1
|
Zaccolo M, Kovanich D. Nanodomain cAMP signaling in cardiac pathophysiology: potential for developing targeted therapeutic interventions. Physiol Rev 2025; 105:541-591. [PMID: 39115424 PMCID: PMC7617275 DOI: 10.1152/physrev.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/22/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024] Open
Abstract
The 3',5'-cyclic adenosine monophosphate (cAMP) mediates the effects of sympathetic stimulation on the rate and strength of cardiac contraction. Beyond this pivotal role, in cardiac myocytes cAMP also orchestrates a diverse array of reactions to various stimuli. To ensure specificity of response, the cAMP signaling pathway is intricately organized into multiple, spatially confined, subcellular domains, each governing a distinct cellular function. In this review, we describe the molecular components of the cAMP signaling pathway with a specific focus on adenylyl cyclases, A-kinase anchoring proteins, and phosphodiesterases. We discuss how they are organized inside the intracellular space and how they achieve exquisite regulation of signaling within nanometer-size domains. We delineate the key experimental findings that lead to the current model of compartmentalized cAMP signaling, and we offer an overview of our present understanding of how cAMP nanodomains are structured and regulated within cardiac myocytes. Furthermore, we discuss how compartmentalized cAMP signaling is affected in cardiac disease and consider the potential therapeutic opportunities arising from understanding such organization. By exploiting the nuances of compartmentalized cAMP signaling, novel and more effective therapeutic strategies for managing cardiac conditions may emerge. Finally, we highlight the unresolved questions and hurdles that must be addressed to translate these insights into interventions that may benefit patients.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Duangnapa Kovanich
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Bedioune I, Gandon-Renard M, Dessillons M, Barthou A, Varin A, Mika D, Bichali S, Cellier J, Lechène P, Karam S, Dia M, Gomez S, Pereira de Vasconcelos W, Mercier-Nomé F, Mateo P, Dubourg A, Stratakis CA, Mercadier JJ, Benitah JP, Algalarrondo V, Leroy J, Fischmeister R, Gomez AM, Vandecasteele G. Essential Role of the RIα Subunit of cAMP-Dependent Protein Kinase in Regulating Cardiac Contractility and Heart Failure Development. Circulation 2024; 150:2031-2045. [PMID: 39355927 DOI: 10.1161/circulationaha.124.068858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling. METHODS We measured PKA subunit expression in human heart and developed a conditional mouse model with cardiomyocyte-specific knockout of RIα (RIα-icKO). Myocardial structure and function were evaluated by echocardiography, histology, and ECG and in Langendorff-perfused hearts. PKA activity and cAMP levels were determined by immunoassay, and phosphorylation of PKA targets was assessed by Western blot. L-type Ca2+ current (ICa,L), sarcomere shortening, Ca2+ transients, Ca2+ sparks and waves, and subcellular cAMP were recorded in isolated ventricular myocytes (VMs). RESULTS RIα protein was decreased by 50% in failing human heart with ischemic cardiomyopathy and by 75% in the ventricles and in VMs from RIα-icKO mice but not in atria or sinoatrial node. Basal PKA activity was increased ≈3-fold in RIα-icKO VMs. In young RIα-icKO mice, left ventricular ejection fraction was increased and the negative inotropic effect of propranolol was prevented, whereas heart rate and the negative chronotropic effect of propranolol were not modified. Phosphorylation of phospholamban, ryanodine receptor, troponin I, and cardiac myosin-binding protein C at PKA sites was increased in propranolol-treated RIα-icKO mice. Hearts from RIα-icKO mice were hypercontractile, associated with increased ICa,L, and [Ca2+]i transients and sarcomere shortening in VMs. These effects were suppressed by the PKA inhibitor, H89. Global cAMP content was decreased in RIα-icKO hearts, whereas local cAMP at the phospholamban/sarcoplasmic reticulum Ca2+ ATPase complex was unchanged in RIα-icKO VMs. RIα-icKO VMs had an increased frequency of Ca2+ sparks and proarrhythmic Ca2+ waves, and RIα-icKO mice had an increased susceptibility to ventricular tachycardia. On aging, RIα-icKO mice showed progressive contractile dysfunction, cardiac hypertrophy, and fibrosis, culminating in congestive heart failure with reduced ejection fraction that caused 50% mortality at 1 year. CONCLUSIONS These results identify RIα as a key negative regulator of cardiac contractile function, arrhythmia, and pathological remodeling.
Collapse
Affiliation(s)
- Ibrahim Bedioune
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Marine Gandon-Renard
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Matthieu Dessillons
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Aurélien Barthou
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Audrey Varin
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Saïd Bichali
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Joffrey Cellier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Patrick Lechène
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Sarah Karam
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Maya Dia
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Susana Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Walma Pereira de Vasconcelos
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | | | - Philippe Mateo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Audrey Dubourg
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Constantine A Stratakis
- Human Genetics and Precision Medicine, IMBB, FORTH, Heraklion, Crete, Greece (C.A.S.)
- ELPEN Research Institute, Athens, Greece (C.A.S.)
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD (C.A.S.)
| | - Jean-Jacques Mercadier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
- Xavier Bichat school of Medicine, Paris, France (J.-J.M.)
| | - Jean-Pierre Benitah
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Vincent Algalarrondo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Ana-Maria Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S1180 (I.B., M.G.-R., M.D., A.B., A.V., D.M., S.B., J.C., P.L., S.K., M.D., S.G., W.P.d.V., P.M., A.D., J.-J.M., J.-P.B., V.A., J.L., R.F., A.-M.G., G.V.), Orsay, France
| |
Collapse
|
3
|
Zhao M, Cao N, Gu H, Xu J, Xu W, Zhang D, Wei TYW, Wang K, Guo R, Cui H, Wang X, Guo X, Li Z, He K, Li Z, Zhang Y, Shyy JYJ, Dong E, Xiao H. AMPK Attenuation of β-Adrenergic Receptor-Induced Cardiac Injury via Phosphorylation of β-Arrestin-1-ser330. Circ Res 2024; 135:651-667. [PMID: 39082138 DOI: 10.1161/circresaha.124.324762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND β-adrenergic receptor (β-AR) overactivation is a major pathological cue associated with cardiac injury and diseases. AMPK (AMP-activated protein kinase), a conserved energy sensor, regulates energy metabolism and is cardioprotective. However, whether AMPK exerts cardioprotective effects via regulating the signaling pathway downstream of β-AR remains unclear. METHODS Using immunoprecipitation, mass spectrometry, site-specific mutation, in vitro kinase assay, and in vivo animal studies, we determined whether AMPK phosphorylates β-arrestin-1 at serine (Ser) 330. Wild-type mice and mice with site-specific mutagenesis (S330A knock-in [KI]/S330D KI) were subcutaneously injected with the β-AR agonist isoproterenol (5 mg/kg) to evaluate the causality between β-adrenergic insult and β-arrestin-1 Ser330 phosphorylation. Cardiac transcriptomics was used to identify changes in gene expression from β-arrestin-1-S330A/S330D mutation and β-adrenergic insult. RESULTS Metformin could decrease cAMP/PKA (protein kinase A) signaling induced by isoproterenol. AMPK bound to β-arrestin-1 and phosphorylated Ser330 with the highest phosphorylated mass spectrometry score. AMPK activation promoted β-arrestin-1 Ser330 phosphorylation in vitro and in vivo. Neonatal mouse cardiomyocytes overexpressing β-arrestin-1-S330D (active form) inhibited the β-AR/cAMP/PKA axis by increasing PDE (phosphodiesterase) 4 expression and activity. Cardiac transcriptomics revealed that the differentially expressed genes between isoproterenol-treated S330A KI and S330D KI mice were mainly involved in immune processes and inflammatory response. β-arrestin-1 Ser330 phosphorylation inhibited isoproterenol-induced reactive oxygen species production and NLRP3 (NOD-like receptor protein 3) inflammasome activation in neonatal mouse cardiomyocytes. In S330D KI mice, the β-AR-activated cAMP/PKA pathways were attenuated, leading to repressed inflammasome activation, reduced expression of proinflammatory cytokines, and mitigated macrophage infiltration. Compared with S330A KI mice, S330D KI mice showed diminished cardiac fibrosis and improved cardiac function upon isoproterenol exposure. However, the cardiac protection exerted by AMPK was abolished in S330A KI mice. CONCLUSIONS AMPK phosphorylation of β-arrestin-1 Ser330 potentiated PDE4 expression and activity, thereby inhibiting β-AR/cAMP/PKA activation. Subsequently, β-arrestin-1 Ser330 phosphorylation blocks β-AR-induced cardiac inflammasome activation and remodeling.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ning Cao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital (N.C.), Capital Medical University, Beijing, China
| | - Huijun Gu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Jiachao Xu
- Laboratory for Clinical Medicine (N.C.), Capital Medical University, Beijing, China
| | - Wenli Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Tong-You Wade Wei
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Kang Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Ruiping Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Hongtu Cui
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Xiaofeng Wang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (X.W.)
| | - Xin Guo
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Zhiyuan Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies (D.Z., Zhiyuan Li), Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China (J.X., K.H.)
- University of Chinese Academy of Sciences, Beijing, China (K.H.)
| | - Zijian Li
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - Youyi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
| | - John Y-J Shyy
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla (T.-Y.W.W., J.Y.-J.S.)
| | - Erdan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- Institute of Cardiovascular Sciences (E.D.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Advanced Clinical Medicine (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.), Peking University, Beijing, China
- National Health Commission (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Beijing Key Laboratory of Cardiovascular Receptors Research, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Haihe Laboratory of Cell Ecosystem, Beijing, China (M.Z., N.C., H.G., W.X., K.W., R.G., H.C., X.G., Zijian Li, Y.Z., E.D., H.X.)
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China (W.X., E.D., H.X.)
| |
Collapse
|
4
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
5
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
6
|
Xu B, Bahriz S, Salemme VR, Wang Y, Zhu C, Zhao M, Xiang YK. Differential Downregulation of β 1-Adrenergic Receptor Signaling in the Heart. J Am Heart Assoc 2024; 13:e033733. [PMID: 38860414 PMCID: PMC11255761 DOI: 10.1161/jaha.123.033733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Chronic sympathetic stimulation drives desensitization and downregulation of β1 adrenergic receptor (β1AR) in heart failure. We aim to explore the differential downregulation subcellular pools of β1AR signaling in the heart. METHODS AND RESULTS We applied chronic infusion of isoproterenol to induced cardiomyopathy in male C57BL/6J mice. We applied confocal and proximity ligation assay to examine β1AR association with L-type calcium channel, ryanodine receptor 2, and SERCA2a ((Sarco)endoplasmic reticulum calcium ATPase 2a) and Förster resonance energy transfer-based biosensors to probe subcellular β1AR-PKA (protein kinase A) signaling in ventricular myocytes. Chronic infusion of isoproterenol led to reduced β1AR protein levels, receptor association with L-type calcium channel and ryanodine receptor 2 measured by proximity ligation (puncta/cell, 29.65 saline versus 14.17 isoproterenol, P<0.05), and receptor-induced PKA signaling at the plasma membrane (Förster resonance energy transfer, 28.9% saline versus 1.9% isoproterenol, P<0.05) and ryanodine receptor 2 complex (Förster resonance energy transfer, 30.2% saline versus 10.6% isoproterenol, P<0.05). However, the β1AR association with SERCA2a was enhanced (puncta/cell, 51.4 saline versus 87.5 isoproterenol, P<0.05), and the receptor signal was minimally affected. The isoproterenol-infused hearts displayed decreased PDE4D (phosphodiesterase 4D) and PDE3A and increased PDE2A, PDE4A, and PDE4B protein levels. We observed a reduced role of PDE4 and enhanced roles of PDE2 and PDE3 on the β1AR-PKA activity at the ryanodine receptor 2 complexes and myocyte shortening. Despite the enhanced β1AR association with SERCA2a, the endogenous norepinephrine-induced signaling was reduced at the SERCA2a complexes. Inhibiting monoamine oxidase A rescued the norepinephrine-induced PKA signaling at the SERCA2a and myocyte shortening. CONCLUSIONS This study reveals distinct mechanisms for the downregulation of subcellular β1AR signaling in the heart under chronic adrenergic stimulation.
Collapse
Affiliation(s)
- Bing Xu
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Sherif Bahriz
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Clinical Pathology, Faculty of MedicineMansoura UniversityMansouraEgypt
| | | | - Ying Wang
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmacology, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Chaoqun Zhu
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| | - Meimi Zhao
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
- Department of Pharmaceutical ToxicologyChina Medical UniversityShenyangChina
| | - Yang K. Xiang
- VA Northern California Health Care SystemMatherCAUSA
- Department of PharmacologyUniversity of California at DavisDavisCAUSA
| |
Collapse
|
7
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
8
|
Lai P, Hille SS, Subramanian H, Wiegmann R, Roser P, Müller OJ, Nikolaev VO, De Jong KA. Remodelling of cAMP dynamics within the SERCA2a microdomain in heart failure with preserved ejection fraction caused by obesity and type 2 diabetes. Cardiovasc Res 2024; 120:273-285. [PMID: 38099489 PMCID: PMC10939460 DOI: 10.1093/cvr/cvad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/03/2023] [Accepted: 09/23/2023] [Indexed: 02/10/2024] Open
Abstract
AIMS Despite massive efforts, we remain far behind in our attempts to identify effective therapies to treat heart failure with preserved ejection fraction (HFpEF). Diastolic function is critically regulated by sarcoplasmic/endoplasmic reticulum (SR) calcium ATPase 2a (SERCA2a), which forms a functional cardiomyocyte (CM) microdomain where 3',5'-cyclic adenosine monophosphate (cAMP) produced upon β-adrenergic receptor (β-AR) stimulation leads to phospholamban (PLN) phosphorylation and facilitated Ca2+ re-uptake. METHODS AND RESULTS To visualize real-time cAMP dynamics in the direct vicinity of SERCA2a in healthy and diseased myocytes, we generated a novel mouse model on the leprdb background that stably expresses the Epac1-PLN Förster resonance energy transfer biosensor. Mice homozygous for the leprdb mutation (db/db) developed obesity and type 2 diabetes and presented with a HFpEF phenotype, evident by mild left ventricular hypertrophy and elevated left atria filling pressures. Live cell imaging uncovered a substantial β2-AR subtype stimulated cAMP response within the PLN/SERCA2a microdomain of db/db but not healthy control (db/+) CMs, which was accompanied by increased PLN phosphorylation and accelerated calcium re-uptake. Importantly, db/db CMs also exhibited a desensitization of β1-AR stimulated cAMP pools within the PLN/SERCA2a microdomain, which was accompanied by a blunted lusitropic effect, suggesting that the increased β2-AR control is an intrinsic compensatory mechanism to maintain PLN/SERCA2a-mediated calcium dynamics and cardiac relaxation. Mechanistically, this was due to a local loss of cAMP-degrading phosphodiesterase 4 associated specifically with the PLN/SERCA2a complex. CONCLUSION These newly identified alterations of cAMP dynamics at the subcellular level in HFpEF should provide mechanistic understanding of microdomain remodelling and pave the way towards new therapies.
Collapse
Affiliation(s)
- Ping Lai
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Cardiology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, First Affiliated Hospital of Gannan Medical University, 341000 Ganzhou, China
| | - Susanne S Hille
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, D-24105, Kiel, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Robert Wiegmann
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | - Pia Roser
- Department of Endocrinology and Diabetes, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg D-20246, Germany
| | - Oliver J Müller
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, University of Kiel, Arnold-Heller-Str. 3, D-24105, Kiel, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| | - Kirstie A De Jong
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lübeck, Martinistr. 52, D-20246 Hamburg, Germany
| |
Collapse
|
9
|
Gotthardt M, Lehnart SE. SERCA2a microdomain cAMP changes in heart failure with preserved ejection fraction. Cardiovasc Res 2024; 120:220-222. [PMID: 38333928 DOI: 10.1093/cvr/cvae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Affiliation(s)
- Michael Gotthardt
- Translational Cardiology and Functional Genomics, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Berlin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Stephan E Lehnart
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, University Medical Center Göttingen, Robert-Koch-Str. 42a, 37075 Göttingen, Germany
- Collaborative Research Center SFB1002 'Modulatory Units in Heart Failure', University of Göttingen, Robert-Koch-Str. 40, 37073 Göttingen, Germany
- Collaborative Research Center SFB1190 'Compartmental Gates and Contact Sites in Cells', University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC2067), University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research) partner site Göttingen, 37075 Göttingen, Robert-Koch-Str. 40, Germany
| |
Collapse
|
10
|
Kraft AE, Bork NI, Subramanian H, Pavlaki N, Failla AV, Zobiak B, Conti M, Nikolaev VO. Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts. Cells 2024; 13:476. [PMID: 38534320 PMCID: PMC10969065 DOI: 10.3390/cells13060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.
Collapse
Affiliation(s)
- Axel E. Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nadja I. Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Antonio V. Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernd Zobiak
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Conti
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA;
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
11
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
12
|
Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, Eken OS, Veras I, Huynh NTT, Børstad M, Marshall S, Shen X, Louch WE, Robinson EL, Cleveland JC, Ambardekar AV, Schwisow JA, Jonas E, Calejo AI, Morth JP, Taskén K, Melleby AO, Lunde PK, Sjaastad I, Carlson CR, Aronsen JM. Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure. Circulation 2023; 147:1221-1236. [PMID: 36876489 DOI: 10.1161/circulationaha.121.054168] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.
Collapse
Affiliation(s)
- Jonas Skogestad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Albert
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Gustav B Lothe
- Department of Pharmacology, Oslo University Hospital, Norway (G.B.L.)
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ioanni Veras
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ngoc Trang Thi Huynh
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Mira Børstad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Serena Marshall
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Emma Louise Robinson
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joseph C Cleveland
- Department of Surgery (J.C.C.), University of Colorado Anschutz Medical Campus, Aurora
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jessica A Schwisow
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Eric Jonas
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Ana I Calejo
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby (J.P.M.)
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Norway (K.T.)
| | - Arne Olav Melleby
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| |
Collapse
|
13
|
Regulation of cardiac function by cAMP nanodomains. Biosci Rep 2023; 43:232544. [PMID: 36749130 PMCID: PMC9970827 DOI: 10.1042/bsr20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.
Collapse
|
14
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
15
|
Subramanian H, Nikolaev VO. A-Kinase Anchoring Proteins in Cardiac Myocytes and Their Roles in Regulating Calcium Cycling. Cells 2023; 12:cells12030436. [PMID: 36766777 PMCID: PMC9913689 DOI: 10.3390/cells12030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The rate of calcium cycling and calcium transient amplitude are critical determinants for the efficient contraction and relaxation of the heart. Calcium-handling proteins in the cardiac myocyte are altered in heart failure, and restoring the proper function of those proteins is an effective potential therapeutic strategy. The calcium-handling proteins or their regulators are phosphorylated by a cAMP-dependent kinase (PKA), and thereby their activity is regulated. A-Kinase Anchoring Proteins (AKAPs) play a seminal role in orchestrating PKA and cAMP regulators in calcium handling and contractile machinery. This cAMP/PKA orchestration is crucial for the increased force and rate of contraction and relaxation of the heart in response to fight-or-flight. Knockout models and the few available preclinical models proved that the efficient targeting of AKAPs offers potential therapies tailor-made for improving defective calcium cycling. In this review, we highlight important studies that identified AKAPs and their regulatory roles in cardiac myocyte calcium cycling in health and disease.
Collapse
Affiliation(s)
- Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck
- Correspondence: (H.S.); (V.O.N.); Tel.: +49(0)40-7410-57383 (V.O.N.)
| |
Collapse
|
16
|
Keefe JA, Moore OM, Ho KS, Wehrens XHT. Role of Ca 2+ in healthy and pathologic cardiac function: from normal excitation-contraction coupling to mutations that cause inherited arrhythmia. Arch Toxicol 2023; 97:73-92. [PMID: 36214829 PMCID: PMC10122835 DOI: 10.1007/s00204-022-03385-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 01/19/2023]
Abstract
Calcium (Ca2+) ions are a key second messenger involved in the rhythmic excitation and contraction of cardiomyocytes throughout the heart. Proper function of Ca2+-handling proteins is required for healthy cardiac function, whereas disruption in any of these can cause cardiac arrhythmias. This comprehensive review provides a broad overview of the roles of Ca2+-handling proteins and their regulators in healthy cardiac function and the mechanisms by which mutations in these proteins contribute to inherited arrhythmias. Major Ca2+ channels and Ca2+-sensitive regulatory proteins involved in cardiac excitation-contraction coupling are discussed, with special emphasis on the function of the RyR2 macromolecular complex. Inherited arrhythmia disorders including catecholaminergic polymorphic ventricular tachycardia, long QT syndrome, Brugada syndrome, short QT syndrome, and arrhythmogenic right-ventricular cardiomyopathy are discussed with particular emphasis on subtypes caused by mutations in Ca2+-handling proteins.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Oliver M Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kevin S Ho
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA. .,Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA. .,Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Xu B, Wang Y, Bahriz SMFM, Zhao M, Zhu C, Xiang YK. Probing spatiotemporal PKA activity at the ryanodine receptor and SERCA2a nanodomains in cardomyocytes. Cell Commun Signal 2022; 20:143. [PMID: 36104752 PMCID: PMC9472443 DOI: 10.1186/s12964-022-00947-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractSpatiotemporal regulation of subcellular protein kinase A (PKA) activity for precise substrate phosphorylation is essential for cellular responses to hormonal stimulation. Ryanodine receptor 2 (RyR2) and (sarco)endoplasmic reticulum calcium ATPase 2a (SERCA2a) represent two critical targets of β adrenoceptor (βAR) signaling on the sarcoplasmic reticulum membrane for cardiac excitation and contraction coupling. Using novel biosensors, we show that cardiac β1AR signals to both RyR2 and SERCA2a nanodomains in cardiomyocytes from mice, rats, and rabbits, whereas the β2AR signaling is restricted from these nanodomains. Phosphodiesterase 4 (PDE4) and PDE3 control the baseline PKA activity and prevent β2AR signaling from reaching the RyR2 and SERCA2a nanodomains. Moreover, blocking inhibitory G protein allows β2AR signaling to the RyR2 but not the SERCA2a nanodomains. This study provides evidence for the differential roles of inhibitory G protein and PDEs in controlling the adrenergic subtype signaling at the RyR2 and SERCA2a nanodomains in cardiomyocytes.
Collapse
|
18
|
Lugnier C. The Complexity and Multiplicity of the Specific cAMP Phosphodiesterase Family: PDE4, Open New Adapted Therapeutic Approaches. Int J Mol Sci 2022; 23:10616. [PMID: 36142518 PMCID: PMC9502408 DOI: 10.3390/ijms231810616] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cyclic nucleotides (cAMP, cGMP) play a major role in normal and pathologic signaling. Beyond receptors, cyclic nucleotide phosphodiesterases; (PDEs) rapidly convert the cyclic nucleotide in its respective 5'-nucleotide to control intracellular cAMP and/or cGMP levels to maintain a normal physiological state. However, in many pathologies, dysregulations of various PDEs (PDE1-PDE11) contribute mainly to organs and tissue failures related to uncontrolled phosphorylation cascade. Among these, PDE4 represents the greatest family, since it is constituted by 4 genes with multiple variants differently distributed at tissue, cellular and subcellular levels, allowing different fine-tuned regulations. Since the 1980s, pharmaceutical companies have developed PDE4 inhibitors (PDE4-I) to overcome cardiovascular diseases. Since, they have encountered many undesired problems, (emesis), they focused their research on other PDEs. Today, increases in the knowledge of complex PDE4 regulations in various tissues and pathologies, and the evolution in drug design, resulted in a renewal of PDE4-I development. The present review describes the recent PDE4-I development targeting cardiovascular diseases, obesity, diabetes, ulcerative colitis, and Crohn's disease, malignancies, fatty liver disease, osteoporosis, depression, as well as COVID-19. Today, the direct therapeutic approach of PDE4 is extended by developing allosteric inhibitors and protein/protein interactions allowing to act on the PDE interactome.
Collapse
Affiliation(s)
- Claire Lugnier
- Section de Structures Biologiques, Pharmacologie et Enzymologie, CNRS/Unistra, CRBS, UR 3072, CEDEX, 67084 Strasbourg, France
| |
Collapse
|
19
|
Xu R, Fu J, Hu Y, Yang X, Tao X, Chen L, Huang K, Fu Q. Roflumilast-Mediated Phosphodiesterase 4D Inhibition Reverses Diabetes-Associated Cardiac Dysfunction and Remodeling: Effects Beyond Glucose Lowering. Diabetes 2022; 71:1660-1678. [PMID: 35594380 DOI: 10.2337/db21-0898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/13/2022]
Abstract
Patients with type 2 diabetes have a substantial risk of developing cardiovascular disease. Phosphodiesterase 4 (PDE4) dysregulation is of pathophysiological importance in metabolic disorders. For determination of the role of PDE4 in diabetic cardiac dysfunction, mice fed with a high-fat diet (HFD) were treated by pharmacological inhibition of PDE4 or cardiac specific knocking down of PDE4D. Mice on HFD developed diabetes and cardiac dysfunction with increased cardiac PDE4D5 expression. PDE4 inhibitor roflumilast can reverse hyperglycemia and cardiac dysfunction, accompanied by the decrease of PDE4D expression and increase of muscle specific miRNA miR-1 level in hearts. Either cardiac specific PDE4D knockdown or miR-1 overexpression significantly reversed cardiac dysfunction in HFD mice, despite persistence of hyperglycemia. Findings of gain- and loss-of-function studies of PDE4D in cardiomyocytes indicated that inhibition of insulin-induced PDE4D protected cardiac hypertrophy by preserving miR-1 expression in cardiomyocytes through promoting cAMP-CREB-Sirt1 signaling-induced SERCA2a expression. We further revealed that insulin also induced PDE4D expression in cardiac fibroblasts, which causes cardiac fibrosis through TGF-β1 signaling-mediated miR-1 reduction. Importantly, the expression of PDE4D5 was increased in human failing hearts of individuals with diabetes. These studies elucidate a novel mechanism by which hyperinsulinemia-induced cardiac PDE4D expression contributes to diabetic cardiac remodeling through reducing the expression of miR-1 and upregulation of miR-1 target hypertrophy and fibrosis-associated genes. Our study suggests a therapeutic potential of PDE4 inhibitor roflumilast in preventing or treating cardiac dysfunction in diabetes in addition to lowering glucose.
Collapse
Affiliation(s)
- Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Xiang Tao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
20
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Herrmann FE, Hesslinger C, Wollin L, Nickolaus P. BI 1015550 is a PDE4B Inhibitor and a Clinical Drug Candidate for the Oral Treatment of Idiopathic Pulmonary Fibrosis. Front Pharmacol 2022; 13:838449. [PMID: 35517783 PMCID: PMC9065678 DOI: 10.3389/fphar.2022.838449] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
The anti-inflammatory and immunomodulatory abilities of oral selective phosphodiesterase 4 (PDE4) inhibitors enabled the approval of roflumilast and apremilast for use in chronic obstructive pulmonary disease and psoriasis/psoriatic arthritis, respectively. However, the antifibrotic potential of PDE4 inhibitors has not yet been explored clinically. BI 1015550 is a novel PDE4 inhibitor showing a preferential enzymatic inhibition of PDE4B. In vitro, BI 1015550 inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) and phytohemagglutinin-induced interleukin-2 synthesis in human peripheral blood mononuclear cells, as well as LPS-induced TNF-α synthesis in human and rat whole blood. In vivo, oral BI 1015550 shows potent anti-inflammatory activity in mice by inhibiting LPS-induced TNF-α synthesis ex vivo and in Suncus murinus by inhibiting neutrophil influx into bronchoalveolar lavage fluid stimulated by nebulized LPS. In Suncus murinus, PDE4 inhibitors induce emesis, a well-known gastrointestinal side effect limiting the use of PDE4 inhibitors in humans, and the therapeutic ratio of BI 1015550 appeared to be substantially improved compared with roflumilast. Oral BI 1015550 was also tested in two well-known mouse models of lung fibrosis (induced by either bleomycin or silica) under therapeutic conditions, and appeared to be effective by modulating various model-specific parameters. To better understand the antifibrotic potential of BI 1015550 in vivo, its direct effect on human fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) was investigated in vitro. BI 1015550 inhibited transforming growth factor-β-stimulated myofibroblast transformation and the mRNA expression of various extracellular matrix proteins, as well as basic fibroblast growth factor plus interleukin-1β-induced cell proliferation. Nintedanib overall was unremarkable in these assays, but interestingly, the inhibition of proliferation was synergistic when it was combined with BI 1015550, leading to a roughly 10-fold shift of the concentration–response curve to the left. In summary, the unique preferential inhibition of PDE4B by BI 1015550 and its anticipated improved tolerability in humans, plus its anti-inflammatory and antifibrotic potential, suggest BI 1015550 to be a promising oral clinical candidate for the treatment of IPF and other fibro-proliferative diseases.
Collapse
Affiliation(s)
| | | | - Lutz Wollin
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Peter Nickolaus
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
22
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
23
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
24
|
Vinogradova TM, Lakatta EG. Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021. [PMID: 34445119 DOI: 10.3390/ijms22168414.pmid:34445119;pmcid:pmc8395138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021; 22:ijms22168414. [PMID: 34445119 PMCID: PMC8395138 DOI: 10.3390/ijms22168414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
|
26
|
Abou Ziki MD, Bhat N, Neogi A, Driscoll TP, Ugwu N, Liu Y, Smith E, Abboud JM, Chouairi S, Schwartz MA, Akar JG, Mani A. Epistatic interaction of PDE4DIP and DES mutations in familial atrial fibrillation with slow conduction. Hum Mutat 2021; 42:1279-1293. [PMID: 34289528 DOI: 10.1002/humu.24265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022]
Abstract
The genetic causes of atrial fibrillation (AF) with slow conduction are unknown. Eight kindreds with familial AF and slow conduction, including a family affected by early-onset AF, heart block, and incompletely penetrant nonischemic dilated cardiomyopathy (DCM) underwent whole exome sequencing. A known pathogenic mutation in the desmin (DES) gene resulting in p.S13F substitution (NM_001927.3:c.38C>T) at a PKC phosphorylation site was identified in all four members of the kindred with early-onset AF and heart block, while only two developed DCM. Higher penetrance for AF and heart block prompted a genetic screening for DES modifier(s). A deleterious mutation in the phosphodiesterase-4D-interacting-protein (PDE4DIP) gene resulting in p.A123T substitution (NM_001002811:c.367G>A) was identified that segregated with early-onset AF, heart block, and the DES mutation. Three additional novel deleterious PDE4DIP mutations were identified in four other unrelated kindreds. Characterization of PDE4DIPA123T in vitro suggested impaired compartmentalization of PKA and PDE4D characterized by reduced colocalization with PDE4D, increased cAMP activation leading to higher PKA phosphorylation of the β2-adrenergic-receptor, and decreased PKA phosphorylation of desmin after isoproterenol stimulation. Our findings identify PDE4DIP as a novel gene for slow AF and unravel its epistatic interaction with DES mutations in development of conduction disease and arrhythmia.
Collapse
Affiliation(s)
- Maen D Abou Ziki
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Neha Bhat
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arpita Neogi
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tristan P Driscoll
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Chemical and Biomedical Engineering, Florida A&M University-Florida State University College of Engineering, Tallahassee, Florida, USA
| | - Nelson Ugwu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Ya Liu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emily Smith
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Johny M Abboud
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Salah Chouairi
- Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Martin A Schwartz
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Joseph G Akar
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Arya Mani
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
27
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
28
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
29
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
30
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Abi-Gerges A, Castro L, Leroy J, Domergue V, Fischmeister R, Vandecasteele G. Selective changes in cytosolic β-adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy. J Mol Cell Cardiol 2021; 150:109-121. [PMID: 33184031 DOI: 10.1016/j.yjmcc.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Background In cardiomyocytes, phosphodiesterases (PDEs) type 3 and 4 are the predominant enzymes that degrade cAMP generated by β-adrenergic receptors (β-ARs), impacting notably the regulation of the L-type Ca2+ current (ICa,L). Cardiac hypertrophy (CH) is accompanied by a reduction in PDE3 and PDE4, however, whether this affects the dynamic regulation of cytosolic cAMP and ICa,L is not known. Methods and Results CH was induced in rats by thoracic aortic banding over a time period of five weeks and was confirmed by anatomical measurements. Left ventricular myocytes (LVMs) were isolated from CH and sham-operated (SHAM) rats and transduced with an adenovirus encoding a Förster resonance energy transfer (FRET)-based cAMP biosensor or subjected to the whole-cell configuration of the patch-clamp technique to measure ICa,L. Aortic stenosis resulted in a 46% increase in heart weight to body weight ratio in CH compared to SHAM. In SHAM and CH LVMs, a short isoprenaline stimulation (Iso, 100 nM, 15 s) elicited a similar transient increase in cAMP with a half decay time (t1/2off) of ~50 s. In both groups, PDE4 inhibition with Ro 20-1724 (10 μM) markedly potentiated the amplitude and slowed the decline of the cAMP transient, this latter effect being more pronounced in SHAM (t1/2off ~ 250 s) than in CH (t1/2off ~ 150 s, P < 0.01). In contrast, PDE3 inhibition with cilostamide (1 μM) had no effect on the amplitude of the cAMP transient and a minimal effect on its recovery in SHAM, whereas it potentiated the amplitude and slowed the decay in CH (t1/2off ~ 80 s). Iso pulse stimulation also elicited a similar transient increase in ICa,L in SHAM and CH, although the duration of the rising phase was delayed in CH. Inhibition of PDE3 or PDE4 potentiated ICa,L amplitude in SHAM but not in CH. Besides, while only PDE4 inhibition slowed down the decline of ICa,L in SHAM, both PDE3 and PDE4 contributed in CH. Conclusion These results identify selective alterations in cytosolic cAMP and ICa,L regulation by PDE3 and PDE4 in CH, and show that the balance between PDE3 and PDE4 for the regulation of β-AR responses is shifted toward PDE3 during CH.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, 75005, Paris, France
| | - Jérôme Leroy
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Valérie Domergue
- UMS-IPSIT, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
32
|
Age-Dependent Maturation of iPSC-CMs Leads to the Enhanced Compartmentation of β 2AR-cAMP Signalling. Cells 2020; 9:cells9102275. [PMID: 33053822 PMCID: PMC7601768 DOI: 10.3390/cells9102275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to differentiate induced-pluripotent stem cells into cardiomyocytes (iPSC-CMs) has opened up novel avenues for potential cardiac therapies. However, iPSC-CMs exhibit a range of somewhat immature functional properties. This study explored the development of the beta-adrenergic receptor (βAR) pathway, which is crucial in regulating contraction and signifying the health and maturity of myocytes. We explored the compartmentation of β2AR-signalling and phosphodiesterases (PDEs) in caveolae, as functional nanodomains supporting the mature phenotype. Förster Resonance Energy Transfer (FRET) microscopy was used to study the cyclic adenosine monophosphate (cAMP) levels in iPSC-CMs at day 30, 60, and 90 following βAR subtype-specific stimulation. Subsequently, the PDE2, PDE3, and PDE4 activity was investigated using specific inhibitors. Cells were treated with methyl-β-cyclodextrin (MβCD) to remove cholesterol as a method of decompartmentalising β2AR. As iPSC-CMs mature with a prolonged culture time, the caveolae density is increased, leading to a reduction in the overall cytoplasmic cAMP signal stimulated through β2AR (but not β1AR). Pan-phosphodiesterase inhibition or caveolae depletion leads to an increase in the β2AR-stimulated cytoplasmic cAMP. Moreover, with time in culture, the increase in the βAR-dependent cytoplasmic cAMP becomes more sensitive to cholesterol removal. The regulation of the β2AR response by PDE2 and 4 is similarly increased with the time in culture. We conclude that both the β2AR and PDEs are restricted to the caveolae nanodomains, and thereby exhibit a tighter spatial restriction over the cAMP signal in late-stage compared to early iPSC-CMs.
Collapse
|
33
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
34
|
Karam S, Margaria JP, Bourcier A, Mika D, Varin A, Bedioune I, Lindner M, Bouadjel K, Dessillons M, Gaudin F, Lefebvre F, Mateo P, Lechène P, Gomez S, Domergue V, Robert P, Coquard C, Algalarrondo V, Samuel JL, Michel JB, Charpentier F, Ghigo A, Hirsch E, Fischmeister R, Leroy J, Vandecasteele G. Cardiac Overexpression of PDE4B Blunts β-Adrenergic Response and Maladaptive Remodeling in Heart Failure. Circulation 2020; 142:161-174. [PMID: 32264695 DOI: 10.1161/circulationaha.119.042573] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The cyclic AMP (adenosine monophosphate; cAMP)-hydrolyzing protein PDE4B (phosphodiesterase 4B) is a key negative regulator of cardiac β-adrenergic receptor stimulation. PDE4B deficiency leads to abnormal Ca2+ handling and PDE4B is decreased in pressure overload hypertrophy, suggesting that increasing PDE4B in the heart is beneficial in heart failure. METHODS We measured PDE4B expression in human cardiac tissues and developed 2 transgenic mouse lines with cardiomyocyte-specific overexpression of PDE4B and an adeno-associated virus serotype 9 encoding PDE4B. Myocardial structure and function were evaluated by echocardiography, ECG, and in Langendorff-perfused hearts. Also, cAMP and PKA (cAMP dependent protein kinase) activity were monitored by Förster resonance energy transfer, L-type Ca2+ current by whole-cell patch-clamp, and cardiomyocyte shortening and Ca2+ transients with an Ionoptix system. Heart failure was induced by 2 weeks infusion of isoproterenol or transverse aortic constriction. Cardiac remodeling was evaluated by serial echocardiography, morphometric analysis, and histology. RESULTS PDE4B protein was decreased in human failing hearts. The first PDE4B-transgenic mouse line (TG15) had a ≈15-fold increase in cardiac cAMP-PDE activity and a ≈30% decrease in cAMP content and fractional shortening associated with a mild cardiac hypertrophy that resorbed with age. Basal ex vivo myocardial function was unchanged, but β-adrenergic receptor stimulation of cardiac inotropy, cAMP, PKA, L-type Ca2+ current, Ca2+ transients, and cell contraction were blunted. Endurance capacity and life expectancy were normal. Moreover, these mice were protected from systolic dysfunction, hypertrophy, lung congestion, and fibrosis induced by chronic isoproterenol treatment. In the second PDE4B-transgenic mouse line (TG50), markedly higher PDE4B overexpression, resulting in a ≈50-fold increase in cardiac cAMP-PDE activity caused a ≈50% decrease in fractional shortening, hypertrophy, dilatation, and premature death. In contrast, mice injected with adeno-associated virus serotype 9 encoding PDE4B (1012 viral particles/mouse) had a ≈50% increase in cardiac cAMP-PDE activity, which did not modify basal cardiac function but efficiently prevented systolic dysfunction, apoptosis, and fibrosis, while attenuating hypertrophy induced by chronic isoproterenol infusion. Similarly, adeno-associated virus serotype 9 encoding PDE4B slowed contractile deterioration, attenuated hypertrophy and lung congestion, and prevented apoptosis and fibrotic remodeling in transverse aortic constriction. CONCLUSIONS Our results indicate that a moderate increase in PDE4B is cardioprotective and suggest that cardiac gene therapy with PDE4B might constitute a new promising approach to treat heart failure.
Collapse
Affiliation(s)
- Sarah Karam
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | | | - Aurélia Bourcier
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Delphine Mika
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Audrey Varin
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Ibrahim Bedioune
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Marta Lindner
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Kaouter Bouadjel
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Matthieu Dessillons
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Françoise Gaudin
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Florence Lefebvre
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Philippe Mateo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Patrick Lechène
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Susana Gomez
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Valérie Domergue
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Pauline Robert
- Université Paris-Saclay, Inserm, UMS-IPSIT, 92296 Châtenay-Malabry, France (F.G., V.D., P.R.)
| | - Charlène Coquard
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Vincent Algalarrondo
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jane-Lise Samuel
- UMR-S 942, Inserm, Paris University, 75010 Paris, France (J.-L.S.)
| | - Jean-Baptiste Michel
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.).,UMR-S 1148, INSERM, Paris University, X. Bichat hospital, 75018 Paris, France (J.-B.M.)
| | - Flavien Charpentier
- Institut du thorax, Inserm, CNRS, Univ. Nantes, 8 quai Moncousu, 44007 Nantes cedex 1, France (F.C.)
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University di Torino, 10126 Torino, Italy (J.P.M., A.G., E.H.)
| | - Rodolphe Fischmeister
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Jérôme Leroy
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| | - Grégoire Vandecasteele
- Université Paris-Saclay, Inserm, Signaling and Cardiovascular Pathophysiology, UMR-S 1180, 92296 Châtenay-Malabry, France (S.K., A.R., D.M., A.V., I.B., M.L., K.B., M.D., F.L., P.M., P.L., S.G., C.C., V.A., R.F., J.L., G.V.)
| |
Collapse
|
35
|
Xie M, Huang HL, Zhang WH, Gao L, Wang YW, Zhu XJ, Li W, Chen KS, Boutjdir M, Chen L. Increased sarcoplasmic/endoplasmic reticulum calcium ATPase 2a activity underlies the mechanism of the positive inotropic effect of ivabradine. Exp Physiol 2020; 105:477-488. [PMID: 31912915 DOI: 10.1113/ep087964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? The therapeutic effect of ivabradine on patients with chronic heart failure and chronic stable angina pectoris is mediated through a reduction in heart rate: what are the haemodynamic characteristics and the mechanism of the inotropic effect? What is the main finding and its importance? Ivabradine has a positive inotropic effect and lowers the heart rate both in vivo and in vitro. These effects are likely mediated by ivabradine's significant increase of the fast component rate constant mediated by sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and decrease of the slow component rate constant that is mediated by the Na+ /Ca2+ exchanger and sarcolemmal Ca2+ -ATPase during the Ca2+ transient decay phase. ABSTRACT Ivabradine's therapeutic effect is mediated by a reduction of the heart rate; however, its haemodynamic characteristics and the mechanism of its inotropic effect are poorly understood. We aimed to investigate the positive inotropic effect of ivabradine and its underlying mechanism. The results demonstrated that ivabradine increased the positive inotropy of the rat heart in vivo by increasing the stroke work, cardiac output, stroke volume, end-diastolic volume, end-systolic pressure, ejection fraction, ±dP/dtmax , left ventricular end-systolic elastance and systolic blood pressure without altering the diastolic blood pressure and arterial elastance. This inotropic effect was observed in both non-paced and paced rat isolated heart. Ivabradine increased the Ca2+ transient amplitude and the reuptake rates of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), lowered the diastolic Ca2+ level and suppressed the combined extrusion rate of the Na+ /Ca2+ exchanger and the sarcolemmal Ca2+ -ATPase. In addition, ivabradine widened the action potential duration, hyperpolarized the resting membrane potential, increased sarcoplasmic reticulum Ca2+ content and reduced Ca2+ leak. Overall, ivabradine had a positive inotropic effect brought about by enhanced SERCA2a activity, which might be mediated by increased phospholamban phosphorylation. The positive inotropic effect along with the lowered heart rate underlies ivabradine's therapeutic effect in heart failure.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China.,Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui-Li Huang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Hui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke-Su Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, 800 Poly place, Brooklyn, NY, USA.,State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, USA.,NYU School of Medicine, 550 First Avenue, New York, NY, USA
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Double Tower, China Medical City, Taizhou, China
| |
Collapse
|
36
|
Cardiac troponin I R193H mutant interacts with HDAC1 to repress phosphodiesterase 4D expression in cardiomyocytes. Genes Dis 2020; 8:569-579. [PMID: 34179318 PMCID: PMC8209310 DOI: 10.1016/j.gendis.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/13/2019] [Accepted: 01/06/2020] [Indexed: 01/12/2023] Open
Abstract
Cardiac Troponin I (cTnI) is a subunit of the thin filament involved in regulation of heart contraction. Mutated cTnI accounts for most genetic mutations associated with restrictive cardiomyopathy (RCM). We previously found phosphodiesterase 4D (PDE4D) decreased in RCM mice with cTnIR193H mutation and the mutant cTnI might be involved in PDE4D reduction. This study aims to elucidate a novel role of cTnIR193H mutant as a gene regulator. Overexpression of cTnIR193H mutant in cardiomyocytes showed decrease in PDED4D protein expression, while the enrichment of histone deacetylase 1 (HDAC1) was increased along with decreases in acetylated lysine 4 (acH3K4) and 9 (acH3K9) levels in the PDE4D promoter. HDAC1 overexpression could also downregulate PDE4D via reducing acH3K4 and acH3K9 levels. Co-IP assays showed that cTnIR193H mutant owed increased binding ability to HDAC1 compared with wild type cTnI. EGCG as a HDAC1 inhibitor could diminish the strength of cTnIR193H-HDAC1 interactions and alleviate the reduction in PDE4D expression. Together, our data indicated that cTnIR193H mutant could repress PDE4D expression in cardiomyocytes through HDAC1 associated histone deacetylation modification. Unlike the typical function of cTnI in cytoplasm, our study suggested a novel role of cTnI mutants in nuclei in regulating gene expression.
Collapse
|
37
|
Vinogradova TM, Sirenko S, Lukyanenko YO, Yang D, Tarasov KV, Lyashkov AE, Varghese NJ, Li Y, Chakir K, Ziman B, Lakatta EG. Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4. Circ Arrhythm Electrophysiol 2019; 11:e005896. [PMID: 29880528 DOI: 10.1161/circep.117.005896] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nevin J Varghese
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yue Li
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
38
|
Stathopoulou K, Schobesberger S, Bork NI, Sprenger JU, Perera RK, Sotoud H, Geertz B, David JP, Christ T, Nikolaev VO, Cuello F. Divergent off-target effects of RSK N-terminal and C-terminal kinase inhibitors in cardiac myocytes. Cell Signal 2019; 63:109362. [PMID: 31344438 DOI: 10.1016/j.cellsig.2019.109362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
P90 ribosomal S6 kinases (RSK) are ubiquitously expressed and regulate responses to neurohumoral stimulation. To study the role of RSK signalling on cardiac myocyte function and protein phosphorylation, pharmacological RSK inhibitors were tested. Here, the ATP competitive N-terminal kinase domain-targeting compounds D1870 and SL0101 and the allosteric C-terminal kinase domain-targeting FMK were evaluated regarding their ability to modulate cardiac myocyte protein phosphorylation. Exposure to D1870 and SL0101 significantly enhanced phospholamban (PLN) Ser16 and cardiac troponin I (cTnI) Ser22/23 phosphorylation in response to D1870 and SL0101 upon exposure to phenylephrine (PE) that activates RSK. In contrast, FMK pretreatment significantly reduced phosphorylation of both proteins in response to PE. D1870-mediated enhancement of PLN Ser16 phosphorylation was also observed after exposure to isoprenaline or noradrenaline (NA) stimuli that do not activate RSK. Inhibition of β-adrenoceptors by atenolol or cAMP-dependent protein kinase (PKA) by H89 prevented the D1870-mediated increase in PLN phosphorylation, suggesting that PKA is the kinase responsible for the observed phosphorylation. Assessment of changes in cAMP formation by FRET measurements revealed increased cAMP formation in vicinity to PLN after exposure to D1870 and SL0101. D1870 inhibited phosphodiesterase activity similarly as established PDE inhibitors rolipram or 3-isobutyl-1-methylxanthine. Assessment of catecholamine-mediated force development in rat ventricular muscle strips revealed significantly reduced EC50 for NA after D1870 pretreatment (DMSO/NA: 2.33 μmol/L vs. D1870/NA: 1.30 μmol/L). The data reveal enhanced cardiac protein phosphorylation by D1870 and SL0101 that was not detectable in response to FMK. This disparate effect might be attributed to off-target inhibition of PDEs with impact on muscle function as demonstrated for D1870.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sophie Schobesberger
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nadja I Bork
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Julia U Sprenger
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ruwan K Perera
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hannieh Sotoud
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Geertz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jean-Pierre David
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
39
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|
40
|
Huang H, Xie M, Gao L, Zhang W, Zhu X, Wang Y, Li W, Wang R, Chen K, Boutjdir M, Chen L. Rolipram, a PDE4 Inhibitor, Enhances the Inotropic Effect of Rat Heart by Activating SERCA2a. Front Pharmacol 2019; 10:221. [PMID: 30967774 PMCID: PMC6439224 DOI: 10.3389/fphar.2019.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
This study was designed to investigate the hemodynamic effect of rolipram, a phosphodiesterase type 4 (PDE4) inhibitor, in normal rat hearts both in vivo and in vitro and its underlying mechanism. The pressure-volume loop, isolated heart, and Ca2+ transients triggered by field stimulation or caffeine were used to analyze the hemodynamic mechanism of rolipram. The results demonstrated that rolipram (3 mg/kg, ip) significantly increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-systolic volume, end-diastolic volume, end-systolic pressure, heart rate, ejection fraction, peak rate of rise of left pressure (+dp/dtmax), the slopes of end-systolic pressure-volume relationship (slope of ESPVR) named as left ventricular end-systolic elastance, and reduced the slopes of end-diastolic pressure-volume relationship (slope of EDPVR). Meanwhile, the systolic blood pressure, diastolic blood pressure, and pulse pressure were significantly enhanced by rolipram. Also, rolipram deviated normal ventricular-arterial coupling without changing the arterial elastance. Furthermore, rolipram (0.1, 1, 10 μM) also exerted positive inotropic effect in isolated rat hearts by increasing the left ventricular development pressure, and +dp/dtmax in non-paced and paced modes. Rolipram (10 μM) increased the SERCA2a activity, Ca2+ content, and Ca2+ leak rate without changing diastolic Ca2+ level. Rolipram had significant positive inotropic effect with less effect on peripheral vascular elastance and its underlying mechanism was mediated by increasing SERCA2a activity. PDE4 inhibition by rolipram resulted in a positive inotropic effect and might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Collapse
Affiliation(s)
- Huili Huang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Xie
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaojia Zhu
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwei Wang
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongrong Wang
- Dalian Institute of Chemical Physics, Dalian, China.,Chinese Academy of Sciences Biomedical Innovation Institute of China Medical City, Taizhou, China
| | - Kesu Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, Nanjing General Hospital of Nanjing Military Command Region, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, New York, NY, United States.,State University of New York Downstate Medical Center, New York, NY, United States.,NYU School of Medicine, New York, NY, United States
| | - Long Chen
- National Standard Laboratory of Pharmacology for Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Taizhou, China
| |
Collapse
|
41
|
Huang C, Zhong Q, Tang L, Wang H, Xu J, Zhou Z. Discovery of 2‐(3,4‐dialkoxyphenyl)‐2‐(substituted pyridazin‐3‐yl)acetonitriles as phosphodiesterase 4 inhibitors with anti‐neuroinflammation potential based on three‐dimensional quantitative structure–activity relationship study. Chem Biol Drug Des 2018; 93:484-502. [DOI: 10.1111/cbdd.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/10/2018] [Accepted: 10/27/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Chang Huang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Qiu‐Ping Zhong
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Lv Tang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Hai‐Tao Wang
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Jiang‐Ping Xu
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| | - Zhong‐Zhen Zhou
- Department of Neuropharmacology and Novel Drug DiscoverySchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
- Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical University Guangzhou China
| |
Collapse
|
42
|
Bhogal NK, Hasan A, Gorelik J. The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 2018; 5:jcdd5020025. [PMID: 29751502 PMCID: PMC6023514 DOI: 10.3390/jcdd5020025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 12/26/2022] Open
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a signaling messenger produced in response to the stimulation of cellular receptors, and has a myriad of functional applications depending on the cell type. In the heart, cAMP is responsible for regulating the contraction rate and force; however, cAMP is also involved in multiple other functions. Compartmentation of cAMP production may explain the specificity of signaling following a stimulus. In particular, transverse tubules (T-tubules) and caveolae have been found to be critical structural components for the spatial confinement of cAMP in cardiomyocytes, as exemplified by beta-adrenergic receptor (β-ARs) signaling. Pathological alterations in cardiomyocyte microdomain architecture led to a disruption in compartmentation of the cAMP signal. In this review, we discuss the difference between atrial and ventricular cardiomyocytes in respect to microdomain organization, and the pathological changes of atrial and ventricular cAMP signaling in response to myocyte dedifferentiation. In addition, we review the role of localized phosphodiesterase (PDE) activity in constraining the cAMP signal. Finally, we discuss microdomain biogenesis and maturation of cAMP signaling with the help of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Understanding these mechanisms may help to overcome the detrimental effects of pathological structural remodeling.
Collapse
Affiliation(s)
- Navneet K Bhogal
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Alveera Hasan
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
43
|
Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother 2018; 99:947-955. [DOI: 10.1016/j.biopha.2018.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
|
44
|
Ercu M, Klussmann E. Roles of A-Kinase Anchoring Proteins and Phosphodiesterases in the Cardiovascular System. J Cardiovasc Dev Dis 2018; 5:jcdd5010014. [PMID: 29461511 PMCID: PMC5872362 DOI: 10.3390/jcdd5010014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 12/13/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) and cyclic nucleotide phosphodiesterases (PDEs) are essential enzymes in the cyclic adenosine 3′-5′ monophosphate (cAMP) signaling cascade. They establish local cAMP pools by controlling the intensity, duration and compartmentalization of cyclic nucleotide-dependent signaling. Various members of the AKAP and PDE families are expressed in the cardiovascular system and direct important processes maintaining homeostatic functioning of the heart and vasculature, e.g., the endothelial barrier function and excitation-contraction coupling. Dysregulation of AKAP and PDE function is associated with pathophysiological conditions in the cardiovascular system including heart failure, hypertension and atherosclerosis. A number of diseases, including autosomal dominant hypertension with brachydactyly (HTNB) and type I long-QT syndrome (LQT1), result from mutations in genes encoding for distinct members of the two classes of enzymes. This review provides an overview over the AKAPs and PDEs relevant for cAMP compartmentalization in the heart and vasculature and discusses their pathophysiological role as well as highlights the potential benefits of targeting these proteins and their protein-protein interactions for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Maria Ercu
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
| | - Enno Klussmann
- Max Delbrück Center for Molecular Medicine Berlin (MDC), Berlin 13125, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Berlin 13347, Germany.
| |
Collapse
|
45
|
Leroy J, Vandecasteele G, Fischmeister R. Cyclic AMP signaling in cardiac myocytes. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Fertig BA, Baillie GS. PDE4-Mediated cAMP Signalling. J Cardiovasc Dev Dis 2018; 5:jcdd5010008. [PMID: 29385021 PMCID: PMC5872356 DOI: 10.3390/jcdd5010008] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/20/2022] Open
Abstract
cAMP is the archetypal and ubiquitous second messenger utilised for the fine control of many cardiovascular cell signalling systems. The ability of cAMP to elicit cell surface receptor-specific responses relies on its compartmentalisation by cAMP hydrolysing enzymes known as phosphodiesterases. One family of these enzymes, PDE4, is particularly important in the cardiovascular system, where it has been extensively studied and shown to orchestrate complex, localised signalling that underpins many crucial functions of the heart. In the cardiac myocyte, cAMP activates PKA, which phosphorylates a small subset of mostly sarcoplasmic substrate proteins that drive β-adrenergic enhancement of cardiac function. The phosphorylation of these substrates, many of which are involved in cardiac excitation-contraction coupling, has been shown to be tightly regulated by highly localised pools of individual PDE4 isoforms. The spatial and temporal regulation of cardiac signalling is made possible by the formation of macromolecular “signalosomes”, which often include a cAMP effector, such as PKA, its substrate, PDE4 and an anchoring protein such as an AKAP. Studies described in the present review highlight the importance of this relationship for individual cardiac PKA substrates and we provide an overview of how this signalling paradigm is coordinated to promote efficient adrenergic enhancement of cardiac function. The role of PDE4 also extends to the vascular endothelium, where it regulates vascular permeability and barrier function. In this distinct location, PDE4 interacts with adherens junctions to regulate their stability. These highly specific, non-redundant roles for PDE4 isoforms have far reaching therapeutic potential. PDE inhibitors in the clinic have been plagued with problems due to the active site-directed nature of the compounds which concomitantly attenuate PDE activity in all highly localised “signalosomes”.
Collapse
|
47
|
Maass PG, Glažar P, Memczak S, Dittmar G, Hollfinger I, Schreyer L, Sauer AV, Toka O, Aiuti A, Luft FC, Rajewsky N. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl) 2017; 95:1179-1189. [PMID: 28842720 PMCID: PMC5660143 DOI: 10.1007/s00109-017-1582-9] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 01/09/2023]
Abstract
Abstract Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients’ samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. Key messages circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.
Electronic supplementary material The online version of this article (10.1007/s00109-017-1582-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp G Maass
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany. .,Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Ave, Cambridge, MA, 02138, USA.
| | - Petar Glažar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Sebastian Memczak
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Gunnar Dittmar
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Irene Hollfinger
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Luisa Schreyer
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Aisha V Sauer
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy
| | - Okan Toka
- Department of Pediatric Cardiology, Children's Hospital, Friedrich-Alexander University Erlangen, Loschge Strasse 15, 91054, Erlangen, Germany.,The German Registry for Congenital Heart Defects, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alessandro Aiuti
- Scientific Institute HS Raffaele, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), 20132, Milan, Italy.,Vita Salute San Raffaele University, Milan, Italy
| | - Friedrich C Luft
- Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine (MDC), Lindenberger Weg 80, 13125, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37235, USA
| | - Nikolaus Rajewsky
- Max Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.
| |
Collapse
|
48
|
Parks RJ, Bogachev O, Mackasey M, Ray G, Rose RA, Howlett SE. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms. J Mol Cell Cardiol 2017; 111:51-60. [PMID: 28778766 DOI: 10.1016/j.yjmcc.2017.07.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/11/2017] [Accepted: 07/28/2017] [Indexed: 12/18/2022]
Abstract
Ovariectomy (OVX) promotes sarcoplasmic reticulum (SR) Ca2+ overload in ventricular myocytes. We hypothesized that the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway contributes to this Ca2+ dysregulation. Myocytes were isolated from adult female C57BL/6 mice following either OVX or sham surgery (surgery at ≈1mos). Contractions, Ca2+ concentrations (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in voltage-clamped myocytes. Intracellular cAMP levels were determined with an enzyme immunoassay; phosphodiesterase (PDE) and adenylyl cyclase (AC) isoform expression was examined with qPCR. Ca2+ currents were similar in myocytes from sham and OVX mice but Ca2+ transients, excitation-contraction (EC)-coupling gain, SR content and contractions were larger in OVX than sham cells. To determine if the cAMP/PKA pathway mediated OVX-induced alterations in EC-coupling, cardiomyocytes were incubated with the PKA inhibitor H-89 (2μM), which abolished baseline differences. While basal intracellular cAMP did not differ, levels were higher in OVX than sham in the presence of a non-selective PDE inhibitor (300μM IBMX), or an AC activator (10μM forskolin). This suggests the production of cAMP by AC and its breakdown by PDE were enhanced by OVX. Consistent with this, mRNA levels for both AC5 and PDE4A were higher in OVX in comparison to sham. Differences in Ca2+ homeostasis and contractions were abolished when sham and OVX cells were dialyzed with patch pipettes containing the same concentration of 8-bromoadenosine-cAMP (50μM). Interestingly, selective inhibition of PDE4 increased Ca2+ current only in OVX cells. Together, these findings suggest that estrogen suppresses SR Ca2+ release and that this is regulated, at least in part, by the cAMP/PKA pathway. These changes in the cAMP/PKA pathway may promote Ca2+ dysregulation and cardiovascular disease when ovarian estrogen levels fall. These results advance our understanding of female-specific cardiomyocyte mechanisms that may affect responses to therapeutic interventions in older women.
Collapse
Affiliation(s)
- Randi J Parks
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Oleg Bogachev
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Martin Mackasey
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Gibanananda Ray
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Robert A Rose
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| | - Susan E Howlett
- Department of Pharmacology, Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada; Department of Medicine (Geriatric Medicine), Faculty of Medicine, Dalhousie University, 5850 College Street, P.O. Box 15000, Halifax B3H 4R2, Nova Scotia, Canada.
| |
Collapse
|
49
|
Bolger GB. The PDE4 cAMP-Specific Phosphodiesterases: Targets for Drugs with Antidepressant and Memory-Enhancing Action. ADVANCES IN NEUROBIOLOGY 2017; 17:63-102. [PMID: 28956330 DOI: 10.1007/978-3-319-58811-7_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PDE4 cyclic nucleotide phosphodiesterases are essential regulators of cAMP abundance in the CNS through their ability to regulate PKA activity, the phosphorylation of CREB, and other important elements of signal transduction. In pre-clinical models and in early-stage clinical trials, PDE4 inhibitors have been shown to have antidepressant and memory-enhancing activity. However, the development of clinically-useful PDE4 inhibitors for CNS disorders has been limited by variable efficacy and significant side effects. Recent structural studies have greatly enhanced our understanding of the molecular configuration of PDE4 enzymes, especially the "long" PDE4 isoforms that are abundant in the CNS. The new structural data provide a rationale for the development of a new generation of PDE4 inhibitors that specifically act on long PDE4 isoforms. These next generation PDE4 inhibitors may also be capable of targeting the interactions of select long forms with their "partner" proteins, such as RACK1, β-arrestin, and DISC1. They would therefore have the ability to affect cAMP levels in specific cellular compartments and target localized cellular functions, such as synaptic plasticity. These new agents might also be able to target PDE4 populations in select regions of the CNS that are implicated in learning and memory, affect, and cognition. Potential therapeutic uses of these agents could include affective disorders, memory enhancement, and neurogenesis.
Collapse
Affiliation(s)
- Graeme B Bolger
- Departments of Medicine and Pharmacology, University of Alabama at Birmingham, 1720 2nd Avenue South, NP 2501, Birmingham, AL, 35294-3300, USA.
| |
Collapse
|
50
|
Bedioune I, Bobin P, Leroy J, Fischmeister R, Vandecasteele G. Cyclic Nucleotide Phosphodiesterases and Compartmentation in Normal and Diseased Heart. MICRODOMAINS IN THE CARDIOVASCULAR SYSTEM 2017. [DOI: 10.1007/978-3-319-54579-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|