1
|
Abstract
Cardiovascular disease is the leading cause of death worldwide, and it commonly results from atherosclerotic plaque progression. One of the increasingly recognized drivers of atherosclerosis is dysfunctional efferocytosis, a homeostatic mechanism responsible for the clearance of dead cells and the resolution of inflammation. In atherosclerosis, the capacity of phagocytes to participate in efferocytosis is hampered, leading to the accumulation of apoptotic and necrotic tissue within the plaque, which results in enlargement of the necrotic core, increased luminal stenosis and plaque inflammation, and predisposition to plaque rupture or erosion. In this Review, we describe the different forms of programmed cell death that can occur in the atherosclerotic plaque and highlight the efferocytic machinery that is normally implicated in cardiovascular physiology. We then discuss the mechanisms by which efferocytosis fails in atherosclerosis and other cardiovascular and cardiometabolic diseases, including myocardial infarction and diabetes mellitus, and discuss therapeutic approaches that might reverse this pathological process.
Collapse
Affiliation(s)
- Shaunak S Adkar
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Nicholas J Leeper
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford, CA, USA.
| |
Collapse
|
2
|
Maffia P, Mauro C, Case A, Kemper C. Canonical and non-canonical roles of complement in atherosclerosis. Nat Rev Cardiol 2024; 21:743-761. [PMID: 38600367 DOI: 10.1038/s41569-024-01016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
Cardiovascular diseases are the leading cause of death globally, and atherosclerosis is the major contributor to the development and progression of cardiovascular diseases. Immune responses have a central role in the pathogenesis of atherosclerosis, with the complement system being an acknowledged contributor. Chronic activation of liver-derived and serum-circulating canonical complement sustains endothelial inflammation and innate immune cell activation, and deposition of complement activation fragments on inflamed endothelial cells is a hallmark of atherosclerotic plaques. However, increasing evidence indicates that liver-independent, cell-autonomous and non-canonical complement activities are underappreciated contributors to atherosclerosis. Furthermore, complement activation can also have atheroprotective properties. These specific detrimental or beneficial contributions of the complement system to the pathogenesis of atherosclerosis are dictated by the location of complement activation and engagement of its canonical versus non-canonical functions in a temporal fashion during atherosclerosis progression. In this Review, we summarize the classical and the emerging non-classical roles of the complement system in the pathogenesis of atherosclerosis and discuss potential strategies for therapeutic modulation of complement for the prevention and treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
- Africa-Europe Cluster of Research Excellence (CoRE) in Non-Communicable Diseases & Multimorbidity, African Research Universities Alliance (ARUA) & The Guild, Accra, Ghana
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ayden Case
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2024:10.1038/s41569-024-01072-4. [PMID: 39304748 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Liao YS, Zhang TC, Tang YQ, Yu P, Liu YN, Yuan J, Zhao L. Electroacupuncture reduces inflammatory damage following cerebral ischemia-reperfusion by enhancing ABCA1-mediated efferocytosis in M2 microglia. Mol Brain 2024; 17:61. [PMID: 39223647 PMCID: PMC11367741 DOI: 10.1186/s13041-024-01135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Ischemic stroke (IS) is a severe cerebrovascular disease with high disability and mortality rates, where the inflammatory response is crucial to its progression and prognosis. Efferocytosis, the prompt removal of dead cells, can reduce excessive inflammation after IS injury. While electroacupuncture (EA) has been shown to decrease inflammation post-ischemia/reperfusion (I/R), its link to efferocytosis is unclear. Our research identified ATP-binding cassette transporter A1 (Abca1) as a key regulator of the engulfment process of efferocytosis after IS by analyzing public datasets and validating findings in a mouse model, revealing its close ties to IS progression. We demonstrated that EA can reduce neuronal cell death and excessive inflammation caused by I/R. Furthermore, EA treatment increased Abca1 expression, prevented microglia activation, promoted M2 microglia polarization, and enhanced their ability to phagocytose injured neurons in I/R mice. This suggests that EA's modulation of efferocytosis could be a potential mechanism for reducing cerebral I/R injury, making regulators of efferocytosis steps a promising therapeutic target for EA benefits.
Collapse
Affiliation(s)
- Yu-Sha Liao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Tie-Chun Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Yu-Qi Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Pei Yu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Ya-Ning Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China
| | - Jing Yuan
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 611137, Sichuan, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, 611137, Sichuan, China.
- Clinical Research Center for Acupuncture and Moxibustion in Sichuan Province, Chengdu, 610075, China.
| |
Collapse
|
5
|
Dowdy T, Vilamu HM, Lita A, Li A, Yamasaki T, Zhang L, Chari R, Song H, Zhang M, Zhang W, Briceno N, Davis D, Gilbert MR, Larion M. Targeting the sphingolipid rheostat in IDH1 mut glioma alters cholesterol homeostasis and triggers apoptosis via membrane degradation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591321. [PMID: 38903071 PMCID: PMC11188108 DOI: 10.1101/2024.04.26.591321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cross-regulation of metabolism and trafficking is not well understood for the vital sphingolipids and cholesterol constituents of cellular compartments. While reports are starting to surface on how sphingolipids like sphingomyelin (SM) dysregulate cholesterol levels in different cellular compartments (Jiang et al., 2022), limited research is available on the mechanisms driving the relationship between sphingolipids and cholesterol homeostasis, or its biological implications. Previously, we have identified sphingolipid metabolism as a unique vulnerability for IDH1 mut gliomas via a rational drug design. Herein, we show how modulating sphingolipid levels affects cholesterol homeostasis in brain tumors. However, we unexpectedly discovered for the first time that C17 sphingosine and NDMS addition to cancer cells alters cholesterol homeostasis by impacting its cellular synthesis, uptake, and efflux leading to a net decrease in cholesterol levels and inducing apoptosis. Our results reflect a reverse correlation between the levels of sphingosines, NDMS, and unesterified, free cholesterol in the cells. We show that increasing sphingosine and NDMS (a sphingosine analog) levels alter not only the trafficking of cholesterol between membranes but also the efflux and synthesis of cholesterol. We also demonstrate that despite the effort to remove free cholesterol by ABCA1-mediated efflux or by suppressing machinery for the influx (LDLR) and biosynthetic pathway (HMGCR), apoptosis is inevitable for IDH1 mut glioma cells. This is the first study that shows how altering sphingosine levels directly affects cholesterol homeostasis in cancer cells and can be used to manipulate this relationship to induce apoptosis in IDH1 mut gliomas.
Collapse
|
6
|
Traughber CA, Timinski K, Prince A, Bhandari N, Neupane K, Khan MR, Opoku E, Opoku E, Brubaker G, Shin J, Hong J, Kanuri B, Ertugral EG, Nagareddy PR, Kothapalli CR, Cherepanova O, Smith JD, Gulshan K. Disulfiram Reduces Atherosclerosis and Enhances Efferocytosis, Autophagy, and Atheroprotective Gut Microbiota in Hyperlipidemic Mice. J Am Heart Assoc 2024; 13:e033881. [PMID: 38563369 PMCID: PMC11262521 DOI: 10.1161/jaha.123.033881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Pyroptosis executor GsdmD (gasdermin D) promotes atherosclerosis in mice and humans. Disulfiram was recently shown to potently inhibit GsdmD, but the in vivo efficacy and mechanism of disulfiram's antiatherosclerotic activity is yet to be explored. METHODS AND RESULTS We used human/mouse macrophages, endothelial cells, and smooth muscle cells and a hyperlipidemic mouse model of atherosclerosis to determine disulfiram antiatherosclerotic efficacy and mechanism. The effects of disulfiram on several atheroprotective pathways such as autophagy, efferocytosis, phagocytosis, and gut microbiota were determined. Atomic force microscopy was used to determine the effects of disulfiram on the biophysical properties of the plasma membrane of macrophages. Disulfiram-fed hyperlipidemic apolipoprotein E-/- mice showed significantly reduced interleukin-1β release upon in vivo Nlrp3 (NLR family pyrin domain containing 3) inflammasome activation. Disulfiram-fed mice showed smaller atherosclerotic lesions (~27% and 29% reduction in males and females, respectively) and necrotic core areas (~50% and 46% reduction in males and females, respectively). Disulfiram induced autophagy in macrophages, smooth muscle cells, endothelial cells, hepatocytes/liver, and atherosclerotic plaques. Disulfiram modulated other atheroprotective pathways (eg, efferocytosis, phagocytosis) and gut microbiota. Disulfiram-treated macrophages showed enhanced phagocytosis/efferocytosis, with the mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic force microscopy analysis revealed altered biophysical properties of disulfiram-treated macrophages, showing increased order-state of plasma membrane and increased adhesion strength. Furthermore, 16sRNA sequencing of disulfiram-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. CONCLUSIONS Taken together, our data show that disulfiram can simultaneously modulate several atheroprotective pathways in a GsdmD-dependent as well as GsdmD-independent manner.
Collapse
Affiliation(s)
- C. Alicia Traughber
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Kara Timinski
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Ashutosh Prince
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Nilam Bhandari
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Kalash Neupane
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Mariam R. Khan
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Esther Opoku
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
| | - Emmanuel Opoku
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Gregory Brubaker
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Junchul Shin
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Junyoung Hong
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Babunageswararao Kanuri
- Department of Internal Medicine, Cardiovascular SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | - Elif G. Ertugral
- Department of Chemical & Biomedical EngineeringCleveland State UniversityClevelandOHUSA
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Cardiovascular SectionUniversity of Oklahoma Health Sciences Center (OUHSC)Oklahoma CityOKUSA
| | | | - Olga Cherepanova
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Jonathan D. Smith
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| | - Kailash Gulshan
- Center for Gene Regulation in Health and DiseaseCleveland State UniversityClevelandOHUSA
- Department of Biology, Geology, and Environmental SciencesCleveland State UniversityClevelandOHUSA
- Department of Cardiovascular and Metabolic SciencesLerner Research Institute, Cleveland ClinicClevelandOHUSA
| |
Collapse
|
7
|
Stroope C, Nettersheim FS, Coon B, Finney AC, Schwartz MA, Ley K, Rom O, Yurdagul A. Dysregulated cellular metabolism in atherosclerosis: mediators and therapeutic opportunities. Nat Metab 2024; 6:617-638. [PMID: 38532071 PMCID: PMC11055680 DOI: 10.1038/s42255-024-01015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Accumulating evidence over the past decades has revealed an intricate relationship between dysregulation of cellular metabolism and the progression of atherosclerotic cardiovascular disease. However, an integrated understanding of dysregulated cellular metabolism in atherosclerotic cardiovascular disease and its potential value as a therapeutic target is missing. In this Review, we (1) summarize recent advances concerning the role of metabolic dysregulation during atherosclerosis progression in lesional cells, including endothelial cells, vascular smooth muscle cells, macrophages and T cells; (2) explore the complexity of metabolic cross-talk between these lesional cells; (3) highlight emerging technologies that promise to illuminate unknown aspects of metabolism in atherosclerosis; and (4) suggest strategies for targeting these underexplored metabolic alterations to mitigate atherosclerosis progression and stabilize rupture-prone atheromas with a potential new generation of cardiovascular therapeutics.
Collapse
Affiliation(s)
- Chad Stroope
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Felix Sebastian Nettersheim
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Brian Coon
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Cardiovascular Biology Research Program, OMRF, Oklahoma City, OK, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK, USA
| | - Alexandra C Finney
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
- Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
- Immunology Center of Georgia (IMMCG), Augusta University Immunology Center of Georgia, Augusta, GA, USA
| | - Oren Rom
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
8
|
Yazdi MK, Alavi MS, Roohbakhsh A. The role of ATP-binding cassette transporter G1 (ABCG1) in Alzheimer's disease: A review of the mechanisms. Basic Clin Pharmacol Toxicol 2024; 134:423-438. [PMID: 38275217 DOI: 10.1111/bcpt.13981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
The maintenance of cholesterol homeostasis is essential for central nervous system function. Consequently, factors that affect cholesterol homeostasis are linked to neurological disorders and pathologies. Among them, ATP-binding cassette transporter G1 (ABCG1) plays a significant role in atherosclerosis. However, its role in Alzheimer's disease (AD) is unclear. There is inconsistent information regarding ABCG1's role in AD. It can increase or decrease amyloid β (Aβ) levels in animals' brains. Clinical studies show that ABCG1 is involved in AD patients' impairment of cholesterol efflux capacity (CEC) in the cerebrospinal fluid (CSF). Lower Aβ levels in the CSF are correlated with ABCG1-mediated CEC dysfunction. ABCG1 modulates α-, β-, and γ-secretase activities in the plasma membrane and may affect Aβ production in the mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) cell compartment. Despite contradictory findings regarding ABCG1's role in AD, this review shows that ABCG1 has a role in Aβ generation via modulation of membrane secretases. It is, however, necessary to investigate the underlying mechanism(s). ABCG1 may also contribute to AD pathology through its role in apoptosis and oxidative stress. As a result, ABCG1 plays a role in AD and is a candidate for drug development.
Collapse
Affiliation(s)
- Mohsen Karbasi Yazdi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Luo X, Zhao Y, Cai Y, Chen J, Zhao L, Lan T, Chen Y, Ruan XZ. Dual-monomer solvatochromic probe system (DSPS) for effectively differentiating lipid raft cholesterol and active membrane cholesterol in the inner-leaflet plasma membrane. J Mater Chem B 2024; 12:2547-2558. [PMID: 38358131 DOI: 10.1039/d3tb02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Monitoring active membrane cholesterol and lipid raft cholesterol in the inner leaflet of the plasma membrane is significant for understanding the membrane function and cellular physiopathological processes. Limited by existing methods, it is difficult to differentiate active membrane cholesterol and lipid raft cholesterol. A novel dual-monomer solvatochromic probe system (DSPS) that targets two types of cholesterol was developed. Acrylodan-BG/SNAP-D4 composed of SNAP-D4 cholesterol-recognizing monomers and solvatochromic acrylodan-BG-sensing monomers exhibits excellent cholesterol detecting properties in terms of selectivity, accuracy, convenience and economic benefits. Cell imaging revealed that lipid raft cholesterol emitted blue fluorescence, whereas active membrane cholesterol (which partially bobbed in aqueous cytosol) displayed green fluorescence; both the fluorescence emissions increased or decreased in a cholesterol-dependent manner. This system provides a new technology for the determination of two types of cholesterol, which is beneficial for the further study of membrane function, intracellular cholesterol trafficking, and cell signaling.
Collapse
Affiliation(s)
- Xuan Luo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yunfei Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Yang Cai
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Jun Chen
- Department of Pediatrics, Women and Children' Hospital of Chongging Medical University, 400016, Chongqing, China
| | - Lulu Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, 400016, Chongqing, China
| | - Tianlan Lan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London NW3 2PF, UK
| |
Collapse
|
10
|
Amirinejad A, Khayyatzadeh SS, Rezaeivandchali N, Gheibihayat SM. Efferocytosis and Metabolic Syndrome: A Narrative Review. Curr Mol Med 2024; 24:751-757. [PMID: 37431902 DOI: 10.2174/1566524023666230710120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Metabolic syndrome (MetS), which is distinguished by the simultaneous presence of hyperglycemia, dyslipidemia, hypertension, and central obesity, is a critical risk factor for cardiovascular disease (CVDs), mortality, and illness burden. Eliminating about one million cells per second in the human body, apoptosis conserves homeostasis and regulates the life cycle of organisms. In the physiological condition, the apoptotic cells internalize to the phagocytes by a multistep process named efferocytosis. Any impairment in the clearance of these apoptotic cells results in conditions related to chronic inflammation, such as obesity, diabetes, and dyslipidemia. On the other hand, insulin resistance and MetS can disturb the efferocytosis process. Since no study investigated the relationship between efferocytosis and MetS, we decided to explore the different steps of efferocytosis and describe how inefficient dead cell clearance is associated with the progression of MetS.
Collapse
Affiliation(s)
- Ali Amirinejad
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Noushin Rezaeivandchali
- Department of Biochemistry and Genetics, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Gao C, Liu Y, Zhang TL, Luo Y, Gao J, Chu JJ, Gong BF, Chen XH, Yin T, Zhang J, Yin Y. Biomembrane-Derived Nanoparticles in Alzheimer's Disease Therapy: A Comprehensive Review of Synthetic Lipid Nanoparticles and Natural Cell-Derived Vesicles. Int J Nanomedicine 2023; 18:7441-7468. [PMID: 38090364 PMCID: PMC10712251 DOI: 10.2147/ijn.s436774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Current therapies for Alzheimer's disease used in the clinic predominantly focus on reducing symptoms with limited capability to control disease progression; thus, novel drugs are urgently needed. While nanoparticles (liposomes, high-density lipoprotein-based nanoparticles) constructed with synthetic biomembranes have shown great potential in AD therapy due to their excellent biocompatibility, multifunctionality and ability to penetrate the BBB, nanoparticles derived from natural biomembranes (extracellular vesicles, cell membrane-based nanoparticles) display inherent biocompatibility, stability, homing ability and ability to penetrate the BBB, which may present a safer and more effective treatment for AD. In this paper, we reviewed the synthetic and natural biomembrane-derived nanoparticles that are used in AD therapy. The challenges associated with the clinical translation of biomembrane-derived nanoparticles and future perspectives are also discussed.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Yi Luo
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
- New Drug Discovery and Development, Biotheus Inc., Zhuhai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian-Jian Chu
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Bao-Feng Gong
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Xiao-Han Chen
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| | - Jian Zhang
- Department of Clinical Pharmacy, Shanghai Jiao Tong University of Medicine, Shanghai, People’s Republic of China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital (Shanghai Changzheng Hospital) of Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Lyu J, Liu H, Chen L, Liu C, Tao J, Yao Y, Li L, Huang Y, Zhou Z. In situ hydrogel enhances non-efferocytic phagocytosis for post-surgical tumor treatment. J Control Release 2023; 363:402-414. [PMID: 37751825 DOI: 10.1016/j.jconrel.2023.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Post-surgical efferocytosis of tumor associated macrophages (TAMs) originates an immunosuppressive tumor microenvironment and facilitates abscopal metastasis of residual tumor cells. Currently, few strategies could inhibit efferocytosis while recovering the tumor-eliminative phagocytosis of TAMs. Herein, we developed an in situ hydrogel that contains anti-CD47 antibody (aCD47) and apocynin (APO), an inhibitor of nicotinamide adenine dinucleotide phosphate oxidase. This hydrogel amplifies the non-efferocytic phagocytosis of TAMs by (1) blocking the extracellular "Don't eat me" signal of efferocytosis with aCD47, which enhances the receptor-mediated recognition and engulfment of tumor cells by TAMs in the post-surgical tumor bed, and (2) by utilizing APO to dispose of tumor debris in a non-efferocytic manner, which prevents acidification and maturation of efferosomes and allows for M1-polarization of TAMs, leading to improved antigen presentation ability. With the complementary intervention of extracellular and intracellular, this hydrogel reverses the immunosuppressive effects of efferocytosis, and induces a potent M1-associated Th1 immune response against tumor recurrence. In addition, the in situ detachment and distal colonization of metastatic tumor cells were efficiently restrained due to the intervention of efferocytosis. Collectively, the hydrogel potentiates surgery treatment of tumor by recovering the tumor-elimination ability of post-surgical TAMs.
Collapse
Affiliation(s)
- Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Huizhi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Jing Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Yao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zhou Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
13
|
Traughber CA, Timinski K, Prince A, Bhandari N, Neupane K, Khan MR, Opoku E, Opoku E, Brubaker G, Nageshwar K, Ertugral EG, Naggareddy P, Kothapalli CR, Smith JD, Gulshan K. Disulfiram reduces atherosclerosis and enhances efferocytosis, autophagy, and atheroprotective gut microbiota in hyperlipidemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562757. [PMID: 37905037 PMCID: PMC10614849 DOI: 10.1101/2023.10.17.562757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Pyroptosis executor Gasdermin (GsdmD) promotes atherosclerosis in mice and humans. Disulfiram (DSF) was recently shown to potently inhibit GsdmD, but the in-vivo efficacy and mechanism of DSF's anti-atherosclerotic activity is yet to be explored. We used human/mouse macrophages and a hyperlipidemic mouse model of atherosclerosis to determine DSF anti-atherosclerotic efficacy and mechanism. DSF-fed hyperlipidemic apoE -/- mice showed significantly reduced IL-1β release upon in-vivo Nlrp3 inflammasome assembly and showed smaller atherosclerotic lesions (∼27% and 29% reduction in males and females, respectively). The necrotic core area was also smaller (∼50% and 46% reduction in DSF-fed males and females, respectively). DSF induced autophagy in macrophages, hepatocytes/liver, and in atherosclerotic plaques. DSF modulated other atheroprotective pathways such as efferocytosis, phagocytosis, and gut microbiota. DSF-treated macrophages showed enhanced phagocytosis/efferocytosis, with a mechanism being a marked increase in cell-surface expression of efferocytic receptor MerTK. Atomic-force microscopy analysis revealed altered biophysical membrane properties of DSF treated macrophages, showing increased ordered-state of the plasma membrane and increased adhesion strength. Furthermore, the 16sRNA sequencing of DSF-fed hyperlipidemic mice showed highly significant enrichment in atheroprotective gut microbiota Akkermansia and a reduction in atherogenic Romboutsia species. Taken together, our data shows that DSF can simultaneously modulate multiple atheroprotective pathways, and thus may serve as novel adjuvant therapeutic to treat atherosclerosis.
Collapse
|
14
|
Mylvaganam S, Freeman SA. The resolution of phagosomes. Immunol Rev 2023; 319:45-64. [PMID: 37551912 DOI: 10.1111/imr.13260] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
Phagocytosis is a fundamental immunobiological process responsible for the removal of harmful particulates. While the number of phagocytic events achieved by a single phagocyte can be remarkable, exceeding hundreds per day, the same phagocytic cells are relatively long-lived. It should therefore be obvious that phagocytic meals must be resolved in order to maintain the responsiveness of the phagocyte and to avoid storage defects. In this article, we discuss the mechanisms involved in the resolution process, including solute transport pathways and membrane traffic. We describe how products liberated in phagolysosomes support phagocyte metabolism and the immune response. We also speculate on mechanisms involved in the redistribution of phagosomal metabolites back to circulation. Finally, we highlight the pathologies owed to impaired phagosome resolution, which range from storage disorders to neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivakami Mylvaganam
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Spencer A Freeman
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Prakhar P, Bhatt B, Lohia GK, Shah A, Mukherjee T, Kolthur-Seetharam U, Sundaresan NR, Rajmani RS, Balaji KN. G9a and Sirtuin6 epigenetically modulate host cholesterol accumulation to facilitate mycobacterial survival. PLoS Pathog 2023; 19:e1011731. [PMID: 37871034 PMCID: PMC10621959 DOI: 10.1371/journal.ppat.1011731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
Cholesterol derived from the host milieu forms a critical factor for mycobacterial pathogenesis. However, the molecular circuitry co-opted by Mycobacterium tuberculosis (Mtb) to accumulate cholesterol in host cells remains obscure. Here, we report that the coordinated action of WNT-responsive histone modifiers G9a (H3K9 methyltransferase) and SIRT6 (H3K9 deacetylase) orchestrate cholesterol build-up in in vitro and in vivo mouse models of Mtb infection. Mechanistically, G9a, along with SREBP2, drives the expression of cholesterol biosynthesis and uptake genes; while SIRT6 along with G9a represses the genes involved in cholesterol efflux. The accumulated cholesterol in Mtb infected macrophages promotes the expression of antioxidant genes leading to reduced oxidative stress, thereby supporting Mtb survival. In corroboration, loss-of-function of G9a in vitro and pharmacological inhibition in vivo; or utilization of BMDMs derived from Sirt6-/- mice or in vivo infection in haplo-insufficient Sirt6-/+ mice; hampered host cholesterol accumulation and restricted Mtb burden. These findings shed light on the novel roles of G9a and SIRT6 during Mtb infection and highlight the previously unknown contribution of host cholesterol in potentiating anti-oxidative responses for aiding Mtb survival.
Collapse
Affiliation(s)
- Praveen Prakhar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Bharat Bhatt
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Gaurav Kumar Lohia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Awantika Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Tanushree Mukherjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Nagalingam R. Sundaresan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Raju S. Rajmani
- Centre for Infectious Disease Research, Indian Institute of Science, Bangalore–, Karnataka, India
| | | |
Collapse
|
16
|
Hu L, Lv Z, Gu Y, Zheng T, Kong Y, Mao W. A bibliometric analysis of efferocytosis in cardiovascular diseases from 2001 to 2022. Medicine (Baltimore) 2023; 102:e34366. [PMID: 37773819 PMCID: PMC10545234 DOI: 10.1097/md.0000000000034366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2023] [Indexed: 10/01/2023] Open
Abstract
INTRODUCTION In recent years, efferocytosis in cardiovascular diseases has become an intense area of research. However, only a few bibliometric analyses have been conducted in this area. In this review, we used CiteSpace 5.7. R2 and VOSviewer 1.6.17 software to perform text mining and knowledge map analysis. This study summarizes the latest progress, development paths, frontier research hotspots, and future research trends in this field. MATERIALS AND METHODS Studies on efferocytosis in cardiovascular diseases were downloaded from the Web of Science Core Collection. RESULTS In total, 327 studies published by 506 institutions across 42 countries and regions were identified. The number of studies on efferocytosis in cardiovascular diseases has increased over time. Arteriosclerosis Thrombosis and Vascular Biology published the highest number of articles and was the top co-cited journal. Tabas Ira. was the most prolific researcher and co-cited the most. The most productive countries were the United States and China. Columbia University, Harvard Medical School, and Brigham Women's Hospital were the 3 most productive institutions in the field of research. Keyword Co-occurrence, Clusters, and Burst analyses showed that inflammation, atherosclerosis, macrophages, and phagocytosis appeared with the highest frequency in these studies. CONCLUSION Multinational cooperation and multidisciplinary intersections are characteristic trends of development in the field, and the immune microenvironment, glycolysis, and lipid metabolism will be the focus of future research.
Collapse
Affiliation(s)
- Luoxia Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Zhengtian Lv
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Yangyang Gu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Tiantian Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Youjin Kong
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Mao
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
- Department of Cardiology, Zhengjiang Hospital, Hangzhou, China
| |
Collapse
|
17
|
Thorp EB. Cardiac macrophages and emerging roles for their metabolism after myocardial infarction. J Clin Invest 2023; 133:e171953. [PMID: 37712418 PMCID: PMC10503791 DOI: 10.1172/jci171953] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Interest in cardioimmunology has reached new heights as the experimental cardiology field works to tap the unrealized potential of immunotherapy for clinical care. Within this space is the cardiac macrophage, a key modulator of cardiac function in health and disease. After a myocardial infarction, myeloid macrophages both protect and harm the heart. To varying degrees, such outcomes are a function of myeloid ontogeny and heterogeneity, as well as functional cellular plasticity. Diversity is further shaped by the extracellular milieu, which fluctuates considerably after coronary occlusion. Ischemic limitation of nutrients constrains the metabolic potential of immune cells, and accumulating evidence supports a paradigm whereby macrophage metabolism is coupled to divergent inflammatory consequences, although experimental evidence for this in the heart is just emerging. Herein we examine the heterogeneous cardiac macrophage response following ischemic injury, with a focus on integrating putative contributions of immunometabolism and implications for therapeutically relevant cardiac injury versus cardiac repair.
Collapse
|
18
|
Paseban T, Alavi MS, Etemad L, Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin Ther Targets 2023; 27:531-552. [PMID: 37428709 DOI: 10.1080/14728222.2023.2235718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/09/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Cholesterol homeostasis is critical for normal brain function. It is tightly controlled by various biological elements. ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that effluxes cholesterol from cells, particularly astrocytes, into the extracellular space. The recent studies pertaining to ABCA1's role in CNS disorders were included in this study. AREAS COVERED In this comprehensive literature review, preclinical and human studies showed that ABCA1 has a significant role in the following diseases or disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, neuropathy, anxiety, depression, psychosis, epilepsy, stroke, and brain ischemia and trauma. EXPERT OPINION ABCA1 via modulating normal and aberrant brain functions such as apoptosis, phagocytosis, BBB leakage, neuroinflammation, amyloid β efflux, myelination, synaptogenesis, neurite outgrowth, and neurotransmission promotes beneficial effects in aforementioned diseases. ABCA1 is a key molecule in the CNS. By boosting its expression or function, some CNS disorders may be resolved. In preclinical studies, liver X receptor agonists have shown promise in treating CNS disorders via ABCA1 and apoE enhancement.
Collapse
Affiliation(s)
- Tahere Paseban
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
DeBerge M, Chaudhary R, Schroth S, Thorp EB. Immunometabolism at the Heart of Cardiovascular Disease. JACC Basic Transl Sci 2023; 8:884-904. [PMID: 37547069 PMCID: PMC10401297 DOI: 10.1016/j.jacbts.2022.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 08/08/2023]
Abstract
Immune cell function among the myocardium, now more than ever, is appreciated to regulate cardiac function and pathophysiology. This is the case for both innate immunity, which includes neutrophils, monocytes, dendritic cells, and macrophages, as well as adaptive immunity, which includes T cells and B cells. This function is fueled by cell-intrinsic shifts in metabolism, such as glycolysis and oxidative phosphorylation, as well as metabolite availability, which originates from the surrounding extracellular milieu and varies during ischemia and metabolic syndrome. Immune cell crosstalk with cardiac parenchymal cells, such as cardiomyocytes and fibroblasts, is also regulated by complex cellular metabolic circuits. Although our understanding of immunometabolism has advanced rapidly over the past decade, in part through valuable insights made in cultured cells, there remains much to learn about contributions of in vivo immunometabolism and directly within the myocardium. Insight into such fundamental cell and molecular mechanisms holds potential to inform interventions that shift the balance of immunometabolism from maladaptive to cardioprotective and potentially even regenerative. Herein, we review our current working understanding of immunometabolism, specifically in the settings of sterile ischemic cardiac injury or cardiometabolic disease, both of which contribute to the onset of heart failure. We also discuss current gaps in knowledge in this context and therapeutic implications.
Collapse
Affiliation(s)
| | | | | | - Edward B. Thorp
- Address for correspondence: Dr Edward B. Thorp, Department of Pathology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue Ward 4-116, Chicago, Illinois 60611, USA.
| |
Collapse
|
20
|
Njeim R, Alkhansa S, Fornoni A. Unraveling the Crosstalk between Lipids and NADPH Oxidases in Diabetic Kidney Disease. Pharmaceutics 2023; 15:pharmaceutics15051360. [PMID: 37242602 DOI: 10.3390/pharmaceutics15051360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and a leading cause of end-stage renal disease. Abnormal lipid metabolism and intrarenal accumulation of lipids have been shown to be strongly correlated with the development and progression of diabetic kidney disease (DKD). Cholesterol, phospholipids, triglycerides, fatty acids, and sphingolipids are among the lipids that are altered in DKD, and their renal accumulation has been linked to the pathogenesis of the disease. In addition, NADPH oxidase-induced production of reactive oxygen species (ROS) plays a critical role in the development of DKD. Several types of lipids have been found to be tightly linked to NADPH oxidase-induced ROS production. This review aims to explore the interplay between lipids and NADPH oxidases in order to provide new insights into the pathogenesis of DKD and identify more effective targeted therapies for the disease.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sahar Alkhansa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- AUB Diabetes, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
21
|
Wang YT, Trzeciak AJ, Rojas WS, Saavedra P, Chen YT, Chirayil R, Etchegaray JI, Lucas CD, Puleston DJ, Keshari KR, Perry JSA. Metabolic adaptation supports enhanced macrophage efferocytosis in limited-oxygen environments. Cell Metab 2023; 35:316-331.e6. [PMID: 36584675 PMCID: PMC9908853 DOI: 10.1016/j.cmet.2022.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/23/2022] [Accepted: 12/06/2022] [Indexed: 12/30/2022]
Abstract
Apoptotic cell (AC) clearance (efferocytosis) is performed by phagocytes, such as macrophages, that inhabit harsh physiological environments. Here, we find that macrophages display enhanced efferocytosis under prolonged (chronic) physiological hypoxia, characterized by increased internalization and accelerated degradation of ACs. Transcriptional and translational analyses revealed that chronic physiological hypoxia induces two distinct but complimentary states. The first, "primed" state, consists of concomitant transcription and translation of metabolic programs in AC-naive macrophages that persist during efferocytosis. The second, "poised" state, consists of transcription, but not translation, of phagocyte function programs in AC-naive macrophages that are translated during efferocytosis. Mechanistically, macrophages efficiently flux glucose into a noncanonical pentose phosphate pathway (PPP) loop to enhance NADPH production. PPP-derived NADPH directly supports enhanced efferocytosis under physiological hypoxia by ensuring phagolysosomal maturation and redox homeostasis. Thus, macrophages residing under physiological hypoxia adopt states that support cell fitness and ensure performance of essential homeostatic functions rapidly and safely.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pedro Saavedra
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yan-Ting Chen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rachel Chirayil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jon Iker Etchegaray
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh BioQuarter, Edinburgh, Scotland, UK; Institute for Regeneration and Repair, Edinburgh BioQuarter, Edinburgh, Scotland, UK
| | - Daniel J Puleston
- Bloomberg, Kimmel Institute of Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
22
|
Roundhill EA, Pantziarka P, Liddle DE, Shaw LA, Albadrani G, Burchill SA. Exploiting the Stemness and Chemoresistance Transcriptome of Ewing Sarcoma to Identify Candidate Therapeutic Targets and Drug-Repurposing Candidates. Cancers (Basel) 2023; 15:cancers15030769. [PMID: 36765727 PMCID: PMC9913297 DOI: 10.3390/cancers15030769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Outcomes for most patients with Ewing sarcoma (ES) have remained unchanged for the last 30 years, emphasising the need for more effective and tolerable treatments. We have hypothesised that using small-molecule inhibitors to kill the self-renewing chemotherapy-resistant cells (Ewing sarcoma cancer stem-like cells; ES-CSCs) responsible for progression and relapse could improve outcomes and minimise treatment-induced morbidities. For the first time, we demonstrate that ABCG1, a potential oncogene in some cancers, is highly expressed in ES-CSCs independently of CD133. Using functional models, transcriptomics and a bespoke in silico drug-repurposing pipeline, we have prioritised a group of tractable small-molecule inhibitors for further preclinical studies. Consistent with the cellular origin of ES, 21 candidate molecular targets of pluripotency, stemness and chemoresistance were identified. Small-molecule inhibitors to 13 of the 21 molecular targets (62%) were identified. POU5F1/OCT4 was the most promising new therapeutic target in Ewing sarcoma, interacting with 10 of the 21 prioritised molecular targets and meriting further study. The majority of small-molecule inhibitors (72%) target one of two drug efflux proteins, p-glycoprotein (n = 168) or MRP1 (n = 13). In summary, we have identified a novel cell surface marker of ES-CSCs and cancer/non-cancer drugs to targets expressed by these cells that are worthy of further preclinical evaluation. If effective in preclinical models, these drugs and drug combinations might be repurposed for clinical evaluation in patients with ES.
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| | - Pan Pantziarka
- Anticancer Fund, Brusselsesteenweg 11, 1860 Meise, Belgium
| | - Danielle E. Liddle
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Lucy A. Shaw
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Ghadeer Albadrani
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Susan Ann Burchill
- Children’s Cancer Research Group, Leeds Institute of Medical Research, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK
- Correspondence: (E.A.R.); (S.A.B.)
| |
Collapse
|
23
|
Wang Y, Huang X, Yang D, He J, Chen Z, Li K, Liu J, Zhang W. A green-inspired method to prepare non-split high-density lipoprotein (HDL) carrier with anti-dysfunctional activities superior to reconstituted HDL. Eur J Pharm Biopharm 2023; 182:115-127. [PMID: 36529255 DOI: 10.1016/j.ejpb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Numerous studies have demonstrated that dysfunctional high-density lipoprotein (HDL), especially oxidized HDL (OxHDL), could generate multifaceted in vivo proatherogenic effects that run counter to the antiatherogenic activities of HDL. It thereby reminded us that the in vitro reconstituted HDL (rHDL) might encountered with oxidation-induced dysfunction. Accordingly, a green-inspired method was employed to recycle non-split HDL from human plasma fraction IV. Then it was compared with rHDL formulated by an ethanol-injection method in terms of physicochemical properties and anti-dysfunctional activities. Results exhibited that rHDL oxidation extent exceeded that of non-split HDL evidenced by higher malondialdehy content, weaker inhibition on low-density lipoprotein (LDL) oxidation and more superoxide anion. The reserved paraoxonase-1 activity on non-split HDL could partially explain for above experimental results. In the targeted transport mechanism experiment, upon SR-BI receptor inhibition and/or CD36 receptor blockage, the almost unchanged non-split HDL uptake in lipid-laden macrophage indicated its negligible oxidation modification profile with regard to rHDL again. Furthermore, compared to rHDL, better macrophage biofunctions were observed for non-split HDL as illustrated by accelerated cholesterol efflux, inhibited oxidized LDL uptake and lessened cellular lipid accumulation. Along with decreased ROS secretion, obviously weakened oxidative stress damage was also detected under treatment with non-split HDL. More importantly, foam cells with non-split HDL-intervention inspired an enhanced inflammation repression and apoptosis inhibition effect. Collectively, the anti-dysfunctional activities of non-split HDL make it suitable as a potential nanocarrier platform for cardiovascular drug payload and delivery.
Collapse
Affiliation(s)
- Yanyan Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Xinya Huang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Danni Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianhua He
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Zhaoan Chen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Kexuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Jianping Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Wenli Zhang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
24
|
Kumar D, Pandit R, Yurdagul A. Mechanisms of continual efferocytosis by macrophages and its role in mitigating atherosclerosis. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00017. [PMID: 36710920 PMCID: PMC9869949 DOI: 10.1097/in9.0000000000000017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/20/2022] [Indexed: 01/31/2023]
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death worldwide. Rupture-prone atheromas that give rise to myocardial infarction and stroke are characterized by the presence of a necrotic core and a thin fibrous cap. During homeostasis, cellular debris and apoptotic cells are cleared quickly through a process termed "efferocytosis". However, clearance of apoptotic cells is significantly compromised in many chronic inflammatory diseases, including atherosclerosis. Emerging evidence suggests that impairments in efferocytosis drive necrotic core formation and contribute significantly to plaque vulnerability. Recently, it has been appreciated that successive rounds of efferocytosis, termed "continual efferocytosis", is mechanistically distinct from single efferocytosis and relies heavily on the metabolism and handling of apoptotic cell-derived cargo. In vivo, selective defects in continual efferocytosis drive secondary necrosis, impair inflammation resolution, and worsen atherosclerosis. This Mini Review focuses on our current understanding of the cellular and molecular mechanisms of continual efferocytosis and how dysregulations in this process mediate nonresolving inflammation. We will also discuss possible strategies to enhance efferocytosis when it fails.
Collapse
Affiliation(s)
- Dhananjay Kumar
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Rajan Pandit
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Arif Yurdagul
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| |
Collapse
|
25
|
Gulshan K. Crosstalk Between Cholesterol, ABC Transporters, and PIP2 in Inflammation and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:353-377. [PMID: 36988888 DOI: 10.1007/978-3-031-21547-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The lowering of plasma low-density lipoprotein cholesterol (LDL-C) is an easily achievable and highly reliable modifiable risk factor for preventing cardiovascular disease (CVD), as validated by the unparalleled success of statins in the last three decades. However, the 2021 American Heart Association (AHA) statistics show a worrying upward trend in CVD deaths, calling into question the widely held belief that statins and available adjuvant therapies can fully resolve the CVD problem. Human biomarker studies have shown that indicators of inflammation, such as human C-reactive protein (hCRP), can serve as a reliable risk predictor for CVD, independent of all traditional risk factors. Oxidized cholesterol mediates chronic inflammation and promotes atherosclerosis, while anti-inflammatory therapies, such as an anti-interleukin-1 beta (anti-IL-1β) antibody, can reduce CVD in humans. Cholesterol removal from artery plaques, via an athero-protective reverse cholesterol transport (RCT) pathway, can dampen inflammation. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a role in RCT by promoting adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from arterial macrophages. Cholesterol crystals activate the nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome in advanced atherosclerotic plaques, leading to IL-1β release in a PIP2-dependent fashion. PIP2 thus is a central player in CVD pathogenesis, serving as a critical link between cellular cholesterol levels, ATP-binding cassette (ABC) transporters, and inflammasome-induced IL-1β release.
Collapse
Affiliation(s)
- Kailash Gulshan
- College of Sciences and Health Professions, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
26
|
Tajbakhsh A, Gheibihayat SM, Karami N, Savardashtaki A, Butler AE, Rizzo M, Sahebkar A. The regulation of efferocytosis signaling pathways and adipose tissue homeostasis in physiological conditions and obesity: Current understanding and treatment options. Obes Rev 2022; 23:e13487. [PMID: 35765849 DOI: 10.1111/obr.13487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Obesity is associated with changes in the resolution of acute inflammation that contribute to the clinical complications. The exact mechanisms underlying unresolved inflammation in obesity are not fully understood. Adipocyte death leads to pro-inflammatory adipose tissue macrophages, stimulating additional adipocyte apoptosis. Thus, a complex and tightly regulated process to inhibit inflammation and maintain homeostasis after adipocyte apoptosis is needed to maintain health. In normal condition, a specialized phagocytic process (efferocytosis) performs this function, clearing necrotic and apoptotic cells (ACs) and controlling inflammation. For efficient and continued efferocytosis, phagocytes must internalize multiple ACs in physiological conditions and handle the excess metabolic burden in adipose tissue. In obesity, this control is lost and can be an important hallmark of the disease. In this regard, the deficiency of efferocytosis leads to delayed resolution of acute inflammation and can result in ongoing inflammation, immune system dysfunction, and insulin resistance in obesity. Hence, efficient clearance of ACs by M2 macrophages could limit long-term inflammation and ensue clinical complications, such as cardiovascular disease and diabetes. This review elaborates upon the molecular mechanisms to identify efferocytosis regulators in obesity, and the mechanisms that can improve efferocytosis and reduce obesity-related complications, such as the use of pharmacological agents and regular exercise.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Karami
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Keul P, Peters S, von Wnuck Lipinski K, Schröder NH, Nowak MK, Duse DA, Polzin A, Weske S, Gräler MH, Levkau B. Sphingosine-1-Phosphate (S1P) Lyase Inhibition Aggravates Atherosclerosis and Induces Plaque Rupture in ApoE−/− Mice. Int J Mol Sci 2022; 23:ijms23179606. [PMID: 36077004 PMCID: PMC9455951 DOI: 10.3390/ijms23179606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Altered plasma sphingosine-1-phosphate (S1P) concentrations are associated with clinical manifestations of atherosclerosis. However, whether long-term elevation of endogenous S1P is pro- or anti-atherogenic remains unclear. Here, we addressed the impact of permanently high S1P levels on atherosclerosis in cholesterol-fed apolipoprotein E-deficient (ApoE−/−) mice over 12 weeks. This was achieved by pharmacological inhibition of the S1P-degrading enzyme S1P lyase with 4-deoxypyridoxine (DOP). DOP treatment dramatically accelerated atherosclerosis development, propagated predominantly unstable plaque phenotypes, and resulted in frequent plaque rupture with atherothrombosis. Macrophages from S1P lyase-inhibited or genetically deficient mice had a defect in cholesterol efflux to apolipoprotein A-I that was accompanied by profoundly downregulated cholesterol transporters ATP-binding cassette transporters ABCA1 and ABCG1. This was dependent on S1P signaling through S1PR3 and resulted in dramatically enhanced atherosclerosis in ApoE−/−/S1PR3−/− mice, where DOP treatment had no additional effect. Thus, high endogenous S1P levels promote atherosclerosis, compromise cholesterol efflux, and cause genuine plaque rupture.
Collapse
Affiliation(s)
- Petra Keul
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Susann Peters
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Karin von Wnuck Lipinski
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nathalie H. Schröder
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Melissa K. Nowak
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Dragos A. Duse
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Amin Polzin
- Division of Cardiology, Pulmonology, and Vascular Medicine, Heinrich Heine University Medical Center Düsseldorf, 40225 Düsseldorf, Germany
| | - Sarah Weske
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus H. Gräler
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care and Center for Molecular Biomedicine, University Hospital Jena, 07743 Jena, Germany
| | - Bodo Levkau
- Institute for Molecular Medicine III, University Hospital Düsseldorf, University of Düsseldorf, 40225 Düsseldorf, Germany
- Correspondence: ; Tel.: +49-211-88-12611
| |
Collapse
|
28
|
Savla SR, Prabhavalkar KS, Bhatt LK. Liver X Receptor: a potential target in the treatment of atherosclerosis. Expert Opin Ther Targets 2022; 26:645-658. [PMID: 36003057 DOI: 10.1080/14728222.2022.2117610] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Liver X receptors (LXRs) are master regulators of atherogenesis. Their anti-atherogenic potential has been attributed to their role in the inhibition of macrophage-mediated inflammation and promotion of reverse cholesterol transport. Owing to the significance of their anti-atherogenic potential, it is essential to develop and test new generation LXR agonists, both synthetic and natural, to identify potential LXR-targeted therapeutics for the future. AREAS COVERED This review describes the role of LXRs in atherosclerotic development, provides a summary of LXR agonists and future directions for atherosclerosis research. We searched PubMed, Scopus and Google Scholar for relevant reports, from last 10 years, using atherosclerosis, liver X receptor, and LXR agonist as keywords. EXPERT OPINION LXRα has gained widespread recognition as a regulator of cholesterol homeostasis and expression of inflammatory genes. Further research using models of cell type-specific knockout and specific agonist-targeted LXR isoforms is warranted. Enthusiasm for therapeutic value of LXR agonists has been tempered due to LXRα-mediated induction of hepatic lipogenesis. LXRα agonism and LXRβ targeting, gut-specific inverse LXR agonists, investigations combining LXR agonists with other lipogenesis mitigating agents, like IDOL antagonists and synthetic HDL, and targeting ABCA1, M2 macrophages and LXRα phosphorylation, remain as promising possibilities.
Collapse
Affiliation(s)
- Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India
| |
Collapse
|
29
|
Li H, Tao X, Song E, Song Y. Iron oxide nanoparticles oxidize transformed RAW 264.7 macrophages into foam cells: Impact of pulmonary surfactant component dipalmitoylphosphatidylcholine. CHEMOSPHERE 2022; 300:134617. [PMID: 35430205 DOI: 10.1016/j.chemosphere.2022.134617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Iron oxide nanoparticles (IONPs) are one of the most important components in airborne particulate matter that originally generated from traffic emission, iron ore mining, coal combustion and melting of engine fragments. Once IONPs entered respiratory tract and deposit in the alveoli, they may interact with pulmonary surfactant (PS) that distributed in the alveolar lining. Thereafter, it is necessary to investigate the interaction of inhaled IONPs and PS, which helps the understanding of health risk of respiratory health induced by IONPs. Using dipalmitoyl phosphatidylcholine (DPPC), the major components of PS, as a lipid model, we explored the interaction of DPPC with typical IONPs, Fe3O4 NPs and amino-functionalized analogue (Fe3O4-NH2 NPs). DPPC was readily adsorbed on the surface of both IONPs. Although DPPC corona depressed the cellular uptake of IONPs, IONPs@DPPC complexes caused higher cytotoxicity toward RAW 264.7 macrophages, compared to pristine IONPs. Mechanistic studies have shown that IONPs react with intracellular hydrogen peroxide, which promotes the Fenton reaction, to generate hydroxyl radicals. Iron ions could oxidize lipids to form lipid peroxides, and lipid hydroperoxides will decompose to generate hydroxyl radicals, which further promote cellular oxidative stress, lipid accumulation, foam cell formation, and the release of inflammatory factors. These findings demonstrated the phenomenon of coronal component oxidation, which contributed to IONPs-induced cytotoxicity. This study offered a brand-new toxicological mechanism of IONPs at the molecular level, which is helpful for further understanding the adverse effects of IONPs.
Collapse
Affiliation(s)
- Haidong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Xiaoqi Tao
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Science, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China.
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing, 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing, 100085, China.
| |
Collapse
|
30
|
Sturmlechner I, Sine CC, Jeganathan KB, Zhang C, Fierro Velasco RO, Baker DJ, Li H, van Deursen JM. Senescent cells limit p53 activity via multiple mechanisms to remain viable. Nat Commun 2022; 13:3722. [PMID: 35764649 PMCID: PMC9240076 DOI: 10.1038/s41467-022-31239-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.
Collapse
Affiliation(s)
- Ines Sturmlechner
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chance C Sine
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Karthik B Jeganathan
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Darren J Baker
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Jan M van Deursen
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Liu J, Zhu Z, Leung GKK. Erythrophagocytosis by Microglia/Macrophage in Intracerebral Hemorrhage: From Mechanisms to Translation. Front Cell Neurosci 2022; 16:818602. [PMID: 35237132 PMCID: PMC8882619 DOI: 10.3389/fncel.2022.818602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating condition characterized by hematoma related mass effect. Microglia/macrophage (M φ) are rapidly recruited in order to remove the red blood cells through erythrophagocytosis. Efficient erythrophagocytosis can detoxify hemolytic products and facilitate neurological recovery after ICH. The underlying mechanisms include modulation of inflammatory response and oxidative stress, among others. It is a dynamic process mediated by a cascade of signal transduction, including “find-me” signals, “eat-me” signals and a set of phagocytotic receptors-ligand pairs that may be exploited as therapeutic targets. This review summarizes mechanistic signaling pathways of erythrophagocytosis and highlights the potential of harnessing M φ-mediated phagocytosis for ICH treatment.
Collapse
Affiliation(s)
- Jiaxin Liu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
| | - Zhiyuan Zhu
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- Department of Functional Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangzhou, China
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gilberto Ka-Kit Leung
- Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China
- *Correspondence: Gilberto Ka-Kit Leung,
| |
Collapse
|
32
|
Grao-Cruces E, Lopez-Enriquez S, Martin ME, Montserrat-de la Paz S. High-density lipoproteins and immune response: A review. Int J Biol Macromol 2022; 195:117-123. [PMID: 34896462 DOI: 10.1016/j.ijbiomac.2021.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/04/2023]
Abstract
High-density lipoproteins (HDLs) are heterogeneous lipoproteins that modify their composition and functionality depending on physiological or pathological conditions. The main roles of HDL are cholesterol efflux, and anti-inflammatory and antioxidant functions. These functions can be compromised under pathological conditions. HDLs play a role in the immune system as anti-inflammatory molecules but when inflammation occurs, HDLs change their composition and carry pro-inflammatory cargo. Hence, many molecular intermediates that influence inflammatory microenvironments and cell signaling pathways can modulate HDLs structural modification and function. This review provides a comprehensive assessment of the importance of HDL composition and anti-inflammatory function in the onset and progression of atherosclerotic cardiovascular diseases. On the other hand, immune cell activation during progression of atheroma plaque formation can be influenced by HDLs through HDL-derived cholesterol depletion from lipid rafts and through HDL interaction with HDL receptors expressed on T and B lymphocytes. Cholesterol efflux is mediated by HDL receptors located in lipid rafts in peripheral cells, which undergo membrane structural modifications, and interferes with subsequent molecules interactions or intracellular signaling cascades. Regarding antigen-presentation cells such as macrophages or dendritic cells, HDL function may then modulate lymphocytes activation in immune response. Our review also contributes to the understanding of the effects exerted by HDLs in signal transduction associated to our immune cell population during chronic diseases progression.
Collapse
Affiliation(s)
- Elena Grao-Cruces
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Soledad Lopez-Enriquez
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain
| | - Maria E Martin
- Department of Cell Biology, Faculty of Biology, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain
| | - Sergio Montserrat-de la Paz
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Av. Sanchez Pizjuan s/n, 41009 Seville, Spain.
| |
Collapse
|
33
|
Soliman E, Bhalla S, Elhassanny AEM, Malur A, Ogburn D, Leffler N, Malur AG, Thomassen MJ. Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model. Int J Mol Sci 2021; 23:ijms23010047. [PMID: 35008476 PMCID: PMC8744594 DOI: 10.3390/ijms23010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
The use of carbon nanotubes has increased in the past few decades. Carbon nanotubes are implicated in the pathogenesis of pulmonary sarcoidosis, a chronic granulomatous inflammatory condition. We developed a murine model of chronic granulomatous inflammation using multiwall carbon nanotubes (MWCNT) to investigate mechanisms of granuloma formation. Using this model, we demonstrated that myeloid deficiency of ATP-binding cassette (ABC) cholesterol transporter (ABCG1) promotes granuloma formation and fibrosis with MWCNT instillation; however, the mechanism remains unclear. Our previous studies showed that MWCNT induced apoptosis in bronchoalveolar lavage (BAL) cells of wild-type (C57BL/6) mice. Given that continual apoptosis causes persistent severe lung inflammation, we hypothesized that ABCG1 deficiency would increase MWCNT-induced apoptosis thereby promoting granulomatous inflammation and fibrosis. To test our hypothesis, we utilized myeloid-specific ABCG1 knockout (ABCG1 KO) mice. Our results demonstrate that MWCNT instillation enhances pulmonary fibrosis in ABCG1 KO mice compared to wild-type controls. Enhanced fibrosis is indicated by increased trichrome staining and transforming growth factor-beta (TGF-β) expression in lungs, together with an increased expression of TGF-β related signaling molecules, interleukin-13 (IL-13) and Smad-3. MWCNT induced more apoptosis in BAL cells of ABCG1 KO mice. Initiation of apoptosis is most likely mediated by the extrinsic pathway since caspase 8 activity and Fas expression are significantly higher in MWCNT instilled ABCG1 KO mice compared to the wild type. In addition, TUNEL staining shows that ABCG1 KO mice instilled with MWCNT have a higher percentage of TUNEL positive BAL cells and more efferocytosis than the WT control. Furthermore, BAL cells of ABCG1 KO mice instilled with MWCNT exhibit an increase in efferocytosis markers, milk fat globule-EGF factor 8 (MFG-E8) and integrin β3. Therefore, our observations suggest that ABCG1 deficiency promotes pulmonary fibrosis by MWCNT, and this effect may be due to an increase in apoptosis and efferocytosis in BAL cells.
Collapse
Affiliation(s)
- Eman Soliman
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Sophia Bhalla
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
| | - Ahmed E. M. Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Anagha Malur
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
| | - David Ogburn
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
| | - Nancy Leffler
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
| | - Achut G. Malur
- Department of Microbiology & Immunology, St. George’s University, St. George 999166, Grenada;
| | - Mary Jane Thomassen
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (E.S.); (S.B.); (A.M.); (D.O.); (N.L.)
- Correspondence:
| |
Collapse
|
34
|
Zhuang JL, Liu YY, Li ZZ, Zhuang QZ, Tang WZ, Xiong Y, Huang XZ. Amentoflavone prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signal pathway. Toxicol Appl Pharmacol 2021; 431:115733. [PMID: 34599948 DOI: 10.1016/j.taap.2021.115733] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/19/2022]
Abstract
The formation of fat-laden foam cells plays an important role in the initiation and progression of atherosclerosis (AS). Amentoflavone (AF) is found in various traditional Chinese medicines, such as ginkgo biloba, which are used to treat cardiovascular diseases (CVDs). We aimed to explore the potential effects and mechanisms of AF on lipid accumulation, and its possible application in atherosclerotic cardiovascular disease (ASCVD). Cellular models of lipid accumulation were established by treatment of HUASMCs and THP-1 cells with oxidized low-density lipoprotein (ox-LDL). Cell viability, lipid accumulation, and ox-LDL uptake were assessed. Small interfering RNAs (siRNAs) and overexpression plasmids were used to reveal the hierarchical correlations of regulatory pathways. AF reduced the lipid accumulation and ox-LDL uptake induced by ox-LDL, and reduced the expression levels of cluster of differentiation 36 (CD36) and peroxisome proliferator-activated receptor gamma (PPARγ) proteins, while the expression level of ATP binding cassette subfamily A member 1 (ABCA1) increased. Knockdown of PPARγ or CD36 with siRNAs prevented ox-LDL-induced lipid accumulation. Overexpression of CD36 or PPARγ promoted the lipid accumulation induced by ox-LDL and eliminated the effect of AF on ox-LDL-induced lipid accumulation. Overall, AF prevents ox-LDL-induced lipid accumulation by suppressing the PPARγ/CD36 signaling pathway.
Collapse
Affiliation(s)
- Jia-Ling Zhuang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Ying-Yi Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Zhen-Zhen Li
- Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qi-Zhen Zhuang
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Wen-Zhi Tang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Chinese Medicine, Zhuhai 519015, China
| | - Yujuan Xiong
- Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Xian-Zhang Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
35
|
Apoptotic cell-derived metabolites in efferocytosis-mediated resolution of inflammation. Cytokine Growth Factor Rev 2021; 62:42-53. [PMID: 34742632 DOI: 10.1016/j.cytogfr.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
The resolution of inflammation, as part of standard host defense mechanism, is the process to guarantee timely termination of inflammatory responses and eventual restoration of tissue homeostasis . It is mainly achieved via efferocytosis, during which pro-resolving macrophages clear apoptotic neutrophils at the inflammatory site. Unfortunately, impaired resolution can be the leading cause of chronic inflammatory disorders and some autoimmune diseases. Existing studies have provided relatively comprehensive understandings about the recognition and uptake of apoptotic neutrophils by macrophages during early phases of efferocytosis. However, lack of information concerns macrophage metabolism of apoptotic cell-derived metabolites after being released from phagolysosomes or the relationship between such metabolism and efferocytosis. Notwithstanding, three recent studies have revealed macrophage metabolism of cholesterol, fatty acids and arginine, as well as their respective functions in the context of inflammation-resolution. This review provides an overview of the resolution of inflammation, efferocytosis and the key players involved, followed by a focus on the metabolism of apoptotic cell-derived metabolites within efferocytes. Hypotheses of more potential apoptotic cell-derived metabolites and their possible roles in the resolution are also formulated. Understanding the effect of these metabolites further advances the concept that apoptotic cells act as active players to regulate resolution, and also suggests novel therapeutic strategies for diseases driven by defective resolution and even cancer that may be treated through enhanced efferocytosis.
Collapse
|
36
|
Matias MI, Yong CS, Foroushani A, Goldsmith C, Mongellaz C, Sezgin E, Levental KR, Talebi A, Perrault J, Rivière A, Dehairs J, Delos O, Bertand-Michel J, Portais JC, Wong M, Marie JC, Kelekar A, Kinet S, Zimmermann VS, Levental I, Yvan-Charvet L, Swinnen JV, Muljo SA, Hernandez-Vargas H, Tardito S, Taylor N, Dardalhon V. Regulatory T cell differentiation is controlled by αKG-induced alterations in mitochondrial metabolism and lipid homeostasis. Cell Rep 2021; 37:109911. [PMID: 34731632 PMCID: PMC10167917 DOI: 10.1016/j.celrep.2021.109911] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Suppressive regulatory T cell (Treg) differentiation is controlled by diverse immunometabolic signaling pathways and intracellular metabolites. Here we show that cell-permeable α-ketoglutarate (αKG) alters the DNA methylation profile of naive CD4 T cells activated under Treg polarizing conditions, markedly attenuating FoxP3+ Treg differentiation and increasing inflammatory cytokines. Adoptive transfer of these T cells into tumor-bearing mice results in enhanced tumor infiltration, decreased FoxP3 expression, and delayed tumor growth. Mechanistically, αKG leads to an energetic state that is reprogrammed toward a mitochondrial metabolism, with increased oxidative phosphorylation and expression of mitochondrial complex enzymes. Furthermore, carbons from ectopic αKG are directly utilized in the generation of fatty acids, associated with lipidome remodeling and increased triacylglyceride stores. Notably, inhibition of either mitochondrial complex II or DGAT2-mediated triacylglyceride synthesis restores Treg differentiation and decreases the αKG-induced inflammatory phenotype. Thus, we identify a crosstalk between αKG, mitochondrial metabolism and triacylglyceride synthesis that controls Treg fate.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cells, Cultured
- Cytokines/genetics
- Cytokines/metabolism
- Diacylglycerol O-Acyltransferase/metabolism
- Energy Metabolism/drug effects
- Fibrosarcoma/genetics
- Fibrosarcoma/immunology
- Fibrosarcoma/metabolism
- Fibrosarcoma/therapy
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Homeostasis
- Humans
- Immunotherapy, Adoptive
- Ketoglutaric Acids/pharmacology
- Lipid Metabolism/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Phenotype
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Mice
Collapse
Affiliation(s)
- Maria I Matias
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carmen S Yong
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Amir Foroushani
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Chloe Goldsmith
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Cédric Mongellaz
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Kandice R Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Julie Perrault
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anais Rivière
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Océane Delos
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Justine Bertand-Michel
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France; I2MC, Université de Toulouse, Inserm, Toulouse, France
| | - Jean-Charles Portais
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Madeline Wong
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Julien C Marie
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Ameeta Kelekar
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Valérie S Zimmermann
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan A Muljo
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon, University Lyon 1, Inserm/ CNRS, Labex DEVweCAN, Lyon France
| | - Saverio Tardito
- Cancer Research UK, Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France; Pediatric Oncology Branch, NCI, CCR, NIH, Bethesda, MD, USA.
| | - Valérie Dardalhon
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
37
|
Merlin J, Ivanov S, Dumont A, Sergushichev A, Gall J, Stunault M, Ayrault M, Vaillant N, Castiglione A, Swain A, Orange F, Gallerand A, Berton T, Martin JC, Carobbio S, Masson J, Gaisler-Salomon I, Maechler P, Rayport S, Sluimer JC, Biessen EAL, Guinamard RR, Gautier EL, Thorp EB, Artyomov MN, Yvan-Charvet L. Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation. Nat Metab 2021; 3:1313-1326. [PMID: 34650273 PMCID: PMC7611882 DOI: 10.1038/s42255-021-00471-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/06/2021] [Indexed: 12/04/2022]
Abstract
Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.
Collapse
Affiliation(s)
- Johanna Merlin
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Stoyan Ivanov
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Adélie Dumont
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | | | - Julie Gall
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Marion Stunault
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Marion Ayrault
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Nathalie Vaillant
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Alexia Castiglione
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Amanda Swain
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Francois Orange
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée (CCMA), Nice, France
| | - Alexandre Gallerand
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | - Thierry Berton
- Centre de Recherche Cardiovasculaire et Nutritionnelle (C2VN), INSERM, Institut National de la Recherche Agricole (INRA), BioMet, Aix-Marseille University, Marseille, France
| | - Jean-Charles Martin
- Centre de Recherche Cardiovasculaire et Nutritionnelle (C2VN), INSERM, Institut National de la Recherche Agricole (INRA), BioMet, Aix-Marseille University, Marseille, France
| | - Stefania Carobbio
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
- Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Justine Masson
- Inserm UMR-S1270, Institut du Fer à Moulin, Sorbonne Université, Paris, France
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA
| | - Inna Gaisler-Salomon
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
- SPC-IBBR, University of Haifa, Haifa, Israel
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
| | - Stephen Rayport
- Department of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Klinikum Aachen, Aachen, Germany
| | - Rodolphe R Guinamard
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France
| | | | - Edward B Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Centre National de la Recherche Scientifique (CNRS) (R.G.), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Macrophage accumulation within atherosclerotic plaque is a primary driver of disease progression. However, recent advances in both phenotypic and functional heterogeneity of these cells have allowed for improved insight into potential regulation of macrophage function within lesions. In this review, we will discuss recent insights on macrophage heterogeneity, lipid processing, metabolism, and proliferation in atherosclerosis. Furthermore, we will identify outstanding questions in the field that are pertinent to future studies. RECENT FINDINGS With the recent development of single-cell RNA sequencing, several studies have highlighted the diverse macrophage populations within plaques, including pro-inflammatory, anti-inflammatory, lipid loaded and tissue resident macrophages. Furthermore, new data has suggested that differential activation of metabolic pathways, including glycolysis and fatty acid oxidation, may play a key role in determining function. Recent works have highlighted that different populations retain varying capacity to undergo proliferation; regulating the proliferation pathway may be highly effective in reducing plaque in advanced lesions. SUMMARY Macrophage populations within atherosclerosis are highly heterogeneous; differences in cytokine production, lipid handling, metabolism, and proliferation are seen between subpopulations. Understanding the basic cellular mechanisms that drive this heterogeneity will allow for the development of highly specific disease modulating agents to combat atherosclerosis.
Collapse
Affiliation(s)
| | - Jesse W Williams
- Center for Immunology
- Department of Integrative Biology & Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Ma S, Xia M, Gao X. Biomarker Discovery in Atherosclerotic Diseases Using Quantitative Nuclear Magnetic Resonance Metabolomics. Front Cardiovasc Med 2021; 8:681444. [PMID: 34395555 PMCID: PMC8356911 DOI: 10.3389/fcvm.2021.681444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
Despite great progress in the management of atherosclerosis (AS), its subsequent cardiovascular disease (CVD) remains the leading cause of morbidity and mortality. This is probably due to insufficient risk detection using routine lipid testing; thus, there is a need for more effective approaches relying on new biomarkers. Quantitative nuclear magnetic resonance (qNMR) metabolomics is able to phenotype holistic metabolic changes, with a unique advantage in regard to quantifying lipid-protein complexes. The rapidly increasing literature has indicated that qNMR-based lipoprotein particle number, particle size, lipid components, and some molecular metabolites can provide deeper insight into atherogenic diseases and could serve as novel promising determinants. Therefore, this article aims to offer an updated review of the qNMR biomarkers of AS and CVD found in epidemiological studies, with a special emphasis on lipoprotein-related parameters. As more researches are performed, we can envision more qNMR metabolite biomarkers being successfully translated into daily clinical practice to enhance the prevention, detection and intervention of atherosclerotic diseases.
Collapse
Affiliation(s)
- Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| |
Collapse
|
40
|
Gautier EL, Askia H, Murcy F, Yvan-Charvet L. Macrophage ontogeny and functional diversity in cardiometabolic diseases. Semin Cell Dev Biol 2021; 119:119-129. [PMID: 34229949 DOI: 10.1016/j.semcdb.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France.
| | - Haoussa Askia
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
41
|
Kotlyarov S, Kotlyarova A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2021; 22:6711. [PMID: 34201488 PMCID: PMC8269124 DOI: 10.3390/ijms22136711] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks among the leading causes of morbidity and mortality worldwide. COPD rarely occurs in isolation and is often combined with various diseases. It is considered that systemic inflammation underlies the comorbid course of COPD. The data obtained in recent years have shown the importance of violations of the cross-links of lipid metabolism and the immune response, which are links in the pathogenesis of both COPD and atherosclerosis. The role of lipid metabolism disorders in the pathogenesis of the comorbid course of COPD and atherosclerosis and the participation of ATP-binding cassette (ABC) transporters in these processes is discussed in this article. It is known that about 20 representatives of a large family of ABC transporters provide lipid homeostasis of cells by moving lipids inside the cell and in its plasma membrane, as well as removing lipids from the cell. It was shown that some representatives of the ABC-transporter family are involved in various links of the pathogenesis of COPD and atherosclerosis, which can determine their comorbid course.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
42
|
Mota AC, Dominguez M, Weigert A, Snodgrass RG, Namgaladze D, Brüne B. Lysosome-Dependent LXR and PPARδ Activation Upon Efferocytosis in Human Macrophages. Front Immunol 2021; 12:637778. [PMID: 34025647 PMCID: PMC8137840 DOI: 10.3389/fimmu.2021.637778] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/23/2021] [Indexed: 01/01/2023] Open
Abstract
Efferocytosis is critical for tissue homeostasis, as its deregulation is associated with several autoimmune pathologies. While engulfing apoptotic cells, phagocytes activate transcription factors, such as peroxisome proliferator-activated receptors (PPAR) or liver X receptors (LXR) that orchestrate metabolic, phagocytic, and inflammatory responses towards the ingested material. Coordination of these transcription factors in efferocytotic human macrophages is not fully understood. In this study, we evaluated the transcriptional profile of macrophages following the uptake of apoptotic Jurkat T cells using RNA-seq analysis. Results indicated upregulation of PPAR and LXR pathways but downregulation of sterol regulatory element-binding proteins (SREBP) target genes. Pharmacological inhibition and RNA interference pointed to LXR and PPARδ as relevant transcriptional regulators, while PPARγ did not substantially contribute to gene regulation. Mechanistically, lysosomal digestion and lysosomal acid lipase (LIPA) were required for PPAR and LXR activation, while PPARδ activation also demanded an active lysosomal phospholipase A2 (PLA2G15). Pharmacological interference with LXR signaling attenuated ABCA1-dependent cholesterol efflux from efferocytotic macrophages, but suppression of inflammatory responses following efferocytosis occurred independently of LXR and PPARδ. These data provide mechanistic details on LXR and PPARδ activation in efferocytotic human macrophages.
Collapse
Affiliation(s)
- Ana Carolina Mota
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Monica Dominguez
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Ryan G Snodgrass
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
43
|
Thakkar H, Vincent V, Sen A, Singh A, Roy A. Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. J Lipids 2021; 2021:5585521. [PMID: 33996157 PMCID: PMC8096543 DOI: 10.1155/2021/5585521] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
High-density lipoprotein (HDL) comprises a heterogeneous group of particles differing in size, density, and composition. HDL cholesterol (HDL-C) levels have long been suggested to indicate cardiovascular risk, inferred from multiple epidemiological studies. The failure of HDL-C targeted interventions and genetic studies has raised doubts on the atheroprotective role of HDL-C. The current consensus is that HDL-C is neither a biomarker nor a causative agent of cardiovascular disorders. With better understanding of the complex nature of HDL which comprises a large number of proteins and lipids with unique functions, recent focus has shifted from HDL quantity to HDL quality in terms of atheroprotective functions. The current research is focused on developing laboratory assays to assess HDL functions for cardiovascular risk prediction. Also, HDL mimetics designed based on the key determinants of HDL functions are being investigated to modify cardiovascular risk. Improving HDL functions by altering its composition is the key area of future research in HDL biology to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
44
|
Yin C, Heit B. Cellular Responses to the Efferocytosis of Apoptotic Cells. Front Immunol 2021; 12:631714. [PMID: 33959122 PMCID: PMC8093429 DOI: 10.3389/fimmu.2021.631714] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
The rapid and efficient phagocytic clearance of apoptotic cells, termed efferocytosis, is a critical mechanism in the maintenance of tissue homeostasis. Removal of apoptotic cells through efferocytosis prevents secondary necrosis and the resultant inflammation caused by the release of intracellular contents. The importance of efferocytosis in homeostasis is underscored by the large number of inflammatory and autoimmune disorders, including atherosclerosis and systemic lupus erythematosus, that are characterized by defective apoptotic cell clearance. Although mechanistically similar to the phagocytic clearance of pathogens, efferocytosis differs from phagocytosis in that it is immunologically silent and induces a tissue repair response. Efferocytes face unique challenges resulting from the internalization of apoptotic cells, including degradation of the apoptotic cell, dealing with the extra metabolic load imposed by the processing of apoptotic cell contents, and the coordination of an anti-inflammatory, pro-tissue repair response. This review will discuss recent advances in our understanding of the cellular response to apoptotic cell uptake, including trafficking of apoptotic cell cargo and antigen presentation, signaling and transcriptional events initiated by efferocytosis, the coordination of an anti-inflammatory response and tissue repair, unique cellular metabolic responses and the role of efferocytosis in host defense. A better understanding of how efferocytic cells respond to apoptotic cell uptake will be critical in unraveling the complex connections between apoptotic cell removal and inflammation resolution and maintenance of tissue homeostasis.
Collapse
Affiliation(s)
- Charles Yin
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
| | - Bryan Heit
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Center for Human Immunology, Western University, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
| |
Collapse
|
45
|
Abstract
Billions of cells undergo apoptosis daily and are swiftly removed by macrophages through an evolutionarily conserved program termed "efferocytosis". Consequently, macromolecules within an apoptotic cell significantly burden a phagocyte with nutrients, such as lipids, oligonucleotides, and amino acids. In response to this nutrient overload, metabolic reprogramming must occur for the process of efferocytosis to remain non-phlogistic and to execute successive rounds of efferocytosis. The inability to undergo metabolic reprogramming after efferocytosis drives inflammation and impairs its resolution, often promoting many chronic inflammatory diseases. This is particularly evident for atherosclerosis, as metabolic reprogramming alters macrophage function in every stage of atherosclerosis, from the early formation of benign lesions to the progression of clinically relevant atheromas and during atherosclerosis regression upon aggressive lipid-lowering. This Review focuses on the metabolic pathways utilized upon apoptotic cell ingestion, the consequences of these metabolic pathways in macrophage function thereafter, and the role of metabolic reprogramming during atherosclerosis. Due to the growing interest in this new field, I introduce a new term, "efferotabolism", as a means to define the process by which macrophages break down, metabolize, and respond to AC-derived macromolecules. Understanding these aspects of efferotabolism will shed light on novel strategies to combat atherosclerosis and compromised inflammation resolution.
Collapse
|
46
|
Stadler JT, Wadsack C, Marsche G. Fetal High-Density Lipoproteins: Current Knowledge on Particle Metabolism, Composition and Function in Health and Disease. Biomedicines 2021; 9:biomedicines9040349. [PMID: 33808220 PMCID: PMC8067099 DOI: 10.3390/biomedicines9040349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol and other lipids carried by lipoproteins play an indispensable role in fetal development. Recent evidence suggests that maternally derived high-density lipoprotein (HDL) differs from fetal HDL with respect to its proteome, size, and function. Compared to the HDL of adults, fetal HDL is the major carrier of cholesterol and has a unique composition that implies other physiological functions. Fetal HDL is enriched in apolipoprotein E, which binds with high affinity to the low-density lipoprotein receptor. Thus, it appears that a primary function of fetal HDL is the transport of cholesterol to tissues as is accomplished by low-density lipoproteins in adults. The fetal HDL-associated bioactive sphingolipid sphingosine-1-phosphate shows strong vasoprotective effects at the fetoplacental vasculature. Moreover, lipoprotein-associated phospholipase A2 carried by fetal-HDL exerts anti-oxidative and athero-protective functions on the fetoplacental endothelium. Notably, the mass and activity of HDL-associated paraoxonase 1 are about 5-fold lower in the fetus, accompanied by an attenuation of anti-oxidative activity of fetal HDL. Cholesteryl ester transfer protein activity is reduced in fetal circulation despite similar amounts of the enzyme in maternal and fetal serum. This review summarizes the current knowledge on fetal HDL as a potential vasoprotective lipoprotein during fetal development. We also provide an overview of whether and how the protective functionalities of HDL are impaired in pregnancy-related syndromes such as pre-eclampsia or gestational diabetes mellitus.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria;
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
- Correspondence: (J.T.S.); (G.M.); Tel.: +43-316-385-74115 (J.T.S.); +43-316-385-74128 (G.M.)
| |
Collapse
|
47
|
Kotlyarov S. Participation of ABCA1 Transporter in Pathogenesis of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:3334. [PMID: 33805156 PMCID: PMC8037621 DOI: 10.3390/ijms22073334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the important medical and social problem. According to modern concepts, COPD is a chronic inflammatory disease, macrophages play a key role in its pathogenesis. Macrophages are heterogeneous in their functions, which is largely determined by their immunometabolic profile, as well as the features of lipid homeostasis, in which the ATP binding cassette transporter A1 (ABCA1) plays an essential role. The objective of this work is the analysis of the ABCA1 protein participation and the function of reverse cholesterol transport in the pathogenesis of COPD. The expression of the ABCA1 gene in lung tissues takes the second place after the liver, which indicates the important role of the carrier in lung function. The participation of the transporter in the development of COPD consists in provision of lipid metabolism, regulation of inflammation, phagocytosis, and apoptosis. Violation of the processes in which ABCA1 is involved may be a part of the pathophysiological mechanisms, leading to the formation of a heterogeneous clinical course of the disease.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
48
|
Abstract
ABSTRACT As an integral component of cardiac tissue, macrophages are critical for cardiac development, adult heart homeostasis, as well as cardiac healing. One fundamental function of macrophages involves the clearance of dying cells or debris, a process termed efferocytosis. Current literature primarily pays attention to the impact of efferocytosis on apoptotic cells. However, emerging evidence suggests that necrotic cells and their released cellular debris can also be removed by cardiac macrophages through efferocytosis. Importantly, recent studies have demonstrated that macrophage efferocytosis plays an essential role in cardiac pathophysiology and repair. Therefore, understanding macrophage efferocytosis would provide valuable insights on cardiac health, and may offer new therapeutic strategies for the treatment of patients with heart failure. In this review, we first summarize the molecular signals that are associated with macrophage efferocytosis of apoptotic and necrotic cells, and then discuss how the linkage of efferocytosis to the resolution of inflammation affects cardiac function and recovery under normal and diseased conditions. Lastly, we highlight new discoveries related to the effects of macrophage efferocytosis on cardiac injury and repair.
Collapse
Affiliation(s)
- Li Yutian
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Li Qianqian
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Pharmaceutical Science, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
49
|
Zheng DJ, Abou Taka M, Heit B. Role of Apoptotic Cell Clearance in Pneumonia and Inflammatory Lung Disease. Pathogens 2021; 10:134. [PMID: 33572846 PMCID: PMC7912081 DOI: 10.3390/pathogens10020134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Pneumonia and inflammatory diseases of the pulmonary system such as chronic obstructive pulmonary disease and asthma continue to cause significant morbidity and mortality globally. While the etiology of these diseases is highly different, they share a number of similarities in the underlying inflammatory processes driving disease pathology. Multiple recent studies have identified failures in efferocytosis-the phagocytic clearance of apoptotic cells-as a common driver of inflammation and tissue destruction in these diseases. Effective efferocytosis has been shown to be important for resolving inflammatory diseases of the lung and the subsequent restoration of normal lung function, while many pneumonia-causing pathogens manipulate the efferocytic system to enhance their growth and avoid immunity. Moreover, some treatments used to manage these patients, such as inhaled corticosteroids for chronic obstructive pulmonary disease and the prevalent use of statins for cardiovascular disease, have been found to beneficially alter efferocytic activity in these patients. In this review, we provide an overview of the efferocytic process and its role in the pathophysiology and resolution of pneumonia and other inflammatory diseases of the lungs, and discuss the utility of existing and emerging therapies for modulating efferocytosis as potential treatments for these diseases.
Collapse
Affiliation(s)
- David Jiao Zheng
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Maria Abou Taka
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
| | - Bryan Heit
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N0M 2N0, Canada; (D.J.Z.); (M.A.T.)
- Robarts Research Institute, London, ON N6A 5K8, Canada
| |
Collapse
|
50
|
ABCG1 Attenuates Oxidative Stress Induced by H 2O 2 through the Inhibition of NADPH Oxidase and the Upregulation of Nrf2-Mediated Antioxidant Defense in Endothelial Cells. ACTA ACUST UNITED AC 2020; 2020:2095645. [PMID: 33344146 PMCID: PMC7732382 DOI: 10.1155/2020/2095645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022]
Abstract
Summary. Oxidative stress is an important factor that is related to endothelial dysfunction. ATP-binding cassette transporter G1 (ABCG1), a regulator of intracellular cholesterol efflux, has been found to prevent endothelial activation in vessel walls. To explore the role of ABCG1 in oxidative stress production in endothelial cells, HUAECs were exposed to H2O2 and transfected with the specific ABCG1 siRNA or ABCG1 overexpression plasmid. The results showed that overexpression of ABCG1 by ABCG1 plasmid or liver X receptor (LXR) agonist T0901317 treatment inhibited ROS production and MDA content induced by H2O2 in HUAECs. Furthermore, ABCG1 upregulation blunted the activity of prooxidant NADPH oxidase and the expression of Nox4, one of the NADPH oxidase subunits. Moreover, the increased migration of Nrf2 from the cytoplasm to the nucleus and antioxidant HO-1 expression were detected in HUAECs with upregulation of ABCG1. Conversely, ABCG1 downregulation by ABCG1 siRNA increased NADPH oxidase activity and Nox4 expression and abrogated the increase at Nrf2 nuclear protein levels. In addition, intracellular cholesterol load interfered with the balance between NADPH oxidase activity and HO-1 expression. It was suggested that ABCG1 attenuated oxidative stress induced by H2O2 in endothelial cells, which might be involved in the balance between decreased NADPH oxidase activity and increased Nrf2/OH-1 antioxidant defense signaling via its regulation for intracellular cholesterol accumulation.
Collapse
|