1
|
Zeng Y, Bai X, Zhu G, Zhu M, Peng W, Song J, Cai H, Ye L, Chen C, Song Y, Jin M, Zhang XQ, Wang J. m 6A-mediated HDAC9 upregulation promotes particulate matter-induced airway inflammation via epigenetic control of DUSP9-MAPK axis and acts as an inhaled nanotherapeutic target. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135093. [PMID: 39088948 DOI: 10.1016/j.jhazmat.2024.135093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 08/03/2024]
Abstract
Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.
Collapse
Affiliation(s)
- Yingying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Bai
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guiping Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengchan Zhu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenjun Peng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hui Cai
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling Ye
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cuicui Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai 200032, China; Shanghai Respiratory Research Institute, Shanghai 200032, China
| | - Meiling Jin
- Department of Allergy, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xue-Qing Zhang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Shi Y, Ma J, Li S, Liu C, Liu Y, Chen J, Liu N, Liu S, Huang H. Sex difference in human diseases: mechanistic insights and clinical implications. Signal Transduct Target Ther 2024; 9:238. [PMID: 39256355 PMCID: PMC11387494 DOI: 10.1038/s41392-024-01929-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/26/2024] [Accepted: 07/23/2024] [Indexed: 09/12/2024] Open
Abstract
Sex characteristics exhibit significant disparities in various human diseases, including prevalent cardiovascular diseases, cancers, metabolic disorders, autoimmune diseases, and neurodegenerative diseases. Risk profiles and pathological manifestations of these diseases exhibit notable variations between sexes. The underlying reasons for these sex disparities encompass multifactorial elements, such as physiology, genetics, and environment. Recent studies have shown that human body systems demonstrate sex-specific gene expression during critical developmental stages and gene editing processes. These genes, differentially expressed based on different sex, may be regulated by androgen or estrogen-responsive elements, thereby influencing the incidence and presentation of cardiovascular, oncological, metabolic, immune, and neurological diseases across sexes. However, despite the existence of sex differences in patients with human diseases, treatment guidelines predominantly rely on male data due to the underrepresentation of women in clinical trials. At present, there exists a substantial knowledge gap concerning sex-specific mechanisms and clinical treatments for diverse diseases. Therefore, this review aims to elucidate the advances of sex differences on human diseases by examining epidemiological factors, pathogenesis, and innovative progress of clinical treatments in accordance with the distinctive risk characteristics of each disease and provide a new theoretical and practical basis for further optimizing individualized treatment and improving patient prognosis.
Collapse
Affiliation(s)
- Yuncong Shi
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jianshuai Ma
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Sijin Li
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Chao Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Yuning Liu
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Thej C, Kishore R. Epigenetic regulation of sex dimorphism in cardiovascular health. Can J Physiol Pharmacol 2024; 102:498-510. [PMID: 38427976 PMCID: PMC11789622 DOI: 10.1139/cjpp-2023-0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality, affecting people of all races, ages, and sexes. Substantial sex dimorphism exists in the prevalence, manifestation, and outcomes of CVDs. Understanding the role of sex hormones as well as sex-hormone-independent epigenetic mechanisms could play a crucial role in developing effective and sex-specific cardiovascular therapeutics. Existing research highlights significant disparities in sex hormones, epigenetic regulators, and gene expression related to cardiac health, emphasizing the need for a nuanced understanding of these variations between men and women. Despite these differences, current treatment approaches for CVDs often lack sex-specific considerations. A pivotal shift toward personalized medicine, informed by comprehensive insights into sex-specific DNA methylation, histone modifications, and non-coding RNA dynamics, holds the potential to revolutionize CVD management. By understanding sex-specific epigenetic complexities, independent of sex hormone influence, future cardiovascular research can be tailored to achieve effective diagnostic and therapeutic interventions for both men and women. This review summarizes the current knowledge and gaps in epigenetic mechanisms and sex dimorphism implicated in CVDs.
Collapse
Affiliation(s)
- Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
4
|
Bridges J, Ramirez-Guerrero JA, Rosa-Garrido M. Gender-specific genetic and epigenetic signatures in cardiovascular disease. Front Cardiovasc Med 2024; 11:1355980. [PMID: 38529333 PMCID: PMC10962446 DOI: 10.3389/fcvm.2024.1355980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/13/2024] [Indexed: 03/27/2024] Open
Abstract
Cardiac sex differences represent a pertinent focus in pursuit of the long-awaited goal of personalized medicine. Despite evident disparities in the onset and progression of cardiac pathology between sexes, historical oversight has led to the neglect of gender-specific considerations in the treatment of patients. This oversight is attributed to a predominant focus on male samples and a lack of sex-based segregation in patient studies. Recognizing these sex differences is not only relevant to the treatment of cisgender individuals; it also holds paramount importance in addressing the healthcare needs of transgender patients, a demographic that is increasingly prominent in contemporary society. In response to these challenges, various agencies, including the National Institutes of Health, have actively directed their efforts toward advancing our comprehension of this phenomenon. Epigenetics has proven to play a crucial role in understanding sex differences in both healthy and disease states within the heart. This review presents a comprehensive overview of the physiological distinctions between males and females during the development of various cardiac pathologies, specifically focusing on unraveling the genetic and epigenetic mechanisms at play. Current findings related to distinct sex-chromosome compositions, the emergence of gender-biased genetic variations, and variations in hormonal profiles between sexes are highlighted. Additionally, the roles of DNA methylation, histone marks, and chromatin structure in mediating pathological sex differences are explored. To inspire further investigation into this crucial subject, we have conducted global analyses of various epigenetic features, leveraging data previously generated by the ENCODE project.
Collapse
Affiliation(s)
| | | | - Manuel Rosa-Garrido
- Department of Biomedical Engineering, School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Maisuria R, Norton A, Shao C, Bradley EW, Mansky K. Conditional Loss of MEF2C Expression in Osteoclasts Leads to a Sex-Specific Osteopenic Phenotype. Int J Mol Sci 2023; 24:12686. [PMID: 37628864 PMCID: PMC10454686 DOI: 10.3390/ijms241612686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Myocyte enhancement factor 2C (MEF2C) is a transcription factor studied in the development of skeletal and smooth muscles. Bone resorption studies have exhibited that the reduced expression of MEF2C contributes to osteopetrosis and the dysregulation of pathological bone remodeling. Our current study aims to determine how MEF2C contributes to osteoclast differentiation and to analyze the skeletal phenotype of Mef2c-cKO mice (Cfms-cre; Mef2cfl/fl). qRT-PCR and Western blot demonstrated that Mef2c expression is highest during the early days of osteoclast differentiation. Osteoclast genes, including c-Fos, c-Jun, Dc-stamp, Cathepsin K, and Nfatc1, had a significant reduction in expression, along with a reduction in osteoclast size. Despite reduced CTX activity, female Mef2c cKO mice were osteopenic, with decreased bone formation as determined via a P1NP ELISA, and a reduced number of osteoblasts. There was no difference between male WT and Mef2c-cKO mice. Our results suggest that Mef2c is critical for osteoclastogenesis, and that its dysregulation leads to a sex-specific osteopenic phenotype.
Collapse
Affiliation(s)
- Ravi Maisuria
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| | - Cynthia Shao
- College of Biological Sciences, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Elizabeth W. Bradley
- Department of Orthopedics, School of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Kim Mansky
- Department of Developmental and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; (R.M.); (A.N.)
| |
Collapse
|
6
|
Zhang Y, Ramirez-Martinez A, Chen K, McAnally JR, Cai C, Durbacz MZ, Chemello F, Wang Z, Xu L, Bassel-Duby R, Liu N, Olson EN. Net39 protects muscle nuclei from mechanical stress during the pathogenesis of Emery-Dreifuss muscular dystrophy. J Clin Invest 2023; 133:e163333. [PMID: 37395273 PMCID: PMC10313361 DOI: 10.1172/jci163333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Mutations in genes encoding nuclear envelope proteins lead to diseases known as nuclear envelopathies, characterized by skeletal muscle and heart abnormalities, such as Emery-Dreifuss muscular dystrophy (EDMD). The tissue-specific role of the nuclear envelope in the etiology of these diseases has not been extensively explored. We previously showed that global deletion of the muscle-specific nuclear envelope protein NET39 in mice leads to neonatal lethality due to skeletal muscle dysfunction. To study the potential role of the Net39 gene in adulthood, we generated a muscle-specific conditional knockout (cKO) of Net39 in mice. cKO mice recapitulated key skeletal muscle features of EDMD, including muscle wasting, impaired muscle contractility, abnormal myonuclear morphology, and DNA damage. The loss of Net39 rendered myoblasts hypersensitive to mechanical stretch, resulting in stretch-induced DNA damage. Net39 was downregulated in a mouse model of congenital myopathy, and restoration of Net39 expression through AAV gene delivery extended life span and ameliorated muscle abnormalities. These findings establish NET39 as a direct contributor to the pathogenesis of EDMD that acts by protecting against mechanical stress and DNA damage.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Andres Ramirez-Martinez
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, and
| | - John R. McAnally
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Chunyu Cai
- Department of Pathology, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Mateusz Z. Durbacz
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Francesco Chemello
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Zhaoning Wang
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, and
| | - Rhonda Bassel-Duby
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Ning Liu
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| | - Eric N. Olson
- Department of Molecular Biology
- Hamon Center for Regenerative Science and Medicine
- Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center
| |
Collapse
|
7
|
In-depth investigations of the molecular basis underlying sex differences among middle-aged and elderly schizophrenia populations. Psychiatr Genet 2022; 32:178-187. [PMID: 36125368 DOI: 10.1097/ypg.0000000000000322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sex can influence almost all aspects of schizophrenia. However, the molecular mechanisms underlying sex differences in schizophrenia remain poorly understood. In this project, the dataset GSE107638 containing neuronal RNA-seq data and age/sex information of individuals with or without schizophrenia were retrieved. Schizophrenia samples were divided into young male (M-1), young female (F-1), middle-aged and elderly male (M-2) and middle-aged and elderly female (F-2) groups. Next, green/yellow/turquoise modules related to the M-2 trait and turquoise module correlated with the F-2 trait were identified by weighted correlation network analysis (WGCNA) analysis (soft thresholding power: 13; min module size: 200). Crucial genes in the M-2 green, M-2 turquoise and F-2 turquoise modules were identified by WGCNA, gene significance/module membership, and protein-protein interaction (PPI) analysis. Moreover, 2067 and 934 differentially expressed genes (|log2 fold-change| ≥0.58 and P-value < 0.05) in M-2 and F-2 schizophrenia subgroups versus same-age and same-sex counterparts were identified, respectively. Additionally, 82 core genes in the M-2 turquoise module and 4 hub genes in the F-2 turquoise module were differentially expressed in M-2 and F-2 schizophrenia subgroups versus their counterparts, respectively. Among the 82 hub genes, 15 genes were found to be correlated with neuronal development by the Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Also, 2 potential PPI networks related to neuronal development were identified. Taken together, multiple potential hub genes and 2 potential neurobiological networks related to schizophrenia sex differences and disease progression were identified among middle-aged and elderly schizophrenia populations.
Collapse
|
8
|
Ni C, Chen Y, Xu Y, Zhao J, Li Q, Xiao C, Wu Y, Wang J, Wang Y, Zhong Z, Zhang L, Wu R, Liu Q, Wu X, Ke C, Zhu W, Chen J, Huang J, Wang Y, Wang J, Hu X. Flavin Containing Monooxygenase 2 Prevents Cardiac Fibrosis via CYP2J3-SMURF2 Axis. Circ Res 2022; 131:101161CIRCRESAHA122320538. [PMID: 35861735 PMCID: PMC9932658 DOI: 10.1161/circresaha.122.320538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac fibrosis is a common pathological feature associated with adverse clinical outcome in postinjury remodeling and has no effective therapy. Using an unbiased transcriptome analysis, we identified FMO2 (flavin-containing monooxygenase 2) as a top-ranked gene dynamically expressed following myocardial infarction (MI) in hearts across different species including rodents, nonhuman primates, and human. However, the functional role of FMO2 in cardiac remodeling is largely unknown. METHODS Single-nuclei transcriptome analysis was performed to identify FMO2 after MI; FMO2 ablation rats were generated both in genetic level using the CRISPR-cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) technology and lentivirus-mediated manner. Gain-of-function experiments were conducted using postn-promoter FMO2, miR1a/miR133a-FMO2 lentivirus, and enzymatic activity mutant FMO2 lentivirus after MI. RESULTS A significant downregulation of FMO2 was consistently observed in hearts after MI in rodents, nonhuman primates, and patients. Single-nuclei transcriptome analysis showed cardiac expression of FMO2 was enriched in fibroblasts rather than myocytes. Elevated spontaneous tissue fibrosis was observed in the FMO2-null animals without external stress. In contrast, fibroblast-specific expression of FMO2 markedly reduced cardiac fibrosis following MI in rodents and nonhuman primates associated with diminished SMAD2/3 phosphorylation. Unexpectedly, the FMO2-mediated regulation in fibrosis and SMAD2/3 signaling was independent of its enzymatic activity. Rather, FMO2 was detected to interact with CYP2J3 (cytochrome p450 superfamily 2J3). Binding of FMO2 to CYP2J3 disrupted CYP2J3 interaction with SMURF2 (SMAD-specific E3 ubiquitin ligase 2) in cytosol, leading to increased cytoplasm to nuclear translocation of SMURF2 and consequent inhibition of SMAD2/3 signaling. CONCLUSIONS Loss of FMO2 is a conserved molecular signature in postinjury hearts. FMO2 possesses a previously uncharacterized enzyme-independent antifibrosis activity via the CYP2J3-SMURF2 axis. Restoring FMO2 expression exerts potent ameliorative effect against fibrotic remodeling in postinjury hearts from rodents to nonhuman primates. Therefore, FMO2 is a potential therapeutic target for treating cardiac fibrosis following injury.
Collapse
Affiliation(s)
- Cheng Ni
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yongjian Chen
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yinchuan Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jing Zhao
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Qingju Li
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Changchen Xiao
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yan Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jingyi Wang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Yingchao Wang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Zhiwei Zhong
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Ling Zhang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Rongrong Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Qingnian Liu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xianpeng Wu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Changle Ke
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Wei Zhu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jinghai Chen
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Jijun Huang
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| | - Yibin Wang
- Programme in Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, 8 College Road, Singapore
| | - Jian’an Wang
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| | - Xinyang Hu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, P.R. China
| |
Collapse
|
9
|
Zhang Y, Andrade R, Hanna AA, Pflum MKH. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Cell Chem Biol 2022; 29:1162-1173.e5. [PMID: 35709754 DOI: 10.1016/j.chembiol.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Histone deacetylase (HDAC) proteins are epigenetic regulators that govern a wide variety of cellular events. With a role in cancer formation, HDAC inhibitors have emerged as anti-cancer therapeutics. Among the eleven metal-dependent class I, II, and IV HDAC proteins targeted by inhibitor drugs, class IIa HDAC4, -5, -7, and -9 harbor low deacetylase activity and are hypothesized to be "reader" proteins, which bind to post-translationally acetylated lysine. However, evidence linking acetyllysine binding to a downstream functional event is lacking. Here, we report for the first time that HDAC4, -5, and -7 dissociated from corepressor NCoR in the presence of an acetyllysine-containing peptide, consistent with reader function. Documenting the biological consequences of this possible reader function, mutation of a critical acetylation site regulated androgen receptor (AR) transcriptional activation function through HDAC7-NCoR-HDAC3 dissociation. The data document the first evidence consistent with epigenetic-reader functions of class IIa HDAC proteins.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Rafael Andrade
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Anthony A Hanna
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Mary Kay H Pflum
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
10
|
Predescu DN, Mokhlesi B, Predescu SA. The Impact of Sex Chromosomes in the Sexual Dimorphism of Pulmonary Arterial Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:582-594. [PMID: 35114193 PMCID: PMC8978209 DOI: 10.1016/j.ajpath.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 01/11/2022] [Indexed: 02/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a sex-biased disease with a poorly understood female prevalence. Emerging research suggests that nonhormonal factors, such as the XX or XY sex chromosome complement and sex bias in gene expression, may also lead to sex-based differences in PAH incidence, penetrance, and progression. Typically, one of females' two X chromosomes is epigenetically silenced to offer a gender-balanced gene expression. Recent data demonstrate that the long noncoding RNA X-inactive specific transcript, essential for X chromosome inactivation and dosage compensation of X-linked gene expression, shows elevated levels in female PAH lung specimens compared with controls. This molecular event leads to incomplete inactivation of the females' second X chromosome, abnormal expression of X-linked gene(s) involved in PAH pathophysiology, and a pulmonary artery endothelial cell (PAEC) proliferative phenotype. Moreover, the pathogenic proliferative p38 mitogen-activated protein kinase/ETS transcription factor ELK1 (Elk1)/cFos signaling is mechanistically linked to the sexually dimorphic proliferative response of PAECs in PAH. Apprehending the complicated relationship between long noncoding RNA X-inactive specific transcript and X-linked genes and how this relationship integrates into a sexually dimorphic proliferation of PAECs and PAH sex paradox remain challenging. We highlight herein new findings related to how the sex chromosome complement and sex-differentiated epigenetic mechanisms to control gene expression are decisive players in the sexual dimorphism of PAH. Pharmacologic interventions in the light of the newly elucidated mechanisms are discussed.
Collapse
Affiliation(s)
- Dan N Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois.
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
11
|
Cornwell JD, McDermott JC. MEF2 in cardiac hypertrophy in response to hypertension. Trends Cardiovasc Med 2022; 33:204-212. [PMID: 35026393 DOI: 10.1016/j.tcm.2022.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a globally prevalent pathological condition and an underlying risk factor for the development of cardiac hypertrophy leading to heart failure. Myocyte enhancer factor 2 (Mef2) has been identified as one of the primary effectors of morphological changes in the hypertensive heart, as part of a complex network of molecular signaling controlling cardiac gene expression. Experimental chronic pressure-overload models that mimic hypertension in the mammalian heart lead to the activation of various pathological mechanisms that result in structural changes leading to debilitating cardiac hypertrophy and ultimately heart failure. The purpose here is to survey the literature implicating Mef2 in hypertension induced cardiac hypertrophy, towards illuminating points of interest for understanding and potentially treating heart failure.
Collapse
Affiliation(s)
- James D Cornwell
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, ON M3J 1P3, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
12
|
Maric D, Paterek A, Delaunay M, López IP, Arambasic M, Diviani D. A-Kinase Anchoring Protein 2 Promotes Protection against Myocardial Infarction. Cells 2021; 10:2861. [PMID: 34831084 PMCID: PMC8616452 DOI: 10.3390/cells10112861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of maladaptive cardiac remodeling and heart failure. In the damaged heart, loss of function is mainly due to cardiomyocyte death and remodeling of the cardiac tissue. The current study shows that A-kinase anchoring protein 2 (AKAP2) orchestrates cellular processes favoring cardioprotection in infarcted hearts. Induction of AKAP2 knockout (KO) in cardiomyocytes of adult mice increases infarct size and exacerbates cardiac dysfunction after MI, as visualized by increased left ventricular dilation and reduced fractional shortening and ejection fraction. In cardiomyocytes, AKAP2 forms a signaling complex with PKA and the steroid receptor co-activator 3 (Src3). Upon activation of cAMP signaling, the AKAP2/PKA/Src3 complex favors PKA-mediated phosphorylation and activation of estrogen receptor α (ERα). This results in the upregulation of ER-dependent genes involved in protection against apoptosis and angiogenesis, including Bcl2 and the vascular endothelial growth factor a (VEGFa). In line with these findings, cardiomyocyte-specific AKAP2 KO reduces Bcl2 and VEGFa expression, increases myocardial apoptosis and impairs the formation of new blood vessels in infarcted hearts. Collectively, our findings suggest that AKAP2 organizes a transcriptional complex that mediates pro-angiogenic and anti-apoptotic responses that protect infarcted hearts.
Collapse
Affiliation(s)
- Darko Maric
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
- Section of Medicine, Department of Endocrinology, Metabolism and Cardiovascular System, University of Fribourg, 1700 Fribourg, Switzerland
| | - Aleksandra Paterek
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Marion Delaunay
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Irene Pérez López
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Miroslav Arambasic
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| | - Dario Diviani
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland; (D.M.); (A.P.); (M.D.); (I.P.L.); (M.A.)
| |
Collapse
|
13
|
Díaz-Martín RD, Carvajal-Peraza A, Yáñez-Rivera B, Betancourt-Lozano M. Short exposure to glyphosate induces locomotor, craniofacial, and bone disorders in zebrafish (Danio rerio) embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103700. [PMID: 34237469 DOI: 10.1016/j.etap.2021.103700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate [N-(phosphonomethyl)glycine] is the active ingredient in widely used broad-spectrum herbicides. Even though the toxicity mechanism of this herbicide in vertebrates is poorly understood, evidence suggests that glyphosate is an endocrine disruptor capable of producing morphological anomalies as well as cardiotoxic and neurotoxic effects. We used the zebrafish model to assess the effects of early life glyphosate exposure on the development of cartilage and bone tissues and organismal responses. We found functional alterations, including a reduction in the cardiac rate, significant changes in the spontaneous tail movement pattern, and defects in craniofacial development. These effects were concomitant with alterations in the level of the estrogen receptor alpha osteopontin and bone sialoprotein. We also found that embryos exposed to glyphosate presented spine deformities as adults. These developmental alterations are likely induced by changes in protein levels related to bone and cartilage formation.
Collapse
Affiliation(s)
- Rubén D Díaz-Martín
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico
| | - Ana Carvajal-Peraza
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico
| | - Beatriz Yáñez-Rivera
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Ciudad de México, 03940, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, A. C. Avenida Sábalo-Cerritos s/n, Mazatlán, Sinaloa 82100, Mexico.
| |
Collapse
|
14
|
Vigil-Garcia M, Demkes CJ, Eding JEC, Versteeg D, de Ruiter H, Perini I, Kooijman L, Gladka MM, Asselbergs FW, Vink A, Harakalova M, Bossu A, van Veen TAB, Boogerd CJ, van Rooij E. Gene expression profiling of hypertrophic cardiomyocytes identifies new players in pathological remodelling. Cardiovasc Res 2021; 117:1532-1545. [PMID: 32717063 PMCID: PMC8152696 DOI: 10.1093/cvr/cvaa233] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 05/15/2020] [Accepted: 07/22/2020] [Indexed: 01/30/2023] Open
Abstract
AIMS Pathological cardiac remodelling is characterized by cardiomyocyte (CM) hypertrophy and fibroblast activation, which can ultimately lead to maladaptive hypertrophy and heart failure (HF). Genome-wide expression analysis on heart tissue has been instrumental for the identification of molecular mechanisms at play. However, these data were based on signals derived from all cardiac cell types. Here, we aimed for a more detailed view on molecular changes driving maladaptive CM hypertrophy to aid in the development of therapies to reverse pathological remodelling. METHODS AND RESULTS Utilizing CM-specific reporter mice exposed to pressure overload by transverse aortic banding and CM isolation by flow cytometry, we obtained gene expression profiles of hypertrophic CMs in the more immediate phase after stress, and CMs showing pathological hypertrophy. We identified subsets of genes differentially regulated and specific for either stage. Among the genes specifically up-regulated in the CMs during the maladaptive phase we found known stress markers, such as Nppb and Myh7, but additionally identified a set of genes with unknown roles in pathological hypertrophy, including the platelet isoform of phosphofructokinase (PFKP). Norepinephrine-angiotensin II treatment of cultured human CMs induced the secretion of N-terminal-pro-B-type natriuretic peptide (NT-pro-BNP) and recapitulated the up-regulation of these genes, indicating conservation of the up-regulation in failing CMs. Moreover, several genes induced during pathological hypertrophy were also found to be increased in human HF, with their expression positively correlating to the known stress markers NPPB and MYH7. Mechanistically, suppression of Pfkp in primary CMs attenuated stress-induced gene expression and hypertrophy, indicating that Pfkp is an important novel player in pathological remodelling of CMs. CONCLUSION Using CM-specific transcriptomic analysis, we identified novel genes induced during pathological hypertrophy that are relevant for human HF, and we show that PFKP is a conserved failure-induced gene that can modulate the CM stress response.
Collapse
MESH Headings
- Animals
- Cardiac Myosins/genetics
- Cardiac Myosins/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Cardiomegaly/physiopathology
- Cells, Cultured
- Disease Models, Animal
- Fibrosis
- Gene Expression Profiling
- Gene Expression Regulation
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Phosphofructokinase-1, Type C/genetics
- Phosphofructokinase-1, Type C/metabolism
- Transcriptome
- Ventricular Remodeling/genetics
- Mice
Collapse
Affiliation(s)
- Marta Vigil-Garcia
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Charlotte J Demkes
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joep E C Eding
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Danielle Versteeg
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Ilaria Perini
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Lieneke Kooijman
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Monika M Gladka
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Aryan Vink
- Department of Pathology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Alexander Bossu
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Cornelis J Boogerd
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands
- Department of Cardiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
15
|
Chen JS, Mou YP, Li CE, Li YN, Yu J. Effects of hormone replacement therapy on left ventricular diastolic function in postmenopausal women: a systematic review and meta-analysis. Gynecol Endocrinol 2021; 37:300-306. [PMID: 32960112 DOI: 10.1080/09513590.2020.1822800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Postmenopausal women tend to experience significant changes in left ventricular diastolic function (LVDF). However, there are conflicting reports about LVDF between postmenopausal women on hormone replacement therapy (HRT) and those not on HRT. This meta-analysis is to evaluate the effects of HRT on LVDF in postmenopausal women. METHODS We conducted a systemic review of randomized controlled trials published up to December 31 2019 using Embase, Pubmed, and the Cochrane library database. RESULTS Eight studies involving 668 postmenopausal women were identified. Our analysis indicated that the ratio of the peak velocity during early filing to late filling from atrial contraction improvement in HRT group was better than that in placebo group (MD 0.20, 95%CI 0.12 to 0.28). There was a significant reduction in deceleration time and left ventricular mass index in HRT group compared with placebo group (MD -21.01, 95%CI -40.11 to -1.91 vs MD -8.26, 95%CI -14.10 to -2.42). No significant difference was observed in left ventricular end systole diameter (MD 0.80, 95%CI -0.72 to 2.31), left ventricular end diastole diameter (MD -0.07, 95%CI -1.25 to 1.10), left atrial size (MD -0.33, 95%CI -1.34 to 0.68)and the isovolumic relaxation time (MD -12.08, 95%CI -27.65 to 3.5). CONCLUSIONS Our meta-analysis illustrated that postmenopausal women seem to obtain more beneficial effects from HRT on LVDF, though future studies are required to elucidate the specific mechanisms for this phenomenon.
Collapse
Affiliation(s)
- Jian-Shu Chen
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Yu-Ping Mou
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Cai-E Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Yin-Ning Li
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
| | - Jing Yu
- Lanzhou University Second College of Clinical Medicine, Lanzhou, China
- Department of Cardiology, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Ducret V, Richards AJ, Videlier M, Scalvenzi T, Moore KA, Paszkiewicz K, Bonneaud C, Pollet N, Herrel A. Transcriptomic analysis of the trade-off between endurance and burst-performance in the frog Xenopus allofraseri. BMC Genomics 2021; 22:204. [PMID: 33757428 PMCID: PMC7986297 DOI: 10.1186/s12864-021-07517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 03/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.
Collapse
Affiliation(s)
- Valérie Ducret
- UMR 7179 MECADEV, C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 Rue Buffon, 75005, Paris, France.
| | - Adam J Richards
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
| | - Mathieu Videlier
- Functional Ecology Lab, Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Thibault Scalvenzi
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Karen A Moore
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Konrad Paszkiewicz
- Exeter Sequencing Service, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Camille Bonneaud
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Centre for Ecology & Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Nicolas Pollet
- Evolution, Génomes, Comportement & Ecologie, Université Paris-Saclay, CNRS, IRD, 91198, Gif-sur-Yvette, France
| | - Anthony Herrel
- Station d'Ecologie Expérimentale du CNRS, USR 2936, 09200, Moulis, France
- Evolutionary Morphology of Vertebrates, Ghent University, B-9000, Ghent, Belgium
| |
Collapse
|
17
|
Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest 2021; 131:129433. [PMID: 33497359 DOI: 10.1172/jci129433] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
Women with pulmonary arterial hypertension (PAH) exhibit better right ventricular (RV) function and survival than men; however, the underlying mechanisms are unknown. We hypothesized that 17β-estradiol (E2), through estrogen receptor α (ER-α), attenuates PAH-induced RV failure (RVF) by upregulating the procontractile and prosurvival peptide apelin via a BMPR2-dependent mechanism. We found that ER-α and apelin expression were decreased in RV homogenates from patients with RVF and from rats with maladaptive (but not adaptive) RV remodeling. RV cardiomyocyte apelin abundance increased in vivo or in vitro after treatment with E2 or ER-α agonist. Studies employing ER-α-null or ER-β-null mice, ER-α loss-of-function mutant rats, or siRNA demonstrated that ER-α is necessary for E2 to upregulate RV apelin. E2 and ER-α increased BMPR2 in pulmonary hypertension RVs and in isolated RV cardiomyocytes, associated with ER-α binding to the Bmpr2 promoter. BMPR2 is required for E2-mediated increases in apelin abundance, and both BMPR2 and apelin are necessary for E2 to exert RV-protective effects. E2 or ER-α agonist rescued monocrotaline pulmonary hypertension and restored RV apelin and BMPR2. We identified what we believe to be a novel cardioprotective E2/ER-α/BMPR2/apelin axis in the RV. Harnessing this axis may lead to novel RV-targeted therapies for PAH patients of either sex.
Collapse
Affiliation(s)
- Andrea L Frump
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marjorie Albrecht
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bakhtiyor Yakubov
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sandra Breuils-Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Valérie Nadeau
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Eve Tremblay
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Francois Potus
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Junichi Omura
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Todd Cook
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amanda Fisher
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brooke Rodriguez
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - R Dale Brown
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado-Denver, Aurora, Colorado, USA
| | - C Dustin Rubinstein
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | - Kathy Krentz
- Genome Editing and Animal Models Core, University of Wisconsin Biotechnology Center
| | | | - Rongbo Li
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xin Sun
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Steeve Provencher
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Sebastien Bonnet
- Pulmonary Hypertension Research Group, Institute Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Quebec City, Quebec, Canada
| | - Tim Lahm
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
18
|
Blixt N, Norton A, Zhang A, Aparicio C, Prasad H, Gopalakrishnan R, Jensen ED, Mansky KC. Loss of myocyte enhancer factor 2 expression in osteoclasts leads to opposing skeletal phenotypes. Bone 2020; 138:115466. [PMID: 32512162 PMCID: PMC7443313 DOI: 10.1016/j.bone.2020.115466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/04/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023]
Abstract
Osteoclasts are multinuclear cells that resorb bone. Osteoclast differentiation is regulated by multiple transcription factors which may be acting in a single or multiple factor complex to regulate gene expression. Myocyte enhancer factor 2 (MEF2) is a family of transcription factors whose role during osteoclast differentiation has not been well characterized. Because MEF2A and MEF2D are the family members most highly expressed during osteoclast differentiation, we created conditional knockout mice models for MEF2A and/or MEF2D. In vitro cultures of A- and D-KO osteoclasts were smaller and less numerous than wild type cultures, while AD-KO osteoclasts were almost completely devoid of TRAP positive mononuclear cells. Female A-KO mice are osteopetrotic while male A- and D-KO mice of either sex had no significant in vivo skeletal phenotype, suggesting a sex-specific regulation of osteoclasts by MEF2A. Lastly, in vivo male AD-KO mice are osteopenic, indicating while MEF2 is required for M-CSF and RANKL-stimulated osteoclastogenesis in vitro, osteoclasts can form in the absence of MEF2 in vivo via a RANKL-alternative pathway.
Collapse
Affiliation(s)
- Nicholas Blixt
- Departmment of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Andrew Norton
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Anqi Zhang
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Conrado Aparicio
- Department of Restorative Sciences, MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Hari Prasad
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Rajaram Gopalakrishnan
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
| | - Eric D. Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| | - Kim C. Mansky
- Department of Developmental and Surgical Sciences, University of Minnesota, Minneapolis, Minnesota USA 55455
- Co-corresponding authors : To whom correspondence should be addressed:, Kim Mansky, PhD, Tel.: (612) 626-5582,
| |
Collapse
|
19
|
Is Cardiac Diastolic Dysfunction a Part of Post-Menopausal Syndrome? JACC-HEART FAILURE 2020; 7:192-203. [PMID: 30819374 DOI: 10.1016/j.jchf.2018.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Post-menopausal women exhibit an exponential increase in the incidence of heart failure with preserved ejection fraction compared with men of the same age, which indicates a potential role of hormonal changes in subclinical and clinical diastolic dysfunction. This paper reviews the preclinical evidence that demonstrates the involvement of estrogen in many regulatory molecular pathways of cardiac diastolic function and the clinical data that investigates the effect of estrogen on diastolic function in post-menopausal women. Published reports show that estrogen deficiency influences both early diastolic relaxation via calcium homeostasis and the late diastolic compliance associated with cardiac hypertrophy and fibrosis. Because of the high risk of diastolic dysfunction and heart failure with preserved ejection fraction in post-menopausal women and the positive effects of estrogen on preserving cardiac function, further clinical studies are needed to clarify the role of endogenous estrogen or hormone replacement in mitigating the onset and progression of heart failure with preserved ejection fraction in women.
Collapse
|
20
|
Perrino C, Ferdinandy P, Bøtker HE, Brundel BJJM, Collins P, Davidson SM, den Ruijter HM, Engel FB, Gerdts E, Girao H, Gyöngyösi M, Hausenloy DJ, Lecour S, Madonna R, Marber M, Murphy E, Pesce M, Regitz-Zagrosek V, Sluijter JPG, Steffens S, Gollmann-Tepeköylü C, Van Laake LW, Van Linthout S, Schulz R, Ytrehus K. Improving translational research in sex-specific effects of comorbidities and risk factors in ischaemic heart disease and cardioprotection: position paper and recommendations of the ESC Working Group on Cellular Biology of the Heart. Cardiovasc Res 2020; 117:367-385. [PMID: 32484892 DOI: 10.1093/cvr/cvaa155] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/29/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ischaemic heart disease (IHD) is a complex disorder and a leading cause of death and morbidity in both men and women. Sex, however, affects several aspects of IHD, including pathophysiology, incidence, clinical presentation, diagnosis as well as treatment and outcome. Several diseases or risk factors frequently associated with IHD can modify cellular signalling cascades, thus affecting ischaemia/reperfusion injury as well as responses to cardioprotective interventions. Importantly, the prevalence and impact of risk factors and several comorbidities differ between males and females, and their effects on IHD development and prognosis might differ according to sex. The cellular and molecular mechanisms underlying these differences are still poorly understood, and their identification might have important translational implications in the prediction or prevention of risk of IHD in men and women. Despite this, most experimental studies on IHD are still undertaken in animal models in the absence of risk factors and comorbidities, and assessment of potential sex-specific differences are largely missing. This ESC WG Position Paper will discuss: (i) the importance of sex as a biological variable in cardiovascular research, (ii) major biological mechanisms underlying sex-related differences relevant to IHD risk factors and comorbidities, (iii) prospects and pitfalls of preclinical models to investigate these associations, and finally (iv) will provide recommendations to guide future research. Although gender differences also affect IHD risk in the clinical setting, they will not be discussed in detail here.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary.,Pharmahungary Group, Hajnoczy str. 6., H-6722 Szeged, Hungary
| | - Hans E Bøtker
- Department of Cardiology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 161, 8200 Aarhus, Denmark
| | - Bianca J J M Brundel
- Department of Physiology, Amsterdam UMC, Vrije Universiteit, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, Amsterdam, 1108 HV, the Netherlands
| | - Peter Collins
- Imperial College, Faculty of Medicine, National Heart & Lung Institute, South Kensington Campus, London SW7 2AZ, UK.,Royal Brompton Hospital, Sydney St, Chelsea, London SW3 6NP, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, WC1E 6HX London, UK
| | - Hester M den Ruijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), Schwabachanlage 12, 91054 Erlangen, Germany
| | - Eva Gerdts
- Department for Clinical Science, University of Bergen, PO Box 7804, 5020 Bergen, Norway
| | - Henrique Girao
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Azinhaga Santa Comba, Celas, 3000-548 Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, and Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, 169857, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, 119228, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London WC1E 6HX, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, Chris Barnard Building, University of Cape Town, Private Bag X3 7935 Observatory, Cape Town, South Africa
| | - Rosalinda Madonna
- Institute of Cardiology, University of Pisa, Lungarno Antonio Pacinotti 43, 56126 Pisa, Italy.,Department of Internal Medicine, University of Texas Medical School in Houston, 6410 Fannin St #1014, Houston, TX 77030, USA
| | - Michael Marber
- King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, Cardiovascular Branch, NHLBI, NIH, 10 Center Drive, Bethesda, MD 20892, USA
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino, IRCCS Via Parea, 4, I-20138 Milan, Italy
| | - Vera Regitz-Zagrosek
- Berlin Institute of Gender in Medicine, Center for Cardiovascular Research, DZHK, partner site Berlin, Geschäftsstelle Potsdamer Str. 58, 10785 Berlin, Germany.,University of Zürich, Rämistrasse 71, 8006 Zürich, Germany
| | - Joost P G Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands.,Circulatory Health Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, Heidelberglaan 8, 3584 CS Utrecht, the Netherlands
| | - Sabine Steffens
- Institute for Cardiovascular Prevention and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, Ludwig-Maximilians-University, 80336 Munich, Germany
| | - Can Gollmann-Tepeköylü
- Department of Cardiac Surgery, Medical University of Innsbruck, Anichstr.35, A - 6020 Innsbruck, Austria
| | - Linda W Van Laake
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Sophie Van Linthout
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, University Medicine Berlin, 10178 Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9037 Tromsø, Norway
| |
Collapse
|
21
|
Hevener AL, Ribas V, Moore TM, Zhou Z. The Impact of Skeletal Muscle ERα on Mitochondrial Function and Metabolic Health. Endocrinology 2020; 161:5735479. [PMID: 32053721 PMCID: PMC7017798 DOI: 10.1210/endocr/bqz017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic disease is elevated in women after menopause. Increased expression of ESR1 (the gene that encodes the estrogen receptor alpha, ERα) in muscle is highly associated with metabolic health and insulin sensitivity. Moreover, reduced muscle expression levels of ESR1 are observed in women, men, and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction elevates chronic disease risk, including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. This review will provide published work supporting a critical and protective role for skeletal muscle ERα in the regulation of mitochondrial function, metabolic homeostasis, and insulin action. We will provide evidence that muscle-selective targeting of ERα may be effective for the preservation of mitochondrial and metabolic health. Collectively published findings support a compelling role for ERα in the control of muscle metabolism via its regulation of mitochondrial function and quality control. Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the design of novel therapeutics to improve metabolic health of women while limiting secondary complications that have historically plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Iris Cantor-UCLA Women’s Health Research Center, University of California, Los Angeles, California
- Correspondence: Andrea L. Hevener, PhD, University of California, Los Angeles, David Geffen School of Medicine, Division of Endocrinology, Diabetes, and Hypertension, 650 Charles E. Young Drive, CHS Suite 34-115B, Los Angeles, California 90095–7073. E-mail:
| | - Vicent Ribas
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
- Current Affiliation: Vicent Ribas, Department of cell death and proliferation Instituto de Investigaciones Biomédicas de Barcelona, (IIBB-CSIC) Spanish National Research Council C/Rosselló 179, 6th floor 08036, Barcelona Spain
| | - Timothy M Moore
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| | - Zhenqi Zhou
- David Geffen School of Medicine, Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, University of California, Los Angeles, California
| |
Collapse
|
22
|
Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide. Eur J Nutr 2019; 59:2953-2968. [PMID: 31707544 DOI: 10.1007/s00394-019-02134-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE A regular intake of red grape juice has cardioprotective properties, but its role on the modulation of natriuretic peptides (NPs), in particular of C-type NP (CNP), has not yet been proven. The aims were to evaluate: (1) in vivo the effects of long-term intake of Tuscany Sangiovese grape juice (SGJ) on the NPs system in a mouse model of myocardial infarction (MI); (2) in vitro the response to SGJ small RNAs of murine MCEC-1 under physiological and ischemic condition; (3) the activation of CNP/NPR-B/NPR-C in healthy human subjects after 7 days' SGJ regular intake. METHODS (1) C57BL/6J male and female mice (n = 33) were randomly subdivided into: SHAM (n = 7), MI (n = 15) and MI fed for 4 weeks with a normal chow supplemented with Tuscany SGJ (25% vol/vol, 200 µl/per day) (MI + SGJ, n = 11). Echocardiography and histological analyses were performed. Myocardial NPs transcriptional profile was investigated by Real-Time PCR. (2) MCEC-1 were treated for 24 h with a pool of SGJ small RNAs and cell viability under 24 h exposure to H2O2 was evaluated by MTT assay. (3) Human blood samples were collected from seven subjects before and after the 7 days' intake of Tuscany SGJ. NPs and miRNA transcriptional profile were investigated by Real-Time PCR in MCEC-1 and human blood. RESULTS Our experimental data, obtained in a multimodal pipeline, suggest that the long-term intake of SGJ promotes an adaptive response of the myocardium to the ischemic microenvironment through the modulation of the cardiac CNP/NPR-B/NPR-C system. CONCLUSIONS Our results open new avenue in the development of functional foods aimed at enhancing cardioprotection of infarcted hearts through action on the myocardial epigenome.
Collapse
|
23
|
Linares A, Assou S, Lapierre M, Thouennon E, Duraffourd C, Fromaget C, Boulahtouf A, Tian G, Ji J, Sahin O, Badia E, Boulle N, Cavaillès V. Increased expression of the HDAC9 gene is associated with antiestrogen resistance of breast cancers. Mol Oncol 2019; 13:1534-1547. [PMID: 31099456 PMCID: PMC6599838 DOI: 10.1002/1878-0261.12505] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
Estrogens play a pivotal role in breast cancer etiology, and endocrine therapy remains the main first line treatment for estrogen receptor‐alpha (ERα)‐positive breast cancer. ER are transcription factors whose activity is finely regulated by various regulatory complexes, including histone deacetylases (HDACs). Here, we investigated the role of HDAC9 in ERα signaling and response to antiestrogens in breast cancer cells. Various Michigan Cancer Foundation‐7 (MCF7) breast cancer cell lines that overexpress class IIa HDAC9 or that are resistant to the partial antiestrogen 4‐hydroxy‐tamoxifen (OHTam) were used to study phenotypic changes in response to ER ligands by using transcriptomic and gene set enrichment analyses. Kaplan–Meier survival analyses were performed using public transcriptomic datasets from human breast cancer biopsies. In MCF7 breast cancer cells, HDAC9 decreased ERα mRNA and protein expression and inhibited its transcriptional activity. Conversely, HDAC9 mRNA was strongly overexpressed in OHTam‐resistant MCF7 cells and in ERα‐negative breast tumor cell lines. Moreover, HDAC9‐overexpressing cells were less sensitive to OHTam antiproliferative effects compared with parental MCF7 cells. Several genes (including MUC1, SMC3 and S100P) were similarly deregulated in OHTam‐resistant and in HDAC9‐overexpressing MCF7 cells. Finally, HDAC9 expression was positively associated with genes upregulated in endocrine therapy‐resistant breast cancers and high HDAC9 levels were associated with worse prognosis in patients treated with OHTam. These results demonstrate the complex interactions of class IIa HDAC9 with ERα signaling in breast cancer cells and its effect on the response to hormone therapy.
Collapse
Affiliation(s)
- Aurélien Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| | - Said Assou
- Université Montpellier, France.,IRMB, Institute for Regenerative Medicine & Biotherapy, Montpellier, France.,INSERM, U1183, Montpellier, France
| | - Marion Lapierre
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| | - Erwan Thouennon
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| | - Céline Duraffourd
- Laboratoire de Biopathologie des Tumeurs, CHU Arnaud de Villeneuve, Montpellier, France
| | - Carole Fromaget
- Laboratoire de Biopathologie des Tumeurs, CHU Arnaud de Villeneuve, Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| | - Gao Tian
- Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, Department of Gastrointestinal Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ozgur Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, USA
| | - Eric Badia
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| | - Nathalie Boulle
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France.,Laboratoire de Biopathologie des Tumeurs, CHU Arnaud de Villeneuve, Montpellier, France
| | - Vincent Cavaillès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, France.,INSERM, U1194, Montpellier, France.,Université Montpellier, France.,ICM, Montpellier, France
| |
Collapse
|
24
|
Belanger K, Nutter CA, Li J, Tasnim S, Liu P, Yu P, Kuyumcu-Martinez MN. CELF1 contributes to aberrant alternative splicing patterns in the type 1 diabetic heart. Biochem Biophys Res Commun 2018; 503:3205-3211. [PMID: 30158053 DOI: 10.1016/j.bbrc.2018.08.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Dysregulated alternative splicing (AS) that contributes to diabetes pathogenesis has been identified, but little is known about the RNA binding proteins (RBPs) involved. We have previously found that the RBP CELF1 is upregulated in the diabetic heart; however, it is unclear if CELF1 contributes to diabetes-induced AS changes. Utilizing genome wide approaches, we identified extensive changes in AS patterns in Type 1 diabetic (T1D) mouse hearts. We discovered that many aberrantly spliced genes in T1D hearts have CELF1 binding sites. CELF1-regulated AS affects key genes within signaling pathways relevant to diabetes pathogenesis. Disruption of CELF1 binding sites impairs AS regulation by CELF1. In sum, our results indicate that CELF1 target RNAs are aberrantly spliced in the T1D heart leading to abnormal gene expression. These discoveries pave the way for targeting RBPs and their RNA networks as novel therapies for cardiac complications of diabetes.
Collapse
Affiliation(s)
- KarryAnne Belanger
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jin Li
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Sadia Tasnim
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Peiru Liu
- Ball High School, Galveston, TX, 77555, USA
| | - Peng Yu
- Department of Electrical and Computer Engineering & TEES-AgriLife Center for Bioinformatics and Genomic Systems Engineering, Texas A&M University, College Station, TX 77843, USA.
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA; Department of Neuroscience,Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, 77555, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
25
|
Hevener AL, Zhou Z, Moore TM, Drew BG, Ribas V. The impact of ERα action on muscle metabolism and insulin sensitivity - Strong enough for a man, made for a woman. Mol Metab 2018; 15:20-34. [PMID: 30005878 PMCID: PMC6066787 DOI: 10.1016/j.molmet.2018.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/25/2022] Open
Abstract
Background The incidence of chronic disease is elevated in women after menopause. Natural variation in muscle expression of the estrogen receptor (ER)α is inversely associated with plasma insulin and adiposity. Moreover, reduced muscle ERα expression levels are observed in women and animals presenting clinical features of the metabolic syndrome (MetSyn). Considering that metabolic dysfunction impacts nearly a quarter of the U.S. adult population and elevates chronic disease risk including type 2 diabetes, heart disease, and certain cancers, treatment strategies to combat metabolic dysfunction and associated pathologies are desperately needed. Scope of the review This review will provide evidence supporting a critical and protective role for skeletal muscle ERα in the regulation of metabolic homeostasis and insulin sensitivity, and propose novel ERα targets involved in the maintenance of metabolic health. Major conclusions Studies identifying ERα-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutics to improve the metabolic health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| | - Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Timothy M Moore
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Brian G Drew
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Vicent Ribas
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
26
|
Pham TX, Bae M, Lee Y, Park YK, Lee JY. Transcriptional and posttranscriptional repression of histone deacetylases by docosahexaenoic acid in macrophages. J Nutr Biochem 2018; 57:162-169. [PMID: 29734115 DOI: 10.1016/j.jnutbio.2018.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/13/2018] [Accepted: 03/01/2018] [Indexed: 01/12/2023]
Abstract
Histone deacetylation is one of the posttranslational modifications of histones by which eukaryotic cells alter gene transcription. Although fatty acids are the best known macronutrients that modulate gene expression in inflammatory pathways, it is unclear whether common fatty acids in diets can regulate the expression of histone deacetylases (HDACs) in macrophages. We determined the effects of fatty acids, including palmitic acid (PA), oleic acid (OA), linoleic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on the expression of HDAC isoforms in RAW 264.7 macrophages, mouse bone marrow-derived macrophages (BMDM) and human THP-1 cells. In RAW 264.7 macrophages, OA significantly increased mRNA levels of Hdac1, 2 and 3, and EPA induced Hdac2 expression compared with control. Marked repression of Hdac9 mRNA levels by EPA and DHA, with DHA being more potent, was observed in RAW 264.7 macrophages and BMDM. DHA also decreased HDAC3, 4 and 9 protein levels. EPA and DHA facilitated the proteasomal degradation of HDAC3 and 4 protein, while the transcriptional repression of HDAC9 by DHA may be mediated by the repression of myocyte enhancer factor 2 or by the activation of retinoid X receptor. Functionally, inhibition of HDAC activity or knockdown of Hdac9 in macrophages reduced lipopolysaccharide-induced inflammatory gene expression. Our results demonstrate that DHA represses the expression of HDAC3, 4 and 9 at the transcriptional or posttranscriptional levels in murine macrophages. This suggests that the anti-inflammatory effect of DHA may be mediated by the reduction of HDACs.
Collapse
Affiliation(s)
- Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
27
|
Medrano JL, Naya FJ. The transcription factor MEF2A fine-tunes gene expression in the atrial and ventricular chambers of the adult heart. J Biol Chem 2017; 292:20975-20988. [PMID: 29054930 PMCID: PMC5743072 DOI: 10.1074/jbc.m117.806422] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/10/2017] [Indexed: 11/06/2022] Open
Abstract
The distinct morphological and functional properties of the cardiac chambers arise from an elaborate developmental program involving cell lineage determination, morphogenesis, and dynamic spatiotemporal gene expression patterns. Although a number of transcription factors have been identified for proper gene regulation in the chambers, the complete transcriptional network that controls these patterns remains poorly defined. Previous studies have implicated the MEF2C transcription factor in the regulation of chamber-restricted enhancers. To better understand the mechanisms of MEF2-mediated regional gene regulation in the heart, we took advantage of MEF2A knock-out (KO) mice, a model that displays a predominantly ventricular chamber phenotype. Transcriptomic analysis of atrial and ventricular tissue from adult MEF2A KO hearts revealed a striking difference in chamber gene expression, with a larger proportion of dysregulated genes in the atrial chambers. Canonical pathway analysis of genes preferentially dysregulated in the atria and ventricles revealed distinct MEF2A-dependent cellular processes in each cardiac chamber. In the atria, MEF2A regulated genes involved in fibrosis and adhesion, whereas in the ventricles, it controlled inflammation and endocytosis. Finally, analysis of transcription factor-binding site motifs of differentially dysregulated genes uncovered distinct MEF2A co-regulators for the atrial and ventricular gene sets, and a subset of these was found to cooperate with MEF2A. In conclusion, our results suggest a mechanism in which MEF2 transcriptional activity is differentially recruited to fine-tune gene expression levels in each cardiac chamber. This regulatory mechanism ensures optimal output of these gene products for proper physiological function of the atrial and ventricular chambers.
Collapse
Affiliation(s)
- Jose L Medrano
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
28
|
Histone deacetylase 9 regulates breast cancer cell proliferation and the response to histone deacetylase inhibitors. Oncotarget 2017; 7:19693-708. [PMID: 26930713 PMCID: PMC4991412 DOI: 10.18632/oncotarget.7564] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/23/2016] [Indexed: 01/13/2023] Open
Abstract
Histone lysine acetylation is an epigenetic mark regulated by histone acetyltransferases and histone deacetylases (HDAC) which plays an important role in tumorigenesis. In this study, we observed a strong overexpression of class IIa HDAC9, at the mRNA and protein levels, in the most aggressive human breast cancer cell lines (i.e. in basal breast cancer cells vs luminal ones or in malignant vs begnin MCF10A breast epithelial cell lines). HDAC9 overexpression was associated with higher rates of gene transcription and increased epigenetic marks on the HDAC9 promoter. Ectopic expression of HDAC9 in MCF7 luminal breast cancer cells led to an increase in cell proliferation and to a decrease in apoptosis. These effects were associated with a deregulated expression of several genes controlled by HDAC inhibitors such as CDKN1A, BAX and TNFRSF10A. Inversely, knock-down of HDAC9 expression in MDA-MB436 basal breast cancer cells reduced cell proliferation. Moreover, high HDAC9 expression decreased the efficacy of HDAC inhibitors to reduce cell proliferation and to regulate CDKN1A gene expression. Interestingly, the gene encoding the transcription factor SOX9 was identified by a global transcriptomic approach as an HDAC9 target gene. In stably transfected MCF7 cells, SOX9 silencing significantly decreased HDAC9 mitogenic activity. Finally, in a large panel of breast cancer biopsies, HDAC9 expression was significantly increased in tumors of the basal subtype, correlated with SOX9 expression and associated with poor prognosis. Altogether, these results indicate that HDAC9 is a key factor involved in mammary carcinogenesis and in the response to HDAC inhibitors.
Collapse
|
29
|
Abdul-Ghani M, Suen C, Jiang B, Deng Y, Weldrick JJ, Putinski C, Brunette S, Fernando P, Lee TT, Flynn P, Leenen FHH, Burgon PG, Stewart DJ, Megeney LA. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 2017; 27:1195-1215. [PMID: 28785017 PMCID: PMC5630684 DOI: 10.1038/cr.2017.87] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/06/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022] Open
Abstract
The post-natal heart adapts to stress and overload through hypertrophic growth, a process that may be pathologic or beneficial (physiologic hypertrophy). Physiologic hypertrophy improves cardiac performance in both healthy and diseased individuals, yet the mechanisms that propagate this favorable adaptation remain poorly defined. We identify the cytokine cardiotrophin 1 (CT1) as a factor capable of recapitulating the key features of physiologic growth of the heart including transient and reversible hypertrophy of the myocardium, and stimulation of cardiomyocyte-derived angiogenic signals leading to increased vascularity. The capacity of CT1 to induce physiologic hypertrophy originates from a CK2-mediated restraining of caspase activation, preventing the transition to unrestrained pathologic growth. Exogenous CT1 protein delivery attenuated pathology and restored contractile function in a severe model of right heart failure, suggesting a novel treatment option for this intractable cardiac disease.
Collapse
Affiliation(s)
- Mohammad Abdul-Ghani
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Colin Suen
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Baohua Jiang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Yupu Deng
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Jonathan J Weldrick
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Charis Putinski
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Steve Brunette
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada
| | - Pasan Fernando
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Tom T Lee
- Fate Therapeutics Inc., 3535 General Atomics Court Suite 200, San Diego, CA 92121, USA
| | - Peter Flynn
- Fate Therapeutics Inc., 3535 General Atomics Court Suite 200, San Diego, CA 92121, USA
| | - Frans H H Leenen
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Patrick G Burgon
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Duncan J Stewart
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Lynn A Megeney
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa Hospital, Ottawa, Ontario K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Department of Medicine (Cardiology), Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
30
|
Hevener AL, Zhou Z, Drew BG, Ribas V. The Role of Skeletal Muscle Estrogen Receptors in Metabolic Homeostasis and Insulin Sensitivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:257-284. [PMID: 29224099 DOI: 10.1007/978-3-319-70178-3_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Women in the modern era are challenged with facing menopausal symptoms as well as heightened disease risk associated with increasing adiposity and metabolic dysfunction for up to three decades of life. Treatment strategies to combat metabolic dysfunction and associated pathologies have been hampered by our lack of understanding regarding the biological causes of these clinical conditions and our incomplete understanding regarding the effects of estrogens and the tissue-specific functions and molecular actions of its receptors. In this chapter we provide evidence supporting a critical and protective role for skeletal muscle estrogen receptor α in the maintenance of metabolic homeostasis and insulin sensitivity. Studies identifying the critical ER-regulated pathways essential for disease prevention will lay the important foundation for the rational design of novel therapeutic strategies to improve the health of women while limiting secondary complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Brian G Drew
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Vicent Ribas
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
32
|
Wright LH, Menick DR. A class of their own: exploring the nondeacetylase roles of class IIa HDACs in cardiovascular disease. Am J Physiol Heart Circ Physiol 2016; 311:H199-206. [PMID: 27208161 PMCID: PMC5005290 DOI: 10.1152/ajpheart.00271.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
Abstract
Histone deacetylases (HDACs) play integral roles in many cardiovascular biological processes ranging from transcriptional and translational regulation to protein stabilization and localization. There are 18 known HDACs categorized into 4 classes that can differ on the basis of substrate targets, subcellular localization, and regulatory binding partners. HDACs are classically known for their ability to remove acetyl groups from histone and nonhistone proteins that have lysine residues. However, despite their nomenclature and classical functions, discoveries from many research groups over the past decade have suggested that nondeacetylase roles exist for class IIa HDACs. This is not surprising given that class IIa HDACs have, for example, relatively poor deacetylase capabilities and are often shuttled in and out of nuclei upon specific pathological and nonpathological cardiac events. This review aims to consolidate and elucidate putative nondeacetylase roles for class IIa HDACs and, where possible, highlight studies that provide evidence for their noncanonical roles, especially in the context of cardiovascular maladies. There has been great interest recently in exploring the pharmacological regulators of HDACs for use in therapeutic interventions for treating cardiovascular diseases and inflammation. Thus it is of interest to earnestly consider nonenzymatic and or nondeacetylase roles of HDACs that might be key in potentiating or abrogating pathologies. These noncanonical HDAC functions may possibly yield new mechanisms and targets for drug discovery.
Collapse
Affiliation(s)
- Lillianne H Wright
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina; and Ralph Johnson Veteran's Hospital, Charleston, South Carolina
| |
Collapse
|
33
|
Hevener AL, Clegg DJ, Mauvais-Jarvis F. Impaired estrogen receptor action in the pathogenesis of the metabolic syndrome. Mol Cell Endocrinol 2015; 418 Pt 3:306-21. [PMID: 26033249 PMCID: PMC5965692 DOI: 10.1016/j.mce.2015.05.020] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/13/2022]
Abstract
Considering the current trends in life expectancy, women in the modern era are challenged with facing menopausal symptoms as well as heightened disease risk associated with increasing adiposity and metabolic dysfunction for up to three decades of life. Treatment strategies to combat metabolic dysfunction and associated pathologies have been hampered by our lack of understanding regarding the biological underpinnings of these clinical conditions and our incomplete understanding of the effects of estrogens and the tissue-specific functions and molecular actions of its receptors. In this review we provide evidence supporting a critical and protective role for the estrogen receptor α specific form in the maintenance of metabolic homeostasis and insulin sensitivity. Studies identifying the ER-regulated pathways required for disease prevention will lay the important foundation for the rational design of targeted therapeutics to improve women's health while limiting complications that have plagued traditional hormone replacement interventions.
Collapse
Affiliation(s)
- Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, Iris Cantor-UCLA Women's Health Center, University of California, Los Angeles, CA 90095, USA.
| | - Deborah J Clegg
- Department of Biomedical Sciences, Diabetes and Obesity Research Institute Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Franck Mauvais-Jarvis
- Section of Endocrinology, Department of Medicine Tulane University, Health Science Center New Orleans, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Chevalier N, Fénichel P. Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? DIABETES & METABOLISM 2014; 41:107-15. [PMID: 25454091 DOI: 10.1016/j.diabet.2014.09.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 12/16/2022]
Abstract
The prevalence of type 2 diabetes (T2D) has dramatically increased worldwide during the last few decades. While lifestyle factors, such as decreased physical activity and energy-dense diets, together with genetic predisposition, are well-known actors in the pathophysiology of T2D, there is accumulating evidence suggesting that the increased presence of endocrine-disrupting chemicals (EDCs) in the environment, such as bisphenol A, phthalates and persistent organic pollutants, may also explain an important part in the incidence of metabolic diseases (the metabolic syndrome, obesity and T2D). EDCs are found in everyday products (including plastic bottles, metal cans, toys, cosmetics and pesticides) and used in the manufacture of food. They interfere with the synthesis, secretion, transport, activity and elimination of natural hormones. Such interferences can block or mimic hormone actions and thus induce a wide range of adverse effects (developmental, reproductive, neurological, cardiovascular, metabolic and immune). In this review, both in vivo and in vitro experimental data and epidemiological evidence to support an association between EDC exposure and the induction of insulin resistance and/or disruption of pancreatic β-cell function are summarized, while the epidemiological links with disorders of glucose homoeostasis are also discussed.
Collapse
Affiliation(s)
- N Chevalier
- CHU de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 06202 Nice, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", 06204 Nice, France; Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), 06107 Nice, France.
| | - P Fénichel
- CHU de Nice, Hôpital de l'Archet 2, Service d'Endocrinologie, Diabétologie et Médecine de la Reproduction, 06202 Nice, France; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR U1065/UNS, Centre Méditerranéen de Médecine Moléculaire (C3M), Équipe 5 "Environnement, Reproduction et Cancers Hormono-Dépendants", 06204 Nice, France; Université de Nice-Sophia Antipolis, Faculté de Médecine, Institut Signalisation et Pathologie (IFR 50), 06107 Nice, France
| |
Collapse
|
35
|
Wang J, Sontag D, Cattini PA. Heart-specific expression of FGF-16 and a potential role in postnatal cardioprotection. Cytokine Growth Factor Rev 2014; 26:59-66. [PMID: 25106133 DOI: 10.1016/j.cytogfr.2014.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Fibroblast growth factor 16 (FGF-16) was originally cloned from rat heart. Subsequent investigation of mouse FGF-16, including generation of null mice, revealed a specific pattern of expression in the endocardium and epicardium, and role for FGF-16 during embryonic heart development. FGF-16 is expressed mainly in brown adipose tissue during rat embryonic development, but is expressed mainly in the murine heart after birth. There is also an apparent switch from limited endocardial and epicardial expression in the embryo to the myocardium in the perinatal period. The FGF-16 gene and its location on the X chromosome are conserved between human and murine species, and no other member of the FGF family shows this pattern of spatial and temporal expression. The human and murine FGF-16 gene promoter regions also share an equivalent location for TATA sequences, as well as adjacent putative binding sites for transcription factors linked to cardiac expression and response to stress. Recent evidence has implicated nonsense mutation of FGF-16 with increased cardiovascular risk, and FGF-16 supplementation with cardioprotection. Here we review the important role of FGF-16 in embryonic heart development, its gene regulation, and evidence for FGF-16 as an endogenous and exogenous cardiac-specific and protective factor in the postnatal heart. Moreover, given the conservation of the FGF-16 gene and its chromosomal location between species, the question of support for a cardiac role in the human population is also considered.
Collapse
Affiliation(s)
- Jie Wang
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada.
| | - David Sontag
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | - Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| |
Collapse
|
36
|
Prévilon M, Pezet M, Vinet L, Mercadier JJ, Rouet-Benzineb P. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS One 2014; 9:e90822. [PMID: 24608696 PMCID: PMC3946626 DOI: 10.1371/journal.pone.0090822] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 02/04/2014] [Indexed: 01/08/2023] Open
Abstract
Background Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) has been proposed as a potent regulator of multifunctional Ca2+/calmodulin-dependent protein kinases (i.e., CaMKII). The CaMKII-dependent activation of myocyte enhancer factor 2 (MEF2) disrupts interactions between MEF2-histone deacetylases (HDACs), thereby de-repressing downstream gene transcription. Whether CaMKP modulates the CaMKII- MEF2 pathway in the heart is unknown. Here, we investigated the molecular and functional consequences of left ventricular (LV) pressure overload in the mouse of both genders, and in particular we evaluated the expression levels and localization of CaMKP and its association with CaMKII-MEF2 signaling. Methodology and Principal Findings Five week-old B6D1/F1 mice of both genders underwent a sham-operation or thoracic aortic constriction (TAC). Thirty days later, TAC was associated with pathological LV hypertrophy characterized by systolic and diastolic dysfunction. Gene expression was assessed by real-time PCR. Fetal gene program re-expression comprised increased RNA levels of brain natriuretic peptide and alpha-skeletal actin. Mouse hearts of both genders expressed both CaMKP transcript and protein. Activation of signalling pathways was studied by Western blot in LV lysates or subcellular fractions (nuclear and cytoplasmic). TAC was associated with increased CaMKP expression in male LVs whereas it tended to be decreased in females. The DNA binding activity of MEF2 was determined by spectrophotometry. CaMKP compartmentalization differed according to gender. In male TAC mice, nuclear CaMKP was associated with inactive CaMKII resulting in less MEF2 activation. In female TAC mice, active CaMKII (phospho-CaMKII) detected in the nuclear fraction, was associated with a strong MEF2 transcription factor-binding activity. Conclusions/Significance Gender-specific CaMKP compartmentalization is associated with CaMKII-mediated MEF2 activation in pressure-overloaded hearts. Therefore, CaMKP could be considered as an important novel cellular target for the development of new therapeutic strategies for heart diseases.
Collapse
Affiliation(s)
- Miresta Prévilon
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mylène Pezet
- CEFI-Institut Claude Bernard-IFR02, Paris, France
- Inserm, U823, Plateforme de Microscopie Photonique – Cytométrie en Flux, Institut Albert Bonniot Site Santé BP170–38042, Grenoble, France
| | - Laurent Vinet
- Inserm, UMRS-698, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Department of Cell Physiology and Metabolism, University of Geneva, Medical School, Genève, Switzerland
| | - Jean-Jacques Mercadier
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Inserm, UMRS-769, Université Paris-Sud, IFR141, LabEx LERMIT, Châtenay-Malabry, France
- AP-HP, Hôpital Bichat, Paris, France
| | | |
Collapse
|
37
|
Pedram A, Razandi M, Narayanan R, Dalton JT, McKinsey TA, Levin ER. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol Biol Cell 2013; 24:3805-18. [PMID: 24152730 PMCID: PMC3861078 DOI: 10.1091/mbc.e13-08-0444] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II stimulation of HDAC2 production, phosphorylation by CK2, and resulting modulation of target genes, which promote cardiac hypertrophy, are opposed by estrogen/ERβ. Angiotensin II also represses class II HDAC4 and 5 production and stimulates their phosphorylation, which expels them from the nucleus, and estrogen prevents this. The development and progression of cardiac hypertrophy often leads to heart failure and death, and important modulators of hypertrophy include the histone deacetylase proteins (HDACs). Estrogen inhibits cardiac hypertrophy and progression in animal models and humans. We therefore investigated the influence of 17-β-estradiol on the production, localization, and functions of prohypertrophic (class I) and antihypertrophic (class II) HDACs in cultured neonatal rat cardiomyocytes. 17-β-Estradiol or estrogen receptor β agonists dipropylnitrile and β-LGND2 comparably suppressed angiotensin II–induced HDAC2 (class I) production, HDAC-activating phosphorylation, and the resulting prohypertrophic mRNA expression. In contrast, estrogenic compounds derepressed the opposite effects of angiotensin II on the same parameters for HDAC4 and 5 (class II), resulting in retention of these deacetylases in the nucleus to inhibit hypertrophic gene expression. Key aspects were confirmed in vivo from the hearts of wild-type but not estrogen receptor β (ERβ) gene–deleted mice administered angiotensin II and estrogenic compounds. Our results identify a novel dual regulation of cardiomyocyte HDACs, shown here for the antihypertrophic sex steroid acting at ERβ. This mechanism potentially supports using ERβ agonists as HDAC modulators to treat cardiac disease.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Department of Medicine, University of California, Irvine, Irvine, CA 92717 Department of Veterans Affairs Medical Center, Long Beach, CA 90822 GTx, Inc., Memphis, TN 38163 Division of Cardiology, Department of Medicine, University of Colorado, Aurora, CO 80045
| | | | | | | | | | | |
Collapse
|
38
|
Spangenburg EE, Geiger PC, Leinwand LA, Lowe DA. Regulation of physiological and metabolic function of muscle by female sex steroids. Med Sci Sports Exerc 2013; 44:1653-62. [PMID: 22525764 DOI: 10.1249/mss.0b013e31825871fa] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of female sex steroids to regulate tissue function has long been appreciated; however, their role in the regulation of striated muscle function has received considerably less attention. The purpose of this symposium review was to document recent evidence indicating the role female sex steroids have in defining the functional characteristics of striated muscle. The presentations provide substantial evidence indicating that estrogens are critical to the physiological and metabolic regulations of striated muscle; thus, when considering women's health issues, striated muscle must included as an important target tissue along with other classically thought of estrogen-sensitive tissues.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD 21045, USA.
| | | | | | | |
Collapse
|
39
|
Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 2013; 34:309-38. [PMID: 23460719 PMCID: PMC3660717 DOI: 10.1210/er.2012-1055] [Citation(s) in RCA: 852] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
40
|
Kaluza D, Kroll J, Gesierich S, Manavski Y, Boeckel JN, Doebele C, Zelent A, Rössig L, Zeiher AM, Augustin HG, Urbich C, Dimmeler S. Histone Deacetylase 9 Promotes Angiogenesis by Targeting the Antiangiogenic MicroRNA-17–92 Cluster in Endothelial Cells. Arterioscler Thromb Vasc Biol 2013; 33:533-43. [DOI: 10.1161/atvbaha.112.300415] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Objective—
Histone deacetylases (HDACs) modulate gene expression by deacetylation of histone and nonhistone proteins. Several HDACs control angiogenesis, but the role of HDAC9 is unclear.
Methods and Results—
Here, we analyzed the function of HDAC9 in angiogenesis and its involvement in regulating microRNAs. In vitro, silencing of HDAC9 reduces endothelial cell tube formation and sprouting. Furthermore, HDAC9 silencing decreases vessel formation in a spheroid-based Matrigel plug assay in mice and disturbs vascular patterning in zebrafish embryos. Genetic deletion of HDAC9 reduces retinal vessel outgrowth and impairs blood flow recovery after hindlimb ischemia. Consistently, overexpression of HDAC9 increases endothelial cell sprouting, whereas mutant constructs lacking the catalytic domain, the nuclear localization sequence, or sumoylation site show no effect. To determine the mechanism underlying the proangiogenic effect of HDAC9, we measured the expression of the microRNA (miR)-17–92 cluster, which is known for its antiangiogenic activity. We demonstrate that silencing of HDAC9 in endothelial cells increases the expression of miR-17–92. Inhibition of miR-17–20a rescues the sprouting defects induced by HDAC9 silencing in vitro and blocking miR-17 expression partially reverses the disturbed vascular patterning of HDAC9 knockdown in zebrafish embryos.
Conclusion—
We found that HDAC9 promotes angiogenesis and transcriptionally represses the miR-17–92 cluster.
Collapse
Affiliation(s)
- David Kaluza
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Jens Kroll
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Sabine Gesierich
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Yosif Manavski
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Jes-Niels Boeckel
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Carmen Doebele
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Arthur Zelent
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Lothar Rössig
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Andreas M. Zeiher
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Hellmut G. Augustin
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Carmen Urbich
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| | - Stefanie Dimmeler
- From the Institute for Cardiovascular Regeneration, Centre of Molecular Medicine, University of Frankfurt, Frankfurt, Germany (D.K., Y.M., J.-N.B., C.D., L.R., C.U., S.D.); Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany (J.K., S.G., H.G.A.); Department of Vascular Biology and Tumor Angiogenesis, Center for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J
| |
Collapse
|
41
|
Dong S, Furutani Y, Kimura S, Zhu Y, Kawabata K, Furutani M, Nishikawa T, Tanaka T, Masaki T, Matsuoka R, Kiyama R. Brefeldin A is an estrogenic, Erk1/2-activating component in the extract of Agaricus blazei mycelia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:128-136. [PMID: 23215459 DOI: 10.1021/jf304546a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We purified an Erk1/2-activating component in Agaricus blazei and identified it as brefeldin A (BFA). The extract of A. blazei mycelia (ABE) previously showed an estrogenic gene-expression profile and positive effects in patients with cardiovascular symptoms. Here, we demonstrate that BFA has estrogenic activity in reporter gene assays and stimulates an estrogen-receptor pathway revealed by activation of Erk1/2, although BFA had no growth-stimulating activity in breast cancer MCF-7 cells. The presence of estrogenic activity without any explicit growth-stimulating effect is unique to BFA, and such components are termed here "silent estrogens". To test this hypothesis, we examined the target-gene transcription and signaling pathways induced by BFA. Furthermore, BFA was found in the mycelium but not fruiting body of A. blazei, suggesting the potential use of ABE for therapeutics and its supplementary use in traditional medicines and functional foods.
Collapse
Affiliation(s)
- Sijun Dong
- Biomedical Research Institute, Research and Innovation Promotion Headquarters, National Institute of Advanced Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/circresaha.112.275891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M. Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res 2012; 27:360-73. [PMID: 22161640 DOI: 10.1002/jbmr.1492] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myocyte enhancer factors 2 (MEF2) are required for expression of the osteocyte bone formation inhibitor Sost in vitro, implying these transcription factors in bone biology. Here, we analyzed the in vivo function of Mef2c in osteocytes in male and female mice during skeletal growth and aging. Dmp1-Cre-induced Mef2c deficiency led to progressive decreases in Sost expression by 40% and 70% in femoral cortical bone at 3.5 months and 5 to 6 months of age. From 2 to 3 months onward, bone mass was increased in the appendicular and axial skeleton of Mef2c mutant relative to control mice. Cortical thickness and long bone and vertebral trabecular density were elevated. To assess whether the increased bone mass was related to the decreased Sost expression, we characterized 4-month-old heterozygous Sost-deficient mice. Sost heterozygotes displayed similar increases in long bone mass and density as Mef2c mutants, but the relative increases in axial skeletal parameters were mostly smaller. At the cellular level, bone formation parameters were normal in 3.5-month-old Mef2c mutant mice, whereas bone resorption parameters were significantly decreased. Correspondingly, cortical expression of the anti-osteoclastogenic factor and Wnt/β-catenin target gene osteoprotegerin (OPG) was increased by 70% in Mef2c mutant males. Furthermore, cortical expression of the Wnt signaling modulators Sfrp2 and Sfrp3 was strongly deregulated in both sexes. In contrast, heterozygous Sost deficient males displayed mildly increased osteoblastic mineral apposition rate, but osteoclast surface and cortical expression of osteoclastogenic regulators including OPG were normal and Sfrp2 and Sfrp3 were not significantly changed. Together, our data demonstrate that Mef2c regulates cortical Sfrp2 and Sfrp3 expression and is required to maintain normal Sost expression in vivo. Yet, the increased bone mass phenotype of Mef2c mutants is not directly related to the reduced Sost expression. We identified a novel function for Mef2c in control of adult bone mass by regulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Ina Kramer
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research, Novartis Pharma, Basel, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Clocchiatti A, Florean C, Brancolini C. Class IIa HDACs: from important roles in differentiation to possible implications in tumourigenesis. J Cell Mol Med 2012; 15:1833-46. [PMID: 21435179 PMCID: PMC3918040 DOI: 10.1111/j.1582-4934.2011.01321.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylases (HDACs) are important regulators of gene expression. Specific structural features and distinct regulative mechanisms rationalize the separation of the 18 different human HDACs into four classes. The class II comprises a heterogeneous group of nuclear and cytosolic HDACs involved in the regulation of several cellular functions, not just limited to transcriptional repression. In particular, HDAC4, 5, 7 and 9 belong to the subclass IIa and share many transcriptional partners, including members of the MEF2 family. Genetic studies in mice have disclosed the fundamental contribution of class IIa HDACs to specific developmental/differentiation pathways. In this review, we discuss about the recent literature, which hints a role of class IIa HDACs in the development, growth and aggressiveness of cancer cells.
Collapse
Affiliation(s)
- Andrea Clocchiatti
- Dipartimento di Scienze Mediche e Biologiche and MATI Center of Excellence Università degli Studi di Udine, Udine, Italy
| | | | | |
Collapse
|
45
|
Abstract
The heart responds to stresses such as chronic hypertension and myocardial infarction by undergoing a remodeling process that is associated with myocyte hypertrophy, myocyte death, inflammation and fibrosis, often resulting in impaired cardiac function and heart failure. Recent studies have revealed key roles for histone deacetylases (HDACs) as both positive and negative regulators of pathological cardiac remodeling, and small molecule HDAC inhibitors have demonstrated efficacy in animal models of heart failure. This chapter reviews the functions of individual HDAC isoforms in the heart and highlights issues that need to be addressed to enable development of novel HDAC-directed therapies for cardiovascular indications.
Collapse
Affiliation(s)
- Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO 80045-0508, USA.
| |
Collapse
|
46
|
Hullinger TG, Montgomery RL, Seto AG, Dickinson BA, Semus HM, Lynch JM, Dalby CM, Robinson K, Stack C, Latimer PA, Hare JM, Olson EN, van Rooij E. Inhibition of miR-15 protects against cardiac ischemic injury. Circ Res 2011; 110:71-81. [PMID: 22052914 DOI: 10.1161/circresaha.111.244442] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RATIONALE Myocardial infarction (MI) is a leading cause of death worldwide. Because endogenous cardiac repair mechanisms are not sufficient for meaningful tissue regeneration, MI results in loss of cardiac tissue and detrimental remodeling events. MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression in a sequence dependent manner. Our previous data indicate that miRNAs are dysregulated in response to ischemic injury of the heart and actively contribute to cardiac remodeling after MI. OBJECTIVE This study was designed to determine whether miRNAs are dysregulated on ischemic damage in porcine cardiac tissues and whether locked nucleic acid (LNA)-modified anti-miR chemistries can target cardiac expressed miRNAs to therapeutically inhibit miR-15 on ischemic injury. METHODS AND RESULTS Our data indicate that the miR-15 family, which includes 6 closely related miRNAs, is regulated in the infarcted region of the heart in response to ischemia-reperfusion injury in mice and pigs. LNA-modified chemistries can effectively silence miR-15 family members in vitro and render cardiomyocytes resistant to hypoxia-induced cardiomyocyte cell death. Correspondingly, systemic delivery of miR-15 anti-miRs dose-dependently represses miR-15 in cardiac tissue of both mice and pigs, whereas therapeutic targeting of miR-15 in mice reduces infarct size and cardiac remodeling and enhances cardiac function in response to MI. CONCLUSIONS Oligonucleotide-based therapies using LNA-modified chemistries for modulating cardiac miRNAs in the setting of heart disease are efficacious and validate miR-15 as a potential therapeutic target for the manipulation of cardiac remodeling and function in the setting of ischemic injury.
Collapse
|
47
|
Abstract
Estrogen has pleiotropic effects on the cardiovascular system. The mechanisms by which estrogen confers these pleiotropic effects are undergoing active investigation. Until a decade ago, all estrogen signaling was thought to occur by estrogen binding to nuclear estrogen receptors (estrogen receptor-α and estrogen receptor-β), which bind to DNA and function as ligand-activated transcription factors. Estrogen binding to the receptor alters gene expression, thereby altering cell function. Estrogen also binds to nuclear estrogen receptors that are tethered to the plasma membrane, resulting in acute activation of signaling kinases such as PI3K. An orphan G-protein-coupled receptor, G-protein-coupled receptor 30, can also bind estrogen and activate acute signaling pathways. Thus, estrogen can alter cell function by binding to different estrogen receptors. This article reviews the different estrogen receptors and their signaling mechanisms, discusses mechanisms that regulate estrogen receptor levels and locations, and considers the cardiovascular effects of estrogen signaling.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Cardiac Physiology Section, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and fundamentally impact on cardiovascular function in health and disease. A tight control of miRNA expression is crucial for the maintenance of tissue homeostasis. However, a comprehensive understanding of the various levels of miRNA regulation is in its infancy. We here summarize the current knowledge about regulation of cardiovascular miRNAs at the transcriptional level by transcription factors, during processing by the Drosha and Dicer complexes and the importance of miRNA modification, editing, and decay mechanisms. As an example, miRNA regulation in diabetic and hypoxic cardiovascular disease conditions is discussed. Better knowledge about regulatory mechanisms of miRNAs in cardiovascular disease will probably lead to improved and novel miRNA-based therapeutic therapies.
Collapse
Affiliation(s)
- Johann Bauersachs
- Hannover Medical School, Institute of Molecular and Translational Therapeutic Strategies, Carl-Neuberg-Strasse 1, Hannover, Germany.
| | | |
Collapse
|
49
|
Tapping the brake on cardiac growth-endogenous repressors of hypertrophic signaling. J Mol Cell Cardiol 2011; 51:156-67. [PMID: 21586293 DOI: 10.1016/j.yjmcc.2011.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/26/2011] [Accepted: 04/30/2011] [Indexed: 12/14/2022]
Abstract
Cardiac hypertrophy is considered an early hallmark during the clinical course of heart failure and an important risk factor for cardiac morbidity and mortality. Although hypertrophy of individual cardiomyocytes in response to pathological stimuli has traditionally been considered as an adaptive response required to sustain cardiac output, accumulating evidence from studies in patients and animal models suggests that in most instances hypertrophy of the heart also harbors maladaptive aspects. Major strides have been made in our understanding of the pathways that convey pro-hypertrophic signals from the outside of the cell to the nucleus. In recent years it also has become increasingly evident that the heart possesses a variety of endogenous feedback mechanisms to counterbalance this growth response. These repressive mechanisms are of particular interest since they may provide valuable therapeutic options. In this review we summarize currently known endogenous repressors of pathological cardiac growth as they have been studied by gene targeting in mice. Many of the repressors that function in signal transduction appear to regulate calcineurin (e.g. PICOT, calsarcin, RCAN) and JNK signaling (e.g. CDC42, MKP-1) and some will be described in greater detail in this review. In addition, we will focus on factors such as Kruppel-like factors (KLF4, KLF15 and KLF10) and histone deacetylases (HDACs), which constitute a relevant group of nuclear proteins that repress transcription of the hypertrophic gene program in cardiomyocytes.
Collapse
|
50
|
Abstract
Chromatin regulation provides an important means for controlling cardiac gene expression under different physiological and pathological conditions. Processes that direct the development of normal embryonic hearts and pathology of stressed adult hearts may share general mechanisms that govern cardiac gene expression by chromatin-regulating factors. These common mechanisms may provide a framework for us to investigate the interactions among diverse chromatin remodelers/modifiers and various transcription factors in the fine regulation of gene expression, essential for all aspects of cardiovascular biology. Aberrant cardiac gene expression, triggered by a variety of pathological insults, can cause heart diseases in both animals and humans. The severity of cardiomyopathy and heart failure correlates strongly with abnormal cardiac gene expression. Therefore, controlling cardiac gene expression presents a promising approach to the treatment of human cardiomyopathy. This review focuses on the roles of ATP-dependent chromatin-remodeling factors and chromatin-modifying enzymes in the control of gene expression during cardiovascular development and disease.
Collapse
Affiliation(s)
- Pei Han
- CCSR Building, Room 3115-C, 269 Campus Dr, Stanford, CA 94305-5169, USA
| | | | | | | |
Collapse
|