1
|
Castillo-Passi C, Kunze KP, Crabb MG, Munoz C, Fotaki A, Neji R, Irarrazaval P, Prieto C, Botnar RM. Highly efficient image navigator based 3D whole-heart cardiac MRA at 0.55T. Magn Reson Med 2024. [PMID: 39415543 DOI: 10.1002/mrm.30316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/07/2024] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE To develop and evaluate a highly efficient free-breathing and contrast-agent-free three-dimensional (3D) whole-heart Cardiac Magnetic Resonance Angiography (CMRA) sequence at 0.55T. METHODS Free-breathing whole-heart CMRA has been previously proposed at 1.5 and 3T. Direct application of this sequence to 0.55T is not possible due to changes in the magnetic properties of the tissues. To enable free-breathing CMRA at 0.55T, pulse sequence design and acquisition parameters of a previously proposed whole-heart CMRA framework are optimized via Bloch simulations. Image navigators (iNAVs) are used to enable nonrigid respiratory motion-correction and 100% respiratory scan efficiency. Patch-based low-rank denoising is employed to accelerate the scan and account for the reduced signal-to-noise ratio at 0.55T. The proposed approach was evaluated on 11 healthy subjects. Image quality was assessed by a clinical expert (1: poor to 5: excellent) for all intrapericardiac structures. Quantitative evaluation was performed by assessing the vessel sharpness of the proximal right coronary artery (RCA). RESULTS Optimization resulted in an imaging flip angle of11 0 ∘ $$ 11{0}^{\circ } $$ , fat saturation flip angle of18 0 ∘ $$ 18{0}^{\circ } $$ , and six k-space lines for iNAV encoding. The relevant cardiac structures and main coronary arteries were visible in all subjects, with excellent image quality (mean4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ) and minimal artifacts (mean4 . 9 / 5 . 0 $$ 4.9/5.0 $$ ), with RCA vessel sharpness (50 . 3 % ± 9 . 8 % $$ 50.3\%\pm 9.8\% $$ ) comparable to previous studies at 1.5T. CONCLUSION The proposed approach enables 3D whole-heart CMRA at 0.55T in a 6-min scan (5 . 9 ± 0 . 7 min $$ 5.9\pm 0.7\;\min $$ ), providing excellent image quality, minimal artifacts, and comparable vessel sharpness to previous 1.5T studies. Future work will include the evaluation of the proposed approach in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Carlos Castillo-Passi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Michael G Crabb
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Camila Munoz
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anastasia Fotaki
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Radhouene Neji
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Pablo Irarrazaval
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Engineering, Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Prieto
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Millennium Institute for Intelligent Healthcare Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Engineering, Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Institute for Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Intelligent Healthcare Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Engineering, Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Advanced Study at Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Ayde R, Vornehm M, Zhao Y, Knoll F, Wu EX, Sarracanie M. MRI at low field: A review of software solutions for improving SNR. NMR IN BIOMEDICINE 2024:e5268. [PMID: 39375036 DOI: 10.1002/nbm.5268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/12/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
Low magnetic field magnetic resonance imaging (MRI) (B 0 $$ {B}_0 $$ < 1 T) is regaining interest in the magnetic resonance (MR) community as a complementary, more flexible, and cost-effective approach to MRI diagnosis. Yet, the impaired signal-to-noise ratio (SNR) per square root of time, or SNR efficiency, leading in turn to prolonged acquisition times, still challenges its relevance at the clinical level. To address this, researchers investigate various hardware and software solutions to improve SNR efficiency at low field, including the leveraging of latest advances in computing hardware. However, there may not be a single recipe for improving SNR at low field, and it is key to embrace the challenges and limitations of each proposed solution. In other words, suitable solutions depend on the final objective or application envisioned for a low-field scanner and, more importantly, on the characteristics of a specific lowB 0 $$ {B}_0 $$ field. In this review, we aim to provide an overview on software solutions to improve SNR efficiency at low field. First, we cover techniques for efficient k-space sampling and reconstruction. Then, we present post-acquisition techniques that enhance MR images such as denoising and super-resolution. In addition, we summarize recently introduced electromagnetic interference cancellation approaches showing great promises when operating in shielding-free environments. Finally, we discuss the advantages and limitations of these approaches that could provide directions for future applications.
Collapse
Affiliation(s)
- Reina Ayde
- Center for Adaptable MRI Technology, Institute of Medical Sciences, School of Medicine & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Marc Vornehm
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yujiao Zhao
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Florian Knoll
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
| | - Mathieu Sarracanie
- Center for Adaptable MRI Technology, Institute of Medical Sciences, School of Medicine & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Segeroth M, Winkel DJ, Vosshenrich J, Breit HC, Giese D, Haaf P, Zellweger MJ, Bremerich J, Santini F, Pradella M. Cardiac Cine MRI Using a Commercially Available 0.55-T Scanner. Radiol Cardiothorac Imaging 2024; 6:e230331. [PMID: 38990132 PMCID: PMC11369657 DOI: 10.1148/ryct.230331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/02/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024]
Abstract
Purpose To compare parameters of left ventricular (LV) and right ventricular (RV) volume and function between a commercially available 0.55-T low-field-strength cardiac cine MRI scanner and a 1.5-T scanner. Materials and Methods In this prospective study, healthy volunteers (May 2022 to July 2022) underwent same-day cine imaging using both scanners (0.55 T, 1.5 T). Volumetric and functional parameters were assessed by two experts. After analyzing the results of a blinded crossover reader study of the healthy volunteers, 20 participants with clinically indicated cardiac MRI were prospectively included (November 2022 to February 2023). In a second blinded expert reading, parameters from clinical 1.5-T scans in these participants were compared with those same-day 0.55-T scans. Results are displayed as Bland-Altman plots. Results Eleven healthy volunteers (mean age: 33 years [95% CI: 27, 40]; four of 11 [36%] female, seven of 11 [64%] male) were included. Very strong mean correlation was observed (r = 0.98 [95% CI: 0.97, 0.98]). Average deviation between MRI systems was 1.6% (95% CI: 0.3, 2.9) for both readers. Twenty participants with clinically indicated cardiac MRI were included (mean age: 55 years [95% CI: 48, 62], six of 20 [30%] female, 14 of 20 [70%] male). Mean correlation was very strong (r = 0.98 [95% CI: 0.97, 0.98]). LV and RV parameters demonstrated an average deviation of 1.1% (95% CI: 0.1, 2.1) between MRI systems. Conclusion Cardiac cine MRI at 0.55 T yielded comparable results for quantitative biventricular volumetric and functional parameters compared with routine imaging at 1.5 T, if acquisition time is doubled. Keywords: Cardiac, Comparative Studies, Heart, Cardiovascular MRI, Cine, Myocardium Supplemental material is available for this article. ©RSNA, 2024.
Collapse
Affiliation(s)
- Martin Segeroth
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - David J. Winkel
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Jan Vosshenrich
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Hanns-Christian Breit
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Daniel Giese
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Philip Haaf
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Michael J. Zellweger
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | - Jens Bremerich
- From the Department of Radiology (M.S., D.J.W., J.V., H.C.B., J.B.,
F.S., M.P.) and Clinic of Cardiology (P.H., M.J.Z.), University Hospital Basel,
Petersgraben 4, 4031 Basel, Switzerland; and Magnetic Resonance, Siemens
Healthcare, Erlangen, Germany (D.G.)
| | | | | |
Collapse
|
4
|
Voges I, Raimondi F, McMahon CJ, Ait-Ali L, Babu-Narayan SV, Botnar RM, Burkhardt B, Gabbert DD, Grosse-Wortmann L, Hasan H, Hansmann G, Helbing WA, Krupickova S, Latus H, Martini N, Martins D, Muthurangu V, Ojala T, van Ooij P, Pushparajah K, Rodriguez-Palomares J, Sarikouch S, Grotenhuis HB, Greil FG. Clinical impact of novel CMR technology on patients with congenital heart disease. A scientific statement of the Association for European Pediatric and Congenital Cardiology (AEPC) and the European Association of Cardiovascular Imaging (EACVI) of the ESC. Eur Heart J Cardiovasc Imaging 2024:jeae172. [PMID: 38985851 DOI: 10.1093/ehjci/jeae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging is recommended in patients with congenital heart disease (CHD) in clinical practice guidelines as the imaging standard for a large variety of diseases. As CMR is evolving, novel techniques are becoming available. Some of them are already used clinically, whereas others still need further evaluation. In this statement the authors give an overview of relevant new CMR techniques for the assessment of CHD. Studies with reference values for these new techniques are listed in the supplement.
Collapse
Affiliation(s)
- Inga Voges
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | | | - Colin J McMahon
- Department of Paediatric Cardiology, Children's Health Ireland at Crumlin, Dublin 12, Ireland
| | - Lamia Ait-Ali
- Institute of clinical Physiology CNR, Massa, Italy
- Heart Hospital, G. Monastery foundation, Massa, Italy
| | - Sonya V Babu-Narayan
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Institute for Biological and Medical Engineering and School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Dominik D Gabbert
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Lübeck/Kiel, Germany
| | - Lars Grosse-Wortmann
- Division of Cardiology, Oregon Health and Science University Hospital, Portland, Oregon, United States
| | - Hosan Hasan
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- European Pediatric Pulmonary Vascular Disease Network, Berlin, Germany
| | - Willem A Helbing
- Department of Pediatrics, division of cardiology, and department of Radiology, Erasmus MC-Sophia children's hospital, Rotterdam, the Netherlands
| | - Sylvia Krupickova
- Royal Brompton Hospital, Part of Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College, London, England
- Department of Paediatric Cardiology, Royal Brompton Hospital, Sydney Street, London, SW3 6NP, UK
| | - Heiner Latus
- Clinic for Pediatric Cardiology and Congenital Heart Disease Klinikum Stuttgart Germany
| | - Nicola Martini
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
- U.O.C. Bioingegneria, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy
| | - Duarte Martins
- Pediatric Cardiology Department, Hospital de Santa Cruz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - Vivek Muthurangu
- Centre for Translational Cardiovascular Imaging, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Tiina Ojala
- New Children's Hospital Pediatric Research Center, Helsinki University Hospital, Helsinki, Finland
| | - Pim van Ooij
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Center, location AMC, Amsterdam, the Netherlands
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas' Hospital, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Jose Rodriguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, Amsterdam, the Netherlands
- Servicio de Cardiología, Hospital Universitario Vall Hebrón. Institut de Recerca Vall Hebrón (VHIR). Departamento de Medicina, Universitat Autònoma de Barcelona. Barcelona. Spain
| | - Samir Sarikouch
- Department for Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Heynric B Grotenhuis
- Department of Pediatric Cardiology, Wilhelmina Children's Hospital/University Medical Center Utrecht, Utrecht, the Netherlands
| | - F Gerald Greil
- Department of Pediatrics, UT Southwestern/Children's Health, 1935 Medical District Drive B3.09, Dallas, TX 75235
| |
Collapse
|
5
|
Murali S, Ding H, Adedeji F, Qin C, Obungoloch J, Asllani I, Anazodo U, Ntusi NAB, Mammen R, Niendorf T, Adeleke S. Bringing MRI to low- and middle-income countries: Directions, challenges and potential solutions. NMR IN BIOMEDICINE 2024; 37:e4992. [PMID: 37401341 DOI: 10.1002/nbm.4992] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
The global disparity of magnetic resonance imaging (MRI) is a major challenge, with many low- and middle-income countries (LMICs) experiencing limited access to MRI. The reasons for limited access are technological, economic and social. With the advancement of MRI technology, we explore why these challenges still prevail, highlighting the importance of MRI as the epidemiology of disease changes in LMICs. In this paper, we establish a framework to develop MRI with these challenges in mind and discuss the different aspects of MRI development, including maximising image quality using cost-effective components, integrating local technology and infrastructure and implementing sustainable practices. We also highlight the current solutions-including teleradiology, artificial intelligence and doctor and patient education strategies-and how these might be further improved to achieve greater access to MRI.
Collapse
Affiliation(s)
- Sanjana Murali
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Hao Ding
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Fope Adedeji
- School of Medicine, Faculty of Medicine, University College London, London, UK
| | - Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Iris Asllani
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Udunna Anazodo
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- The Research Institute of London Health Sciences Centre and St. Joseph's Health Care, London, Ontario, Canada
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
- South African Medical Research Council Extramural Unit on Intersection of Noncommunicable Diseases and Infectious Diseases, Cape Town, South Africa
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- High Dimensional Neuro-oncology, University College London Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
6
|
Gunasekaran S, Szava-Kovats A, Battey T, Gross J, Picano E, Raman SV, Lee E, Bissell MM, Alasnag M, Campbell-Washburn AE, Hanneman K. Cardiovascular Imaging, Climate Change, and Environmental Sustainability. Radiol Cardiothorac Imaging 2024; 6:e240135. [PMID: 38900024 PMCID: PMC11211952 DOI: 10.1148/ryct.240135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Environmental exposures including poor air quality and extreme temperatures are exacerbated by climate change and are associated with adverse cardiovascular outcomes. Concomitantly, the delivery of health care generates substantial atmospheric greenhouse gas (GHG) emissions contributing to the climate crisis. Therefore, cardiac imaging teams must be aware not only of the adverse cardiovascular health effects of climate change, but also the downstream environmental ramifications of cardiovascular imaging. The purpose of this review is to highlight the impact of climate change on cardiovascular health, discuss the environmental impact of cardiovascular imaging, and describe opportunities to improve environmental sustainability of cardiac MRI, cardiac CT, echocardiography, cardiac nuclear imaging, and invasive cardiovascular imaging. Overarching strategies to improve environmental sustainability in cardiovascular imaging include prioritizing imaging tests with lower GHG emissions when more than one test is appropriate, reducing low-value imaging, and turning equipment off when not in use. Modality-specific opportunities include focused MRI protocols and low-field-strength applications, iodine contrast media recycling programs in cardiac CT, judicious use of US-enhancing agents in echocardiography, improved radiopharmaceutical procurement and waste management in nuclear cardiology, and use of reusable supplies in interventional suites. Finally, future directions and research are highlighted, including life cycle assessments over the lifespan of cardiac imaging equipment and the impact of artificial intelligence tools. Keywords: Heart, Safety, Sustainability, Cardiovascular Imaging Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Suvai Gunasekaran
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Andrew Szava-Kovats
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Thomas Battey
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Jonathan Gross
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Eugenio Picano
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Subha V. Raman
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Emil Lee
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Malenka M. Bissell
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Mirvat Alasnag
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Adrienne E. Campbell-Washburn
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| | - Kate Hanneman
- From the Biomedical Imaging Research Institute, Cedars-Sinai Medical
Center, Los Angeles, Calif (S.G.); Department of Radiology, Feinberg School of
Medicine, Northwestern University, Chicago, Ill (S.G.); Department of Nuclear
Medicine, Peter Lougheed Hospital, Alberta Health Services, Calgary, Canada
(A.S.K.); Department of Radiology, University of Calgary, Calgary, Canada
(A.S.K.); Department of Radiology & Medical Imaging, University of
Virginia, Charlottesville, Va (T.B.); Department of Radiology, Texas
Children’s Hospital, Baylor School of Medicine, Houston, Tex (J.G.);
Division of Cardiology, University Clinical Center of Serbia, University of
Belgrade, Belgrade, Serbia (E.P.); OhioHealth, Columbus, Ohio (S.V.R.); Langley
Memorial Hospital, British Columbia, Canada (E.L.); Department of Biomedical
Imaging Science, University of Leeds, Leeds, United Kingdom (M.M.B.); Cardiac
Center, King Fahad Armed Forces Hospital, Jeddah, Saudi Arabia (M.A.);
Cardiovascular Branch, Division of Intramural Research, National Heart, Lung,
and Blood Institute, National Institutes of Health, Bethesda, Md (A.E.C.W.);
Joint Department of Medical Imaging, Peter Munk Cardiac Centre and Toronto
General Hospital Research Institute, University Medical Imaging Toronto,
University Health Network (UHN), 585 University Avenue, 1 PMB-298, Toronto, ON,
Canada M5G 2N2 (K.H.); and Department of Medical Imaging, University of Toronto,
Toronto, Canada (K.H.)
| |
Collapse
|
7
|
Campbell-Washburn AE, Varghese J, Nayak KS, Ramasawmy R, Simonetti OP. Cardiac MRI at Low Field Strengths. J Magn Reson Imaging 2024; 59:412-430. [PMID: 37530545 PMCID: PMC10834858 DOI: 10.1002/jmri.28890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 08/03/2023] Open
Abstract
Cardiac MR imaging is well established for assessment of cardiovascular structure and function, myocardial scar, quantitative flow, parametric mapping, and myocardial perfusion. Despite the clear evidence supporting the use of cardiac MRI for a wide range of indications, it is underutilized clinically. Recent developments in low-field MRI technology, including modern data acquisition and image reconstruction methods, are enabling high-quality low-field imaging that may improve the cost-benefit ratio for cardiac MRI. Studies to-date confirm that low-field MRI offers high measurement concordance and consistent interpretation with clinical imaging for several routine sequences. Moreover, low-field MRI may enable specific new clinical opportunities for cardiac imaging such as imaging near metal implants, MRI-guided interventions, combined cardiopulmonary assessment, and imaging of patients with severe obesity. In this review, we discuss the recent progress in low-field cardiac MRI with a focus on technical developments and early clinical validation studies. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD USA
| | - Juliet Varghese
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Alfred Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda MD USA
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
8
|
Tian Y, Nayak KS. New clinical opportunities of low-field MRI: heart, lung, body, and musculoskeletal. MAGMA (NEW YORK, N.Y.) 2024; 37:1-14. [PMID: 37902898 PMCID: PMC10876830 DOI: 10.1007/s10334-023-01123-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Contemporary whole-body low-field MRI scanners (< 1 T) present new and exciting opportunities for improved body imaging. The fundamental reason is that the reduced off-resonance and reduced SAR provide substantially increased flexibility in the design of MRI pulse sequences. Promising body applications include lung parenchyma imaging, imaging adjacent to metallic implants, cardiac imaging, and dynamic imaging in general. The lower cost of such systems may make MRI favorable for screening high-risk populations and population health research, and the more open configurations allowed may prove favorable for obese subjects and for pregnant women. This article summarizes promising body applications for contemporary whole-body low-field MRI systems, with a focus on new platforms developed within the past 5 years. This is an active area of research, and one can expect many improvements as MRI physicists fully explore the landscape of pulse sequences that are feasible, and as clinicians apply these to patient populations.
Collapse
Affiliation(s)
- Ye Tian
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA.
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, 3740 McClintock Ave, EEB 406, Los Angeles, CA, 90089-2564, USA
| |
Collapse
|
9
|
McGrath C, Bieri O, Kozerke S, Bauman G. Self-gated cine phase-contrast balanced SSFP flow quantification at 0.55 T. Magn Reson Med 2024; 91:174-189. [PMID: 37668108 DOI: 10.1002/mrm.29837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To implement cine phase-contrast balanced SSFP (PC-bSSFP) for low-field 0.55T cardiac MRI by exploiting the intrinsic flow sensitivity of the bSSFP slice-select gradient and the in-plane phase-cancelation properties of radial trajectories, enabling self-gated and referenceless PC-bSSFP flow quantification at 0.55 T. METHODS A free-running, tiny golden-angle radial PC-bSSFP approach was implemented on 0.55T and 1.5T systems. Cardiac and respiratory self-gating was incorporated to enable electrocardiogram-free scanning during breath-hold and free-breathing. By exploiting the intrinsic in-plane phase-cancelation properties of radial acquisitions and background phase fitting, referenceless single-point PC-bSSFP was realized. In vivo data were acquired in the ascending aorta of healthy subjects at 0.55 T and 1.5 T during breath-hold and free-breathing. Flow data, SNR, and velocity-to-noise ratio were compared relative to data obtained with phase-contrast spoiled gradient-echo variants. RESULTS Velocities acquired with PC-bSSFP compared well with data from phase-contrast spoiled gradient-echo (RMSEv = 5.8 cm/s). PC-bSSFP at 0.55 T resulted in high-quality cine magnitude images and phase maps with sufficient SNR and velocity-to-noise ratio. Breath-hold and free-breathing PC-bSSFP performed very similarly, with comparable flow quantification (RMSEv = 5.7 cm/s). Referenceless single-point PC-bSSFP results agreed well with two-point PC-bSSFP (-1.8 ± 5.2 cm/s) while reducing scan times 2-fold. CONCLUSION PC-bSSFP is feasible on low-field 0.55T systems, producing high-quality cine images while permitting simultaneous aortic flow measurements during breath-hold and free-breathing and without the need for electrocardiogram gating.
Collapse
Affiliation(s)
- Charles McGrath
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Seemann F, Javed A, Khan JM, Bruce CG, Chae R, Yildirim DK, Potersnak A, Wang H, Baute S, Ramasawmy R, Lederman RJ, Campbell-Washburn AE. Dynamic lung water MRI during exercise stress. Magn Reson Med 2023; 90:1396-1413. [PMID: 37288601 PMCID: PMC10521349 DOI: 10.1002/mrm.29716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/06/2023] [Accepted: 05/09/2023] [Indexed: 06/09/2023]
Abstract
PURPOSE Exercise-induced dyspnea caused by lung water is an early heart failure symptom. Dynamic lung water quantification during exercise is therefore of interest to detect early stage disease. This study developed a time-resolved 3D MRI method to quantify transient lung water dynamics during rest and exercise stress. METHODS The method was evaluated in 15 healthy subjects and 2 patients with heart failure imaged in transitions between rest and exercise, and in a porcine model of dynamic extravascular lung water accumulation through mitral regurgitation (n = 5). Time-resolved images were acquired at 0.55T using a continuous 3D stack-of-spirals proton density weighted sequence with 3.5 mm isotropic resolution, and derived using a motion corrected sliding-window reconstruction with 90-s temporal resolution in 20-s increments. A supine MRI-compatible pedal ergometer was used for exercise. Global and regional lung water density (LWD) and percent change in LWD (ΔLWD) were automatically quantified. RESULTS A ΔLWD increase of 3.3 ± 1.5% was achieved in the animals. Healthy subjects developed a ΔLWD of 7.8 ± 5.0% during moderate exercise, peaked at 16 ± 6.8% during vigorous exercise, and remained unchanged over 10 min at rest (-1.4 ± 3.5%, p = 0.18). Regional LWD were higher posteriorly compared the anterior lungs (rest: 33 ± 3.7% vs 20 ± 3.1%, p < 0.0001; peak exercise: 36 ± 5.5% vs 25 ± 4.6%, p < 0.0001). Accumulation rates were slower in patients than healthy subjects (2.0 ± 0.1%/min vs 2.6 ± 0.9%/min, respectively), whereas LWD were similar at rest (28 ± 10% and 28 ± 2.9%) and peak exercise (ΔLWD 17 ± 10% vs 16 ± 6.8%). CONCLUSION Lung water dynamics can be quantified during exercise using continuous 3D MRI and a sliding-window image reconstruction.
Collapse
Affiliation(s)
- Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ahsan Javed
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jaffar M Khan
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher G Bruce
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rachel Chae
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dursun Korel Yildirim
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Amanda Potersnak
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Haiyan Wang
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott Baute
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Campbell-Washburn AE, Keenan KE, Hu P, Mugler JP, Nayak KS, Webb AG, Obungoloch J, Sheth KN, Hennig J, Rosen MS, Salameh N, Sodickson DK, Stein JM, Marques JP, Simonetti OP. Low-field MRI: A report on the 2022 ISMRM workshop. Magn Reson Med 2023; 90:1682-1694. [PMID: 37345725 PMCID: PMC10683532 DOI: 10.1002/mrm.29743] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/21/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
In March 2022, the first ISMRM Workshop on Low-Field MRI was held virtually. The goals of this workshop were to discuss recent low field MRI technology including hardware and software developments, novel methodology, new contrast mechanisms, as well as the clinical translation and dissemination of these systems. The virtual Workshop was attended by 368 registrants from 24 countries, and included 34 invited talks, 100 abstract presentations, 2 panel discussions, and 2 live scanner demonstrations. Here, we report on the scientific content of the Workshop and identify the key themes that emerged. The subject matter of the Workshop reflected the ongoing developments of low-field MRI as an accessible imaging modality that may expand the usage of MRI through cost reduction, portability, and ease of installation. Many talks in this Workshop addressed the use of computational power, efficient acquisitions, and contemporary hardware to overcome the SNR limitations associated with low field strength. Participants discussed the selection of appropriate clinical applications that leverage the unique capabilities of low-field MRI within traditional radiology practices, other point-of-care settings, and the broader community. The notion of "image quality" versus "information content" was also discussed, as images from low-field portable systems that are purpose-built for clinical decision-making may not replicate the current standard of clinical imaging. Speakers also described technical challenges and infrastructure challenges related to portability and widespread dissemination, and speculated about future directions for the field to improve the technology and establish clinical value.
Collapse
Affiliation(s)
- Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kathryn E Keenan
- Physical Measurement Laboratory, National Institute of Standards and Technology, Boulder, Colorado, USA
| | - Peng Hu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - John P Mugler
- Department of Radiology & Medical Imaging, Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Andrew G Webb
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Kevin N Sheth
- Division of Neurocritical Care and Emergency Neurology, Departments of Neurology and Neurosurgery, and the Yale Center for Brain and Mind Health, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jürgen Hennig
- Dept.of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts, USA
| | - Najat Salameh
- Center for Adaptable MRI Technology (AMT Center), Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Daniel K Sodickson
- Department of Radiology, NYU Langone Health, New York, New York, USA
- Center for Advanced Imaging Innovation and Research, NYU Langone Health, New York, New York, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Xu P, Meersmann T, Wang J, Wang C. Review of oxygen-enhanced lung mri: Pulse sequences for image acquisition and T 1 measurement. Med Phys 2023; 50:5987-6007. [PMID: 37345214 DOI: 10.1002/mp.16553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Oxygen-enhanced MR imaging (OE-MRI) is a special proton imaging technique that can be performed without modifying the scanner hardware. Many fundamental studies have been conducted following the initial reporting of this technique in 1996, illustrating the high potential for its clinical application. This review aims to summarise and analyse current pulse sequences and T1 measurement methods for OE-MRI, including fundamental theories, existing pulse sequences applied to OE-MRI acquisition and T1 mapping. Wash-in and wash-out time identify lung function and are sensitive to ventilation; thus, dynamic OE-MRI is also discussed in this review. We compare OE-MRI with the primary competitive technique, hyperpolarised gas MRI. Finally, an overview of lower-field applications of OE-MRI is highlighted, as relatively recent publications demonstrated positive results. Lower-field OE-MRI, which is lower than 1.5 T, could be an alternative modality for detecting lung diseases. This educational review is aimed at researchers who want a quick summary of the steps needed to perform pulmonary OE-MRI with a particular focus on sequence design, settings, and quantification methods.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
| | - Thomas Meersmann
- Sir Peter Mansfield Magnetic Imaging Centre, University of Nottingham, Nottingham, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Jing Wang
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| | - Chengbo Wang
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo, China
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo, China
| |
Collapse
|
13
|
Peereboom SM, Guenthner C, Albannay MM, Kozerke S. Preliminary experience of cardiac proton spectroscopy at 0.75 T. NMR IN BIOMEDICINE 2023; 36:e4892. [PMID: 36504173 DOI: 10.1002/nbm.4892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 06/15/2023]
Abstract
Recent work on high-performance lower-field MR systems has renewed the interest in assessing relative advantages and disadvantages of magnetic fields less than 1 T. The objective of the present work was to investigate signal-to-noise ratio (SNR) scaling of point-resolved spectroscopy as a function of field strength and to test the feasibility of proton MRS of triglycerides (TGs) in human in vivo myocardium at 0.75 T relative to 1.5 T and 3 T. Measurements at 0.75 T were obtained by temporarily ramping down a clinical 3 T MR scanner. System configurations at 0.75, 1.5 and 3 T featured identical hard- and software, except for differences in transmit/receive coil geometries and receive channel count, which were accounted for in SNR comparisons. Proton MRS was performed at 0.75 T, 1.5 T and 3 T in ex vivo tissue and in vivo calf muscle to measure T1 and T2 values as a function of field strength, which in turn served as input to simulations of SNR scaling and field-dependent TG fit errors. Preliminary in vivo spectra of myocardium were acquired at 0.75 T, 1.5 T and 3 T in healthy subjects. Measurements of both ex vivo tissue and in vivo muscle tissue at 0.75 T versus 1.5 T and 3 T confirmed decreasing T1 and increasing T2 * for decreasing field strengths. Using measured T1 , T2 and T2 * as input and using field-dependent echo time and bandwidth scaling, simulated Cramér-Rao lower bounds of TG amplitudes at 0.75 T were 2.3 and 4.5 times larger with respect to 1.5 T and 3 T, respectively. In vivo measurements demonstrate that human proton spectroscopy of TGs in cardiac muscle is feasible at 0.75 T, supporting the potential practical value of lower-field high-performance MR systems.
Collapse
Affiliation(s)
- Sophie M Peereboom
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Mohammed M Albannay
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Salameh N, Lurie DJ, Ipek Ö, Cooley CZ, Campbell-Washburn AE. Exploring the foothills: benefits below 1 Tesla? MAGMA (NEW YORK, N.Y.) 2023; 36:329-333. [PMID: 37482583 DOI: 10.1007/s10334-023-01106-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Affiliation(s)
- Najat Salameh
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - David J Lurie
- Biomedical Physics, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Özlem Ipek
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Clarissa Zimmerman Cooley
- Department of Radiology, Massachusetts General Hospital, Athinoula A Martinos Center for Biomedical Imaging, Boston, MA, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Hamilton JI, Truesdell W, Galizia M, Burris N, Agarwal P, Seiberlich N. A low-rank deep image prior reconstruction for free-breathing ungated spiral functional CMR at 0.55 T and 1.5 T. MAGMA (NEW YORK, N.Y.) 2023; 36:451-464. [PMID: 37043121 PMCID: PMC11017470 DOI: 10.1007/s10334-023-01088-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/02/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023]
Abstract
OBJECTIVE This study combines a deep image prior with low-rank subspace modeling to enable real-time (free-breathing and ungated) functional cardiac imaging on a commercial 0.55 T scanner. MATERIALS AND METHODS The proposed low-rank deep image prior (LR-DIP) uses two u-nets to generate spatial and temporal basis functions that are combined to yield dynamic images, with no need for additional training data. Simulations and scans in 13 healthy subjects were performed at 0.55 T and 1.5 T using a golden angle spiral bSSFP sequence with images reconstructed using [Formula: see text]-ESPIRiT, low-rank plus sparse (L + S) matrix completion, and LR-DIP. Cartesian breath-held ECG-gated cine images were acquired for reference at 1.5 T. Two cardiothoracic radiologists rated images on a 1-5 scale for various categories, and LV function measurements were compared. RESULTS LR-DIP yielded the lowest errors in simulations, especially at high acceleration factors (R [Formula: see text] 8). LR-DIP ejection fraction measurements agreed with 1.5 T reference values (mean bias - 0.3% at 0.55 T and - 0.2% at 1.5 T). Compared to reference images, LR-DIP images received similar ratings at 1.5 T (all categories above 3.9) and slightly lower at 0.55 T (above 3.4). CONCLUSION Feasibility of real-time functional cardiac imaging using a low-rank deep image prior reconstruction was demonstrated in healthy subjects on a commercial 0.55 T scanner.
Collapse
Affiliation(s)
- Jesse I Hamilton
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | - William Truesdell
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Mauricio Galizia
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Nicholas Burris
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Prachi Agarwal
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
| | - Nicole Seiberlich
- Department of Radiology, University of Michigan, 1301 Catherine St, Ann Arbor, MI, 48109-1590, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Guenthner C, Peereboom SM, Dillinger H, McGrath C, Albannay MM, Vishnevskiy V, Fuetterer M, Luechinger R, Jenneskens T, Sturzenegger U, Overweg J, Koken P, Börnert P, Kozerke S. Ramping down a clinical 3 T scanner: a journey into MRI and MRS at 0.75 T. MAGMA (NEW YORK, N.Y.) 2023:10.1007/s10334-023-01089-9. [PMID: 37171689 PMCID: PMC10386956 DOI: 10.1007/s10334-023-01089-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/06/2023] [Accepted: 04/01/2023] [Indexed: 05/13/2023]
Abstract
OBJECT Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system. MATERIALS AND METHODS By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system. RESULTS Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers. DISCUSSION Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.
Collapse
Affiliation(s)
- Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
| | | | - Hannes Dillinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Charles McGrath
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | - Valery Vishnevskiy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Max Fuetterer
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Varghese J, Jin N, Giese D, Chen C, Liu Y, Pan Y, Nair N, Shalaan MT, Khan M, Tong MS, Ahmad R, Han Y, Simonetti OP. Building a comprehensive cardiovascular magnetic resonance exam on a commercial 0.55 T system: A pictorial essay on potential applications. Front Cardiovasc Med 2023; 10:1120982. [PMID: 36937932 PMCID: PMC10014600 DOI: 10.3389/fcvm.2023.1120982] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023] Open
Abstract
Background Contemporary advances in low-field magnetic resonance imaging systems can potentially widen access to cardiovascular magnetic resonance (CMR) imaging. We present our initial experience in building a comprehensive CMR protocol on a commercial 0.55 T system with a gradient performance of 26 mT/m amplitude and 45 T/m/s slew rate. To achieve sufficient image quality, we adapted standard imaging techniques when possible, and implemented compressed-sensing (CS) based techniques when needed in an effort to compensate for the inherently low signal-to-noise ratio at lower field strength. Methods A prototype CMR exam was built on an 80 cm, ultra-wide bore commercial 0.55 T MR system. Implementation of all components aimed to overcome the inherently lower signal of low-field and the relatively longer echo and repetition times owing to the slower gradients. CS-based breath-held and real-time cine imaging was built utilizing high acceleration rates to meet nominal spatial and temporal resolution recommendations. Similarly, CS 2D phase-contrast cine was implemented for flow. Dark-blood turbo spin echo sequences with deep learning based denoising were implemented for morphology assessment. Magnetization-prepared single-shot myocardial mapping techniques incorporated additional source images. CS-based dynamic contrast-enhanced imaging was implemented for myocardial perfusion and 3D MR angiography. Non-contrast 3D MR angiography was built with electrocardiogram-triggered, navigator-gated magnetization-prepared methods. Late gadolinium enhanced (LGE) tissue characterization methods included breath-held segmented and free-breathing single-shot imaging with motion correction and averaging using an increased number of source images. Proof-of-concept was demonstrated through porcine infarct model, healthy volunteer, and patient scans. Results Reasonable image quality was demonstrated for cardiovascular structure, function, flow, and LGE assessment. Low-field afforded utilization of higher flip angles for cine and MR angiography. CS-based techniques were able to overcome gradient speed limitations and meet spatial and temporal resolution recommendations with imaging times comparable to higher performance scanners. Tissue mapping and perfusion imaging require further development. Conclusion We implemented cardiac applications demonstrating the potential for comprehensive CMR on a novel commercial 0.55 T system. Further development and validation studies are needed before this technology can be applied clinically.
Collapse
Affiliation(s)
- Juliet Varghese
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions USA, Malvern, PA, United States
| | - Daniel Giese
- Magnetic Resonance, Siemens Healthcare, Erlangen, Germany
- Institute of Radiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Chong Chen
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Yingmin Liu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Yue Pan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Nikita Nair
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mahmoud T. Shalaan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Emergency Medicine, The Ohio State University, Columbus, OH, United States
| | - Matthew S. Tong
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Rizwan Ahmad
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Yuchi Han
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Orlando P. Simonetti
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
- Department of Radiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
Seemann F, Javed A, Chae R, Ramasawmy R, O'Brien K, Baute S, Xue H, Lederman RJ, Campbell-Washburn AE. Imaging gravity-induced lung water redistribution with automated inline processing at 0.55 T cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2022; 24:35. [PMID: 35668497 PMCID: PMC9172183 DOI: 10.1186/s12968-022-00862-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Quantitative assessment of dynamic lung water accumulation is of interest to unmask latent heart failure. We develop and validate a free-breathing 3D ultrashort echo time (UTE) sequence with automated inline image processing to image changes in lung water density (LWD) using high-performance 0.55 T cardiovascular magnetic resonance (CMR). METHODS Quantitative lung water CMR was performed on 15 healthy subjects using free-breathing 3D stack-of-spirals proton density weighted UTE at 0.55 T. Inline image reconstruction and automated image processing was performed using the Gadgetron framework. A gravity-induced redistribution of LWD was provoked by sequentially acquiring images in the supine, prone, and again supine position. Quantitative validation was performed in a phantom array of vials containing mixtures of water and deuterium oxide. RESULTS The phantom experiment validated the capability of the sequence in quantifying water density (bias ± SD 4.3 ± 4.8%, intraclass correlation coefficient, ICC = 0.97). The average global LWD was comparable between imaging positions (supine 24.7 ± 3.4%, prone 22.7 ± 3.1%, second supine 25.3 ± 3.6%), with small differences between imaging phases (first supine vs prone 2.0%, p < 0.001; first supine vs second supine - 0.6%, p = 0.001; prone vs second supine - 2.7%, p < 0.001). In vivo test-retest repeatability in LWD was excellent (- 0.17 ± 0.91%, ICC = 0.97). A regional LWD redistribution was observed in all subjects when repositioning, with a predominant posterior LWD accumulation when supine, and anterior accumulation when prone (difference in anterior-posterior LWD: supine - 11.6 ± 2.7%, prone 5.5 ± 2.7%, second supine - 11.4 ± 2.9%). Global LWD maps were calculated inline within 23.2 ± 0.3 s following the image reconstruction using the automated pipeline. CONCLUSIONS Redistribution of LWD due to gravitational forces can be depicted and quantified using a validated free-breathing 3D proton density weighted UTE sequence and inline automated image processing pipeline on a high-performance 0.55 T CMR system.
Collapse
Affiliation(s)
- Felicia Seemann
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ahsan Javed
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rachel Chae
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kendall O'Brien
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Scott Baute
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hui Xue
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert J Lederman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Qin C, Murali S, Lee E, Supramaniam V, Hausenloy DJ, Obungoloch J, Brecher J, Lin R, Ding H, Akudjedu TN, Anazodo UC, Jagannathan NR, Ntusi NAB, Simonetti OP, Campbell-Washburn AE, Niendorf T, Mammen R, Adeleke S. Sustainable low-field cardiovascular magnetic resonance in changing healthcare systems. Eur Heart J Cardiovasc Imaging 2022; 23:e246-e260. [PMID: 35157038 PMCID: PMC9159744 DOI: 10.1093/ehjci/jeab286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Abstract
Cardiovascular disease continues to be a major burden facing healthcare systems worldwide. In the developed world, cardiovascular magnetic resonance (CMR) is a well-established non-invasive imaging modality in the diagnosis of cardiovascular disease. However, there is significant global inequality in availability and access to CMR due to its high cost, technical demands as well as existing disparities in healthcare and technical infrastructures across high-income and low-income countries. Recent renewed interest in low-field CMR has been spurred by the clinical need to provide sustainable imaging technology capable of yielding diagnosticquality images whilst also being tailored to the local populations and healthcare ecosystems. This review aims to evaluate the technical, practical and cost considerations of low field CMR whilst also exploring the key barriers to implementing sustainable MRI in both the developing and developed world.
Collapse
Affiliation(s)
- Cathy Qin
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Sanjana Murali
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Elsa Lee
- School of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | | - Derek J Hausenloy
- Division of Medicine, University College London, London, UK
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
- Hatter Cardiovascular Institue, UCL Institute of Cardiovascular Sciences, University College London, London, UK
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| | - Johnes Obungoloch
- Department of Biomedical Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | | | - Rongyu Lin
- School of Medicine, University College London, London, UK
| | - Hao Ding
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Theophilus N Akudjedu
- Institute of Medical Imaging and Visualisation, Faculty of Health and Social Science, Bournemouth University, Poole, UK
| | | | - Naranamangalam R Jagannathan
- Department of Electrical Engineering, Indian Institute of Technology, Chennai, India
- Department of Radiology, Sri Ramachandra University Medical College, Chennai, India
- Department of Radiology, Chettinad Hospital and Research Institute, Kelambakkam, India
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, Western Cape, South Africa
| | - Orlando P Simonetti
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Radiology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Centre for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Regina Mammen
- Department of Cardiology, The Essex Cardiothoracic Centre, Basildon, UK
| | - Sola Adeleke
- School of Cancer & Pharmaceutical Sciences, King’s College London, Queen Square, London WC1N 3BG, UK
- High Dimensional Neurology, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
20
|
Edalati M, Zheng Y, Watkins MP, Chen J, Liu L, Zhang S, Song Y, Soleymani S, Lenihan DJ, Lanza GM. Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI. Med Phys 2021; 49:129-143. [PMID: 34748660 PMCID: PMC9299210 DOI: 10.1002/mp.15327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Cardiovascular magnetic resonance (CMR) is a vital diagnostic tool in the management of cardiovascular diseases. The advent of advanced CMR technologies combined with artificial intelligence (AI) has the potential to simplify imaging, reduce image acquisition time without compromising image quality (IQ), and improve magnetic field uniformity. Here, we aim to implement two AI-based deep learning techniques for automatic slice alignment and cardiac shimming and evaluate their performance in clinical cardiac magnetic resonance imaging (MRI). METHODS Two deep neural networks were developed, trained, and validated on pre-acquired cardiac MRI datasets (>500 subjects) to achieve automatic slice planning and shimming (implemented in the scanner) for CMR. To examine the performance of our automated cardiac planning (EasyScan) and AI-based shim (AI shim), two prospective studies were performed subsequently. For the EasyScan validation, 10 healthy subjects underwent two identical CMR protocols: with manual cardiac planning and with AI-based EasyScan to assess protocol scan time difference and accuracy of cardiac plane prescriptions on a 1.5 T clinical MRI scanner. For the AI shim validation, a total of 20 subjects were recruited: 10 healthy and 10 cardio-oncology patients with referrals for a CMR examination. Cine images were obtained with standard cardiac volume shim and with AI shim to assess signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), overall IQ (sharpness and MR image degradation), ejection fraction (EF), and absolute wall thickening. A hybrid statistical method using of nonparametric (Wilcoxon) and parametric (t-test) assessments was employed for statistical analyses. RESULTS CMR protocol with AI-based plane prescriptions, EasyScan, minimized operator dependence and reduced overall scanning time by over 2 min (∼13 % faster, p < 0.001) compared to the protocol with manual cardiac planning. EasyScan plane prescriptions also demonstrated more accurate (less plane angulation errors from planes manually prescribed by a certified cardiac MRI technologist) cardiac planes than previously reported strategies. Additionally, AI shim resulted in improved B0 field homogeneity. Cine images obtained with AI shim revealed a significantly higher SNR (12.49%; p = 0.002) than those obtained with volume shim (volume shim: 32.90 ± 7.42 vs. AI shim: 37.01 ± 8.87) for the left ventricle (LV) myocardium. LV myocardium CNR was 12.48% higher for cine imaging with AI shim (149.02 ± 39.15) than volume shim (132.49 ± 33.94). Images obtained with AI shim resulted in sharper images than those obtained with volume shim (p = 0.012). The LVEF and absolute wall thickening also showed that differences exist between the two shimming methods. The LVEF by AI shim was shown to be slightly larger than LVEF by volume shim in two groups: 2.87% higher with AI shim for the healthy group and 1.70% higher with AI shim for the patient group. The LV absolute wall thickening (in mm) also showed that differences exist between shimming methods for each group with larger changes observed in the patient group (healthy: 3.31%, p = 0.234 and patient group: 7.29%, p = 0.059). CONCLUSIONS CMR exams using EasyScan for cardiac planning demonstrated accelerated cardiac exam compared to the CMR protocol with manual cardiac planning. Improved and more uniform B0 magnetic field homogeneity also achieved using AI shim technique compared to volume shimming.
Collapse
Affiliation(s)
- Masoud Edalati
- United Imaging Healthcare America, Inc., Houston, Texas, USA
| | - Yuan Zheng
- United Imaging Healthcare America, Inc., Houston, Texas, USA
| | - Mary P Watkins
- Cardiology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junjie Chen
- Cardiology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liu Liu
- United Imaging Healthcare America, Inc., Houston, Texas, USA
| | - Shuheng Zhang
- United Imaging Healthcare America, Inc., Houston, Texas, USA
| | - Yanli Song
- United Imaging Healthcare America, Inc., Houston, Texas, USA
| | - Samira Soleymani
- Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario, Canada
| | - Daniel J Lenihan
- Cardiology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gregory M Lanza
- Cardiology Division, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
van Zandwijk JK, Simonis FFJ, Heslinga FG, Hofmeijer EIS, Geelkerken RH, ten Haken B. Comparing the signal enhancement of a gadolinium based and an iron-oxide based contrast agent in low-field MRI. PLoS One 2021; 16:e0256252. [PMID: 34403442 PMCID: PMC8370648 DOI: 10.1371/journal.pone.0256252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/04/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, there has been a renewed interest in low-field MRI. Contrast agents (CA) in MRI have magnetic behavior dependent on magnetic field strength. Therefore, the optimal contrast agent for low-field MRI might be different from what is used at higher fields. Ultra-small superparamagnetic iron-oxides (USPIOs), commonly used as negative CA, might also be used for generating positive contrast in low-field MRI. The purpose of this study was to determine whether an USPIO or a gadolinium based contrast agent is more appropriate at low field strengths. Relaxivity values of ferumoxytol (USPIO) and gadoterate (gadolinium based) were used in this research to simulate normalized signal intensity (SI) curves within a concentration range of 0–15 mM. Simulations were experimentally validated on a 0.25T MRI scanner. Simulations and experiments were performed using spin echo (SE), spoiled gradient echo (SGE), and balanced steady-state free precession (bSSFP) sequences. Maximum achievable SIs were assessed for both CAs in a range of concentrations on all sequences. Simulations at 0.25T showed a peak in SIs at low concentrations ferumoxytol versus a wide top at higher concentrations for gadoterate in SE and SGE. Experiments agreed well with the simulations in SE and SGE, but less in the bSSFP sequence due to overestimated relaxivities in simulations. At low magnetic field strengths, ferumoxytol generates similar signal enhancement at lower concentrations than gadoterate.
Collapse
Affiliation(s)
- Jordy K. van Zandwijk
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- * E-mail:
| | - Frank F. J. Simonis
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Friso G. Heslinga
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Elfi I. S. Hofmeijer
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Robert H. Geelkerken
- Department of Vascular Surgery, Medisch Spectrum Twente, Enschede, Netherlands
- Multimodality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Bennie ten Haken
- Magnetic Detection & Imaging, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
22
|
Evaluation of Myocardial Infarction by Cardiovascular Magnetic Resonance at 0.55-T Compared to 1.5-T. JACC Cardiovasc Imaging 2021; 14:1866-1868. [PMID: 34023254 DOI: 10.1016/j.jcmg.2021.02.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/03/2023]
|
23
|
Willemink MJ, Varga-Szemes A, Schoepf UJ, Codari M, Nieman K, Fleischmann D, Mastrodicasa D. Emerging methods for the characterization of ischemic heart disease: ultrafast Doppler angiography, micro-CT, photon-counting CT, novel MRI and PET techniques, and artificial intelligence. Eur Radiol Exp 2021; 5:12. [PMID: 33763754 PMCID: PMC7991013 DOI: 10.1186/s41747-021-00207-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
After an ischemic event, disruptive changes in the healthy myocardium may gradually develop and may ultimately turn into fibrotic scar. While these structural changes have been described by conventional imaging modalities mostly on a macroscopic scale-i.e., late gadolinium enhancement at magnetic resonance imaging (MRI)-in recent years, novel imaging methods have shown the potential to unveil an even more detailed picture of the postischemic myocardial phenomena. These new methods may bring advances in the understanding of ischemic heart disease with potential major changes in the current clinical practice. In this review article, we provide an overview of the emerging methods for the non-invasive characterization of ischemic heart disease, including coronary ultrafast Doppler angiography, photon-counting computed tomography (CT), micro-CT (for preclinical studies), low-field and ultrahigh-field MRI, and 11C-methionine positron emission tomography. In addition, we discuss new opportunities brought by artificial intelligence, while addressing promising future scenarios and the challenges for the application of artificial intelligence in the field of cardiac imaging.
Collapse
Affiliation(s)
- Martin J. Willemink
- grid.168010.e0000000419368956Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94035 USA
| | - Akos Varga-Szemes
- grid.259828.c0000 0001 2189 3475Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC USA
| | - U. Joseph Schoepf
- grid.259828.c0000 0001 2189 3475Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC USA
| | - Marina Codari
- grid.168010.e0000000419368956Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94035 USA
| | - Koen Nieman
- grid.168010.e0000000419368956Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA USA ,Stanford Cardiovascular Institute, Stanford, CA 94305 USA
| | - Dominik Fleischmann
- grid.168010.e0000000419368956Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94035 USA ,Stanford Cardiovascular Institute, Stanford, CA 94305 USA
| | - Domenico Mastrodicasa
- Department of Radiology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94035, USA. .,Stanford Cardiovascular Institute, Stanford, CA, 94305, USA.
| |
Collapse
|
24
|
Craven TP, Tsao CW, La Gerche A, Simonetti OP, Greenwood JP. Exercise cardiovascular magnetic resonance: development, current utility and future applications. J Cardiovasc Magn Reson 2020; 22:65. [PMID: 32907587 PMCID: PMC7488086 DOI: 10.1186/s12968-020-00652-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Stress cardiac imaging is the current first line investigation for coronary artery disease diagnosis and decision making and an adjunctive tool in a range of non-ischaemic cardiovascular diseases. Exercise cardiovascular magnetic resonance (Ex-CMR) has developed over the past 25 years to combine the superior image qualities of CMR with the preferred method of exercise stress. Presently, numerous exercise methods exist, from performing stress on an adjacent CMR compatible treadmill to in-scanner exercise, most commonly on a supine cycle ergometer. Cardiac conditions studied by Ex-CMR are broad, commonly investigating ischaemic heart disease and congenital heart disease but extending to pulmonary hypertension and diabetic heart disease. This review presents an in-depth assessment of the various Ex-CMR stress methods and the varied pulse sequence approaches, including those specially designed for Ex-CMR. Current and future developments in image acquisition are highlighted, and will likely lead to a much greater clinical use of Ex-CMR across a range of cardiovascular conditions.
Collapse
Affiliation(s)
- Thomas P Craven
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.
| | - Connie W Tsao
- Cardiovascular Division, Beth Israel Deaconess Medical Center, 330 Brookline Ave, RW-453, Boston, MA, 02215, USA
| | - Andre La Gerche
- Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, Australia
- National Centre for Sports Cardiology, St Vincent's Hospital, Fitzroy, Australia
| | | | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
25
|
Varghese J, Craft J, Crabtree CD, Liu Y, Jin N, Chow K, Ahmad R, Simonetti OP. Assessment of cardiac function, blood flow and myocardial tissue relaxation parameters at 0.35 T. NMR IN BIOMEDICINE 2020; 33:e4317. [PMID: 32363644 DOI: 10.1002/nbm.4317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
A low field strength (B0) system could increase cardiac MRI availability for patients otherwise contraindicated at higher field. Lower equipment costs could also broaden cardiac MR accessibility. The current study investigated the feasibility of cardiac function with steady-state free precession and flow assessment with phase contrast (PC) cine images at 0.35 T, and evaluated differences in myocardial relaxation times using quantitative T1, T2 and T2* maps by comparison with 1.5 and 3 T results in a small cohort of six healthy volunteers. Signal-to-noise ratio (SNR) differences across systems were characterized with proton density-weighted spin echo phantom data. SNR at 0.35 T was lower by factors of 5.5 and 15.0 compared with the 1.5 and 3 T systems used in this study. All cine images at 0.35 T scored 3 or greater on a five-point image quality scale. Normalized blood-myocardium contrast in cine images, left ventricular volumes (end diastolic volume, end systolic volume) and function (ejection fraction and stroke volume) measures at 0.35 T matched 1.5 and 3 T results. Phase-to-noise ratio in 0.35 T PC images (11.7 ± 1.9) was lower than 1.5 T (18.7 ± 5.2) and 3 T (44.9 ± 16.5). Peak velocity and stroke volume determined from PC images were similar across systems. Myocardial T1 increased (564 ± 13 ms at 0.35 T, 955 ± 19 ms at 1.5 T and 1200 ± 35 ms at 3 T) while T2 (59 ± 4 ms at 0.35 T, 49 ± 3 ms at 1.5 T and 40 ± 2 ms at 3 T) and T2* (42 ± 8 ms at 0.35 T, 33 ± 6 ms at 1.5 T and 24 ± 3 ms at 3 T) decreased with increasing B0. Despite SNR deficits, cardiovascular function, flow assessment and myocardial relaxation parameter mapping is feasible at 0.35 T using standard cardiovascular imaging sequences.
Collapse
Affiliation(s)
- Juliet Varghese
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jason Craft
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- St. Francis Hospital, Roslyn, New York, USA
| | - Christopher D Crabtree
- Kinesiology, Health and Exercise Sciences, Department of Human Sciences, The Ohio State University, Columbus, Ohio
| | - Yingmin Liu
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Ning Jin
- Cardiovascular MR R&D, Siemens Medical Solutions, Columbus, Ohio
| | - Kelvin Chow
- Cardiovascular MR R&D, Siemens Medical Solutions, Chicago, Illinois
| | - Rizwan Ahmad
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio
| | - Orlando P Simonetti
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
- Department of Radiology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
26
|
Bandettini WP, Shanbhag SM, Mancini C, McGuirt DR, Kellman P, Xue H, Henry JL, Lowery M, Thein SL, Chen MY, Campbell-Washburn AE. A comparison of cine CMR imaging at 0.55 T and 1.5 T. J Cardiovasc Magn Reson 2020; 22:37. [PMID: 32423456 PMCID: PMC7232838 DOI: 10.1186/s12968-020-00618-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/20/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND There is a renewed interest in lower field magnetic resonance imaging (MRI) systems for cardiovascular magnetic resonance (CMR), due to their favorable physical properties, reduced costs, and increased accessibility to patients with implants. We sought to assess the diagnostic capabilities of high-performance low-field (0.55 T) CMR imaging for quantification of right and left ventricular volumes and systolic function in both healthy subjects and patients referred for clinical CMR. METHODS Sixty-five subjects underwent paired exams at 1.5 T using a clinical CMR scanner and using an identical CMR system modified to operate at 0.55 T. Volumetric coverage of the right ventricle (RV) and left ventricles (LV) was obtained using either a breath-held cine balanced steady-state free-precession acquisition or a motion-corrected free-breathing re-binned cine acquisition. Bland-Altman analysis was used to compare LV and RV end-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF), and LV mass. Diagnostic confidence was scored on a Likert-type ordinal scale by blinded readers. RESULTS There were no significant differences in LV and RV EDV between the two scanners (e.g., LVEDV: p = 0.77, bias = 0.40 mL, correlation coefficient = 0.99; RVEDV: p = 0.17, bias = - 1.6 mL, correlation coefficient = 0.98), and regional wall motion abnormality scoring was similar (kappa 0.99). Blood-myocardium contrast-to-noise ratio (CNR) at 0.55 T was 48 ± 7% of the 1.5 T CNR, and contrast was sufficient for endocardial segmentation in all cases. Diagnostic confidence of images was scored as "good" to "excellent" for the two field strengths in the majority of studies. CONCLUSION A high-performance 0.55 T system offers good bSSFP CMR image quality, and quantification of biventricular volumes and systolic function that is comparable to 1.5 T in patients. TRIAL REGISTRATION Clinicaltrials.gov NCT03331380, NCT03581318.
Collapse
Affiliation(s)
- W Patricia Bandettini
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Sujata M Shanbhag
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Christine Mancini
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Delaney R McGuirt
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Peter Kellman
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Hui Xue
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Jennifer L Henry
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Margaret Lowery
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Swee Lay Thein
- Sickle Cell Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Bethesda, MD, USA
| | - Marcus Y Chen
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Department of Health and Human Services, Building 10, Room BID-47, 10 Center Dr, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Restivo MC, Ramasawmy R, Bandettini WP, Herzka DA, Campbell-Washburn AE. Efficient spiral in-out and EPI balanced steady-state free precession cine imaging using a high-performance 0.55T MRI. Magn Reson Med 2020; 84:2364-2375. [PMID: 32291845 DOI: 10.1002/mrm.28278] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Low-field MRI offers favorable physical properties for SNR-efficient long readout acquisitions such as spiral and EPI. We used a 0.55 tesla (T) MRI system equipped with high-performance hardware to increase the sampling duty cycle and extend the TR of balanced steady-state free precession (bSSFP) cardiac cine acquisitions, which typically are limited by banding artifacts. METHODS We developed a high-efficiency spiral in-out bSSFP acquisition, with zeroth- and first-gradient moment nulling, and an EPI bSSFP acquisition for cardiac cine imaging using a contemporary MRI system modified to operate at 0.55T. Spiral in-out and EPI bSSFP cine protocols, with TR = 8 ms, were designed to maintain both spatiotemporal resolution and breath-hold length. Simulations, phantom imaging, and healthy volunteer imaging studies (n = 12) were performed to assess SNR and image quality using these high sampling duty-cycle bSSFP sequences. RESULTS Spiral in-out bSSFP performed favorably at 0.55T and generated good image quality, whereas EPI bSSFP suffered motion and flow artifacts. There was no difference in ejection fraction comparing spiral in-out with standard Cartesian imaging. Moreover, human images demonstrated a 79% ± 21% increase in myocardial SNR using spiral in-out bSSFP and 50% ± 14% increase in SNR using EPI bSSFP as compared with the reference Cartesian acquisition. Spiral in-out acquisitions at 0.55T recovered 69% ± 14% of the myocardial SNR at 1.5T. CONCLUSION Efficient bSSFP spiral in-out provided high-quality cardiac cine imaging and SNR recovery on a high-performance 0.55T MRI system.
Collapse
Affiliation(s)
- Matthew C Restivo
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Rajiv Ramasawmy
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - W Patricia Bandettini
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Daniel A Herzka
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Adrienne E Campbell-Washburn
- Cardiovascular Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
28
|
Abbas H, Broche LM, Ezdoglian A, Li D, Yuecel R, James Ross P, Cheyne L, Wilson HM, Lurie DJ, Dawson DK. Fast field-cycling magnetic resonance detection of intracellular ultra-small iron oxide particles in vitro: Proof-of-concept. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106722. [PMID: 32248086 PMCID: PMC7167511 DOI: 10.1016/j.jmr.2020.106722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Inflammation is central in disease pathophysiology and accurate methods for its detection and quantification are increasingly required to guide diagnosis and therapy. Here we explored the ability of Fast Field-Cycling Magnetic Resonance (FFC-MR) in quantifying the signal of ultra-small superparamagnetic iron oxide particles (USPIO) phagocytosed by J774 macrophage-like cells as a proof-of-principle. METHODS Relaxation rates were measured in suspensions of J774 macrophage-like cells loaded with USPIO (0-200 μg/ml Fe as ferumoxytol), using a 0.25 T FFC benchtop relaxometer and a human whole-body, in-house built 0.2 T FFC-MR prototype system with a custom test tube coil. Identical non-imaging, saturation recovery pulse sequence with 90° flip angle and 20 different evolution fields selected logarithmically between 80 μT and 0.2 T (3.4 kHz and 8.51 MHz proton Larmor frequency [PLF] respectively). Results were compared with imaging flow cytometry quantification of side scatter intensity and USPIO-occupied cell area. A reference colorimetric iron assay was used. RESULTS The T1 dispersion curves derived from FFC-MR were excellent in detecting USPIO at all concentrations examined (0-200 μg/ml Fe as ferumoxytol) vs. control cells, p ≤ 0.001. FFC-NMR was capable of reliably detecting cellular iron content as low as 1.12 ng/µg cell protein, validated using a colorimetric assay. FFC-MR was comparable to imaging flow cytometry quantification of side scatter intensity but superior to USPIO-occupied cell area, the latter being only sensitive at exposures ≥ 10 µg/ml USPIO. CONCLUSIONS We demonstrated for the first time that FFC-MR is capable of quantitative assessment of intra-cellular iron which will have important implications for the use of USPIO in a variety of biological applications, including the study of inflammation.
Collapse
Affiliation(s)
- Hassan Abbas
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom.
| | - Lionel M Broche
- Bio-Medical Physics, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Aiarpi Ezdoglian
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Department of Medical Chemistry and Toxicology, NI Pirogov Russian National Research Medical University, Moscow 117997, Russian Federation(1)
| | - Dmitriy Li
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Raif Yuecel
- Iain Fraser Cytometry Centre, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Cytomics Centre, College of Life and Environmental Sciences, University of Exeter, EX4 4QD, United Kingdom(1)
| | - P James Ross
- Bio-Medical Physics, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Lesley Cheyne
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - Heather M Wilson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom
| | - David J Lurie
- Bio-Medical Physics, School of Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Dana K Dawson
- Aberdeen Cardiovascular and Diabetes Centre, University of Aberdeen, Aberdeen, United Kingdom.
| |
Collapse
|
29
|
Abstract
In recent years, interventional cardiac magnetic resonance imaging (iCMR) has evolved from attractive theory to clinical routine at several centers. Real-time cardiac magnetic resonance imaging (CMR fluoroscopy) adds value by combining soft-tissue visualization, concurrent hemodynamic measurement, and freedom from radiation. Clinical iCMR applications are expanding because of advances in catheter devices and imaging. In the near future, iCMR promises novel procedures otherwise unsafe under standalone X-Ray guidance.
Collapse
|
30
|
Campbell-Washburn AE, Ramasawmy R, Restivo MC, Bhattacharya I, Basar B, Herzka DA, Hansen MS, Rogers T, Bandettini WP, McGuirt DR, Mancini C, Grodzki D, Schneider R, Majeed W, Bhat H, Xue H, Moss J, Malayeri AA, Jones EC, Koretsky AP, Kellman P, Chen MY, Lederman RJ, Balaban RS. Opportunities in Interventional and Diagnostic Imaging by Using High-Performance Low-Field-Strength MRI. Radiology 2019; 293:384-393. [PMID: 31573398 PMCID: PMC6823617 DOI: 10.1148/radiol.2019190452] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 12/24/2022]
Abstract
Background Commercial low-field-strength MRI systems are generally not equipped with state-of-the-art MRI hardware, and are not suitable for demanding imaging techniques. An MRI system was developed that combines low field strength (0.55 T) with high-performance imaging technology. Purpose To evaluate applications of a high-performance low-field-strength MRI system, specifically MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies. Materials and Methods A commercial 1.5-T MRI system was modified to operate at 0.55 T while maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. MRI was performed between January 2018 and April 2019. T1, T2, and T2* were measured at 0.55 T; relaxivity of exogenous contrast agents was measured; and clinical applications advantageous at low field were evaluated. Results There were 83 0.55-T MRI examinations performed in study participants (45 women; mean age, 34 years ± 13). On average, T1 was 32% shorter, T2 was 26% longer, and T2* was 40% longer at 0.55 T compared with 1.5 T. Nine metallic interventional devices were found to be intrinsically safe at 0.55 T (<1°C heating) and MRI-guided right heart catheterization was performed in seven study participants with commercial metallic guidewires. Compared with 1.5 T, reduced image distortion was shown in lungs, upper airway, cranial sinuses, and intestines because of improved field homogeneity. Oxygen inhalation generated lung signal enhancement of 19% ± 11 (standard deviation) at 0.55 T compared with 7.6% ± 6.3 at 1.5 T (P = .02; five participants) because of the increased T1 relaxivity of oxygen (4.7e-4 mmHg-1sec-1). Efficient spiral image acquisitions were amenable to low field strength and generated increased signal-to-noise ratio compared with Cartesian acquisitions (P < .02). Representative imaging of the brain, spine, abdomen, and heart generated good image quality with this system. Conclusion This initial study suggests that high-performance low-field-strength MRI offers advantages for MRI-guided catheterizations with metal devices, MRI in high-susceptibility regions, and efficient imaging. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Grist in this issue.
Collapse
Affiliation(s)
- Adrienne E. Campbell-Washburn
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Rajiv Ramasawmy
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Matthew C. Restivo
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Ipshita Bhattacharya
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Burcu Basar
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Daniel A. Herzka
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Michael S. Hansen
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Toby Rogers
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - W. Patricia Bandettini
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Delaney R. McGuirt
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Christine Mancini
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - David Grodzki
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Rainer Schneider
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Waqas Majeed
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Himanshu Bhat
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Hui Xue
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Joel Moss
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Ashkan A. Malayeri
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Elizabeth C. Jones
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Alan P. Koretsky
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Peter Kellman
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Marcus Y. Chen
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Robert J. Lederman
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| | - Robert S. Balaban
- From the Cardiovascular Branch, Division of Intramural Research,
National Heart, Lung, and Blood Institute, National Institutes of Health,
Bethesda, Md (A.E.C.W., R.R., M.C.R., I.B., B.B., D.A.H., M.S.H., T.R., W.P.B.,
D.R.M., C.M., M.Y.C., R.J.L.); Siemens Healthcare GmbH, Erlangen, Germany (D.G.,
R.S.); Siemens Medical Solutions Inc, Malvern Pa (W.M., H.B.); Systems Biology
Center, Division of Intramural Research, National Heart, Lung, and Blood
Institute, National Institutes of Health, 10 Center Dr, Building 10, Room
4C-1581, Bethesda, MD 20892-1458 (H.X., P.K., R.S.B.); Pulmonary Branch,
Division of Intramural Research, National Heart, Lung, and Blood Institute,
National Institutes of Health, Bethesda, MD (J.M.); Department of Radiology and
Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Md
(A.A.M., E.C.J.); and Laboratory of Functional and Molecular Imaging, Division
of Intramural Research, National Institute of Neurologic Disorders and Stroke,
National Institutes of Health, Bethesda, Md (A.P.K.)
| |
Collapse
|
31
|
Schellhammer SM, Hoffmann AL, Gantz S, Smeets J, van der Kraaij E, Quets S, Pieck S, Karsch L, Pawelke J. Integrating a low-field open MR scanner with a static proton research beam line: proof of concept. Phys Med Biol 2018; 63:23LT01. [PMID: 30465549 DOI: 10.1088/1361-6560/aaece8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
On-line image guidance using magnetic resonance (MR) imaging is expected to improve the targeting accuracy of proton therapy. However, to date no combined system exists. In this study, for the first time a low-field open MR scanner was integrated with a static proton research beam line to test the feasibility of simultaneous irradiation and imaging. The field-of-view of the MR scanner was aligned with the beam by taking into account the Lorentz force induced beam deflection. Various imaging sequences for extremities were performed on a healthy volunteer and on a patient with a soft-tissue sarcoma of the upper arm, both with the proton beam line switched off. T 1-weighted spin echo images of a tissue-mimicking phantom were acquired without beam, with energised beam line magnets and during proton irradiation. Beam profiles were acquired for the MR scanner's static magnetic field alone and in combination with the dynamic gradient fields during the acquisition of different imaging sequences. It was shown that MR imaging is feasible in the electromagnetically contaminated environment of a proton therapy facility. The observed quality of the anatomical MR images was rated to be sufficient for target volume definition and positioning. The tissue-mimicking phantom showed no visible beam-induced image degradation. The beam profiles depicted no influence due to the dynamic gradient fields of the imaging sequences. This study proves that simultaneous irradiation and in-beam MR imaging is technically feasible with a low-field MR scanner integrated with a static proton research beam line.
Collapse
Affiliation(s)
- Sonja M Schellhammer
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany. Both authors contributed equally to this work
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yao T, Xiao L, Zhao D, Sun Y. GPU Computing based fast discrete wavelet transform for l1-regularized SPIRiT reconstruction. THE IMAGING SCIENCE JOURNAL 2018. [DOI: 10.1080/13682199.2018.1496220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tiechui Yao
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Li Xiao
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Di Zhao
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Yuzhong Sun
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| |
Collapse
|