1
|
Liu H, Zhao Y, Zhao G, Deng Y, Chen YE, Zhang J. SWI/SNF Complex in Vascular Smooth Muscle Cells and Its Implications in Cardiovascular Pathologies. Cells 2024; 13:168. [PMID: 38247859 PMCID: PMC10814623 DOI: 10.3390/cells13020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Mature vascular smooth muscle cells (VSMC) exhibit a remarkable degree of plasticity, a characteristic that has intrigued cardiovascular researchers for decades. Recently, it has become increasingly evident that the chromatin remodeler SWItch/Sucrose Non-Fermentable (SWI/SNF) complex plays a pivotal role in orchestrating chromatin conformation, which is critical for gene regulation. In this review, we provide a summary of research related to the involvement of the SWI/SNF complexes in VSMC and cardiovascular diseases (CVD), integrating these discoveries into the current landscape of epigenetic and transcriptional regulation in VSMC. These novel discoveries shed light on our understanding of VSMC biology and pave the way for developing innovative therapeutic strategies in CVD treatment.
Collapse
Affiliation(s)
- Hongyu Liu
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Molecular & Integrative Physiology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yang Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Guizhen Zhao
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Yongjie Deng
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| | - Y. Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
- Department of Cardiac Surgery, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Jifeng Zhang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA; (H.L.); (Y.Z.)
| |
Collapse
|
2
|
Mahata B, Cabrera A, Brenner DA, Guerra-Resendez RS, Li J, Goell J, Wang K, Guo Y, Escobar M, Parthasarathy AK, Szadowski H, Bedford G, Reed DR, Kim S, Hilton IB. Compact engineered human mechanosensitive transactivation modules enable potent and versatile synthetic transcriptional control. Nat Methods 2023; 20:1716-1728. [PMID: 37813990 PMCID: PMC10630135 DOI: 10.1038/s41592-023-02036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Engineered transactivation domains (TADs) combined with programmable DNA binding platforms have revolutionized synthetic transcriptional control. Despite recent progress in programmable CRISPR-Cas-based transactivation (CRISPRa) technologies, the TADs used in these systems often contain poorly tolerated elements and/or are prohibitively large for many applications. Here, we defined and optimized minimal TADs built from human mechanosensitive transcription factors. We used these components to construct potent and compact multipartite transactivation modules (MSN, NMS and eN3x9) and to build the CRISPR-dCas9 recruited enhanced activation module (CRISPR-DREAM) platform. We found that CRISPR-DREAM was specific and robust across mammalian cell types, and efficiently stimulated transcription from diverse regulatory loci. We also showed that MSN and NMS were portable across Type I, II and V CRISPR systems, transcription activator-like effectors and zinc finger proteins. Further, as proofs of concept, we used dCas9-NMS to efficiently reprogram human fibroblasts into induced pluripotent stem cells and demonstrated that mechanosensitive transcription factor TADs are efficacious and well tolerated in therapeutically important primary human cell types. Finally, we leveraged the compact and potent features of these engineered TADs to build dual and all-in-one CRISPRa AAV systems. Altogether, these compact human TADs, fusion modules and delivery architectures should be valuable for synthetic transcriptional control in biomedical applications.
Collapse
Affiliation(s)
- Barun Mahata
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | | | - Jing Li
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jacob Goell
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Kaiyuan Wang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Yannie Guo
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Mario Escobar
- Department of BioSciences, Rice University, Houston, TX, USA
| | | | - Hailey Szadowski
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Guy Bedford
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Daniel R Reed
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Sunghwan Kim
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| |
Collapse
|
3
|
Zhou Y, Sharma S, Sun X, Guan X, Hou Y, Yang Z, Shi H, Zou MH, Song P, Zhou J, Wang S, Hu Z, Li C. SMYD2 regulates vascular smooth muscle cell phenotypic switching and intimal hyperplasia via interaction with myocardin. Cell Mol Life Sci 2023; 80:264. [PMID: 37615725 PMCID: PMC11071988 DOI: 10.1007/s00018-023-04883-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/14/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
The SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase that has been reported to regulate carcinogenesis and inflammation. However, its role in vascular smooth muscle cell (VSMC) homeostasis and vascular diseases has not been determined. Here, we investigated the role of SMYD2 in VSMC phenotypic modulation and vascular intimal hyperplasia and elucidated the underlying mechanism. We observed that SMYD2 expression was downregulated in injured carotid arteries in mice and phenotypically modulated VSMCs in vitro. Using an SMC-specific SMYD2 knockout mouse model, we found that SMYD2 ablation in VSMCs exacerbated neointima formation after vascular injury in vivo. Conversely, SMYD2 overexpression inhibited VSMC proliferation and migration in vitro and attenuated arterial narrowing in injured vessels in mice. SMYD2 downregulation promoted VSMC phenotypic switching accompanied with enhanced proliferation and migration. Mechanistically, genome-wide transcriptome analysis and loss/gain-of-function studies revealed that SMYD2 up-regulated VSMC contractile gene expression and suppressed VSMC proliferation and migration, in part, by promoting expression and transactivation of the master transcription cofactor myocardin. In addition, myocardin directly interacted with SMYD2, thereby facilitating SMYD2 recruitment to the CArG regions of SMC contractile gene promoters and leading to an open chromatin status around SMC contractile gene promoters via SMYD2-mediated H3K4 methylation. Hence, we conclude that SMYD2 is a novel regulator of VSMC contractile phenotype and intimal hyperplasia via a myocardin-dependent epigenetic regulatory mechanism.
Collapse
Affiliation(s)
- Yu Zhou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Shaligram Sharma
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaonan Sun
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Xiaoqing Guan
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Yuning Hou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
- Cancer Animal Models Shared Resource, Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hang Shi
- Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, USA
| | - Ming-Hui Zou
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Ping Song
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA
| | - Jiliang Zhou
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Shenming Wang
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Division of Vascular Surgery, National-Local Joint Engineering Laboratory of Vascular Disease Treatment, Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangdong Engineering Laboratory of Diagnosis and Treatment of Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, No 58, Zhongshan 2nd Street, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Chunying Li
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, 157 Decatur St SE, Atlanta, GA, 30303, USA.
| |
Collapse
|
4
|
Sun Q, Zhuang Z, Bai R, Deng J, Xin T, Zhang Y, Li Q, Han B. Lysine 68 Methylation-Dependent SOX9 Stability Control Modulates Chondrogenic Differentiation in Dental Pulp Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206757. [PMID: 37386801 PMCID: PMC10460901 DOI: 10.1002/advs.202206757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Indexed: 07/01/2023]
Abstract
Dental pulp stem cells (DPSCs), characterized by easy availability, multi-lineage differentiation ability, and high proliferation ability, are ideal seed cells for cartilage tissue engineering. However, the epigenetic mechanism underlying chondrogenesis in DPSCs remains elusive. Herein, it is demonstrated that KDM3A and G9A, an antagonistic pair of histone-modifying enzymes, bidirectionally regulate the chondrogenic differentiation of DPSCs by controlling SOX9 (sex-determining region Y-type high-mobility group box protein 9) degradation through lysine methylation. Transcriptomics analysis reveals that KDM3A is significantly upregulated during the chondrogenic differentiation of DPSCs. In vitro and in vivo functional analyses further indicate that KDM3A promotes chondrogenesis in DPSCs by boosting the SOX9 protein level, while G9A hinders the chondrogenic differentiation of DPSCs by reducing the SOX9 protein level. Furthermore, mechanistic studies indicate that KDM3A attenuates the ubiquitination of SOX9 by demethylating lysine (K) 68 residue, which in turn enhances SOX9 stability. Reciprocally, G9A facilitates SOX9 degradation by methylating K68 residue to increase the ubiquitination of SOX9. Meanwhile, BIX-01294 as a highly specific G9A inhibitor significantly induces the chondrogenic differentiation of DPSCs. These findings provide a theoretical basis to ameliorate the clinical use of DPSCs in cartilage tissue-engineering therapies.
Collapse
Affiliation(s)
- Qiannan Sun
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Zimeng Zhuang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Rushui Bai
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Jie Deng
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Tianyi Xin
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Yunfan Zhang
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Qian Li
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| | - Bing Han
- Department of OrthodonticsPeking University School and Hospital of StomatologyBeijing100081China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory for Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental MaterialsBeijing100081China
| |
Collapse
|
5
|
Zou M, Mangum KD, Magin JC, Cao HH, Yarboro MT, Shelton EL, Taylor JM, Reese J, Furey TS, Mack CP. Prdm6 drives ductus arteriosus closure by promoting ductus arteriosus smooth muscle cell identity and contractility. JCI Insight 2023; 8:e163454. [PMID: 36749647 PMCID: PMC10077476 DOI: 10.1172/jci.insight.163454] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Based upon our demonstration that the smooth muscle cell-selective (SMC-selective) putative methyltransferase, Prdm6, interacts with myocardin-related transcription factor-A, we examined Prdm6's role in SMCs in vivo using cell type-specific knockout mouse models. Although SMC-specific depletion of Prdm6 in adult mice was well tolerated, Prdm6 depletion in Wnt1-expressing cells during development resulted in perinatal lethality and a completely penetrant patent ductus arteriosus (DA) phenotype. Lineage tracing experiments in Wnt1Cre2 Prdm6fl/fl ROSA26LacZ mice revealed normal neural crest-derived SMC investment of the outflow tract. In contrast, myography measurements on DA segments isolated from E18.5 embryos indicated that Prdm6 depletion significantly reduced DA tone and contractility. RNA-Seq analyses on DA and ascending aorta samples at E18.5 identified a DA-enriched gene program that included many SMC-selective contractile associated proteins that was downregulated by Prdm6 depletion. Chromatin immunoprecipitation-sequencing experiments in outflow tract SMCs demonstrated that 50% of the genes Prdm6 depletion altered contained Prdm6 binding sites. Finally, using several genome-wide data sets, we identified an SMC-selective enhancer within the Prdm6 third intron that exhibited allele-specific activity, providing evidence that rs17149944 may be the causal SNP for a cardiovascular disease GWAS locus identified within the human PRDM6 gene.
Collapse
Affiliation(s)
- Meng Zou
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Kevin D. Mangum
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Justin C. Magin
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Heidi H. Cao
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael T. Yarboro
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine L. Shelton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joan M. Taylor
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeff Reese
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Terrence S. Furey
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Christopher P. Mack
- Department of Pathology and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Ji QX, Zeng FY, Zhou J, Wu WB, Wang XJ, Zhang Z, Zhang GY, Tong J, Sun DY, Zhang JB, Cao WX, Shen FM, Lu JJ, Li DJ, Wang P. Ferroptotic stress facilitates smooth muscle cell dedifferentiation in arterial remodelling by disrupting mitochondrial homeostasis. Cell Death Differ 2023; 30:457-474. [PMID: 36477078 PMCID: PMC9950429 DOI: 10.1038/s41418-022-01099-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
Smooth muscle cell (SMC) phenotypic switch from a quiescent 'contractile' phenotype to a dedifferentiated and proliferative state underlies the development of cardiovascular diseases (CVDs); however, our understanding of the mechanism is still incomplete. In the present study, we explored the potential role of ferroptosis, a novel nonapoptotic form of cell death, in SMC phenotypic switch and related neointimal formation. We found that ferroptotic stress was triggered in cultured dedifferentiated SMCs and arterial neointimal tissue of wire-injured mice. Moreover, pro-ferroptosis stress was activated in arterial neointimal tissue of clinical patients who underwent carotid endarterectomy. Blockade of ferroptotic stress via administration of a pharmacological inhibitor or by global genetic overexpression of glutathione peroxidase-4 (GPX4), a well-established anti-ferroptosis molecule, delayed SMC phenotype switch and arterial remodelling. Conditional SMC-specific gene delivery of GPX4 using adreno-associated virus in the carotid artery inhibited ferroptosis and prevented neointimal formation. Conversely, ferroptosis stress directly triggered dedifferentiation of SMCs. Transcriptomics analysis demonstrated that inhibition of ferroptotic stress mainly targets the mitochondrial respiratory chain and oxidative phosphorylation. Mechanistically, ferroptosis inhibition corrected the disrupted mitochondrial homeostasis in dedifferentiated SMCs, including enhanced mitochondrial ROS production, dysregulated mitochondrial dynamics, and mitochondrial hyperpolarization, and ultimately inhibited SMC phenotypic switch and growth. Copper-diacetyl-bisN4-methylthiosemicarbazone (CuATSM), an agent used for clinical molecular imaging and that potently inhibits ferroptosis, prevented SMC phenotypic switch, neointimal formation and arterial inflammation in mice. These results indicate that pro-ferroptosis stress is likely to promote SMC phenotypic switch during neointimal formation and imply that inhibition of ferroptotic stress may be a promising translational approach to treat CVDs with SMC phenotype switch.
Collapse
Affiliation(s)
- Qing-Xin Ji
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei-Yan Zeng
- Department of Pharmacology, Shanghai Forth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Cardiac Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Bin Wu
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Xu-Jie Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guo-Yan Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tong
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Di-Yang Sun
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Jia-Bao Zhang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Wen-Xiang Cao
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China
| | - Fu-Ming Shen
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dong-Jie Li
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
- Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Pei Wang
- Department of Pharmacology, School of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Luse MA, Krüger N, Good ME, Biwer LA, Serbulea V, Salamon A, Deaton RA, Leitinger N, Gödecke A, Isakson BE. Smooth muscle cell FTO regulates contractile function. Am J Physiol Heart Circ Physiol 2022; 323:H1212-H1220. [PMID: 36306211 PMCID: PMC9678421 DOI: 10.1152/ajpheart.00427.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
The fat mass and obesity gene (FTO) is a N6-methyladenosine RNA demethylase that was initially linked by Genome-wide association studies to increased rates of obesity. Subsequent studies have revealed multiple mass-independent effects of the gene, including cardiac myocyte contractility. We created a mouse with a conditional and inducible smooth muscle cell deletion of Fto (Myh11 Cre+ Ftofl/fl) and did not observe any changes in mouse body mass or mitochondrial metabolism. However, the mice had significantly decreased blood pressure (hypotensive), despite increased heart rate and sodium, and significantly increased plasma renin. Remarkably, the third-order mesenteric arteries from these mice had almost no myogenic tone or capacity to constrict to smooth muscle depolarization or phenylephrine. Microarray analysis from Fto-/--isolated smooth muscle cells demonstrated a significant decrease in serum response factor (Srf) and the downstream effectors Acta2, Myocd, and Tagln; this was confirmed in cultured human coronary arteries with FTO siRNA. We conclude Fto is an important component to the contractility of smooth muscle cells.NEW & NOTEWORTHY We show a key role for the fat mass obesity (FTO) gene in regulating smooth muscle contractility, possibly by methylation of serum response factor (Srf).
Collapse
Affiliation(s)
- Melissa A Luse
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nenja Krüger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Miranda E Good
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Lauren A Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Anita Salamon
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Norbert Leitinger
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Axel Gödecke
- Institute of Animal Developmental and Molecular Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
8
|
Zhang Z, Chen B, Zhu Y, Zhang T, Yuan Y, Zhang X, Xu Y. The Jumonji Domain-Containing Histone Demethylase Homolog 1D/lysine Demethylase 7A (JHDM1D/KDM7A) Is an Epigenetic Activator of RHOJ Transcription in Breast Cancer Cells. Front Cell Dev Biol 2021; 9:664375. [PMID: 34249916 PMCID: PMC8262595 DOI: 10.3389/fcell.2021.664375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
The small GTPase RHOJ is a key regulator of breast cancer metastasis by promoting cell migration and invasion. The prometastatic stimulus TGF-β activates RHOJ transcription via megakaryocytic leukemia 1 (MKL1). The underlying epigenetic mechanism is not clear. Here, we report that MKL1 deficiency led to disrupted assembly of the RNA polymerase II preinitiation complex on the RHOJ promoter in breast cancer cells. This could be partially explained by histone H3K9/H3K27 methylation status. Further analysis confirmed that the H3K9/H3K27 dual demethylase JHDM1D/KDM7A was essential for TGF-β-induced RHOJ transcription in breast cancer cells. MKL1 interacted with and recruited KDM7A to the RHOJ promoter to cooperatively activate RHOJ transcription. KDM7A knockdown attenuated migration and invasion of breast cancer cells in vitro and mitigated the growth and metastasis of breast cancer cells in nude mice. KDM7A expression level, either singularly or in combination with that of RHOJ, could be used to predict prognosis in breast cancer patients. Of interest, KDM7A appeared to be a direct transcriptional target of TGF-β signaling. A SMAD2/SMAD4 complex bound to the KDM7A promoter and mediated TGF-β-induced KDM7A transcription. In conclusion, our data unveil a novel epigenetic mechanism whereby TGF-β regulates the transcription of the prometastatic small GTPase RHOJ. Screening for small-molecule inhibitors of KDM7A may yield effective therapeutic solutions to treat malignant breast cancers.
Collapse
Affiliation(s)
- Ziyu Zhang
- Key Laboratory of Women's Reproductive Health of Jiangxi, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Baoyu Chen
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianyi Zhang
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yibiao Yuan
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoling Zhang
- School of Medicine, Nanchang University, Nanchang, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Yong Xu
- Key Laboratory of Targeted Invention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
9
|
Lin L, Zhang Q, Fan H, Zhao H, Yang Y. Myocardin-Related Transcription Factor A Mediates LPS-Induced iNOS Transactivation. Inflammation 2021; 43:1351-1361. [PMID: 32440986 DOI: 10.1007/s10753-020-01213-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Macrophage-dependent inflammation plays a critical role in atherogenesis. Inducible nitric oxide synthase (iNOS) is one of key pro-inflammatory mediators produced in macrophages and its levels can be upregulated by lipopolysaccharide (LPS). The epigenetic mechanism whereby LPS induces iNOS transcription is incompletely understood. We show here myocardin-related transcription factor A (MRTF-A) potentiated iNOS promoter activity in macrophages. There was a decrease in LPS-induced iNOS expression in several cell models due to the lack of MRTF-A. LPS treatment promoted nuclear accumulation of MRTF-A and its interaction with NF-κB/p65 on the iNOS promoter. The absence of MRTF-A prevented the accumulation of active histone marks on the iNOS promoter in response to LPS treatment. Mechanistically, MRTF-A recruited ASH2, a key component of the mammalian histone H3K4 methyltransferase complex, to the iNOS promoter. Silencing of ASH2 attenuated iNOS expression following LPS treatment. Together, our data highlight a role for MRTF-A-dependent recruitment of H3K4 methyltransferase in iNOS induction and as such provide a novel target in the intervention of atherosclerosis.
Collapse
Affiliation(s)
- Lin Lin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Qiumei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Fan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Hongwei Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
10
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
11
|
Wang L, Chakraborty D, Iqbal K, Soares MJ. SUV39H2 controls trophoblast stem cell fate. Biochim Biophys Acta Gen Subj 2021; 1865:129867. [PMID: 33556426 PMCID: PMC8052280 DOI: 10.1016/j.bbagen.2021.129867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/31/2020] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND The placenta is formed by the coordinated expansion and differentiation of trophoblast stem (TS) cells along a multi-lineage pathway. Dynamic regulation of histone 3 lysine 9 (H3K9) methylation is pivotal to cell differentiation for many cell lineages, but little is known about its involvement in trophoblast cell development. METHODS Expression of H3K9 methyltransferases was surveyed in rat TS cells maintained in the stem state and following differentiation. The role of suppressor of variegation 3-9 homolog 2 (SUV39H2) in the regulation of trophoblast cell lineage development was investigated using a loss-of-function approach in rat TS cells and ex vivo cultured rat blastocysts. RESULTS Among the twelve-known H3K9 methyltransferases, only SUV39H2 exhibited robust differential expression in stem versus differentiated TS cells. SUV39H2 transcript and protein expression were high in the stem state and declined as TS cells differentiated. Disruption of SUV39H2 expression in TS cells led to an arrest in TS cell proliferation and activation of trophoblast cell differentiation. SUV39H2 regulated H3K9 methylation status at loci exhibiting differentiation-dependent gene expression. Analyses of SUV39H2 on ex vivo rat blastocyst development supported its role in regulating TS cell expansion and differentiation. We further identified SUV39H2 as a downstream target of caudal type homeobox 2, a master regulator of trophoblast lineage development. CONCLUSIONS Our findings indicate that SUV39H2 contributes to the maintenance of TS cells and restrains trophoblast cell differentiation. GENERAL SIGNIFICANCE SUV39H2 serves as a contributor to the epigenetic regulation of hemochorial placental development.
Collapse
Affiliation(s)
- Lei Wang
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Damayanti Chakraborty
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Khursheed Iqbal
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America
| | - Michael J Soares
- Institute for Reproduction and Perinatal Research, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States of America; Departments of Pediatrics and Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, United States of America; Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy, Kansas City, MO, United States of America.
| |
Collapse
|
12
|
Rippe C, Morén B, Liu L, Stenkula KG, Mustaniemi J, Wennström M, Swärd K. NG2/CSPG4, CD146/MCAM and VAP1/AOC3 are regulated by myocardin-related transcription factors in smooth muscle cells. Sci Rep 2021; 11:5955. [PMID: 33727640 PMCID: PMC7966398 DOI: 10.1038/s41598-021-85335-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
The present work addressed the hypothesis that NG2/CSPG4, CD146/MCAM, and VAP1/AOC3 are target genes of myocardin-related transcription factors (MRTFs: myocardin/MYOCD, MRTF-A/MKL1, MRTF-B/MKL2) and serum response factor (SRF). Using a bioinformatics approach, we found that CSPG4, MCAM, and AOC3 correlate with MYOCD, MRTF-A/MKL1, and SRF across human tissues. No other transcription factor correlated as strongly with these transcripts as SRF. Overexpression of MRTFs increased both mRNA and protein levels of CSPG4, MCAM, and AOC3 in cultured human smooth muscle cells (SMCs). Imaging confirmed increased staining for CSPG4, MCAM, and AOC3 in MRTF-A/MKL1-transduced cells. MRTFs exert their effects through SRF, and the MCAM and AOC3 gene loci contained binding sites for SRF. SRF silencing reduced the transcript levels of these genes, and time-courses of induction paralleled the direct target ACTA2. MRTF-A/MKL1 increased the activity of promoter reporters for MCAM and AOC3, and transcriptional activation further depended on the chromatin remodeling enzyme KDM3A. CSPG4, MCAM, and AOC3 responded to the MRTF-SRF inhibitor CCG-1423, to actin dynamics, and to ternary complex factors. Coincidental detection of these proteins should reflect MRTF-SRF activity, and beyond SMCs, we observed co-expression of CD146/MCAM, NG2/CSPG4, and VAP1/AOC3 in pericytes and endothelial cells in the human brain. This work identifies highly responsive vascular target genes of MRTF-SRF signaling that are regulated via a mechanism involving KDM3A.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Li Liu
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.,Department of Urology, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Karin G Stenkula
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Johan Mustaniemi
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden
| | - Malin Wennström
- Department of Clinical Sciences, Malmö, Lund University, 221 84, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science, BMC D12, Lund University, 22184, Lund, Sweden.
| |
Collapse
|
13
|
Onuh JO, Qiu H. Serum response factor-cofactor interactions and their implications in disease. FEBS J 2020; 288:3120-3134. [PMID: 32885587 PMCID: PMC7925694 DOI: 10.1111/febs.15544] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/21/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Serum response factor (SRF), a member of the Mcm1, Agamous, Deficiens, and SRF (MADS) box transcription factor, is widely expressed in all cell types and plays a crucial role in the physiological function and development of diseases. SRF regulates its downstream genes by binding to their CArG DNA box by interacting with various cofactors. However, the underlying mechanisms are not fully understood, therefore attracting increasing research attention due to the importance of this topic. This review's objective is to discuss the new progress in the studies of the molecular mechanisms involved in the activation of SRF and its impacts in physiological and pathological conditions. Notably, we summarized the recent studies on the interaction of SRF with its two main types of cofactors belonging to the myocardin families of transcription factors and the members of the ternary complex factors. The knowledge of these mechanisms will create new opportunities for understanding the dynamics of many traits and disease pathogenesis especially, cardiovascular diseases and cancer that could serve as targets for pharmacological control and treatment of these diseases.
Collapse
Affiliation(s)
- John Oloche Onuh
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| | - Hongyu Qiu
- Center for Molecular and Translational Medicine, Institute of Biomedical Science, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
14
|
Ning K, Shao Y, He Y, Wang F, Cui X, Liu F, Li D, Li F. Histone demethylase Jumonji domain-containing 1A inhibits proliferation and progression of gastric cancer by upregulating runt-related transcription factor 3. Cancer Sci 2020; 111:3679-3692. [PMID: 32762126 PMCID: PMC7541000 DOI: 10.1111/cas.14594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/24/2022] Open
Abstract
The histone demethylase Jumonji domain‐containing 1A (JMJD1A) is overexpressed in multiple cancers and promotes cancer progression. However, the role and mechanism of JMJD1A in gastric cancer (GC) remains poorly understood. Here, we found that JMJD1A could suppress GC cell proliferation and xenograft tumor growth. Using RNA sequencing, we identified runt‐related transcription factor 3 (RUNX3) as a novel target gene of JMJD1A. Mechanistically, we identified that JMJD1A upregulated RUNX3 through co–activating Ets‐1 and reducing the H3K9me1/2 levels at the RUNX3 promoter in GC cells. Functionally, JMJD1A inhibits the growth of GC cells in vivo, which is partially dependent on RUNX3. Moreover, JMJD1A expression was decreased in GC and low expression of JMJD1A was correlated with an aggressive phenotype and a poor prognosis in patients with GC. Importantly, JMJD1A expression was positively associated with RUNX3 expression in GC samples. These studies indicated that JMJD1A upregulates RUNX3 expression via co–activation of transcription factor Ets‐1 to inhibit proliferation of GC cells. Our findings provide new insight into the mechanism by which JMJD1A regulates RUNX3 transcription and suggest that JMJD1A and/or RUNX3 may be used as a therapeutic intervention for GC.
Collapse
Affiliation(s)
- Ke Ning
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yangguang Shao
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Yuxin He
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Fei Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Xi Cui
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Furong Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, China Medical University, Shenyang, China
| | - Danni Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, Shenyang, China
| |
Collapse
|
15
|
JMJD1A Represses the Development of Cardiomyocyte Hypertrophy by Regulating the Expression of Catalase. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5081323. [PMID: 32461996 PMCID: PMC7243027 DOI: 10.1155/2020/5081323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 01/24/2023]
Abstract
The histone demethylase JMJD family is involved in various physiological and pathological functions. However, the roles of JMJD1A in the cardiovascular system remain unknown. Here, we studied the function of JMJD1A in cardiac hypertrophy. The mRNA and protein levels of JMJD1A were significantly downregulated in the hearts of human patients with hypertrophic cardiomyopathy and the hearts of C57BL/6 mice underwent cardiac hypertrophy induced by transverse aortic constriction (TAC) surgery or isoproterenol (ISO) infusion. In neonatal rat cardiomyocytes (NRCMs), siRNA-mediated JMJD1A knockdown facilitated ISO or angiotensin II-induced increase in cardiomyocyte size, protein synthesis, and expression of hypertrophic fetal genes, including atrial natriuretic peptide (Anp), brain natriuretic peptide (Bnp), and Myh7. By contrast, overexpression of JMJD1A with adenovirus repressed the development of ISO-induced cardiomyocyte hypertrophy. We observed that JMJD1A reduced the production of total cellular and mitochondrial levels of reactive oxygen species (ROS), which was critically involved in the effects of JMJD1A because either N-acetylcysteine or MitoTEMPO treatment blocked the effects of JMJD1A deficiency on cardiomyocyte hypertrophy. Mechanism study demonstrated that JMJD1A promoted the expression and activity of Catalase under basal condition or oxidative stress. siRNA-mediated loss of Catalase blocked the protection of JMJD1A overexpression against ISO-induced cardiomyocyte hypertrophy. These findings demonstrated that JMJD1A loss promoted cardiomyocyte hypertrophy in a Catalase and ROS-dependent manner.
Collapse
|
16
|
Bai X, Mangum K, Kakoki M, Smithies O, Mack CP, Taylor JM. GRAF3 serves as a blood volume-sensitive rheostat to control smooth muscle contractility and blood pressure. Small GTPases 2020; 11:194-203. [PMID: 29099324 PMCID: PMC7549679 DOI: 10.1080/21541248.2017.1375602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular resistance is a major determinant of BP and is controlled, in large part, by RhoA-dependent smooth muscle cell (SMC) contraction within small peripheral arterioles and previous studies from our lab indicate that GRAF3 is a critical regulator of RhoA in vascular SMC. The elevated contractile responses we observed in GRAF3 deficient vessels coupled with the hypertensive phenotype provided a mechanistic link for the hypertensive locus recently identified within the GRAF3 gene. On the basis of our previous findings that the RhoA signaling axis also controls SMC contractile gene expression and that GRAF3 expression was itself controlled by this pathway, we postulated that GRAF3 serves as an important counter-regulator of SMC phenotype. Indeed, our new findings presented herein indicate that GRAF3 expression acts as a pressure-sensitive rheostat to control vessel tone by both reducing calcium sensitivity and restraining expression of the SMC-specific contractile proteins that support this function. Collectively, these studies highlight the potential therapeutic value of GRAF3 in the control of human hypertension.
Collapse
Affiliation(s)
- Xue Bai
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Kevin Mangum
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Masao Kakoki
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
| | - Oliver Smithies
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Christopher P. Mack
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Joan M. Taylor
- Department of Pathology, University of North Carolina, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
17
|
Abstract
The vasculature not only transports oxygenated blood, metabolites, and waste products but also serves as a conduit for hormonal communication between distant tissues. Therefore, it is important to maintain homeostasis within the vasculature. Recent studies have greatly expanded our understanding of the regulation of vasculature development and vascular-related diseases at the epigenetic level, including by protein posttranslational modifications, DNA methylation, and noncoding RNAs. Integrating epigenetic mechanisms into the pathophysiologic conceptualization of complex and multifactorial vascular-related diseases may provide promising therapeutic approaches. Several reviews have presented detailed discussions of epigenetic mechanisms not including histone methylation in vascular biology. In this review, we primarily discuss histone methylation in vascular development and maturity, and in vascular diseases.
Collapse
|
18
|
Yu L, Yang G, Zhang X, Wang P, Weng X, Yang Y, Li Z, Fang M, Xu Y, Sun A, Ge J. Megakaryocytic Leukemia 1 Bridges Epigenetic Activation of NADPH Oxidase in Macrophages to Cardiac Ischemia-Reperfusion Injury. Circulation 2019; 138:2820-2836. [PMID: 30018168 DOI: 10.1161/circulationaha.118.035377] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Excessive accumulation of reactive oxygen species (ROS), catalyzed by the NADPH oxidases (NOX), is involved in the pathogenesis of ischemia-reperfusion (IR) injury. The underlying epigenetic mechanism remains elusive. METHODS We evaluated the potential role of megakaryocytic leukemia 1 (MKL1), as a bridge linking epigenetic activation of NOX to ROS production and cardiac ischemia-reperfusion injury. RESULTS Following IR injury, MKL1-deficient (knockout) mice exhibited smaller myocardial infarction along with improved heart function compared with wild-type littermates. Similarly, pharmaceutical inhibition of MKL1 with CCG-1423 also attenuated myocardial infarction and improved heart function in mice. Amelioration of IR injury as a result of MKL1 deletion or inhibition was accompanied by reduced ROS in vivo and in vitro. In response to IR, MKL1 levels were specifically elevated in macrophages, but not in cardiomyocytes, in the heart. Of note, macrophage-specific deletion (MϕcKO), instead of cardiomyocyte-restricted ablation (CMcKO), of MKL1 in mice led to similar improvements of infarct size, heart function, and myocardial ROS generation. Reporter assay and chromatin immunoprecipitation assay revealed that MKL1 directly bound to the promoters of NOX genes to activate NOX transcription. Mechanistically, MKL1 recruited the histone acetyltransferase MOF (male absent on the first) to modify the chromatin structure surrounding the NOX promoters. Knockdown of MOF in macrophages blocked hypoxia/reoxygenation-induced NOX transactivation and ROS accumulation. Of importance, pharmaceutical inhibition of MOF with MG149 significantly downregulated NOX1/NOX4 expression, dampened ROS production, and normalized myocardial function in mice exposed to IR injury. Finally, administration of a specific NOX1/4 inhibitor GKT137831 dampened ROS generation and rescued heart function after IR in mice. CONCLUSIONS Our data delineate an MKL1-MOF-NOX axis in macrophages that contributes to IR injury, and as such we have provided novel therapeutic targets in the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Guang Yang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Xinjian Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Peng Wang
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Xinyu Weng
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (Y.Y.)
| | - Zilong Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Mingming Fang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.)
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, China (L.Y., G.Y., X.Z., Z.L., M.F., Y.X.).,Institute of Biomedical Research, Liaocheng University, Liaocheng, China (Z.L., Y.X.)
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| | - Junbo Ge
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China.,Institute of Biomedical Sciences (P.W., X.W., A.S., J.G.), Fudan University, Shanghai, China
| |
Collapse
|
19
|
Kong M, Hong W, Shao Y, Lv F, Fan Z, Li P, Xu Y, Guo J. Ablation of serum response factor in hepatic stellate cells attenuates liver fibrosis. J Mol Med (Berl) 2019; 97:1521-1533. [PMID: 31435710 DOI: 10.1007/s00109-019-01831-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/19/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022]
Abstract
Trans-differentiation, or activation, of hepatic stellate cells (HSCs) is a hallmark event in liver fibrosis although the underlying mechanism is not fully appreciated. Serum response factor (SRF) is a pleiotropic sequence-specific transcription factor with a ubiquitous expression pattern. In the present study, we investigated the effect of HSC-specific ablation of SRF on liver fibrosis in vivo and the underlying mechanism. We report that SRF bound to the promoter regions of pro-fibrogenic genes, including collagen type I (Col1a1/Col1a2) and alpha smooth muscle actin (Acta2), with greater affinity in activated HSCs compared to quiescent HSCs. Ablation of SRF in HSCs in vitro downregulated the expression of fibrogenic genes by dampening the accumulation of active histone marks. SRF also interacted with MRTF-A, a well-documented co-factor involved in liver fibrosis, on the pro-fibrogenic gene promoters during HSC activation. In addition, SRF directly regulated MRTF-A transcription in activated HSCs. More importantly, HSC conditional SRF knockout (CKO) mice developed a less robust pro-fibrogenic response in the liver in response to CCl4 injection and BDL compared to wild-type littermates. In conclusion, our data demonstrate that SRF may play an essential role in HSC activation and liver fibrosis. KEY MESSAGES: • SRF deficiency decelerates activation of hepatic stellate cells (HSCs) in vitro. • SRF epigenetically activates pro-fibrogenic transcription to promote HSC maturation. • SRF interacts with MRTF-A and contributes to MRTF-A transcription. • Conditional SRF deletion in HSCs attenuates BDL-induced liver fibrosis in mice. • Conditional SRF ablation in HSCs attenuates CCl4-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Ming Kong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Wenxuan Hong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Shao
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhiwen Fan
- Department of Pathology, Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Ping Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China. .,Institute of Biomedical Research, Liaocheng University, Liaocheng, China.
| | - Junli Guo
- Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
20
|
A non-autonomous role of MKL1 in the activation of hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:609-618. [DOI: 10.1016/j.bbagrm.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
|
21
|
Guo X, Fang ZM, Wei X, Huo B, Yi X, Cheng C, Chen J, Zhu XH, Bokha AOKA, Jiang DS. HDAC6 is associated with the formation of aortic dissection in human. Mol Med 2019; 25:10. [PMID: 30925865 PMCID: PMC6441237 DOI: 10.1186/s10020-019-0080-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathological features of aortic dissection (AD) include vascular smooth muscle cell (VSMC) loss, elastic fiber fraction, and inflammatory responses in the aorta. However, little is known about the post-translational modification mechanisms responsible for these biological processes. METHODS A total of 72 aorta samples, used for protein detection, were collected from 36 coronary artery disease (CAD, served as the control) patients and 36 type A AD (TAAD) patients. Chromatin immunoprecipitation (ChIP)-PCR was used to identify the genes regulated by H3K23ac, and tubastatin A, an inhibitor of HDAC6, was utilized to clarify the downstream mechanisms regulated by HDAC6. RESULTS We found that the protein level of histone deacetylase HDAC6 was reduced in the aortas of patients suffering from TAAD and that the protein levels of H4K12ac, and H3K23ac significantly increased, while H3K18ac, H4K8ac, and H4K5ac dramatically decreased when compared with CAD patients. Although H3K23ac, H3K18ac, and H4K8ac increased in the human VSMCs after treatment with the HDAC6 inhibitor tubastatin A, only H3K23ac showed the same results in human tissues. Notably, the results of ChIP-PCR demonstrated that H3K23ac was enriched in extracellular matrix (ECM)-related genes, including Col1A2, Col3A1, CTGF, POSTN, MMP2, TIMP2, and ACTA2, in the aortic samples of TAAD patients. In addition, our results showed that HDAC6 regulates H4K20me2 and p-MEK1/2 in the pathological process of TAAD. CONCLUSIONS These results indicate that HDAC6 is involved in human TAAD formation by regulating H3K23ac, H4K20me2 and p-MEK1/2, thus, providing a strategy for the treatment of TAAD by targeting protein post-translational modifications (PTMs), chiefly histone PTMs.
Collapse
Affiliation(s)
- Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Cai Cheng
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun Chen
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | | | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan, China. .,NHC Key Laboratory of Organ Transplantation, Wuhan, China. .,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
22
|
Zhang X, Liu S, Weng X, Wu T, Yu L, Xu Y, Guo J. Brg1 trans-activates endothelium-derived colony stimulating factor to promote calcium chloride induced abdominal aortic aneurysm in mice. J Mol Cell Cardiol 2018; 125:6-17. [DOI: 10.1016/j.yjmcc.2018.10.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 09/10/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
|
23
|
Li Z, Zhang X, Liu S, Zeng S, Yu L, Yang G, Guo J, Xu Y. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3477-3486. [DOI: 10.1016/j.bbadis.2018.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/14/2018] [Accepted: 08/01/2018] [Indexed: 12/24/2022]
|
24
|
Li X, Oh S, Song H, Shin S, Zhang B, Freeman WM, Janknecht R. A potential common role of the Jumonji C domain-containing 1A histone demethylase and chromatin remodeler ATRX in promoting colon cancer. Oncol Lett 2018; 16:6652-6662. [PMID: 30405805 PMCID: PMC6202502 DOI: 10.3892/ol.2018.9487] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022] Open
Abstract
Jumonji C domain-containing 1A (JMJD1A) is a histone demethylase and epigenetic regulator that has been implicated in cancer development. In the current study, its mRNA and protein expression was analyzed in human colorectal tumors. It was demonstrated that JMJD1A levels were increased and correlated with a more aggressive phenotype. Downregulation of JMJD1A in human HCT116 colorectal cancer cells caused negligible growth defects, but robustly decreased clonogenic activity. Transcriptome analysis revealed that JMJD1A downregulation led to multiple changes in HCT116 cells, including inhibition of MYC- and MYCN-regulated pathways and stimulation of the TP53 tumor suppressor response. One gene identified to be stimulated by JMJD1A was α-thalassemia/mental retardation syndrome X-linked (ATRX), which encodes for a chromatin remodeler. The JMJD1A protein, but not a catalytically inactive mutant, activated the ATRX gene promoter and JMJD1A also affected levels of dimethylation on lysine 9 of histone H3. Similar to JMJD1A, ATRX was significantly overexpressed in human colorectal tumors and correlated with increased disease recurrence and lethality. Furthermore, ATRX downregulation in HCT116 cells reduced their growth and clonogenic activity. Accordingly, upregulation of ATRX may represent one mechanism by which JMJD1A promotes colorectal cancer. In addition, the data presented in this study suggest that the current notion of ATRX as a tumor suppressor is incomplete and that ATRX might context dependently also function as a tumor promoter.
Collapse
Affiliation(s)
- Xiaomeng Li
- Department of Endoscopy and Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sangphil Oh
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Hoogeun Song
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Sook Shin
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Bin Zhang
- Department of Endoscopy and Gastrointestinal Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Willard M Freeman
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| | - Ralf Janknecht
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA.,Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma, OK 73104, USA
| |
Collapse
|
25
|
Chen B, Li Z, Feng Y, Wu X, Xu Y. Myocardin-related transcription factor A (MRTF-A) mediates doxorubicin-induced PERP transcription in colon cancer cells. Biochem Biophys Res Commun 2018; 503:1732-1739. [DOI: 10.1016/j.bbrc.2018.07.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 10/28/2022]
|
26
|
Zhang BF, Jiang H, Chen J, Guo X, Hu Q, Yang S. KDM3A inhibition attenuates high concentration insulin‑induced vascular smooth muscle cell injury by suppressing MAPK/NF‑κB pathways. Int J Mol Med 2017; 41:1265-1274. [PMID: 29286083 PMCID: PMC5819917 DOI: 10.3892/ijmm.2017.3351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Previous studies have indicated that lysine (K)-specific demethylase 3A (KDM3A) is associated with diverse diabetes-associated cardiovascular complications in response to high glucose levels. However, the effects of KDM3A on the pathological progression of cardiovascular injuries in response to high insulin levels remain unknown. The present study aimed to explore whether KDM3A knockdown may attenuate high insulin-induced vascular smooth muscle cell (VSMC) dysfunction, and to further investigate the underlying mechanisms. Primary VSMCs were isolated from the thoracic aorta of Sprague-Dawley rats. Lentiviral vectors encoding control-small interfering (si)RNA or KDM3A-siRNA were transduced into VSMCs for 72 h, and cells were subsequently incubated in medium containing 100 nM insulin for a further 5 days. Cellular proli feration, migration and apoptosis were measured by Cell Counting kit-8, Transwell chamber assay and flow cytometry, respectively. Reactive oxygen species (ROS) were detected using the dihydroethidium fluorescent probe. The mRNA expression levels of interleukin-6 and monocyte chemotactic protein-1 were measured by reverse transcription-quantitative polymerase chain reaction. Furthermore, the protein expression levels of KDM3A, mitogen-activated protein kinases (MAPKs), nuclear factor (NF)-κB/p65, B-cell lymphoma 2 (Bcl-2)-associated X protein and Bcl-2 were evaluated by western blotting. Lentivirus transduction with KDM3A-siRNA markedly reduced the elevated expression of KDM3A induced by high insulin stimulation in VSMCs. In addition, inhibition of KDM3A significantly ameliorated insulin-induced VSMC proliferation and migration, which was accompanied by decreased ROS levels, cell apoptosis and inflammatory cytokine levels. Furthermore, KDM3A gene silencing mitigated phosphorylation of MAPKs and NF-κB/p65 activation. In conclusion, KDM3A inhibition may exert numerous protective effects on high insulin-stimulated VSMCs, and the underlying mechanisms may be partly associated with inactivation of MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
27
|
Sommese L, Zullo A, Schiano C, Mancini FP, Napoli C. Possible Muscle Repair in the Human Cardiovascular System. Stem Cell Rev Rep 2017; 13:170-191. [PMID: 28058671 DOI: 10.1007/s12015-016-9711-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The regenerative potential of tissues and organs could promote survival, extended lifespan and healthy life in multicellular organisms. Niches of adult stemness are widely distributed and lead to the anatomical and functional regeneration of the damaged organ. Conversely, muscular regeneration in mammals, and humans in particular, is very limited and not a single piece of muscle can fully regrow after a severe injury. Therefore, muscle repair after myocardial infarction is still a chimera. Recently, it has been recognized that epigenetics could play a role in tissue regrowth since it guarantees the maintenance of cellular identity in differentiated cells and, therefore, the stability of organs and tissues. The removal of these locks can shift a specific cell identity back to the stem-like one. Given the gradual loss of tissue renewal potential in the course of evolution, in the last few years many different attempts to retrieve such potential by means of cell therapy approaches have been performed in experimental models. Here we review pathways and mechanisms involved in the in vivo repair of cardiovascular muscle tissues in humans. Moreover, we address the ongoing research on mammalian cardiac muscle repair based on adult stem cell transplantation and pro-regenerative factor delivery. This latter issue, involving genetic manipulations of adult cells, paves the way for developing possible therapeutic strategies in the field of cardiovascular muscle repair.
Collapse
Affiliation(s)
- Linda Sommese
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE Advanced Biotechnologies, s.c.ar.l, Naples, Italy
| | | | - Francesco P Mancini
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Claudio Napoli
- Department of Internal and Specialty Medicine, U.O.C. Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Regional Reference Laboratory of Transplant Immunology, Azienda Ospedaliera Universitaria, Università degli Studi della Campania "Luigi Vanvitelli", Piazza Miraglia 2, 80138, Naples, Italy.,IRCCS Foundation SDN, Naples, Italy
| |
Collapse
|
28
|
|
29
|
Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension. Clin Res Hepatol Gastroenterol 2017; 41:303-310. [PMID: 28043789 DOI: 10.1016/j.clinre.2016.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. METHODS Portal hypertension was induced in rats via an injection of CCl4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. RESULTS Upregulation of MRTF-A protein expression in the livers of rats with CCl4-induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. CONCLUSION Increased intrahepatic resistance in rats with CCl4-induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl4-induced portal hypertension.
Collapse
|
30
|
Shu YN, Dong LH, Li H, Pei QQ, Miao SB, Zhang F, Zhang DD, Chen R, Yin YJ, Lin YL, Xue ZY, Lv P, Xie XL, Zhao LL, Nie X, Chen P, Han M. CKII-SIRT1-SM22α loop evokes a self-limited inflammatory response in vascular smooth muscle cells. Cardiovasc Res 2017; 113:1198-1207. [DOI: 10.1093/cvr/cvx048] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/11/2017] [Indexed: 11/15/2022] Open
|
31
|
Yeyati PL, Schiller R, Mali G, Kasioulis I, Kawamura A, Adams IR, Playfoot C, Gilbert N, van Heyningen V, Wills J, von Kriegsheim A, Finch A, Sakai J, Schofield CJ, Jackson IJ, Mill P. KDM3A coordinates actin dynamics with intraflagellar transport to regulate cilia stability. J Cell Biol 2017; 216:999-1013. [PMID: 28246120 PMCID: PMC5379941 DOI: 10.1083/jcb.201607032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/23/2016] [Accepted: 01/12/2017] [Indexed: 12/15/2022] Open
Abstract
Cilia assembly and disassembly are coupled to actin dynamics, ensuring a coherent cellular response during environmental change. How these processes are integrated remains undefined. The histone lysine demethylase KDM3A plays important roles in organismal homeostasis. Loss-of-function mouse models of Kdm3a phenocopy features associated with human ciliopathies, whereas human somatic mutations correlate with poor cancer prognosis. We demonstrate that absence of KDM3A facilitates ciliogenesis, but these resulting cilia have an abnormally wide range of axonemal lengths, delaying disassembly and accumulating intraflagellar transport (IFT) proteins. KDM3A plays a dual role by regulating actin gene expression and binding to the actin cytoskeleton, creating a responsive "actin gate" that involves ARP2/3 activity and IFT. Promoting actin filament formation rescues KDM3A mutant ciliary defects. Conversely, the simultaneous depolymerization of actin networks and IFT overexpression mimics the abnormal ciliary traits of KDM3A mutants. KDM3A is thus a negative regulator of ciliogenesis required for the controlled recruitment of IFT proteins into cilia through the modulation of actin dynamics.
Collapse
Affiliation(s)
- Patricia L Yeyati
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Rachel Schiller
- Department of Chemistry, Chemistry Research Laboratory, OX1 3TA Oxford, England, UK
| | - Girish Mali
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Ioannis Kasioulis
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Akane Kawamura
- Department of Chemistry, Chemistry Research Laboratory, OX1 3TA Oxford, England, UK
| | - Ian R Adams
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Christopher Playfoot
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Nick Gilbert
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Jimi Wills
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Andrew Finch
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Juro Sakai
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan
| | | | - Ian J Jackson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| | - Pleasantine Mill
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU Scotland, UK
| |
Collapse
|
32
|
Lysine-Specific Histone Demethylases Contribute to Cellular Differentiation and Carcinogenesis. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
33
|
MKL1 defines the H3K4Me3 landscape for NF-κB dependent inflammatory response. Sci Rep 2017; 7:191. [PMID: 28298643 PMCID: PMC5428227 DOI: 10.1038/s41598-017-00301-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Macrophage-dependent inflammatory response is considered a pivotal biological process that contributes to a host of diseases when aberrantly activated. The underlying epigenetic mechanism is not completely understood. We report here that MKL1 was both sufficient and necessary for p65-dependent pro-inflammatory transcriptional program in immortalized macrophages, in primary human and mouse macrophages, and in an animal model of systemic inflammation (endotoxic shock). Extensive chromatin immunoprecipitation (ChIP) profiling and ChIP-seq analyses revealed that MKL1 deficiency erased key histone modifications synonymous with transactivation on p65 target promoters. Specifically, MKL1 defined histone H3K4 trimethylation landscape for NF-κB dependent transcription. MKL1 recruited an H3K4 trimethyltransferase SET1 to the promoter regions of p65 target genes. There, our work has identified a novel modifier of p65-dependent pro-inflammatory transcription, which may serve as potential therapeutic targets in treating inflammation related diseases.
Collapse
|
34
|
Song M, Fang F, Dai X, Yu L, Fang M, Xu Y. MKL1 is an epigenetic mediator of TNF-α-induced proinflammatory transcription in macrophages by interacting with ASH2. FEBS Lett 2017; 591:934-945. [DOI: 10.1002/1873-3468.12601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/02/2017] [Accepted: 02/15/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Mingzi Song
- Department of Physiology; Jiangsu Jiankang Vocational College; Nanjing Jiangsu China
| | - Fei Fang
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| | - Mingming Fang
- Department of Nursing; Jiangsu Jiankang Vocational College; Nanjing Jiangsu China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease; Department of Pathophysiology; Nanjing Medical University; Jiangsu China
| |
Collapse
|
35
|
Bai X, Mangum KD, Dee RA, Stouffer GA, Lee CR, Oni-Orisan A, Patterson C, Schisler JC, Viera AJ, Taylor JM, Mack CP. Blood pressure-associated polymorphism controls ARHGAP42 expression via serum response factor DNA binding. J Clin Invest 2017; 127:670-680. [PMID: 28112683 PMCID: PMC5272192 DOI: 10.1172/jci88899] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
We recently demonstrated that selective expression of the Rho GTPase-activating protein ARHGAP42 in smooth muscle cells (SMCs) controls blood pressure by inhibiting RhoA-dependent contractility, providing a mechanism for the blood pressure-associated locus within the ARHGAP42 gene. The goals of the current study were to identify polymorphisms that affect ARHGAP42 expression and to better assess ARHGAP42's role in the development of hypertension. Using DNase I hypersensitivity methods and ENCODE data, we have identified a regulatory element encompassing the ARHGAP42 SNP rs604723 that exhibits strong SMC-selective, allele-specific activity. Importantly, CRISPR/Cas9-mediated deletion of this element in cultured human SMCs markedly reduced endogenous ARHGAP42 expression. DNA binding and transcription assays demonstrated that the minor T allele variation at rs604723 increased the activity of this fragment by promoting serum response transcription factor binding to a cryptic cis-element. ARHGAP42 expression was increased by cell stretch and sphingosine 1-phosphate in a RhoA-dependent manner, and deletion of ARHGAP42 enhanced the progression of hypertension in mice treated with DOCA-salt. Our analysis of a well-characterized cohort of untreated borderline hypertensive patients suggested that ARHGAP42 genotype has important implications in regard to hypertension risk. Taken together, our data add insight into the genetic mechanisms that control blood pressure and provide a potential target for individualized antihypertensive therapies.
Collapse
MESH Headings
- Animals
- Blood Pressure
- CRISPR-Cas Systems
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/chemically induced
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Mice
- Mice, Transgenic
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Polymorphism, Single Nucleotide
- Serum Response Factor/genetics
- Serum Response Factor/metabolism
- Sodium Chloride, Dietary/adverse effects
- Sodium Chloride, Dietary/pharmacology
- rho GTP-Binding Proteins/genetics
- rho GTP-Binding Proteins/metabolism
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
| | | | | | | | - Craig R. Lee
- McAllister Heart Institute, and
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Akinyemi Oni-Orisan
- Department of Pharmacy, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | - Cam Patterson
- New York–Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | | | - Anthony J. Viera
- Department of Family Medicine, University of North Carolina at Chapel Hill, Durham, North Carolina, USA
| | | | | |
Collapse
|
36
|
Kim T, Hwang D, Lee D, Kim JH, Kim SY, Lim DS. MRTF potentiates TEAD-YAP transcriptional activity causing metastasis. EMBO J 2016; 36:520-535. [PMID: 28028053 DOI: 10.15252/embj.201695137] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 12/12/2022] Open
Abstract
Yes-associated protein (YAP) and myocardin-related transcription factor (MRTF) play similar roles and exhibit significant crosstalk in directing transcriptional responses to chemical and physical extracellular cues. The mechanism underlying this crosstalk, however, remains unclear. Here, we show MRTF family proteins bind YAP via a conserved PPXY motif that interacts with the YAP WW domain. This interaction allows MRTF to recruit NcoA3 to the TEAD-YAP transcriptional complex and potentiate its transcriptional activity. We show this interaction of MRTF and YAP is critical for LPA-induced cancer cell invasion in vitro and breast cancer metastasis to the lung in vivo We also demonstrate the significance of MRTF-YAP binding in regulation of YAP activity upon acute actin cytoskeletal damage. Acute actin disruption induces nucleo-cytoplasmic shuttling of MRTF, and this process underlies the LATS-independent regulation of YAP activity. Our results provide clear evidence of crosstalk between MRTF and YAP independent of the LATS kinases that normally act upstream of YAP signaling. Our results also suggest a mechanism by which extracellular stimuli can coordinate physiological events downstream of YAP.
Collapse
Affiliation(s)
- Tackhoon Kim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Daehee Hwang
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dahye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jeong-Hwan Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Seon-Young Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| |
Collapse
|
37
|
Chen J, Zhang J, Yang J, Xu L, Hu Q, Xu C, Yang S, Jiang H. Histone demethylase KDM3a, a novel regulator of vascular smooth muscle cells, controls vascular neointimal hyperplasia in diabetic rats. Atherosclerosis 2016; 257:152-163. [PMID: 28135625 DOI: 10.1016/j.atherosclerosis.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/23/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Deregulation of histone demethylase KDM3a, an important regulator for H3K9 methylation, is correlated with obesity and abnormal metabolism in rodent models. However, the function of KDM3a in vascular remodeling under diabetic condition is unknown. METHODS Adenoviruses expressing KDM3a and lentiviruses expressing KDM3a-targeting siRNA were generated to study the role of KDM3a both in vivo and in vitro. The carotid artery balloon injury model was established in diabetic SD rats to evaluate the significance of KDM3a in vascular injury. RESULTS Diabetic vessels were associated with sustained loss of histone H3 lysine 9 di-methylation (H3K9me2) and elevation of KDM3a. This phenomenon was induced by high glucose (HG) and was persistently present even after removal from diabetic condition and high glucose in vascular smooth muscle cells (VSMCs). After 28-day balloon injury, KDM3a overexpression accelerated while KDM3a knockdown reduced neointima formation, following vascular injury in diabetic rats without glucose control. Microarray analysis revealed KDM3a altered the expression of vascular remodeling genes; particularly, it mediated the Rho/ROCK and AngII/AGTR1 pathways. In the in vivo study, HG and Ang II-stimulated proliferation and migration of VSMCs were enhanced by KDM3a overexpression, whereas markedly prevented by KDM3a knockdown. KDM3a regulated the transcription of AGTR1 and ROCK2 via controlling H3K9me2 in the proximal promoter regions. CONCLUSIONS Histone demethylase KDM3a promotes vascular neointimal hyperplasia in diabetic rats via AGTR1 and ROCK2 signaling pathways. Targeting KDM3a might represent a promising therapeutic approach for the prevention of coronary artery disease with diabetes.
Collapse
Affiliation(s)
- Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Lin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
38
|
HIF-KDM3A-MMP12 regulatory circuit ensures trophoblast plasticity and placental adaptations to hypoxia. Proc Natl Acad Sci U S A 2016; 113:E7212-E7221. [PMID: 27807143 DOI: 10.1073/pnas.1612626113] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The hemochorial placenta develops from the coordinated multilineage differentiation of trophoblast stem (TS) cells. An invasive trophoblast cell lineage remodels uterine spiral arteries, facilitating nutrient flow, failure of which is associated with pathological conditions such as preeclampsia, intrauterine growth restriction, and preterm birth. Hypoxia plays an instructive role in influencing trophoblast cell differentiation and regulating placental organization. Key downstream hypoxia-activated events were delineated using rat TS cells and tested in vivo, using trophoblast-specific lentiviral gene delivery and genome editing. DNA microarray analyses performed on rat TS cells exposed to ambient or low oxygen and pregnant rats exposed to ambient or hypoxic conditions showed up-regulation of genes characteristic of an invasive/vascular remodeling/inflammatory phenotype. Among the shared up-regulated genes was matrix metallopeptidase 12 (MMP12). To explore the functional importance of MMP12 in trophoblast cell-directed spiral artery remodeling, we generated an Mmp12 mutant rat model using transcription activator-like nucleases-mediated genome editing. Homozygous mutant placentation sites showed decreased hypoxia-dependent endovascular trophoblast invasion and impaired trophoblast-directed spiral artery remodeling. A link was established between hypoxia/HIF and MMP12; however, evidence did not support Mmp12 as a direct target of HIF action. Lysine demethylase 3A (KDM3A) was identified as mediator of hypoxia/HIF regulation of Mmp12 Knockdown of KDM3A in rat TS cells inhibited the expression of a subset of the hypoxia-hypoxia inducible factor (HIF)-dependent transcripts, including Mmp12, altered H3K9 methylation status, and decreased hypoxia-induced trophoblast cell invasion in vitro and in vivo. The hypoxia-HIF-KDM3A-MMP12 regulatory circuit is conserved and facilitates placental adaptations to environmental challenges.
Collapse
|
39
|
|
40
|
Hu Q, Chen J, Zhang J, Xu C, Yang S, Jiang H. IOX1, a JMJD2A inhibitor, suppresses the proliferation and migration of vascular smooth muscle cells induced by angiotensin II by regulating the expression of cell cycle-related proteins. Int J Mol Med 2015; 37:189-96. [PMID: 26530537 DOI: 10.3892/ijmm.2015.2393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/01/2015] [Indexed: 11/06/2022] Open
Abstract
The epigenetic modification of vascular smooth muscle cell (VSMC) phenotypic switching, proliferation, migration, apoptosis and extracellular matrix synthesis is known to occur in atherosclerosis. The aim of the present study was to investigate the effects of IOX1, a Jumonji domain-containing 2A (JMJD2A) inhibitor, on regulation of the cell cycle in angiotensin II (Ang II)-stimulated VSMCs and to elucidate the possible mechanisms involved. The proliferation and migration of the Ang II-stimulated VSMCs in the presence or absence of IOX1 were evaluated in vitro. Flow cytometric analysis was used to determine the effects of IOX1 on cell cycle progression. RT-qPCR and western blot analysis were carried out to measure the expression levels of cell cycle-related genes. The trimethylation of histone H3 lysine 9 (H3K9me3) at the promoters of these genes was detected by chromatin immunoprecipitation (ChIP) assay. We confirmed that the JMJD2A levels were increased, whereas the H3K9me3 levels were decreased in the Ang II-stimulated VSMCs. The inhibition of JMJD2A by IOX1 suppressed the Ang II-induced cell proliferation, migration and cell cycle progression by inhibiting cyclin D1 expression and increasing p21 expression. The underlying mechanisms were related to the restoration of the H3K9me3 levels at the promoters of these genes. In conclusion, the findings of our study indicate that IOX1 exerts its anti-proliferative and anti-migratory effects by regulating the expression of the cell cycle-related proteins, cyclin D1 and p21.
Collapse
Affiliation(s)
- Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Changwu Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
41
|
Schneider P, Miguel Bayo-Fina J, Singh R, Kumar Dhanyamraju P, Holz P, Baier A, Fendrich V, Ramaswamy A, Baumeister S, Martinez ED, Lauth M. Identification of a novel actin-dependent signal transducing module allows for the targeted degradation of GLI1. Nat Commun 2015; 6:8023. [PMID: 26310823 PMCID: PMC4552080 DOI: 10.1038/ncomms9023] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/09/2015] [Indexed: 12/12/2022] Open
Abstract
The Down syndrome-associated DYRK1A kinase has been reported as a stimulator of the developmentally important Hedgehog (Hh) pathway, but cells from Down syndrome patients paradoxically display reduced Hh signalling activity. Here we find that DYRK1A stimulates GLI transcription factor activity through phosphorylation of general nuclear localization clusters. In contrast, in vivo and in vitro experiments reveal that DYRK1A kinase can also function as an inhibitor of endogenous Hh signalling by negatively regulating ABLIM proteins, the actin cytoskeleton and the transcriptional co-activator MKL1 (MAL). As a final effector of the DYRK1A-ABLIM-actin-MKL1 sequence, we identify the MKL1 interactor Jumonji domain demethylase 1A (JMJD1A) as a novel Hh pathway component stabilizing the GLI1 protein in a demethylase-independent manner. Furthermore, a Jumonji-specific small-molecule antagonist represents a novel and powerful inhibitor of Hh signal transduction by inducing GLI1 protein degradation in vitro and in vivo.
Collapse
Affiliation(s)
- Philipp Schneider
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Juan Miguel Bayo-Fina
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Rajeev Singh
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Pavan Kumar Dhanyamraju
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Philipp Holz
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| | - Aninja Baier
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Volker Fendrich
- Department of Surgery, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Annette Ramaswamy
- Department of Pathology, Philipps University, Baldingerstraße 1, 35033 Marburg, Germany
| | - Stefan Baumeister
- Department of Biology, Philipps University, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
| | - Elisabeth D. Martinez
- Department of Pharmacology, UT Southwestern Medical Center, 6000 Harry Hines boulevard, Dallas, Texas 75390-8593, USA
| | - Matthias Lauth
- Department of Medicine, Philipps University, Institute of Molecular Biology and Tumor Research (IMT), Center for Tumor Biology and Immunology, Hans-Meerwein-Street 3, 35043 Marburg, Germany
| |
Collapse
|
42
|
Fan Z, Hao C, Li M, Dai X, Qin H, Li J, Xu H, Wu X, Zhang L, Fang M, Zhou B, Tian W, Xu Y. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1219-28. [PMID: 26241940 DOI: 10.1016/j.bbagrm.2015.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 07/13/2015] [Accepted: 07/31/2015] [Indexed: 12/29/2022]
Abstract
Transforming growth factor (TGF-β) induced activation of portal fibroblast cells serves as a primary cause for liver fibrosis following cholestatic injury. The underlying epigenetic mechanism is not clear. We studied the role of a transcriptional modulator, megakaryoblastic leukemia 1 (MKL1) in this process. We report here that MKL1 deficiency ameliorated BDL-induced liver fibrosis in mice as assessed by histological stainings and expression levels of pro-fibrogenic genes. MKL1 silencing by small interfering RNA (siRNA) abrogated TGF-β induced transactivation of pro-fibrogenic genes in portal fibroblast cells. TGF-β stimulated the binding of MKL1 on the promoters of pro-fibrogenic genes and promoted the interaction between MKL1 and SMAD3. While SMAD3 was necessary for MKL1 occupancy on the gene promoters, MKL1 depletion impaired SMAD3 binding reciprocally. TGF-β treatment induced the accumulation of trimethylated histone H3K4 on the gene promoters by recruiting a methyltransferase complex. Knockdown of individual members of this complex significantly weakened the binding of SMAD3 and down-regulated the activation of portal fibroblast cells. In conclusion, we have identified an epigenetic pathway that dictates TGF-β induced pro-fibrogenic transcription in portal fibroblast thereby providing novel insights for the development of therapeutic solutions to treat liver fibrosis.
Collapse
Affiliation(s)
- Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Min Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hao Qin
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Jianfei Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Chen D, Yang Y, Cheng X, Fang F, Xu G, Yuan Z, Xia J, Kong H, Xie W, Wang H, Fang M, Gao Y, Xu Y. Megakaryocytic Leukemia 1 Directs a Histone H3 Lysine 4 Methyltransferase Complex to Regulate Hypoxic Pulmonary Hypertension. Hypertension 2015; 65:821-33. [DOI: 10.1161/hypertensionaha.114.04585] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dewei Chen
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yuyu Yang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Xian Cheng
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Fei Fang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Gang Xu
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Zhibin Yuan
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Jun Xia
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Hui Kong
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Weiping Xie
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Hong Wang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Mingming Fang
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yuqi Gao
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| | - Yong Xu
- From the Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, Ministry of Education (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University (D.C., G.X., Z.Y., Y.G., Y.X.), Key Laboratory of Cardiovascular Disease and Department of Pathophysiology (Y.Y., X.C., F.F., M.F., Y.X.), and Department of Respiratory Medicine, the
| |
Collapse
|
44
|
Cheng X, Yang Y, Fan Z, Yu L, Bai H, Zhou B, Wu X, Xu H, Fang M, Shen A, Chen Q, Xu Y. MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription. Oncogene 2015; 34:5570-81. [PMID: 25746000 DOI: 10.1038/onc.2015.14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 12/24/2022]
Abstract
Malignant tumors are exemplified by excessive proliferation and aggressive migration/invasion contributing to increased mortality of cancer patients. Matrix metalloproteinase 9 (MMP9) expression is positively correlated with lung cancer malignancy. The mechanism underlying an elevated MMP9 expression is not clearly defined. We demonstrate here that the transcriptional modulator megakaryocytic leukemia 1 (MKL1) was activated by hypoxia and transforming growth factor (TGF-β), two prominent pro-malignancy factors, in cultured lung cancer cells. MKL1 levels were also increased in more invasive types of lung cancer in humans. Depletion of MKL1 in lung cancer cells attenuated migration and invasion both in vitro and in vivo. Overexpression of MKL1 potentiated the induction of MMP9 transcription by hypoxia and TGF-β, whereas MKL1 silencing diminished MMP9 expression. Of interest, MKL1 knockdown eliminated histone H3K4 methylation surrounding the MMP9 promoter. Further analyses revealed that MKL1 recruited ASH2, a component of the H3K4 methyltransferase complex, to activate MMP9 transcription. Depletion of ASH2 ameliorated cancer cell migration and invasion in an MMP9-dependent manner. Together our data indicate that MKL1 potentiates lung cancer cell migration and invasion by epigenetically activating MMP9 transcription.
Collapse
Affiliation(s)
- X Cheng
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Y Yang
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Z Fan
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - L Yu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - H Bai
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - B Zhou
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - X Wu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - H Xu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - M Fang
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - A Shen
- Department of Key Laboratory of Inflammation and Molecular Targets, Medical College, Nantong University, Nantong, China
| | - Q Chen
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Y Xu
- Key Laboratory of Cardiovascular Disease and Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, Xu H, Fang M, Gao Y, Chen Q, Xu Y. Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol 2015; 80:23-33. [DOI: 10.1016/j.yjmcc.2014.11.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
|
46
|
Accari SL, Fisher PR. Emerging Roles of JmjC Domain-Containing Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:165-220. [DOI: 10.1016/bs.ircmb.2015.07.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Myocardin related transcription factor A programs epigenetic activation of hepatic stellate cells. J Hepatol 2015; 62:165-74. [PMID: 25109772 DOI: 10.1016/j.jhep.2014.07.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Activation of hepatic stellate cells (HSCs) represents a key process in liver injury and, in the absence of intervention, leads to irreversible cirrhosis contributing significantly to the mortality of patients with liver disease. A missing link in the current understanding of HSC activation is the involvement of the epigenetic machinery. We investigated the role of the myocardin related transcription factor A (MRTF-A) in HSC activation. METHODS Liver fibrosis was induced in wild type (WT) and MRTF-A deficient (KO) mice by CCl4 injection. Expression of mRNA and protein was measured by real-time PCR, Western blotting, and immunohistochemistry. Protein binding to DNA was assayed by chromatin immunoprecipitation (ChIP). Knockdown of endogenous proteins was mediated by either small interfering RNA (siRNA) or short hairpin RNA (shRNA), carried by lentiviral particles. RESULTS KO mice exhibited resistance to CCl4-induced liver fibrosis compared to WT littermates. The expression of activated HSC signature genes was suppressed in the absence of MRTF-A. ChIP assays revealed that MRTF-A deficiency led to the erasure of key histone modifications, associated with transcriptional activation, such as H3K4 di- and tri-methylation, on the promoter regions of fibrogenic genes. Mechanistically, MRTF-A recruited a histone methyltransferase complex (COMPASS) to the promoters of fibrogenic genes to activate transcription. Silencing of individual COMPASS components dampened transactivation of fibrogenic genes in vitro and blocked liver fibrosis in mice. Oestradiol suppressed HSC activation by dampening the expression and binding activity of COMPASS. CONCLUSIONS Our data illustrate a novel mechanism that connects MRTF-A dependent histone H3K4 methylation to HSC activation.
Collapse
|
48
|
Abstract
Myocardin (MYOCD) is a potent transcriptional coactivator that functions primarily in cardiac muscle and smooth muscle through direct contacts with serum response factor (SRF) over cis elements known as CArG boxes found near a number of genes encoding for contractile, ion channel, cytoskeletal, and calcium handling proteins. Since its discovery more than 10 years ago, new insights have been obtained regarding the diverse isoforms of MYOCD expressed in cells as well as the regulation of MYOCD expression and activity through transcriptional, post-transcriptional, and post-translational processes. Curiously, there are a number of functions associated with MYOCD that appear to be independent of contractile gene expression and the CArG-SRF nucleoprotein complex. Further, perturbations in MYOCD gene expression are associated with an increasing number of diseases including heart failure, cancer, acute vessel disease, and diabetes. This review summarizes the various biological and pathological processes associated with MYOCD and offers perspectives to several challenges and future directions for further study of this formidable transcriptional coactivator.
Collapse
Affiliation(s)
- Joseph M Miano
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
49
|
Cheng MB, Zhang Y, Cao CY, Zhang WL, Zhang Y, Shen YF. Specific phosphorylation of histone demethylase KDM3A determines target gene expression in response to heat shock. PLoS Biol 2014; 12:e1002026. [PMID: 25535969 PMCID: PMC4275180 DOI: 10.1371/journal.pbio.1002026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/07/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation of histone demethylase KDM3A in response to thermal stress enables its specific recruitment to target genes by Stat1. Histone lysine (K) residues, which are modified by methyl- and acetyl-transferases, diversely regulate RNA synthesis. Unlike the ubiquitously activating effect of histone K acetylation, the effects of histone K methylation vary with the number of methyl groups added and with the position of these groups in the histone tails. Histone K demethylases (KDMs) counteract the activity of methyl-transferases and remove methyl group(s) from specific K residues in histones. KDM3A (also known as JHDM2A or JMJD1A) is an H3K9me2/1 demethylase. KDM3A performs diverse functions via the regulation of its associated genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanism by which the activity of KDM3A is regulated is largely unknown. Here, we demonstrated that mitogen- and stress-activated protein kinase 1 (MSK1) specifically phosphorylates KDM3A at Ser264 (p-KDM3A), which is enriched in the regulatory regions of gene loci in the human genome. p-KDM3A directly interacts with and is recruited by the transcription factor Stat1 to activate p-KDM3A target genes under heat shock conditions. The demethylation of H3K9me2 at the Stat1 binding site specifically depends on the co-expression of p-KDM3A in the heat-shocked cells. In contrast to heat shock, IFN-γ treatment does not phosphorylate KDM3A via MSK1, thereby abrogating its downstream effects. To our knowledge, this is the first evidence that a KDM can be modified via phosphorylation to determine its specific binding to target genes in response to thermal stress. Histone methylation regulates gene expression and can have drastic consequences for health if the process is defective. Histone lysine demethylases (KDMs) counteract the activity of methyl-transferases and remove methyl group(s) from histones. KDM3A is a H3K9me2/1 demethylase that performs diverse functions via the regulation of its target genes, which are involved in spermatogenesis, metabolism, and cell differentiation. However, the mechanisms underlying KDM3A regulation of specific genes at specific times are largely unknown. Here we found that a physiological stress—elevated temperature—induces KDM3A phosphorylation in human cells via the MSK1 kinase. This phosphorylated form of KDM3A directly interacts with the transcription factor Stat1, which enables Stat1 to recruit KDM3A to Stat1-binding sequences at the promoters of specific target genes. KDM3A then acts to demethylate H3K9me2/1 at these targets, thereby causing specific gene expression in response to the thermal stress. We conclude that heat shock can affect the expression of many genes in human cells via a novel activation mechanism that is centered around the phosphorylation of KDM3A.
Collapse
Affiliation(s)
- Mo-bin Cheng
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yan Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chun-yu Cao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei-long Zhang
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ye Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (YeZ); (YS)
| | - Yu-fei Shen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- * E-mail: (YeZ); (YS)
| |
Collapse
|
50
|
Rozenberg JM, Tesfu DB, Musunuri S, Taylor JM, Mack CP. DNA methylation of a GC repressor element in the smooth muscle myosin heavy chain promoter facilitates binding of the Notch-associated transcription factor, RBPJ/CSL1. Arterioscler Thromb Vasc Biol 2014; 34:2624-31. [PMID: 25324571 DOI: 10.1161/atvbaha.114.304634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The goal of the present study was to identify novel mechanisms that regulate smooth muscle cell (SMC) differentiation marker gene expression. APPROACH AND RESULTS We demonstrate that the CArG-containing regions of many SMC-specific promoters are imbedded within CpG islands. A previously identified GC repressor element in the SM myosin heavy chain (MHC) promoter was highly methylated in cultured aortic SMC but not in the aorta, and this difference was inversely correlated with SM MHC expression. Using an affinity chromatography/mass spectroscopy-based approach, we identified the multifunctional Notch transcription factor, recombination signal binding protein for immunoglobulin κ J region (RBPJ), as a methylated GC repressor-binding protein. RBPJ protein levels and binding to the endogenous SM MHC GC repressor were enhanced by platelet-derived growth factor-BB treatment. A methylation mimetic mutation to the GC repressor that facilitated RBPJ binding inhibited SM MHC promoter activity as did overexpression of RBPJ. Consistent with this, knockdown of RBPJ in phenotypically modulated human aortic SMC enhanced endogenous SMC marker gene expression, an effect likely mediated by increased recruitment of serum response factor and Pol II to the SMC-specific promoters. In contrast, the depletion of RBPJ in differentiated transforming growth factor-β-treated SMC inhibited SMC-specific gene activation, supporting the idea that the effects of RBPJ/Notch signaling are context dependent. CONCLUSIONS Our results indicate that methylation-dependent binding of RBPJ to a GC repressor element can negatively regulate SM MHC promoter activity and that RBPJ can inhibit SMC marker gene expression in phenotypically modulated SMC. These results will have important implications on the regulation of SMC phenotype and on Notch-dependent transcription.
Collapse
Affiliation(s)
- Julian M Rozenberg
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Daniel B Tesfu
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Srilaxmi Musunuri
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Joan M Taylor
- From the Department of Pathology, University of North Carolina, Chapel Hill
| | - Christopher P Mack
- From the Department of Pathology, University of North Carolina, Chapel Hill.
| |
Collapse
|