations to disrupt LZ substrate binding. In mice subjected to left ventricular pressure overload, PKGI activation with sildenafil increased cMyBP-C phosphorylation at Ser-273 compared with untreated mice. cGMP also induced cMyBP-C phosphorylation in isolated cardiac myocytes. CONCLUSIONS Taken together, these data support that PKGIα and cMyBP-C interact in the heart and that cMyBP-C is an anti remodeling PKGIα kinase substrate. This study provides the first identification of a myocardial-specific PKGIα LZ-dependent antiremodeling substrate and supports further exploration of PKGIα myocardial LZ substrates as potential therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Robrecht Thoonen
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Shewit Giovanni
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Suresh Govindan
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Dong I Lee
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Guang-Rong Wang
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Timothy D Calamaras
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Eiki Takimoto
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - David A Kass
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Sakthivel Sadayappan
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.)
| | - Robert M Blanton
- From the Molecular Cardiology Research Institute (R.T., G.-R.W., T.D.C., R.M.B.) and Division of Cardiology (R.M.B.), Tufts Medical Center, Boston, MA; Tufts University School of Medicine, Boston, MA (S. Giovanni); Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, IL (S. Govindan, S.S.); Johns Hopkins Medical Institutions, Baltimore, MD (D.I.L., E.T., D.A.K.); and Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan (E.T.).
| |
Collapse
|
40
|
van Dijk SJ, Witt CC, Harris SP. Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C. J Mol Cell Cardiol 2015; 88:124-32. [PMID: 26455481 DOI: 10.1016/j.yjmcc.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is an essential regulator of cross bridge cycling. Through mechanisms that are incompletely understood the N-terminal domains (NTDs) of cMyBP-C can activate contraction even in the absence of calcium and can also inhibit cross bridge kinetics in the presence of calcium. In vitro studies indicated that the proline-alanine rich (p/a) region and C1 domain are involved in these processes, although effects were greater using human proteins compared to murine proteins (Shaffer et al. J Biomed Biotechnol 2010, 2010: 789798). We hypothesized that the p/a and C1 region are critical for the timing of contraction. In this study we tested this hypothesis using a mouse model lacking the p/a and C1 region (p/a-C1(-/-) mice) to investigate the in vivo relevance of these regions on cardiac performance. Surprisingly, hearts of adult p/a-C1(-/-) mice functioned normally both on a cellular and whole organ level. Force measurements in permeabilized cardiomyocytes from adult p/a-C1(-/-) mice and wild type (Wt) littermate controls demonstrated similar rates of force redevelopment both at submaximal and maximal activation. Maximal and passive force and calcium sensitivity of force were comparable between groups as well. Echocardiograms showed normal isovolumetric contraction times, fractional shortening and ejection fraction, indicating proper systolic function in p/a-C1(-/-) mouse hearts. p/a-C1(-/-) mice showed a slight but significant reduction in isovolumetric relaxation time compared to Wt littermates, yet this difference disappeared in older mice (7-8months of age). Moreover, stroke volume was preserved in p/a-C1(-/-) mice, corroborating sufficient time for normal filling of the heart. Overall, the hearts of p/a-C1(-/-) mice showed no signs of dysfunction even after chronic stress with an adrenergic agonist. Together, these results indicate that the p/a region and the C1 domain of cMyBP-C are not critical for normal cardiac contraction in mice and that these domains have little if any impact on cross bridge kinetics in mice. These results thus contrast with in vitro studies utilizing proteins encoding the human p/a region and C1 domain. More detailed insight in how individual domains of cMyBP-C function and interact, across species and over the wide spectrum of conditions in which the heart has to function, will be essential to a better understanding of how cMyBP-C tunes cardiac contraction.
Collapse
Affiliation(s)
- Sabine J van Dijk
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Christian C Witt
- Department of Anaesthesiology and Operative Intensive Care, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Martin M LeWinter
- From the Cardiology Unit and the Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington.
| | - Bradley M Palmer
- From the Cardiology Unit and the Department of Molecular Physiology and Biophysics, University of Vermont College of Medicine, Burlington
| |
Collapse
|