1
|
Amari C, Carletti M, Yan S, Michaud M, Salvaing J. Lipid droplets degradation mechanisms from microalgae to mammals, a comparative overview. Biochimie 2024; 227:19-34. [PMID: 39299537 DOI: 10.1016/j.biochi.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Lipid droplets (LDs) are organelles composed of a hydrophobic core (mostly triacylglycerols and steryl esters) delineated by a lipid monolayer and found throughout the tree of life. LDs were seen for a long time as simple energy storage organelles but recent works highlighted their versatile roles in several fundamental cellular processes, particularly during stress response. LDs biogenesis occurs in the ER and their number and size can be dynamically regulated depending on their function, e.g. during development or stress. Understanding their biogenesis and degradation mechanisms is thus essential to better apprehend their roles. LDs degradation can occur in the cytosol by lipolysis or after their internalization into lytic compartments (e.g. vacuoles or lysosomes) using diverse mechanisms that depend on the considered organism, tissue, developmental stage or environmental condition. In this review, we summarize our current knowledge on the different LDs degradation pathways in several main phyla of model organisms, unicellular or pluricellular, photosynthetic or not (budding yeast, mammals, land plants and microalgae). We highlight the conservation of the main degradation pathways throughout evolution, but also the differences between organisms, or inside an organism between different organs. Finally, we discuss how this comparison can help to shed light on relationships between LDs degradation pathways and LDs functions.
Collapse
Affiliation(s)
- Chems Amari
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France; Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Marta Carletti
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Siqi Yan
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France
| | - Juliette Salvaing
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et Aux Energies Alternatives, IRIG, CEA-Grenoble, 17 Rue des Martyrs, 38000, Grenoble, France.
| |
Collapse
|
2
|
Rouvray S, Drummond RA. The role of lipids in regulating macrophage antifungal immunity. mBio 2024; 15:e0305723. [PMID: 39207168 PMCID: PMC11481918 DOI: 10.1128/mbio.03057-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Macrophages are critical components of the antifungal immune response. Disturbance in the number or function of these innate immune cells can significantly increase susceptibility to invasive fungal infections. Pathogenic fungi cause billions of infections every year and have an unmet clinical need, with many infections associated with unacceptably high mortality rates that primarily affect vulnerable patients with underlying immune defects. Lipid metabolism has been increasingly appreciated to significantly influence macrophage function, particularly of macrophages residing in lipid-rich organs, such as the brain, or macrophages specialized at clearing dead cells including alveolar macrophages in the lungs. In this review, we provide an overview of macrophage lipid metabolism, and discuss how lipid recycling and dysregulation affect key macrophage functions relevant for antifungal immunity including phagocytosis, functional polarization, and inflammasome activation. We focus on the fungal pathogen Cryptococcus neoformans, as this is the most common cause of death from fungal infection in humans and because several lines of evidence have already linked lipid metabolism in the regulation of C. neoformans and macrophage interactions.
Collapse
Affiliation(s)
- Sophie Rouvray
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Rebecca A. Drummond
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Chandramouli A, Kamat SS. A Facile LC-MS Method for Profiling Cholesterol and Cholesteryl Esters in Mammalian Cells and Tissues. Biochemistry 2024; 63:2300-2309. [PMID: 38986142 DOI: 10.1021/acs.biochem.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Cholesterol is central to mammalian lipid metabolism and serves many critical functions in the regulation of diverse physiological processes. Dysregulation in cholesterol metabolism is causally linked to numerous human diseases, and therefore, in vivo, the concentrations and flux of cholesterol and cholesteryl esters (fatty acid esters of cholesterol) are tightly regulated. While mass spectrometry has been an analytical method of choice for detecting cholesterol and cholesteryl esters in biological samples, the hydrophobicity, chemically inert nature, and poor ionization of these neutral lipids have often proved a challenge in developing lipidomics compatible liquid chromatography-mass spectrometry (LC-MS) methods to study them. To overcome this problem, here, we report a reverse-phase LC-MS method that is compatible with existing high-throughput lipidomics strategies and capable of identifying and quantifying cholesterol and cholesteryl esters from mammalian cells and tissues. Using this sensitive yet robust LC-MS method, we profiled different mammalian cell lines and tissues and provide a comprehensive picture of cholesterol and cholesteryl esters content in them. Specifically, among cholesteryl esters, we find that mammalian cells and tissues largely possess monounsaturated and polyunsaturated variants. Taken together, our lipidomics compatible LC-MS method to study this lipid class opens new avenues in understanding systemic and tissue-level cholesterol metabolism under various physiological conditions.
Collapse
Affiliation(s)
- Aakash Chandramouli
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Nagaoka M, Sakai Y, Nakajima M, Fukami T. Role of carboxylesterase and arylacetamide deacetylase in drug metabolism, physiology, and pathology. Biochem Pharmacol 2024; 223:116128. [PMID: 38492781 DOI: 10.1016/j.bcp.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/20/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Carboxylesterases (CES1 and CES2) and arylacetamide deacetylase (AADAC), which are expressed primarily in the liver and/or gastrointestinal tract, hydrolyze drugs containing ester and amide bonds in their chemical structure. These enzymes often catalyze the conversion of prodrugs, including the COVID-19 drugs remdesivir and molnupiravir, to their pharmacologically active forms. Information on the substrate specificity and inhibitory properties of these enzymes, which would be useful for drug development and toxicity avoidance, has accumulated. Recently,in vitroandin vivostudies have shown that these enzymes are involved not only in drug hydrolysis but also in lipid metabolism. CES1 and CES2 are capable of hydrolyzing triacylglycerol, and the deletion of their orthologous genes in mice has been associated with impaired lipid metabolism and hepatic steatosis. Adeno-associated virus-mediated human CES overexpression decreases hepatic triacylglycerol levels and increases fatty acid oxidation in mice. It has also been shown that overexpression of CES enzymes or AADAC in cultured cells suppresses the intracellular accumulation of triacylglycerol. Recent reports indicate that AADAC can be up- or downregulated in tumors of various organs, and its varied expression is associated with poor prognosis in patients with cancer. Thus, CES and AADAC not only determine drug efficacy and toxicity but are also involved in pathophysiology. This review summarizes recent findings on the roles of CES and AADAC in drug metabolism, physiology, and pathology.
Collapse
Affiliation(s)
- Mai Nagaoka
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Yoshiyuki Sakai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
5
|
Walker ME, De Matteis R, Perretti M, Dalli J. Resolvin T4 enhances macrophage cholesterol efflux to reduce vascular disease. Nat Commun 2024; 15:975. [PMID: 38316794 PMCID: PMC10844649 DOI: 10.1038/s41467-024-44868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Liang N, Harsch BA, Zhou S, Borkowska A, Shearer GC, Kaddurah-Daouk R, Newman JW, Borkowski K. Oxylipin transport by lipoprotein particles and its functional implications for cardiometabolic and neurological disorders. Prog Lipid Res 2024; 93:101265. [PMID: 37979798 DOI: 10.1016/j.plipres.2023.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Lipoprotein metabolism is critical to inflammation. While the periphery and central nervous system (CNS) have separate yet connected lipoprotein systems, impaired lipoprotein metabolism is implicated in both cardiometabolic and neurological disorders. Despite the substantial investigation into the composition, structure and function of lipoproteins, the lipoprotein oxylipin profiles, their influence on lipoprotein functions, and their potential biological implications are unclear. Lipoproteins carry most of the circulating oxylipins. Importantly, lipoprotein-mediated oxylipin transport allows for endocrine signaling by these lipid mediators, long considered to have only autocrine and paracrine functions. Alterations in plasma lipoprotein oxylipin composition can directly impact inflammatory responses of lipoprotein metabolizing cells. Similar investigations of CNS lipoprotein oxylipins are non-existent to date. However, as APOE4 is associated with Alzheimer's disease-related microglia dysfunction and oxylipin dysregulation, ApoE4-dependent lipoprotein oxylipin modulation in neurological pathologies is suggested. Such investigations are crucial to bridge knowledge gaps linking oxylipin- and lipoprotein-related disorders in both periphery and CNS. Here, after providing a summary of existent literatures on lipoprotein oxylipin analysis methods, we emphasize the importance of lipoproteins in oxylipin transport and argue that understanding the compartmentalization and distribution of lipoprotein oxylipins may fundamentally alter our consideration of the roles of lipoprotein in cardiometabolic and neurological disorders.
Collapse
Affiliation(s)
- Nuanyi Liang
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Brian A Harsch
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sitong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis, Davis, CA 95616, USA
| | - Alison Borkowska
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke Institute for Brain Sciences and Department of Medicine, Duke University, Durham, NC, 27708, USA; Duke Institute of Brain Sciences, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - John W Newman
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA; Department of Nutrition, University of California - Davis, Davis, CA 95616, USA; Western Human Nutrition Research Center, United States Department of Agriculture - Agriculture Research Service, Davis, CA 95616, USA
| | - Kamil Borkowski
- West Coast Metabolomics Center, Genome Center, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Namulondo J, Nyangiri OA, Kimuda MP, Nambala P, Nassuuna J, Egesa M, Nerima B, Biryomumaisho S, Mugasa CM, Nabukenya I, Kato D, Elliott A, Noyes H, Tweyongyere R, Matovu E, Mulindwa J. Transcriptome analysis of peripheral blood of Schistosoma mansoni infected children from the Albert Nile region in Uganda reveals genes implicated in fibrosis pathology. PLoS Negl Trop Dis 2023; 17:e0011455. [PMID: 37967122 PMCID: PMC10686515 DOI: 10.1371/journal.pntd.0011455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/29/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Over 290 million people are infected by schistosomes worldwide. Schistosomiasis control efforts focus on mass drug treatment with praziquantel (PZQ), a drug that kills the adult worm of all Schistosoma species. Nonetheless, re-infections have continued to be detected in endemic areas with individuals living in the same area presenting with varying infection intensities. Our objective was to characterize the transcriptome profiles in peripheral blood of children between 10-15 years with varying intensities of Schistosoma mansoni infection living along the Albert Nile in Uganda. RNA extracted from peripheral blood collected from 44 S. mansoni infected (34 high and 10 low by circulating anodic antigen [CAA] level) and 20 uninfected children was sequenced using Illumina NovaSeq S4 and the reads aligned to the GRCh38 human genome. Differential gene expression analysis was done using DESeq2. Principal component analysis revealed clustering of gene expression by gender when S. mansoni infected children were compared with uninfected children. In addition, we identified 14 DEGs between S. mansoni infected and uninfected individuals, 56 DEGs between children with high infection intensity and uninfected individuals, 33 DEGs between those with high infection intensity and low infection intensity and no DEGs between those with low infection and uninfected individuals. We also observed upregulation and downregulation of some DEGs that are associated with fibrosis and its regulation. These data suggest expression of fibrosis associated genes as well as genes that regulate fibrosis in S. mansoni infection. The relatively few significant DEGS observed in children with schistosomiasis suggests that chronic S. mansoni infection is a stealth infection that does not stimulate a strong immune response.
Collapse
Affiliation(s)
- Joyce Namulondo
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Oscar Asanya Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Magambo Phillip Kimuda
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Peter Nambala
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Jacent Nassuuna
- Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Moses Egesa
- Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Barbara Nerima
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Savino Biryomumaisho
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Claire Mack Mugasa
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Immaculate Nabukenya
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Drago Kato
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Alison Elliott
- Vaccine Research Theme, MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, United Kingdom
| | - Robert Tweyongyere
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- College of Natural Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
8
|
Stevenson ER, Smith LC, Wilkinson ML, Lee SJ, Gow AJ. Etiology of lipid-laden macrophages in the lung. Int Immunopharmacol 2023; 123:110719. [PMID: 37595492 PMCID: PMC10734282 DOI: 10.1016/j.intimp.2023.110719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023]
Abstract
Uniquely positioned as sentinel cells constantly exposed to the environment, pulmonary macrophages are vital for the maintenance of the lung lining. These cells are responsible for the clearance of xenobiotics, pathogen detection and clearance, and homeostatic functions such as surfactant recycling. Among the spectrum of phenotypes that may be expressed by macrophages in the lung, the pulmonary lipid-laden phenotype is less commonly studied in comparison to its circulatory counterpart, the atherosclerotic lesion-associated foam cell, or the acutely activated inflammatory macrophage. Herein, we propose that lipid-laden macrophage formation in the lung is governed by lipid acquisition, storage, metabolism, and export processes. The cellular balance of these four processes is critical to the maintenance of homeostasis and the prevention of aberrant signaling that may contribute to lung pathologies. This review aims to examine mechanisms and signaling pathways that are involved in lipid-laden macrophage formation and the potential consequences of this phenotype in the lung.
Collapse
Affiliation(s)
- E R Stevenson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - L C Smith
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States; Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT, United States
| | - M L Wilkinson
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - S J Lee
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| | - A J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
9
|
Song T, Yao M, Yang Y, Liu Z, Zhang L, Li W. Integrative Identification by Hi-C Revealed Distinct Advanced Structural Variations in Lung Adenocarcinoma Tissue. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:390-407. [PMID: 37589026 PMCID: PMC10425312 DOI: 10.1007/s43657-023-00103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 08/18/2023]
Abstract
Advanced three-dimensional structure variations of chromatin in large genome fragments, such as conversion of A/B compartment, topologically associated domains (TADs) and chromatin loops are related closely to occurrence of malignant tumors. However, the structural characteristics of lung cancer still remain uncovered. In this study, we used high-throughput chromosome (Hi-C) conformation capture technology to detect the advanced structural variations in chromatin of two non-smoking lung adenocarcinoma (LUAD) tumor and paired normal tissues. The results indicate that significant chromatin variations are detected in tumor tissues compared with normal tissues. At compartment scale, the main conversion type of compartment is A → B in tumor tissues, which are concentrated mainly on chromosome 3 (Chr3) (33.6%). A total of 216 tumor-specific TADs are identified in tumor tissues, which are distributed mainly in Chr1 (19), Chr2 (15) and Chr3 (17). Forty-one distinct enhancer-promoter loops are observed in tumor tissue, which are associated closely to tumor-related pathways including mitogen-activated protein kinase (MAPK), Phosphatidylinositol-3-kinase-Protein kinase B (PI3K-AKT), Ras, Wnt and Ras1. The most important observation in this study is that we identify five important genes (SYT16, NCEH1, NXPE3, MB21D2, and DZIP1L), which are detected in both A → B compartment, TADs and chromatin loops in tumor samples, and four of these genes (NCEH1, NXPE3, MB21D2, and DZIP1L) locate on q arm of Chr3. Further gene expression and invasion experiment analysis show that NCEH1, MB21D2 and SYT16 are involved in the tumor development. Thus, we provide a comprehensive overview of advanced structures in LUAD for the first time and provide a basis for further research on the genetic variation of this tumor.
Collapse
Affiliation(s)
- Tingting Song
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Menglin Yao
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Ying Yang
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Zhiqiang Liu
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Li Zhang
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan Province China
| |
Collapse
|
10
|
Phillips ME, Adekanye O, Borazjani A, Crow JA, Ross MK. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE 2/IL-1β Production. ACS Chem Biol 2023; 18:1564-1581. [PMID: 37348046 PMCID: PMC11131412 DOI: 10.1021/acschembio.3c00194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Triacylglycerols (TAGs) are storage forms of fat, primarily found in cytoplasmic lipid droplets in cells. TAGs are broken down to their component free fatty acids by lipolytic enzymes when fuel reserves are required. However, polyunsaturated fatty acid (PUFA)-containing TAGs are susceptible to nonenzymatic oxidation reactions, leading to the formation of oxylipins that are esterified to the glycerol backbone (termed oxTAGs). Human carboxylesterase 1 (CES1) is a member of the serine hydrolase superfamily and defined by its ability to catalyze the hydrolysis of carboxyl ester bonds in both toxicants and lipids. CES1 is a bona fide TAG hydrolase, but it is unclear which specific fatty acids are preferentially released during lipolysis. To better understand the biochemical function of CES1 in immune cells, such as macrophages, its substrate selectivity when it encounters oxidized PUFAs in TAG lipid droplets requires study. We sought to identify those esterified oxidized fatty acids liberated from oxTAGs by CES1 because their release can activate signaling pathways that enforce the development of lipid-driven inflammation. Gaining this knowledge will help fill data gaps that exist between CES1 and the lipid-sensing nuclear receptors, PPARγ and LXRα, which are important drivers of lipid metabolism and inflammation in macrophages. Oxidized forms of triarachidonoylglycerol (oxTAG20:4) or trilinoleoylglycerol (oxTAG18:2), which contain physiologically relevant levels of oxidized PUFAs (<5 mol %), were incubated with recombinant CES1 to release oxylipins and nonoxidized arachidonic acid (AA) or linoleic acid (LA). CES1 hydrolyzed each oxTAG, yielding regioisomers of hydroxyeicosatetraenoic acids (5-, 11-, 12-, and 15-HETE) and hydroxyoctadecadienoic acids (9- and 13-HODE). Furthermore, human THP-1 macrophages with deficient CES1 levels exhibited a differential response to extracellular stimuli (oxTAGs, lipopolysaccharide, and 15-HETE) as compared to those with normal CES1 levels, including enhanced oxTAG/TAG lipid accumulation and altered cytokine and prostaglandin E2 profiles. This study suggests that CES1 can metabolize oxTAG lipids to release oxylipins and PUFAs, and it further specifies the substrate selectivity of CES1 in the metabolism of bioactive lipid mediators. We suggest that the accumulation of oxTAGs/TAGs within lipid droplets that arise due to CES1 deficiency enforces an inflammatory phenotype in macrophages.
Collapse
Affiliation(s)
- Maggie E Phillips
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Oluwabori Adekanye
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Abdolsamad Borazjani
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - J Allen Crow
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| | - Matthew K Ross
- Department of Comparative Biomedical Sciences, Center for Environmental Health Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi 39762, United States
| |
Collapse
|
11
|
Wagner C, Hois V, Taschler U, Schupp M, Lass A. KIAA1363-A Multifunctional Enzyme in Xenobiotic Detoxification and Lipid Ester Hydrolysis. Metabolites 2022; 12:516. [PMID: 35736449 PMCID: PMC9229287 DOI: 10.3390/metabo12060516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/04/2022] Open
Abstract
KIAA1363, annotated as neutral cholesterol ester hydrolase 1 (NCEH1), is a member of the arylacetamide deacetylase (AADAC) protein family. The name-giving enzyme, AADAC, is known to hydrolyze amide and ester bonds of a number of xenobiotic substances, as well as clinical drugs and of endogenous lipid substrates such as diglycerides, respectively. Similarly, KIAA1363, annotated as the first AADAC-like protein, exhibits enzymatic activities for a diverse substrate range including the xenobiotic insecticide chlorpyrifos oxon and endogenous substrates, acetyl monoalkylglycerol ether, cholesterol ester, and retinyl ester. Two independent knockout mouse models have been generated and characterized. However, apart from reduced acetyl monoalkylglycerol ether and cholesterol ester hydrolase activity in specific tissues and cell types, no gross-phenotype has been reported. This raises the question of its physiological role and whether it functions as drug detoxifying enzyme and/or as hydrolase/lipase of endogenous substrates. This review delineates the current knowledge about the structure, function and of the physiological role of KIAA1363, as evident from the phenotypical changes inflicted by pharmacological inhibition or by silencing as well as knockout of KIAA1363 gene expression in cells, as well as mouse models, respectively.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Victoria Hois
- Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
| | - Michael Schupp
- Cardiovascular Metabolic Renal (CMR)—Research Center, Institute of Pharmacology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria; (C.W.); (U.T.)
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| |
Collapse
|
12
|
McCarthy C, Carey BC, Trapnell BC. Autoimmune Pulmonary Alveolar Proteinosis. Am J Respir Crit Care Med 2022; 205:1016-1035. [PMID: 35227171 PMCID: PMC9851473 DOI: 10.1164/rccm.202112-2742so] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/24/2022] [Indexed: 01/23/2023] Open
Abstract
Autoimmune pulmonary alveolar proteinosis (PAP) is a rare disease characterized by myeloid cell dysfunction, abnormal pulmonary surfactant accumulation, and innate immune deficiency. It has a prevalence of 7-10 per million; occurs in individuals of all races, geographic regions, sex, and socioeconomic status; and accounts for 90% of all patients with PAP syndrome. The most common presentation is dyspnea of insidious onset with or without cough, production of scant white and frothy sputum, and diffuse radiographic infiltrates in a previously healthy adult, but it can also occur in children as young as 3 years. Digital clubbing, fever, and hemoptysis are not typical, and the latter two indicate that intercurrent infection may be present. Low prevalence and nonspecific clinical, radiological, and laboratory findings commonly lead to misdiagnosis as pneumonia and substantially delay an accurate diagnosis. The clinical course, although variable, usually includes progressive hypoxemic respiratory insufficiency and, in some patients, secondary infections, pulmonary fibrosis, respiratory failure, and death. Two decades of research have raised autoimmune PAP from obscurity to a paradigm of molecular pathogenesis-based diagnostic and therapeutic development. Pathogenesis is driven by GM-CSF (granulocyte/macrophage colony-stimulating factor) autoantibodies, which are present at high concentrations in blood and tissues and form the basis of an accurate, commercially available diagnostic blood test with sensitivity and specificity of 100%. Although whole-lung lavage remains the first-line therapy, inhaled GM-CSF is a promising pharmacotherapeutic approach demonstrated in well-controlled trials to be safe, well tolerated, and efficacious. Research has established GM-CSF as a pulmonary regulatory molecule critical to surfactant homeostasis, alveolar stability, lung function, and host defense.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent’s University Hospital, Dublin, Ireland
- University College Dublin, Dublin, Ireland
| | - Brenna C. Carey
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Bruce C. Trapnell
- Translational Pulmonary Science Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; and
- University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Wagner C, Hois V, Eggeling A, Pusch LM, Pajed L, Starlinger P, Claudel T, Trauner M, Zimmermann R, Taschler U, Lass A. KIAA1363 affects retinyl ester turnover in cultured murine and human hepatic stellate cells. J Lipid Res 2022; 63:100173. [PMID: 35101424 PMCID: PMC8953624 DOI: 10.1016/j.jlr.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
Large quantities of vitamin A are stored as retinyl esters (REs) in specialized liver cells, the hepatic stellate cells (HSCs). To date, the enzymes controlling RE degradation in HSCs are poorly understood. In this study, we identified KIAA1363 (also annotated as arylacetamide deacetylase 1 or neutral cholesterol ester hydrolase 1) as a novel RE hydrolase. We show that KIAA1363 is expressed in the liver, mainly in HSCs, and exhibits RE hydrolase activity at neutral pH. Accordingly, addition of the KIAA1363-specific inhibitor JW480 largely reduced RE hydrolase activity in lysates of cultured murine and human HSCs. Furthermore, cell fractionation experiments and confocal microscopy studies showed that KIAA1363 localizes to the endoplasmic reticulum. We demonstrate that overexpression of KIAA1363 in cells led to lower cellular RE content after a retinol loading period. Conversely, pharmacological inhibition or shRNA-mediated silencing of KIAA1363 expression in cultured murine and human HSCs attenuated RE degradation. Together, our data suggest that KIAA1363 affects vitamin A metabolism of HSCs by hydrolyzing REs at the endoplasmic reticulum, thereby counteracting retinol esterification and RE storage in lipid droplets.
Collapse
Affiliation(s)
- Carina Wagner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Victoria Hois
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Annalena Eggeling
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Lisa-Maria Pusch
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Laura Pajed
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Patrick Starlinger
- Department of Surgery, General Hospital, Medical University of Vienna, Vienna, Austria; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria.
| |
Collapse
|
14
|
Jiang C, Wang Y, Liang P, Chen Y, Zhuang Z, Zhang L, Yi Y, Liu L, Liu Q. ATP-Responsive Multifunctional Supramolecular Polymer as a Nonviral Vector for Boosting Cholesterol Removal from Lipid-Laden Macrophages. ACS Biomater Sci Eng 2021; 7:5048-5063. [PMID: 34648280 DOI: 10.1021/acsbiomaterials.1c00919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Specific delivery of NCEH1 plasmid is a promising approach to boost the cholesterol removal from lipid-laden macrophages for antiatherosclerosis. Polyethylenimine (PEI) is one of the most efficient gene carriers among nonviral vectors. However, the high transfection activity of PEI is always accompanied by profound cytotoxicity. To tackle the paradox between transfection efficiency and safety, we constructed a novel ATP-responsive multifunctional supramolecular polymer by cross-linking functionalized low-molecular-weight PEI via a boronic ester bond for NCEH1 plasmid delivery. The supramolecular polymer could condense NCEH1 plasmids to form stable nanosized polyplexes when the w/w ratios of the polymer and gene were higher than 2. ATP-triggered degradation of the polymer and pDNA release were characterized by a series of studies, including 1H NMR, 31P NMR, XPS, agarose gel electrophoresis, and ethidium bromide exclusion tests. In addition, the changes in particle size and morphology were observed in the presence of ATP. Interestingly, the supramolecular polymer showed broad spectrum antioxidant activities by measuring the elimination rates of different reactive oxygen species. In addition, the supramolecular polymer displayed a high buffering capability and good cytocompatibility as demonstrated by the results of the buffering capacity, a hemolysis assay, and a cytotoxicity test. Importantly, it was revealed that the supramolecular polymer/NCEH1 plasmid polyplex formulated at a w/w ratio of 20 was most effective in enhancing cholesterol removal from lipid-laden macrophages and reducing the accumulation of lipid droplets as evidenced by transfection study, cholesterol efflux assay, and oil red O staining studies. Collectively, the ATP-responsive multifunctional supramolecular polymer holds great potential for safe and efficient gene delivery for antiatherosclerosis.
Collapse
Affiliation(s)
- Cuiping Jiang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yuan Wang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Peiyi Liang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yao Chen
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ziming Zhuang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yankui Yi
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Li Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
15
|
Wang S, Zeng X, Wang Y, Chen Y, Wang C, Zhuoma D, Zhang F, Zhao Y. Immunometabolism and potential targets in severe COVID-19 peripheral immune responses. Asian J Pharm Sci 2021; 16:665-667. [PMID: 35027947 PMCID: PMC8737404 DOI: 10.1016/j.ajps.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/09/2021] [Accepted: 07/01/2021] [Indexed: 01/20/2023] Open
Affiliation(s)
- Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yali Wang
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 117543, Singapore
| | - Yuzong Chen
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, 117543, Singapore
| | - Chaoxin Wang
- Department of Computer Science, Kansas State University, Manhatten KS 66506, USA
| | - Dongzhi Zhuoma
- Medical College, Tibet University, 36 Jiangsu Road, Lhasa 850011 China
| | - Fengying Zhang
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang 330045, China
- Corresponding author.
| | - Yufen Zhao
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Corresponding author.
| |
Collapse
|
16
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 294] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
17
|
He L, Li H, Pan C, Hua Y, Peng J, Zhou Z, Zhao Y, Lin M. Squalene epoxidase promotes colorectal cancer cell proliferation through accumulating calcitriol and activating CYP24A1-mediated MAPK signaling. Cancer Commun (Lond) 2021; 41:726-746. [PMID: 34268906 PMCID: PMC8360641 DOI: 10.1002/cac2.12187] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most malignant tumors with high incidence, yet its molecular mechanism is not fully understood, hindering the development of targeted therapy. Metabolic abnormalities are a hallmark of cancer. Targeting dysregulated metabolic features has become an important direction for modern anticancer therapy. In this study, we aimed to identify a new metabolic enzyme that promotes proliferation of CRC and to examine the related molecular mechanisms. Methods We performed RNA sequencing and tissue microarray analyses of human CRC samples to identify new genes involved in CRC. Squalene epoxidase (SQLE) was identified to be highly upregulated in CRC patients. The regulatory function of SQLE in CRC progression and the therapeutic effect of SQLE inhibitors were determined by measuring CRC cell viability, colony and organoid formation, intracellular cholesterol concentration and xenograft tumor growth. The molecular mechanism of SQLE function was explored by combining transcriptome and untargeted metabolomics analysis. Western blotting and real‐time PCR were used to assess MAPK signaling activation by SQLE. Results SQLE‐related control of cholesterol biosynthesis was highly upregulated in CRC patients and associated with poor prognosis. SQLE promoted CRC growth in vitro and in vivo. Inhibition of SQLE reduced the levels of calcitriol (active form of vitamin D3) and CYP24A1, followed by an increase in intracellular Ca2+ concentration. Subsequently, MAPK signaling was suppressed, resulting in the inhibition of CRC cell growth. Consistently, terbinafine, an SQLE inhibitor, suppressed CRC cell proliferation and organoid and xenograft tumor growth. Conclusions Our findings demonstrate that SQLE promotes CRC through the accumulation of calcitriol and stimulation of CYP24A1‐mediated MAPK signaling, highlighting SQLE as a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Luwei He
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Huaguang Li
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Chenyu Pan
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Yutong Hua
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| | - Jiayin Peng
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, P. R. China
| | - Yun Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, P. R. China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Institute of Gastrointestinal Surgery and Translational Medicine, Tongji University School of Medicine, Shanghai, 200090, P. R. China.,Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, P. R. China
| |
Collapse
|
18
|
Connecting Cholesterol Efflux Factors to Lung Cancer Biology and Therapeutics. Int J Mol Sci 2021; 22:ijms22137209. [PMID: 34281263 PMCID: PMC8268178 DOI: 10.3390/ijms22137209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Cholesterol is a foundational molecule of biology. There is a long-standing interest in understanding how cholesterol metabolism is intertwined with cancer biology. In this review, we focus on the known connections between lung cancer and molecules mediating cholesterol efflux. A major take-home lesson is that the roles of many cholesterol efflux factors remain underexplored. It is our hope that this article would motivate others to investigate how cholesterol efflux factors contribute to lung cancer biology.
Collapse
|
19
|
Lian J, van der Veen JN, Watts R, Jacobs RL, Lehner R. Carboxylesterase 1d (Ces1d) does not contribute to cholesteryl ester hydrolysis in the liver. J Lipid Res 2021; 62:100093. [PMID: 34153284 PMCID: PMC8287225 DOI: 10.1016/j.jlr.2021.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/09/2021] [Indexed: 01/19/2023] Open
Abstract
The liver is the central organ regulating cholesterol synthesis, storage, transport, and elimination. Mouse carboxylesterase 1d (Ces1d) and its human ortholog CES1 have been described to possess lipase activity and play roles in hepatic triacylglycerol metabolism and VLDL assembly. It has been proposed that Ces1d/CES1 might also catalyze cholesteryl ester (CE) hydrolysis in the liver and thus be responsible for the hydrolysis of HDL-derived CE; this could contribute to the final step in the reverse cholesterol transport (RCT) pathway, wherein cholesterol is secreted from the liver into bile and feces, either directly or after conversion to water-soluble bile salts. However, the proposed function of Ces1d/CES1 as a CE hydrolase is controversial. In this study, we interrogated the role hepatic Ces1d plays in cholesterol homeostasis using liver-specific Ces1d-deficient mice. We rationalized that if Ces1d is a major hepatic CE hydrolase, its absence would (1) reduce in vivo RCT flux and (2) provoke liver CE accumulation after a high-cholesterol diet challenge. We found that liver-specific Ces1d-deficient mice did not show any difference in the flux of in vivo HDL-to-feces RCT nor did it cause additional liver CE accumulation after high-fat, high-cholesterol Western-type diet feeding. These findings challenge the importance of Ces1d as a major hepatic CE hydrolase.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Jelske N van der Veen
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
20
|
Zhou Q, Yan B, Sun W, Chen Q, Xiao Q, Xiao Y, Wang X, Shi D. Pig Liver Esterases Hydrolyze Endocannabinoids and Promote Inflammatory Response. Front Immunol 2021; 12:670427. [PMID: 34079552 PMCID: PMC8165269 DOI: 10.3389/fimmu.2021.670427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Endocannabinoids are endogenous ligands of cannabinoid receptors and activation of these receptors has strong physiological and pathological significance. Structurally, endocannabinoids are esters (e.g., 2-arachidonoylglycerol, 2-AG) or amides (e.g., N-arachidonoylethanolamine, AEA). Hydrolysis of these compounds yields arachidonic acid (AA), a major precursor of proinflammatory mediators such as prostaglandin E2. Carboxylesterases are known to hydrolyze esters and amides with high efficiency. CES1, a human carboxylesterase, has been shown to hydrolyze 2-AG, and shares a high sequence identity with pig carboxylesterases: PLE1 and PLE6 (pig liver esterase). The present study was designed to test the hypothesis that PLE1 and PLE6 hydrolyze endocannabinoids and promote inflammatory response. Consistent with the hypothesis, purified PLE1 and PLE6 efficaciously hydrolyzed 2-AG and AEA. PLE6 was 40-fold and 3-fold as active as PLE1 towards 2-AG and AEA, respectively. In addition, both PLE1 and PLE6 were highly sensitive to bis(4-nitrophenyl) phosphate (BNPP), an aryl phosphodiester known to predominately inhibit carboxylesterases. Based on the study with BNPP, PLEs contributed to the hydrolysis of 2-AG by 53.4 to 88.4% among various organs and cells. Critically, exogenous addition or transfection of PLE6 increased the expression and secretion of proinflammatory cytokines in response to the immunostimulant lipopolysaccharide (LPS). This increase was recapitulated in cocultured alveolar macrophages and PLE6 transfected cells in transwells. Finally, BNPP reduced inflammation trigged by LPS accompanied by reduced formation of AA and proinflammatory mediators. These findings define an innovative connection: PLE-endocannabinoid-inflammation. This mechanistic connection signifies critical roles of carboxylesterases in pathophysiological processes related to the metabolism of endocannabinoids.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bingfang Yan
- James L. Winkle College of Pharmacy University of Cincinnati, Cincinnati, OH, United States
| | - Wanying Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qiling Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yuncai Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiliang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Martin AM, Cassirer EF, Waits LP, Plowright RK, Cross PC, Andrews KR. Genomic association with pathogen carriage in bighorn sheep ( Ovis canadensis). Ecol Evol 2021; 11:2488-2502. [PMID: 33767816 PMCID: PMC7981200 DOI: 10.1002/ece3.7159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
Genetic composition can influence host susceptibility to, and transmission of, pathogens, with potential population-level consequences. In bighorn sheep (Ovis canadensis), pneumonia epidemics caused by Mycoplasma ovipneumoniae have been associated with severe population declines and limited recovery across North America. Adult survivors either clear the infection or act as carriers that continually shed M. ovipneumoniae and expose their susceptible offspring, resulting in high rates of lamb mortality for years following the outbreak event. Here, we investigated the influence of genomic composition on persistent carriage of M. ovipneumoniae in a well-studied bighorn sheep herd in the Wallowa Mountains of Oregon, USA. Using 10,605 SNPs generated using RADseq technology for 25 female bighorn sheep, we assessed genomic diversity metrics and employed family-based genome-wide association methodologies to understand variant association and genetic architecture underlying chronic carriage. We observed no differences among genome-wide diversity metrics (heterozygosity and allelic richness) between groups. However, we identified two variant loci of interest and seven associated candidate genes, which may influence carriage status. Further, we found that the SNP panel explained ~55% of the phenotypic variance (SNP-based heritability) for M. ovipneumoniae carriage, though there was considerable uncertainty in these estimates. While small sample sizes limit conclusions drawn here, our study represents one of the first to assess the genomic factors influencing chronic carriage of a pathogen in a wild population and lays a foundation for understanding genomic influence on pathogen persistence in bighorn sheep and other wildlife populations. Future research should incorporate additional individuals as well as distinct herds to further explore the genomic basis of chronic carriage.
Collapse
Affiliation(s)
- Alynn M. Martin
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | | | | | - Raina K. Plowright
- Department of Microbiology and ImmunologyMontana State UniversityBozemanMTUSA
| | - Paul C. Cross
- United States Geological SurveyNorthern Rocky Mountain Science CenterBozemanMTUSA
| | - Kimberly R. Andrews
- Institute for Bioinformatics and Evolutionary Studies (IBEST)University of IdahoMoscowIDUSA
| |
Collapse
|
22
|
Li J, Meng Q, Fu Y, Yu X, Ji T, Chao Y, Chen Q, Li Y, Bian H. Novel insights: Dynamic foam cells derived from the macrophage in atherosclerosis. J Cell Physiol 2021; 236:6154-6167. [PMID: 33507545 DOI: 10.1002/jcp.30300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Atherosclerosis can be regarded as a chronic disease derived from the interaction between disordered lipoproteins and an unsuitable immune response. The evolution of foam cells is not only a significant pathological change in the early stage of atherosclerosis but also a key stage in the occurrence and development of atherosclerosis. The formation of foam cells is mainly caused by the imbalance among lipids uptake, lipids treatment, and reverse cholesterol transport. Although a large number of studies have summarized the source of foam cells and the mechanism of foam cells formation, we propose a new idea about foam cells in atherosclerosis. Rather than an isolated microenvironment, the macrophage multiple lipid uptake pathways, lipid internalization, lysosome, mitochondria, endoplasmic reticulum, neutral cholesterol ester hydrolase (NCEH), acyl-coenzyme A-cholesterol acyltransferase (ACAT), and reverse cholesterol transport are mutually influential, and form a dynamic process under multi-factor regulation. The macrophage takes on different uptake lipid statuses depending on multiple uptake pathways and intracellular lipids, lipid metabolites versus pro-inflammatory factors. Except for NCEH and ACAT, the lipid internalization of macrophages also depends on multicellular organelles including the lysosome, mitochondria, and endoplasmic reticulum, which are associated with each other. A dynamic balance between esterification and hydrolysis of cholesterol for macrophages is essential for physiology and pathology. Therefore, we propose that the foam cell in the process of atherosclerosis may be dynamic under multi-factor regulation, and collate this study to provide a holistic and dynamic idea of the foam cell.
Collapse
Affiliation(s)
- Jun Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Fu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xichao Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Ji
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Chao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huimin Bian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory of Therapeutic Material of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Na K, Kim M, Kim CY, Lim JS, Cho JY, Shin H, Lee HJ, Kang BJ, Han DH, Kim H, Baik JH, Swiatek-de Lange M, Karl J, Paik YK. Potential Regulatory Role of Human-Carboxylesterase-1 Glycosylation in Liver Cancer Cell Growth. J Proteome Res 2020; 19:4867-4883. [PMID: 33206527 DOI: 10.1021/acs.jproteome.0c00787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We previously reported that human carboxylesterase 1 (CES1), a serine esterase containing a unique N-linked glycosyl group at Asn79 (N79 CES1), is a candidate serological marker of hepatocellular carcinoma (HCC). CES1 is normally present at low-to-undetectable levels in normal human plasma, HCC tumors, and major liver cancer cell lines. To investigate the potential mechanism underlying the suppression of CES1 expression in liver cancer cells, we took advantage of the low detectability of this marker in tumors by overexpressing CES1 in multiple HCC cell lines, including stable Hep3B cells. We found that the population of CES1-overexpressing (OE) cells decreased and that their doubling time was longer compared with mock control liver cancer cells. Using interactive transcriptome, proteome, and subsequent Gene Ontology enrichment analysis of CES1-OE cells, we found substantial decreases in the expression levels of genes involved in cell cycle regulation and proliferation. This antiproliferative function of the N79 glycan of CES1 was further supported by quantitative real-time polymerase chain reaction, flow cytometry, and an apoptosis protein array assay. An analysis of the levels of key signaling target proteins via Western blotting suggested that CES1 overexpression exerted an antiproliferative effect via the PKD1/PKCμ signaling pathway. Similar results were also seen in another HCC cell line (PLC/RFP/5) after transient transfection with CES1 but not in similarly treated non-HCC cell lines (e.g., HeLa and Tera-1 cells), suggesting that CES1 likely exerts a liver cell-type-specific suppressive effect. Given that the N-linked glycosyl group at Asn79 (N79 glycan) of CES1 is known to influence CES1 enzyme activity, we hypothesized that the post-translational modification of CES1 at N79 may be linked to its antiproliferative activity. To investigate the regulatory effect of the N79 glycan on cellular growth, we mutated the single N-glycosylation site in CES1 from Asn to Gln (CES1-N79Q) via site-directed mutagenesis. Fluorescence 2-D difference gel electrophoresis protein expression analysis of cell lysates revealed an increase in cell growth and a decrease in doubling time in cells carrying the N79Q mutation. Thus our results suggest that CES1 exerts an antiproliferative effect in liver cancer cells and that the single N-linked glycosylation at Asn79 plays a potential regulatory role. These functions may underlie the undetectability of CES1 in human HCC tumors and liver cancer cell lines. Mass spectrometry data are available via ProteomeXchange under the identifier PXD021573.
Collapse
Affiliation(s)
- Keun Na
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Minjoo Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jong-Sun Lim
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Heon Shin
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| | - Hyo Jin Lee
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | - Byeong Jun Kang
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | | | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, 145 Anamro, Seongbuk-ku, Seoul 02841, South Korea
| | | | - Johann Karl
- Roche Diagnostics, GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, 50 Yonsei-ro, Seodaemoon-ku, Seoul 03722, South Korea
| |
Collapse
|
24
|
Jiang S, Chen Z, Lai W, Mai Q, Chen D, Sun S, Zhang Y. Decoction of Heat-Clearing, Detoxifying and Blood Stasis Removing Relieves Acute Soft Tissue Injury via Modulating MiR-26b-5p/COX2 Axis to Inhibit Inflammation. Biosci Rep 2020; 40:BSR20201981. [PMID: 33270831 PMCID: PMC7753743 DOI: 10.1042/bsr20201981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Traditional Chinese medicine (TCM), such as Huanglian-Jie-Du-Tang, a heat-clearing and detoxifying decoction is beneficial to alleviation of inflammation-related diseases. The objective of this study is to uncover the effect and mechanism of heat-clearing, detoxifying and blood stasis removing decoction (HDBD) on the treatment of acute soft tissue injury (STI) which is characterized with excessive inflammatory cascade at the onset. Male Sprague-Dawley (SD) rats with hammer beating served as the in vivo models of acute STI. Haematoxylin-eosin (HE) staining was used for histopathology assessment. The levels of inflammatory factors, including prostaglandin E2 (PGE2), tumor necrosis factor-αumTNF-α), interleukin (IL)-1t and IL-6 were measured by enzyme linked immunosorbent assay (ELISA). Human dermal microvascular endothelium cell line HMEC-1 and rat vascular endothelium cell line RAOEC were used to explore the mechanism in vitro. Luciferase gene reporter assay was applied to determine the relationship between miR-26b-5p and COX2. The results showed that HDBD intervention significantly reduced the temperature difference between the healthy side and affected side of rats with hammer beating, together with the decreased levels of COX2, PGE2, TNF-α, IL-6 and IL-1β, and the increased level of miR-26b-5p. In mechanism, miR-26b-5p targeted COX2 and decreased its expression, leading to significant decreases in the levels of PGE2, TNF-α and IL-6 in RAOEC and HMEC-1 cells. In addition, miR-26b-5p inhibition impaired the effects of HDBD on the suppression of PGE2, TNF-α, IL-6 and IL-1β in vitro. In conclusion, this study revealed that HDBD relieved acute STI via modulating miR-26b-5p/COX2 axis to inhibit inflammation.
Collapse
Affiliation(s)
- Shunwan Jiang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Zhi Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Wenqiang Lai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Qingchun Mai
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Dayu Chen
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Shufen Sun
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| | - Yong Zhang
- Department of Orthopedics, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
| |
Collapse
|
25
|
Macrophage polarisation associated with atherosclerosis differentially affects their capacity to handle lipids. Atherosclerosis 2020; 305:10-18. [PMID: 32592946 DOI: 10.1016/j.atherosclerosis.2020.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/02/2020] [Accepted: 05/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Lipid-rich foam cell macrophages drive atherosclerosis via several mechanisms, including inflammation, lipid uptake, lipid deposition and plaque vulnerability. The atheroma environment shapes macrophage function and phenotype; anti-inflammatory macrophages improve plaque stability while pro-inflammatory macrophages promote rupture. Current evidence suggests a variety of macrophage phenotypes occur in atherosclerotic plaques with local lipids, cytokines, oxidised phospholipids and pathogenic stimuli altering their phenotype. In this study, we addressed differential functioning of macrophage phenotypes via a systematic analysis of in vitro polarised, human monocyte-derived macrophage phenotypes, focussing on molecular events that regulate foam-cell formation. METHODS We examined transcriptomes, protein levels and functionally determined lipid handling and foam cell formation capacity in macrophages polarised with IFNγ+LPS, IL-4, IL-10, oxPAPC and CXCL4. RESULTS RNA sequencing of differentially polarised macrophages revealed distinct gene expression changes, with enrichment in atherosclerosis and lipid-associated pathways. Analysis of lipid processing activity showed IL-4 and IL-10 macrophages have higher lipid uptake and foam cell formation activities, while inflammatory and oxPAPC macrophages displayed lower foam cell formation. Inflammatory macrophages showed low lipid uptake, while higher lipid uptake in oxPAPC macrophages was matched by increased lipid efflux capacity. CONCLUSIONS Atherosclerosis-associated macrophage polarisation dramatically affects lipid handling capacity underpinned by major transcriptomic changes and altered protein levels in lipid-handling gene expression. This leads to phenotype-specific differences in LDL uptake, cellular cholesterol levels and cholesterol efflux, informing how the plaque environment influences atherosclerosis progression by influencing macrophage phenotypes.
Collapse
|
26
|
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - James Brian Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
27
|
Matsuoka H, Tokunaga R, Katayama M, Hosoda Y, Miya K, Sumi K, Ohishi A, Kamishikiryo J, Shima A, Michihara A. Retinoic acid receptor-related orphan receptor α reduces lipid droplets by upregulating neutral cholesterol ester hydrolase 1 in macrophages. BMC Mol Cell Biol 2020; 21:32. [PMID: 32321446 PMCID: PMC7310410 DOI: 10.1186/s12860-020-00276-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background Neutral cholesterol ester hydrolase 1 (NCEH1) catalyzes the hydrolysis of cholesterol ester (CE) in macrophages. Genetic ablation of NCEH1 promotes CE-laden macrophages and the development of atherosclerosis in mice. Dysregulation of NCEH1 levels is involved in the pathogenesis of multiple disorders including metabolic diseases and atherosclerosis; however, relatively little is known regarding the mechanisms regulating NCEH1. Retinoic acid receptor-related orphan receptor α (RORα)-deficient mice exhibit several phenotypes indicative of aberrant lipid metabolism, including dyslipidemia and increased susceptibility to atherosclerosis. Results In this study, inhibition of lipid droplet formation by RORα positively regulated NCEH1 expression in macrophages. In mammals, the NCEH1 promoter region was found to harbor putative RORα response elements (ROREs). Electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays showed that RORα binds and responds to ROREs in human NCEH1. Moreover, NCEH1 was upregulated through RORα via a phorbol myristate acetate-dependent mechanism during macrophage differentiation from THP1 cells. siRNA-mediated knockdown of RORα significantly downregulated NCEH1 expression and accumulated lipid droplets in human hepatoma cells. In contrast, NCEH1 expression and removal of lipid droplets were induced by RORα agonist treatments and RORα overexpression in macrophages. Conclusion These data strongly suggested that NCEH1 is a direct RORα target, defining potential new roles for RORα in the inhibition of lipid droplet formation through NCEH1.
Collapse
Affiliation(s)
- Hiroshi Matsuoka
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan.
| | - Riki Tokunaga
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Miyu Katayama
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Yuichiro Hosoda
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kaoruko Miya
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Kento Sumi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Ami Ohishi
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Jun Kamishikiryo
- Laboratory of Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akiho Shima
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| | - Akihiro Michihara
- Laboratory of Genome Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Hiroshima, 729-0292, Japan
| |
Collapse
|
28
|
Abstract
Cardiovascular disease, with atherosclerosis as the major underlying factor, remains the leading cause of death worldwide. It is well established that cholesterol ester-enriched foam cells are the hallmark of atherosclerotic plaques. Multiple lines of evidence support that enhancing foam cell cholesterol efflux by HDL (high-density lipoprotein) particles, the first step of reverse cholesterol transport (RCT), is a promising antiatherogenic strategy. Yet, excitement towards the therapeutic potential of manipulating RCT for the treatment of cardiovascular disease has faded because of the lack of the association between cardiovascular disease risk and what was typically measured in intervention trials, namely HDL cholesterol, which has an inconsistent relationship to HDL function and RCT. In this review, we will summarize some of the potential reasons for this inconsistency, update the mechanisms of RCT, and highlight conditions in which impaired HDL function or RCT contributes to vascular disease. On balance, the evidence still argues for further research to better understand how HDL functionality contributes to RCT to develop prevention and treatment strategies to reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Mireille Ouimet
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa, Canada (M.O.)
| | - Tessa J Barrett
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| | - Edward A Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York (T.J.B., E.A.F.)
| |
Collapse
|
29
|
Wang D, Yang Y, Lei Y, Tzvetkov NT, Liu X, Yeung AWK, Xu S, Atanasov AG. Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacol Rev 2019; 71:596-670. [PMID: 31554644 DOI: 10.1124/pr.118.017178] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foam cell formation and further accumulation in the subendothelial space of the vascular wall is a hallmark of atherosclerotic lesions. Targeting foam cell formation in the atherosclerotic lesions can be a promising approach to treat and prevent atherosclerosis. The formation of foam cells is determined by the balanced effects of three major interrelated biologic processes, including lipid uptake, cholesterol esterification, and cholesterol efflux. Natural products are a promising source for new lead structures. Multiple natural products and pharmaceutical agents can inhibit foam cell formation and thus exhibit antiatherosclerotic capacity by suppressing lipid uptake, cholesterol esterification, and/or promoting cholesterol ester hydrolysis and cholesterol efflux. This review summarizes recent findings on these three biologic processes and natural products with demonstrated potential to target such processes. Discussed also are potential future directions for studying the mechanisms of foam cell formation and the development of foam cell-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yang Yang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Yingnan Lei
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Nikolay T Tzvetkov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Xingde Liu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Andy Wai Kan Yeung
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Suowen Xu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| | - Atanas G Atanasov
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China (D.W., X.L.); Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland (D.W., Y.Y., Y.L., A.G.A.); Department of Pharmacognosy, University of Vienna, Vienna, Austria (A.G.A.); Institute of Clinical Chemistry, University Hospital Zurich, Schlieren, Switzerland (D.W.); Institute of Molecular Biology "Roumen Tsanev," Department of Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, Sofia, Bulgaria (N.T.T.); Pharmaceutical Institute, University of Bonn, Bonn, Germany (N.T.T.); Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester, Rochester, New York (S.X.); Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China (A.W.K.Y.); and Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria (A.G.A.)
| |
Collapse
|
30
|
van Esbroeck ACM, Varga ZV, Di X, van Rooden EJ, Tóth VE, Onódi Z, Kuśmierczyk M, Leszek P, Ferdinandy P, Hankemeier T, van der Stelt M, Pacher P. Activity-based protein profiling of the human failing ischemic heart reveals alterations in hydrolase activities involving the endocannabinoid system. Pharmacol Res 2019; 151:104578. [PMID: 31794870 DOI: 10.1016/j.phrs.2019.104578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 01/14/2023]
Abstract
AIM Acute myocardial infarction and subsequent post-infarction heart failure are among the leading causes of mortality worldwide. The endocannabinoid system has emerged as an important modulator of cardiovascular disease, however the role of endocannabinoid metabolic enzymes in heart failure is still elusive. Herein, we investigated the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. METHODS AND RESULTS Quantitative real-time PCR, targeted lipidomics, and activity-based protein profiling (ABPP) enabled assessment of the endocannabinoids and their metabolic enzymes in ischemic end-stage failing human hearts and non-failing controls. Based on lipidomic analysis, two subgroups were identified within the ischemic heart failure group; the first similar to control hearts and the second with decreased levels of the endocannabinoid 2-arachidonoyl-glycerol (2-AG) and drastically increased levels of the endocannabinoid anandamide (AEA), other N-acylethanolamines (NAEs) and free fatty acids. The altered lipid profile was accompanied by strong reductions in the activity of 13 hydrolases, including the 2-AG hydrolytic enzyme monoacylglycerol lipase (MGLL). CONCLUSIONS Our findings suggest the presence of different biological states within the ischemic heart failure group, based on alterations in the lipid and hydrolase activity profiles. In addition, this study demonstrates that ABPP is a valuable tool to rapidly analyze enzyme activity in clinical samples with potential for novel drug and biomarker discovery.
Collapse
Affiliation(s)
- Annelot C M van Esbroeck
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Zoltan V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Xinyu Di
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Eva J van Rooden
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Viktória E Tóth
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Mariusz Kuśmierczyk
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, Warszawa, Poland
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Thomas Hankemeier
- Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, the Netherlands
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, USA.
| |
Collapse
|
31
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
32
|
Melton EM, Li H, Benson J, Sohn P, Huang LH, Song BL, Li BL, Chang CCY, Chang TY. Myeloid Acat1/ Soat1 KO attenuates pro-inflammatory responses in macrophages and protects against atherosclerosis in a model of advanced lesions. J Biol Chem 2019; 294:15836-15849. [PMID: 31495784 DOI: 10.1074/jbc.ra119.010564] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/02/2019] [Indexed: 11/06/2022] Open
Abstract
Cholesterol esters are a key ingredient of foamy cells in atherosclerotic lesions; their formation is catalyzed by two enzymes: acyl-CoA:cholesterol acyltransferases (ACATs; also called sterol O-acyltransferases, or SOATs) ACAT1 and ACAT2. ACAT1 is present in all body cells and is the major isoenzyme in macrophages. Whether blocking ACAT1 benefits atherosclerosis has been under debate for more than a decade. Previously, our laboratory developed a myeloid-specific Acat1 knockout (KO) mouse (Acat1 -M/-M), devoid of ACAT1 only in macrophages, microglia, and neutrophils. In previous work using the ApoE KO (ApoE -/-) mouse model for early lesions, Acat1 -M/-M significantly reduced lesion macrophage content and suppressed atherosclerosis progression. In advanced lesions, cholesterol crystals become a prominent feature. Here we evaluated the effects of Acat1 -M/-M in the ApoE KO mouse model for more advanced lesions and found that mice lacking myeloid Acat1 had significantly reduced lesion cholesterol crystal contents. Acat1 -M/-M also significantly reduced lesion size and macrophage content without increasing apoptotic cell death. Cell culture studies showed that inhibiting ACAT1 in macrophages caused cells to produce less proinflammatory responses upon cholesterol loading by acetyl low-density lipoprotein. In advanced lesions, Acat1 -M/-M reduced but did not eliminate foamy cells. In advanced plaques isolated from ApoE -/- mice, immunostainings showed that both ACAT1 and ACAT2 are present. In cell culture, both enzymes are present in macrophages and smooth muscle cells and contribute to cholesterol ester biosynthesis. Overall, our results support the notion that targeting ACAT1 or targeting both ACAT1 and ACAT2 in macrophages is a novel strategy to treat advanced lesions.
Collapse
Affiliation(s)
- Elaina M Melton
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Haibo Li
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | | | - Paul Sohn
- Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Li-Hao Huang
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri 63130
| | - Bao-Liang Song
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo-Liang Li
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C Y Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| | - Ta-Yuan Chang
- Department of Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
33
|
Yamazaki H, Takahashi M, Wakabayashi T, Sakai K, Yamamuro D, Takei A, Takei S, Nagashima S, Yagyu H, Sekiya M, Ebihara K, Ishibashi S. Loss of ACAT1 Attenuates Atherosclerosis Aggravated by Loss of NCEH1 in Bone Marrow-Derived Cells. J Atheroscler Thromb 2019; 26:246-259. [PMID: 30282838 PMCID: PMC6402884 DOI: 10.5551/jat.44040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Acyl-CoA cholesterol acyltransferase 1 (ACAT1) esterifies free cholesterol to cholesteryl esters (CE), which are subsequently hydrolyzed by neutral cholesterol ester hydrolase 1 (NCEH1). The elimination of ACAT1 in vitro reduces the amounts of CE accumulated in Nceh1-deficient macrophages. The present study aimed at examining whether the loss of ACAT1 attenuates atherosclerosis which is aggravated by the loss of NCEH1 in vivo. METHODS Low density lipoprotein receptor (Ldlr)-deficient mice were transplanted with bone marrow from wild-type mice and mice lacking ACAT1, NCEH1, or both. The four types of mice were fed a high-cholesterol diet and, then, were examined for atherosclerosis. RESULTS The cross-sectional lesion size of the recipients of Nceh1-deficient bone marrow was 1.6-fold larger than that of the wild-type bone marrow. The lesions of the recipients of Nceh1-deficient bone marrow were enriched with MOMA2-positive macrophages compared with the lesions of the recipients of the wild-type bone marrow. The size and the macrophage content of the lesions of the recipients of bone marrow lacking both ACAT1 and NCEH1 were significantly smaller than the recipients of the Nceh1-deficient bone marrow, indicating that the loss of ACAT1 decreases the excess CE in the Nceh1-deficient lesions. The collagen-rich and/or mucin-rich areas and en face lesion size were enlarged in the recipients of the Acat1-/- bone marrow compared with those of the recipients of the WT bone marrow. CONCLUSION The loss of ACAT1 in bone marrow-derived cells attenuates atherosclerosis, which is aggravated by the loss of NCEH1, corroborating the in vitro functions of ACAT1 (formation of CE) and NCEH1 (hydrolysis of CE).
Collapse
Affiliation(s)
- Hisataka Yamazaki
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Manabu Takahashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Tetsuji Wakabayashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Kent Sakai
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Daisuke Yamamuro
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Akihito Takei
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Shoko Takei
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Shuichi Nagashima
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Hiroaki Yagyu
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Motohiro Sekiya
- The Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Medicine, Jichi Medical University
| |
Collapse
|
34
|
Tamari R, Rapaport F, Zhang N, McNamara C, Kuykendall A, Sallman DA, Komrokji R, Arruda A, Najfeld V, Sandy L, Medina J, Litvin R, Famulare CA, Patel MA, Maloy M, Castro-Malaspina H, Giralt SA, Weinberg RS, Mascarenhas JO, Mesa R, Rondelli D, Dueck AC, Levine RL, Gupta V, Hoffman R, Rampal RK. Impact of High-Molecular-Risk Mutations on Transplantation Outcomes in Patients with Myelofibrosis. Biol Blood Marrow Transplant 2019; 25:1142-1151. [PMID: 30625392 DOI: 10.1016/j.bbmt.2019.01.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/01/2019] [Indexed: 12/22/2022]
Abstract
Mutational profiling has demonstrated utility in predicting the likelihood of disease progression in patients with myelofibrosis (MF). However, there is limited data regarding the prognostic utility of genetic profiling in MF patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT). We performed high-throughput sequencing of 585 genes on pre-transplant samples from 101 patients with MF who underwent allo-HCT and evaluated the association of mutations and clinical variables with transplantation outcomes. Overall survival (OS) at 5 years post-transplantation was 52%, and relapse-free survival (RFS) was 51.1 % for this cohort. Nonrelapse mortality (NRM) accounted for most deaths. Patient's age, donor's age, donor type, and Dynamic International Prognostic Scoring System score at diagnosis did not predict for outcomes. Mutations known to be associated with increased risk of disease progression, such as ASXL1, SRSF2, IDH1/2, EZH2, and TP53, did not impact OS or RFS. The presence of U2AF1 (P = .007) or DNMT3A (P = .034) mutations was associated with worse OS. A Mutation-Enhanced International Prognostic Scoring System 70 score was available for 80 patients (79%), and there were no differences in outcomes between patients with high risk scores and those with intermediate and low risk scores. Collectively, these data identify mutational predictors of outcome in MF patients undergoing allo-HCT. These genetic biomarkers in conjunction with clinical variables may have important utility in guiding transplantation decision making.
Collapse
Affiliation(s)
- Roni Tamari
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Franck Rapaport
- Center for Clinical and Translational Science, Rockefeller University, New York, New York
| | | | | | | | | | | | - Andrea Arruda
- Princess Margaret Hospital Cancer Center, Toronto, Ontario, Canada
| | | | | | - Juan Medina
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rivka Litvin
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Minal A Patel
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Molly Maloy
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | | | | | - Damiano Rondelli
- University of Illinois Hospital & Health Sciences System and University of Illinois Cancer Center, Chicago, Illinois
| | | | - Ross L Levine
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vikas Gupta
- Princess Margaret Hospital Cancer Center, Toronto, Ontario, Canada
| | | | | |
Collapse
|
35
|
Ruuth M, Soronen J, Kaiharju E, Merikanto K, Perttilä J, Metso J, Lee-Rueckert M, Taskinen MR, Kovanen PT, Öörni K, Olkkonen VM, Jauhiainen MS, Laurila PP. USF1 deficiency alleviates inflammation, enhances cholesterol efflux and prevents cholesterol accumulation in macrophages. Lipids Health Dis 2018; 17:285. [PMID: 30545366 PMCID: PMC6293625 DOI: 10.1186/s12944-018-0930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/26/2018] [Indexed: 12/23/2022] Open
Abstract
Background The focus of studies on high-density lipoproteins (HDL) has shifted from HDL-cholesterol (HDL-C) to HDL function. We recently demonstrated that low USF1 expression in mice and humans associates with high plasma HDL-C and low triglyceride levels, as well as protection against obesity, insulin resistance, and atherosclerosis. Here, we studied the impact of USF1 deficiency on HDL functional capacity and macrophage atherogenic functions, including inflammation, cholesterol efflux, and cholesterol accumulation. Methods We used a congenic Usf1 deficient mice in C57Bl/6JRccHsd background and blood samples were collected to isolate HDL for structural and functional studies. Lentiviral preparations containing the USF1 silencing shRNA expression vector were used to silence USF1 in human THP-1 and Huh-7 cells. Cholesterol efflux from acetyl-LDL loaded THP-1 macrophages was measured using HDL and plasma as acceptors. Gene expression analysis from USF1 silenced peritoneal macrophages was carried out using Affymetrix protocols. Results We show that Usf1 deficiency not only increases HDL-C levels in vivo, consistent with elevated ABCA1 protein expression in hepatic cell lines, but also improves the functional capacity of HDL particles. HDL particles derived from Usf1 deficient mice remove cholesterol more efficiently from macrophages, attributed to their higher contents of phospholipids. Furthermore, silencing of USF1 in macrophages enhanced the cholesterol efflux capacity of these cells. These findings are consistent with reduced inflammatory burden of USF1 deficient macrophages, manifested by reduced secretion of pro-inflammatory cytokines MCP-1 and IL-1β and protection against inflammation-induced macrophage cholesterol accumulation in a cell-autonomous manner. Conclusions Our findings identify USF1 as a novel factor regulating HDL functionality, showing that USF1 inactivation boosts cholesterol efflux, reduces macrophage inflammation and attenuates macrophage cholesterol accumulation, linking improved macrophage cholesterol metabolism and inflammatory pathways to the antiatherogenic function of USF1 deficiency.
Collapse
Affiliation(s)
- Maija Ruuth
- Wihuri Research Institute, FI-00290, Helsinki, Finland.,Research Program Unit, University of Helsinki, FI-00014, Helsinki, Finland
| | - Jarkko Soronen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland.,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Essi Kaiharju
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland
| | - Krista Merikanto
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Jari Metso
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland
| | | | - Marja-Riitta Taskinen
- Diabetes and Obesity Research Program, University of Helsinki, FI-00014, Helsinki, Finland
| | | | | | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Matti S Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland. .,Minerva Foundation Institute for Medical Research, Tukholmankatu 8, 00290, Helsinki, Finland.
| | - Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, FI-00251, Helsinki, Finland.,Department of Medical and Clinical Genetics, University of Helsinki, FI-00014, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, FI-00251, Helsinki, Finland
| |
Collapse
|
36
|
Yu XH, Zhang DW, Zheng XL, Tang CK. Cholesterol transport system: An integrated cholesterol transport model involved in atherosclerosis. Prog Lipid Res 2018; 73:65-91. [PMID: 30528667 DOI: 10.1016/j.plipres.2018.12.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/30/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, the pathological basis of most cardiovascular disease (CVD), is closely associated with cholesterol accumulation in the arterial intima. Excessive cholesterol is removed by the reverse cholesterol transport (RCT) pathway, representing a major antiatherogenic mechanism. In addition to the RCT, other pathways are required for maintaining the whole-body cholesterol homeostasis. Thus, we propose a working model of integrated cholesterol transport, termed the cholesterol transport system (CTS), to describe body cholesterol metabolism. The novel model not only involves the classical view of RCT but also contains other steps, such as cholesterol absorption in the small intestine, low-density lipoprotein uptake by the liver, and transintestinal cholesterol excretion. Extensive studies have shown that dysfunctional CTS is one of the major causes for hypercholesterolemia and atherosclerosis. Currently, several drugs are available to improve the CTS efficiently. There are also several therapeutic approaches that have entered into clinical trials and shown considerable promise for decreasing the risk of CVD. In recent years, a variety of novel findings reveal the molecular mechanisms for the CTS and its role in the development of atherosclerosis, thereby providing novel insights into the understanding of whole-body cholesterol transport and metabolism. In this review, we summarize the latest advances in this area with an emphasis on the therapeutic potential of targeting the CTS in CVD patients.
Collapse
Affiliation(s)
- Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Da-Wei Zhang
- Department of Pediatrics and Group on the Molecular and Cell Biology of Lipids, University of Alberta, Alberta, Canada
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
37
|
Hubner RA, Cubillo A, Blanc JF, Melisi D, Von Hoff DD, Wang-Gillam A, Chen LT, Becker C, Mamlouk K, Belanger B, Yang Y, de Jong FA, Siveke JT. Quality of life in metastatic pancreatic cancer patients receiving liposomal irinotecan plus 5-fluorouracil and leucovorin. Eur J Cancer 2018; 106:24-33. [PMID: 30458340 DOI: 10.1016/j.ejca.2018.09.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The NAPOLI-1 study (NCT01494506) reported that liposomal irinotecan plus 5-fluorouracil and leucovorin (nal-IRI+5-FU/LV) improved overall survival vs 5-FU/LV with manageable toxicity in patients with metastatic pancreatic adenocarcinoma previously treated with gemcitabine-based therapy. Yet, clinicians need treatment strategies that also maintain the patient's health-related quality of life (HRQOL). Here, we report the HRQOL data. METHODS Patients completed the European Organisation for Research and Treatment of Cancer QOL core questionnaire C30 (EORTC QLQ-C30) at baseline, every 6 weeks, and at 30 days after discontinuation of study treatment. Patient-reported outcomes (PROs) were scored according to EORTC guidelines. nal-IRI+5-FU/LV HRQOL was compared with 5-FU/LV. The PRO population comprised intent-to-treat patients who completed baseline and at least one subsequent assessment on the EORTC QLQ-C30. Data were also analysed for missingness. RESULTS Of 236 patients in the intent-to-treat population, 128 (54.2%) comprised the PRO population (71 in the nal-IRI+5-FU/LV arm; 57 the in 5-FU/LV arm). Of the remaining 108 patients (45.8%) not included in the PRO population, most progressed rapidly, making participation difficult. Median change from baseline was ≤10 points at weeks 6 and 12 in global health status or functional and symptom scale scores, except for fatigue, which deteriorated by 11.1 points with nal-IRI+5-FU/LV but did not change vs 5-FU/LV. The proportion of patients whose HRQOL improved or deteriorated was not significantly different between the arms. CONCLUSION In the NAPOLI-1 study, HRQOL was maintained with nal-IRI+5-FU/LV in patients with metastatic pancreatic adenocarcinoma previously treated with a gemcitabine-based regimen, while survival was significantly extended.
Collapse
Affiliation(s)
- Richard A Hubner
- Department of Medical Oncology, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, UK.
| | - Antonio Cubillo
- Centro Integral Oncológico Clara Campal (CIOCC), HM Universitario Madrid Sanchinarro, C/ Oña, 10, 28050, Madrid, Spain; Departamento de Ciencias Médicas Clínicas, Universidad CEU San Pablo, C/ Oña, 10, 28050, Madrid, Spain
| | - Jean-Frédéric Blanc
- Hepato-Gastroentertology and Digestive Oncology Unit, Hôpital Haut-Lévêque, CHU Bordeaux, Av. Magellan, 33600, Pessac, France
| | - Davide Melisi
- Digestive Molecular Clinical Oncology Unit, University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy
| | - Daniel D Von Hoff
- Translational Genomics Research Institute and Honor Health, 10510 N 92nd St, #200, Scottsdale, AZ, 85258, USA
| | - Andrea Wang-Gillam
- Washington University in St. Louis, 1 Brookings Dr, St. Louis, MO, 63130, USA
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes (NHRI), 367 Sheng-Li Road, Tainan, 704, Taiwan
| | - Claus Becker
- Merrimack Pharmaceuticals, Inc., 1 Kendall Square, B7201, Cambridge, MA, 02139, USA
| | - Khalid Mamlouk
- Ipsen Biopharmaceuticals, Inc., 650 E. Kendall Street, Cambridge, MA, 02142, USA
| | - Bruce Belanger
- Ipsen Biopharmaceuticals, Inc., 650 E. Kendall Street, Cambridge, MA, 02142, USA
| | | | | | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany; German Cancer Consortium (DKTK, Partner Site Essen) and German Cancer Research Center, DKFZ, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| |
Collapse
|
38
|
Sato K, Shirai R, Yamaguchi M, Yamashita T, Shibata K, Okano T, Mori Y, Matsuyama TA, Ishibashi-Ueda H, Hirano T, Watanabe T. Anti-Atherogenic Effects of Vaspin on Human Aortic Smooth Muscle Cell/Macrophage Responses and Hyperlipidemic Mouse Plaque Phenotype. Int J Mol Sci 2018; 19:E1732. [PMID: 29891806 PMCID: PMC6032338 DOI: 10.3390/ijms19061732] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Vaspin (visceral adipose tissue-derived serine protease inhibitor) was recently identified as a novel adipocytokine with insulin-sensitizing effects. Serum vaspin levels are reported either increased or decreased in patients with coronary artery disease. Our translational research was performed to evaluate the expression of vaspin in human coronary atherosclerotic lesions, and its effects on atherogenic responses in human macrophages and human aortic smooth muscle cells (HASMC), as well as aortic atherosclerotic lesion development in spontaneously hyperlipidemic Apoe−/− mice, an animal model of atherosclerosis. Vaspin was expressed at high levels in macrophages/vascular smooth muscle cells (VSMCs) within human coronary atheromatous plaques. Vaspin significantly suppressed inflammatory phenotypes with nuclear factor κB down-regulation in human macrophages. Vaspin significantly suppressed oxidized low-density lipoprotein-induced foam cell formation with CD36 and acyl-coenzyme A: cholesterol acyltransferase-1 down-regulation and ATP-binding cassette transporters A1 and G1, and scavenger receptor class B type 1 up-regulation in human macrophages. Vaspin significantly suppressed angiotensin II-induced migration and proliferation with ERK1/2 and JNK down-regulation, and increased collagen production with phosphoinositide 3-kinase and Akt up-regulation in HASMCs. Chronic infusion of vaspin into Apoe−/− mice significantly suppressed the development of aortic atherosclerotic lesions, with significant reductions of intraplaque inflammation and the macrophage/VSMC ratio, a marker of plaque instability. Our study indicates that vaspin prevents atherosclerotic plaque formation and instability, and may serve as a novel therapeutic target in atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Maho Yamaguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Tomoyuki Yamashita
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Koichiro Shibata
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Taisuke Okano
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| | - Yusaku Mori
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan.
| | - Taka-Aki Matsuyama
- Department of Legal Medicine, Showa University School of Medicine, Tokyo 142-8555, Japan.
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan.
| | - Hatsue Ishibashi-Ueda
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka 565-8565, Japan.
| | - Tsutomu Hirano
- Department of Medicine, Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo 142-8666, Japan.
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan.
| |
Collapse
|
39
|
Xu S, Zhang X, Liu P. Lipid droplet proteins and metabolic diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1968-1983. [DOI: 10.1016/j.bbadis.2017.07.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/13/2022]
|
40
|
Shen L, Tenzer S, Hess M, Distler U, Tubbe I, Montermann E, Schimmer S, Dittmer U, Grabbe S, Bros M. Friend virus limits adaptive cellular immune responses by imprinting a maturation-resistant and T helper type 2-biased immunophenotype in dendritic cells. PLoS One 2018; 13:e0192541. [PMID: 29425215 PMCID: PMC5806892 DOI: 10.1371/journal.pone.0192541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/25/2018] [Indexed: 12/28/2022] Open
Abstract
The murine Friend virus (FV) retrovirus model has been widely used to study anti-viral immune responses, and virus-induced cancer. Here we analyzed FV immune evasion mechanisms on the level of dendritic cells (DC) essential for the induction of primary adaptive immune responses. Comparative quantitative proteome analysis of FV-infected DC (FV-DC) of different genotypes (BALB/c, C57BL/6) and non-infected DC revealed numerous genotype-independently regulated proteins rergulating metabolic activity, cytoskeletal rearrangements, and antigen processing/presentation. These alterations may promote virion production in FV-DC. Stimulation of FV-DC with LPS resulted in strongly enhanced IL-10 production which was partially responsible for their attenuated T cell (CD4+, CD8+) stimulatory capacity. Stimulated FV-DC induced less IFN-γ production in T cells required for cellular anti-viral responses, but more T helper cell type 2 (Th2)-associated cytokines (IL-4, IL-5, IL-13). We conclude that FV reprograms DC to promote viral spreading and immune deviation by imprinting a largely maturation-resistant, Th2-biased immunophenotype.
Collapse
Affiliation(s)
- Limei Shen
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Mainz, Germany
| | - Moritz Hess
- Institute for Medical Biometry, Epidemiology and Informatics, University Medical Center, Mainz, Germany
| | - Ute Distler
- Institute of Immunology, University Medical Center, Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Mainz, Germany
| | - Simone Schimmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology of the University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Mainz, Germany
- * E-mail:
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Mainz, Germany
| |
Collapse
|
41
|
Silencing carboxylesterase 1 in human THP-1 macrophages perturbs genes regulated by PPARγ/RXR and RAR/RXR: down-regulation of CYP27A1-LXRα signaling. Biochem J 2018; 475:621-642. [PMID: 29321244 DOI: 10.1042/bcj20180008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/04/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Macrophage foam cells store excess cholesterol as cholesteryl esters, which need to be hydrolyzed for cholesterol efflux. We recently reported that silencing expression of carboxylesterase 1 (CES1) in human THP-1 macrophages [CES1KD (THP-1 cells with CES1 expression knocked down) macrophages] reduced cholesterol uptake and decreased expression of CD36 and scavenger receptor-A in cells loaded with acetylated low-density lipoprotein (acLDL). Here, we report that CES1KD macrophages exhibit reduced transcription of cytochrome P45027A1 (CYP27A1) in nonloaded and acLDL-loaded cells. Moreover, levels of CYP27A1 protein and its enzymatic product, 27-hydroxycholesterol, were markedly reduced in CES1KD macrophages. Transcription of LXRα (liver X receptor α) and ABCA1 (ATP-binding cassette transporter A1) was also decreased in acLDL-loaded CES1KD macrophages, suggesting reduced signaling through PPARγ-CYP27A1-LXRα. Consistent with this, treatment of CES1KD macrophages with agonists for PPARγ, RAR, and/or RAR/RXR partially restored transcription of CYP27A1 and LXRα, and repaired cholesterol influx. Conversely, treatment of control macrophages with antagonists for PPARγ and/or RXR decreased transcription of CYP27A1 and LXRα Pharmacologic inhibition of CES1 in both wild-type THP-1 cells and primary human macrophages also decreased CYP27A1 transcription. CES1 silencing did not affect transcript levels of PPARγ and RXR in acLDL-loaded macrophages, whereas it did reduce the catabolism of the endocannabinoid 2-arachidonoylglycerol. Finally, the gene expression profile of CES1KD macrophages was similar to that of PPARγ knockdown cells following acLDL exposures, further suggesting a mechanistic link between CES1 and PPARγ. These results are consistent with a model in which abrogation of CES1 function attenuates the CYP27A1-LXRα-ABCA1 signaling axis by depleting endogenous ligands for the nuclear receptors PPARγ, RAR, and/or RXR that regulate cholesterol homeostasis.
Collapse
|
42
|
Shirai R, Sato K, Yamashita T, Yamaguchi M, Okano T, Watanabe-Kominato K, Watanabe R, Matsuyama TA, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T. Neopterin Counters Vascular Inflammation and Atherosclerosis. J Am Heart Assoc 2018; 7:e007359. [PMID: 29420219 PMCID: PMC5850243 DOI: 10.1161/jaha.117.007359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neopterin, a metabolite of GTP, is produced by activated macrophages and is abundantly expressed within atherosclerotic lesions in human aorta and carotid and coronary arteries. We aimed to clarify the influence of neopterin on both vascular inflammation and atherosclerosis, as neither effect had been fully assessed. METHODS AND RESULTS We investigated neopterin expression in coronary artery lesions and plasma from patients with coronary artery disease. We assessed the atheroprotective effects of neopterin in vitro using human aortic endothelial cells, human monocyte-derived macrophages, and human aortic smooth muscle cells. In vivo experiments included a study of aortic lesions in apolipoprotein E-deficient mice. Neopterin expression in coronary artery lesions and plasma was markedly increased in patients with versus without coronary artery disease. In human aortic endothelial cells, neopterin reduced proliferation and TNF-α (tumor necrosis factor α)-induced upregulation of MCP-1 (monocyte chemotactic protein 1), ICAM-1 (intercellular adhesion molecule 1), and VCAM-1 (vascular cell adhesion molecule 1). Neopterin attenuated TNF-α-induced monocyte adhesion to human aortic endothelial cells and the inflammatory macrophage phenotype via NF-κB (nuclear factor-κB) downregulation. Neopterin suppressed oxidized low-density lipoprotein-induced foam cell formation associated with CD36 downregulation and upregulation of ATP-binding cassette transporters A1 and G1 in human monocyte-derived macrophages. In human aortic smooth muscle cells, neopterin suppressed angiotensin II-induced migration and proliferation via c-Src/Raf-1/ERK1/2 downregulation without inducing apoptosis. Exogenous neopterin administration and endogenous neopterin attenuation with its neutralizing antibody for 4 weeks retarded and promoted, respectively, the development of aortic atherosclerotic lesions in apolipoprotein E-deficient mice. CONCLUSIONS Our results indicate that neopterin prevents both vascular inflammation and atherosclerosis and may be induced to counteract the progression of atherosclerotic lesions. Consequently, neopterin could be of use as a novel therapeutic target for atherosclerotic cardiovascular diseases.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Apoptosis/drug effects
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Coculture Techniques
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Coronary Artery Disease/prevention & control
- Cytokines/metabolism
- Disease Models, Animal
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Middle Aged
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neopterin/metabolism
- Plaque, Atherosclerotic
- Signal Transduction
- THP-1 Cells
- Vasculitis/metabolism
- Vasculitis/pathology
- Vasculitis/prevention & control
Collapse
Affiliation(s)
- Remina Shirai
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kengo Sato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Tomoyuki Yamashita
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Maho Yamaguchi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taisuke Okano
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaho Watanabe-Kominato
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rena Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Taka-Aki Matsuyama
- Department of Pathology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Youichi Kobayashi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Tsutomu Hirano
- Division of Diabetes, Metabolism, and Endocrinology, Showa University School of Medicine, Tokyo, Japan
| | - Takuya Watanabe
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
43
|
Zhang S, Glukhova SA, Caldwell KA, Caldwell GA. NCEH-1 modulates cholesterol metabolism and protects against α-synuclein toxicity in a C. elegans model of Parkinson's disease. Hum Mol Genet 2018; 26:3823-3836. [PMID: 28934392 DOI: 10.1093/hmg/ddx269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/06/2017] [Indexed: 02/03/2023] Open
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disease affecting millions worldwide. Misfolding, oligomerization and accumulation of the human α-synuclein protein is a key pathological hallmark of PD and is associated with the progressive loss of dopaminergic neurons over the course of aging. Lifespan extension via the suppression of IGF-1/insulin-like signaling (IIS) offers a possibility to retard disease onset through induction of metabolic changes that provide neuroprotection. The nceh-1 gene of Caenorhabditis elegans encodes an ortholog of neutral cholesterol ester hydrolase 1 (NCEH-1), an IIS downstream protein that was identified in a screen as a modulator of α-synuclein accumulation in vivo. The mechanism whereby cholesterol metabolism functionally impacts neurodegeneration induced by α-synuclein is undefined. Here we report that NCEH-1 protects dopaminergic neurons from α-synuclein-dependent neurotoxicity in C. elegans via a mechanism that is independent of lifespan extension. We discovered that the presence of cholesterol, LDLR-mediated cholesterol endocytosis, and cholesterol efflux are all essential to NCEH-1-mediated neuroprotection. In protecting from α-synuclein neurotoxicity, NCEH-1 also stimulates cholesterol-derived neurosteroid formation and lowers cellular reactive oxygen species in mitochondria. Collectively, this study augments our understanding of how cholesterol metabolism can modulate a neuroprotective mechanism that attenuates α-synuclein neurotoxicity, thereby pointing toward regulation of neuronal cholesterol turnover as a potential therapeutic avenue for PD.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Samantha A Glukhova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurology and Neurobiology, Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama School of Medicine at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
44
|
Extended topoisomerase 1 inhibition through liposomal irinotecan results in improved efficacy over topotecan and irinotecan in models of small-cell lung cancer. Anticancer Drugs 2018; 28:1086-1096. [PMID: 28857767 DOI: 10.1097/cad.0000000000000545] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Liposomal irinotecan (irinotecan liposome injection, nal-IRI), a liposomal formulation of irinotecan, is designed for extended circulation relative to irinotecan and for exploiting discontinuous tumor vasculature for enhanced drug delivery to tumors. Following tumor deposition, nal-IRI is taken up by phagocytic cells followed by irinotecan release and conversion to its active metabolite, SN-38. Sustained inhibition of topoisomerase 1 by extended SN-38 exposure as a result of delivery by nal-IRI is hypothesized to enable superior antitumor activity compared with traditional topoisomerase 1 inhibitors such as conventional irinotecan and topotecan. We evaluated the antitumor activity of nal-IRI compared with irinotecan and topotecan in preclinical models of small-cell lung cancer (SCLC) including in a model pretreated with carboplatin and etoposide, a first-line regimen used in SCLC. Nal-IRI demonstrated antitumor activity in xenograft models of SCLC at clinically relevant dose levels, and resulted in complete or partial responses in DMS-53, DMS-114, and NCI-H1048 cell line-derived models as well as in three patient-derived xenograft models. The antitumor activity of nal-IRI was superior to that of topotecan in all models tested, which generally exhibited limited control of tumor growth and was superior to irinotecan in four out of five models. Further, nal-IRI demonstrated antitumor activity in tumors that progressed following treatment with topotecan or irinotecan, and demonstrated significantly greater antitumor activity than both topotecan and irinotecan in NCI-H1048 tumors that had progressed on previous carboplatin plus etoposide treatment. These results support the clinical development of nal-IRI in patients with SCLC.
Collapse
|
45
|
Xu J, Xu Y, Xu Y, Yin L, Zhang Y. Global inactivation of carboxylesterase 1 (Ces1/Ces1g) protects against atherosclerosis in Ldlr -/- mice. Sci Rep 2017; 7:17845. [PMID: 29259301 PMCID: PMC5736751 DOI: 10.1038/s41598-017-18232-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is a leading cause of death in the western world. Increased plasma triglyceride and cholesterol levels are major risk factors for this disease. Carboxylesterase 1 (Ces1/Ces1g) has been shown to play a role in metabolic control. So far, the role of mouse Ces1/Ces1g deficiency in atherosclerosis is not elucidated. We generated Ces1/Ces1g−/− mice. Compared to wild-type mice, Ces1/Ces1g−/− mice had reduced plasma cholesterol levels. We then generated Ces1g−/−Ldlr−/− double knockout (DKO) mice, which were fed a Western diet for 16 weeks. Compared to Ldlr−/− mice, DKO mice displayed decreased plasma cholesterol and TG levels and reduced atherosclerotic lesions. Interestingly, knockdown of hepatic Ces1/Ces1g in Apoe−/− mice resulted in hyperlipidemia and exacerbated Western diet-induced atherogenesis. Mechanistically, global inactivation of Ces1/Ces1g inhibited intestinal cholesterol and fat absorption and Niemann-Pick C1 like 1 expression, and increased macrophage cholesterol efflux by inducing ATP-binding cassette subfamily A member 1 (ABCA1) and ABCG1. Ces1/Ces1g ablation also promoted M2 macrophage polarization and induced hepatic cholesterol 7α-hydroxylase and sterol 12α-hydroxylase expression. In conclusion, global loss of Ces1/Ces1g protects against the development of atherosclerosis by inhibiting intestinal cholesterol and triglyceride absorption and promoting macrophage cholesterol efflux.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
46
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
47
|
Abstract
Macrophages are critical to organ structure and function in health and disease. To determine mechanisms by which granulocyte/macrophage-colony stimulating factor (GM-CSF) signaling normally maintains surfactant homeostasis and how its disruption causes pulmonary alveolar proteinosis (PAP), we evaluated lipid composition in alveolar macrophages and lung surfactant, macrophage-mediated surfactant clearance kinetics/dynamics, and cholesterol-targeted pharmacotherapy of PAP in vitro and in vivo. Without GM-CSF signaling, surfactant-exposed macrophages massively accumulated cholesterol ester-rich lipid-droplets and surfactant had an increased proportion of cholesterol. GM-CSF regulated cholesterol clearance in macrophages in constitutive, dose-dependent, and reversible fashion but did not affect phospholipid clearance. PPARγ-agonist therapy increased cholesterol clearance in macrophages and reduced disease severity in PAP mice. Results demonstrate that GM-CSF is required for cholesterol clearance in macrophages, identify reduced cholesterol clearance as the primary macrophage defect driving PAP pathogenesis, and support the feasibility of translating pioglitazone as a novel pharmacotherapy of PAP.
Collapse
|
48
|
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV, Orekhov AN. Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl) 2017; 95:1153-1165. [DOI: 10.1007/s00109-017-1575-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/21/2022]
|
49
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
50
|
Lian J, Nelson R, Lehner R. Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell 2017; 9:178-195. [PMID: 28677105 PMCID: PMC5818367 DOI: 10.1007/s13238-017-0437-z] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/31/2017] [Indexed: 12/12/2022] Open
Abstract
Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (over)expression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada. .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Randal Nelson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|