1
|
Krause PN, McGeorge G, McPeek JL, Khalid S, Nelin LD, Liu Y, Chen B. Pde3a and Pde3b regulation of murine pulmonary artery smooth muscle cell growth and metabolism. Physiol Rep 2024; 12:e70089. [PMID: 39435735 PMCID: PMC11494452 DOI: 10.14814/phy2.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/23/2024] Open
Abstract
A role for metabolically active adipose tissue in pulmonary hypertension (PH) pathogenesis is emerging. Alterations in cellular metabolism in metabolic syndrome are triggers of PH-related vascular dysfunction. Metabolic reprogramming in proliferative pulmonary vascular cells causes a metabolic switch from oxidative phosphorylation to glycolysis. PDE3A and PDE3B subtypes in the regulation of metabolism in pulmonary artery smooth muscle cells (PASMC) are poorly understood. We previously found that PDE3A modulates the cellular energy sensor, AMPK, in human PASMC. We demonstrate that global Pde3a knockout mice have right ventricular (RV) hypertrophy, elevated RV systolic pressures, and metabolic dysfunction with elevated serum free fatty acids (FFA). Therefore, we sought to delineate Pde3a/Pde3b regulation of metabolic pathways in PASMC. We found that PASMC Pde3a deficiency, and to a lesser extent Pde3b deficiency, downregulates AMPK, CREB and PPARγ, and upregulates pyruvate kinase dehydrogenase expression, suggesting decreased oxidative phosphorylation. Interestingly, siRNA Pde3a knockdown in adipocytes led to elevated FFA secretion. Furthermore, PASMC exposed to siPDE3A-transfected adipocyte media led to decreased α-SMA, AMPK and CREB phosphorylation, and greater viable cell numbers compared to controls under the same conditions. These data demonstrate that deficiencies of Pde3a and Pde3b alter pathways that affect cell growth and metabolism in PASMC.
Collapse
MESH Headings
- Animals
- Male
- Mice
- AMP-Activated Protein Kinases/metabolism
- AMP-Activated Protein Kinases/genetics
- Cell Proliferation
- Cells, Cultured
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- PPAR gamma/metabolism
- PPAR gamma/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/cytology
Collapse
Affiliation(s)
- Paulina N. Krause
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Gabrielle McGeorge
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Jennifer L. McPeek
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Sidra Khalid
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
| | - Leif D. Nelin
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Yusen Liu
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | - Bernadette Chen
- Center for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOhioUSA
- Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| |
Collapse
|
2
|
Liu YB, Wang Q, Song YL, Song XM, Fan YC, Kong L, Zhang JS, Li S, Lv YJ, Li ZY, Dai JY, Qiu ZK. Abnormal phosphorylation / dephosphorylation and Ca 2+ dysfunction in heart failure. Heart Fail Rev 2024; 29:751-768. [PMID: 38498262 DOI: 10.1007/s10741-024-10395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Heart failure (HF) can be caused by a variety of causes characterized by abnormal myocardial systole and diastole. Ca2+ current through the L-type calcium channel (LTCC) on the membrane is the initial trigger signal for a cardiac cycle. Declined systole and diastole in HF are associated with dysfunction of myocardial Ca2+ function. This disorder can be correlated with unbalanced levels of phosphorylation / dephosphorylation of LTCC, endoplasmic reticulum (ER), and myofilament. Kinase and phosphatase activity changes along with HF progress, resulting in phased changes in the degree of phosphorylation / dephosphorylation. It is important to realize the phosphorylation / dephosphorylation differences between a normal and a failing heart. This review focuses on phosphorylation / dephosphorylation changes in the progression of HF and summarizes the effects of phosphorylation / dephosphorylation of LTCC, ER function, and myofilament function in normal conditions and HF based on previous experiments and clinical research. Also, we summarize current therapeutic methods based on abnormal phosphorylation / dephosphorylation and clarify potential therapeutic directions.
Collapse
Affiliation(s)
- Yan-Bing Liu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China
- Medical College, Qingdao University, Qingdao, China
| | - Qian Wang
- Medical College, Qingdao University, Qingdao, China
| | - Yu-Ling Song
- Department of Pediatrics, Huantai County Hospital of Traditional Chinese Medicine, Zibo, China
| | | | - Yu-Chen Fan
- Medical College, Qingdao University, Qingdao, China
| | - Lin Kong
- Medical College, Qingdao University, Qingdao, China
| | | | - Sheng Li
- Medical College, Qingdao University, Qingdao, China
| | - Yi-Ju Lv
- Medical College, Qingdao University, Qingdao, China
| | - Ze-Yang Li
- Medical College, Qingdao University, Qingdao, China
| | - Jing-Yu Dai
- Department of Oncology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| | - Zhen-Kang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, Shandong Province, China.
| |
Collapse
|
3
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
4
|
Kraft AE, Bork NI, Subramanian H, Pavlaki N, Failla AV, Zobiak B, Conti M, Nikolaev VO. Phosphodiesterases 4B and 4D Differentially Regulate cAMP Signaling in Calcium Handling Microdomains of Mouse Hearts. Cells 2024; 13:476. [PMID: 38534320 DOI: 10.3390/cells13060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
The ubiquitous second messenger 3',5'-cyclic adenosine monophosphate (cAMP) regulates cardiac excitation-contraction coupling (ECC) by signaling in discrete subcellular microdomains. Phosphodiesterase subfamilies 4B and 4D are critically involved in the regulation of cAMP signaling in mammalian cardiomyocytes. Alterations of PDE4 activity in human hearts has been shown to result in arrhythmias and heart failure. Here, we sought to systematically investigate specific roles of PDE4B and PDE4D in the regulation of cAMP dynamics in three distinct subcellular microdomains, one of them located at the caveolin-rich plasma membrane which harbors the L-type calcium channels (LTCCs), as well as at two sarco/endoplasmic reticulum (SR) microdomains centered around SR Ca2+-ATPase (SERCA2a) and cardiac ryanodine receptor type 2 (RyR2). Transgenic mice expressing Förster Resonance Energy Transfer (FRET)-based cAMP-specific biosensors targeted to caveolin-rich plasma membrane, SERCA2a and RyR2 microdomains were crossed to PDE4B-KO and PDE4D-KO mice. Direct analysis of the specific effects of both PDE4 subfamilies on local cAMP dynamics was performed using FRET imaging. Our data demonstrate that all three microdomains are differentially regulated by these PDE4 subfamilies. Whereas both are involved in cAMP regulation at the caveolin-rich plasma membrane, there are clearly two distinct cAMP microdomains at the SR formed around RyR2 and SERCA2a, which are preferentially controlled by PDE4B and PDE4D, respectively. This correlates with local cAMP-dependent protein kinase (PKA) substrate phosphorylation and arrhythmia susceptibility. Immunoprecipitation assays confirmed that PDE4B is associated with RyR2 along with PDE4D. Stimulated Emission Depletion (STED) microscopy of immunostained cardiomyocytes suggested possible co-localization of PDE4B with both sarcolemmal and RyR2 microdomains. In conclusion, our functional approach could show that both PDE4B and PDE4D can differentially regulate cardiac cAMP microdomains associated with calcium homeostasis. PDE4B controls cAMP dynamics in both caveolin-rich plasma membrane and RyR2 vicinity. Interestingly, PDE4B is the major regulator of the RyR2 microdomain, as opposed to SERCA2a vicinity, which is predominantly under PDE4D control, suggesting a more complex regulatory pattern than previously thought, with multiple PDEs acting at the same location.
Collapse
Affiliation(s)
- Axel E Kraft
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Antonio V Failla
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Bernd Zobiak
- UKE Microscopy Imaging Facility (UMIF), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Conti
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Bork NI, Subramanian H, Kurelic R, Nikolaev VO, Rybalkin SD. Role of Phosphodiesterase 1 in the Regulation of Real-Time cGMP Levels and Contractility in Adult Mouse Cardiomyocytes. Cells 2023; 12:2759. [PMID: 38067187 PMCID: PMC10706287 DOI: 10.3390/cells12232759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
In mouse cardiomyocytes, the expression of two subfamilies of the calcium/calmodulin-regulated cyclic nucleotide phosphodiesterase 1 (PDE1)-PDE1A and PDE1C-has been reported. PDE1C was found to be the major subfamily in the human heart. It is a dual substrate PDE and can hydrolyze both 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP). Previously, it has been reported that the PDE1 inhibitor ITI-214 shows positive inotropic effects in heart failure patients which were largely attributed to the cAMP-dependent protein kinase (PKA) signaling. However, the role of PDE1 in the regulation of cardiac cGMP has not been directly addressed. Here, we studied the effect of PDE1 inhibition on cGMP levels in adult mouse ventricular cardiomyocytes using a highly sensitive fluorescent biosensor based on Förster resonance energy transfer (FRET). Live-cell imaging in paced and resting cardiomyocytes showed an increase in cGMP after PDE1 inhibition with ITI-214. Furthermore, PDE1 inhibition and PDE1A knockdown amplified the cGMP-FRET responses to the nitric oxide (NO)-donor sodium nitroprusside (SNP) but not to the C-type natriuretic peptide (CNP), indicating a specific role of PDE1 in the regulation of the NO-sensitive guanylyl cyclase (NO-GC)-regulated cGMP microdomain. ITI-214, in combination with CNP or SNP, showed a positive lusitropic effect, improving the relaxation of isolated myocytes. Immunoblot analysis revealed increased phospholamban (PLN) phosphorylation at Ser-16 in cells treated with a combination of SNP and PDE1 inhibitor but not with SNP alone. Our findings reveal a previously unreported role of PDE1 in the regulation of the NO-GC/cGMP microdomain and mouse ventricular myocyte contractility. Since PDE1 serves as a cGMP degrading PDE in cardiomyocytes and has the highest hydrolytic activities, it can be expected that PDE1 inhibition might be beneficial in combination with cGMP-elevating drugs for the treatment of cardiac diseases.
Collapse
Affiliation(s)
- Nadja I. Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Hariharan Subramanian
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Roberta Kurelic
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Sergei D. Rybalkin
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (N.I.B.); (H.S.); (R.K.)
| |
Collapse
|
6
|
Zhu H, Song YC, Hang PZ. Letter by Zhu et al Regarding Article, "Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure". Circulation 2023; 148:855-856. [PMID: 37669359 DOI: 10.1161/circulationaha.123.065539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Affiliation(s)
- Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, China (H.Z., Y.-c.S., P.-z.H.)
| | - Yu-Chen Song
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, China (H.Z., Y.-c.S., P.-z.H.)
- Medical College, Yangzhou University, China (Y.-c.S.)
| | - Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People's Hospital, China (H.Z., Y.-c.S., P.-z.H.)
| |
Collapse
|
7
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
8
|
Menges L, Giesen J, Yilmaz K, Mergia E, Füchtbauer A, Füchtbauer EM, Koesling D, Russwurm M. It takes two to tango: cardiac fibroblast-derived NO-induced cGMP enters cardiac myocytes and increases cAMP by inhibiting PDE3. Commun Biol 2023; 6:504. [PMID: 37165086 PMCID: PMC10172304 DOI: 10.1038/s42003-023-04880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/27/2023] [Indexed: 05/12/2023] Open
Abstract
The occurrence of NO/cGMP signalling in cardiac cells is a matter of debate. Recent measurements with a FRET-based cGMP indicator in isolated cardiac cells revealed NO-induced cGMP signals in cardiac fibroblasts while cardiomyocytes were devoid of these signals. In a fibroblast/myocyte co-culture model though, cGMP formed in fibroblasts in response to NO entered cardiomyocytes via gap junctions. Here, we demonstrate gap junction-mediated cGMP transfer from cardiac fibroblasts to myocytes in intact tissue. In living cardiac slices of mice with cardiomyocyte-specific expression of a FRET-based cGMP indicator (αMHC/cGi-500), NO-dependent cGMP signals were shown to occur in myocytes, to depend on gap junctions and to be degraded mainly by PDE3. Stimulation of NO-sensitive guanylyl cyclase enhanced Forskolin- and Isoproterenol-induced cAMP and phospholamban phosphorylation. Genetic inactivation of NO-GC in Tcf21-expressing cardiac fibroblasts abrogated the synergistic action of NO-GC stimulation on Iso-induced phospholamban phosphorylation, identifying fibroblasts as cGMP source and substantiating the necessity of cGMP-transfer to myocytes. In sum, NO-stimulated cGMP formed in cardiac fibroblasts enters cardiomyocytes in native tissue where it exerts an inhibitory effect on cAMP degradation by PDE3, thereby increasing cAMP and downstream effects in cardiomyocytes. Hence, enhancing β-receptor-induced contractile responses appears as one of NO/cGMP's functions in the non-failing heart.
Collapse
Affiliation(s)
- Lukas Menges
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Jan Giesen
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Kerem Yilmaz
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Evanthia Mergia
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Annette Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus C, Denmark
| | | | - Doris Koesling
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Michael Russwurm
- Institute of Pharmacology and Toxicology, Ruhr-University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
9
|
Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, Eken OS, Veras I, Huynh NTT, Børstad M, Marshall S, Shen X, Louch WE, Robinson EL, Cleveland JC, Ambardekar AV, Schwisow JA, Jonas E, Calejo AI, Morth JP, Taskén K, Melleby AO, Lunde PK, Sjaastad I, Carlson CR, Aronsen JM. Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure. Circulation 2023; 147:1221-1236. [PMID: 36876489 DOI: 10.1161/circulationaha.121.054168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.
Collapse
Affiliation(s)
- Jonas Skogestad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Albert
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Gustav B Lothe
- Department of Pharmacology, Oslo University Hospital, Norway (G.B.L.)
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ioanni Veras
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ngoc Trang Thi Huynh
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Mira Børstad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Serena Marshall
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Emma Louise Robinson
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joseph C Cleveland
- Department of Surgery (J.C.C.), University of Colorado Anschutz Medical Campus, Aurora
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jessica A Schwisow
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Eric Jonas
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Ana I Calejo
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby (J.P.M.)
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Norway (K.T.)
| | - Arne Olav Melleby
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| |
Collapse
|
10
|
Subramaniam G, Schleicher K, Kovanich D, Zerio A, Folkmanaite M, Chao YC, Surdo NC, Koschinski A, Hu J, Scholten A, Heck AJ, Ercu M, Sholokh A, Park KC, Klussmann E, Meraviglia V, Bellin M, Zanivan S, Hester S, Mohammed S, Zaccolo M. Integrated Proteomics Unveils Nuclear PDE3A2 as a Regulator of Cardiac Myocyte Hypertrophy. Circ Res 2023; 132:828-848. [PMID: 36883446 PMCID: PMC10045983 DOI: 10.1161/circresaha.122.321448] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Signaling by cAMP is organized in multiple distinct subcellular nanodomains regulated by cAMP-hydrolyzing PDEs (phosphodiesterases). Cardiac β-adrenergic signaling has served as the prototypical system to elucidate cAMP compartmentalization. Although studies in cardiac myocytes have provided an understanding of the location and properties of a handful of cAMP subcellular compartments, an overall view of the cellular landscape of cAMP nanodomains is missing. METHODS Here, we combined an integrated phosphoproteomics approach that takes advantage of the unique role that individual PDEs play in the control of local cAMP, with network analysis to identify previously unrecognized cAMP nanodomains associated with β-adrenergic stimulation. We then validated the composition and function of one of these nanodomains using biochemical, pharmacological, and genetic approaches and cardiac myocytes from both rodents and humans. RESULTS We demonstrate the validity of the integrated phosphoproteomic strategy to pinpoint the location and provide critical cues to determine the function of previously unknown cAMP nanodomains. We characterize in detail one such compartment and demonstrate that the PDE3A2 isoform operates in a nuclear nanodomain that involves SMAD4 (SMAD family member 4) and HDAC-1 (histone deacetylase 1). Inhibition of PDE3 results in increased HDAC-1 phosphorylation, leading to inhibition of its deacetylase activity, derepression of gene transcription, and cardiac myocyte hypertrophic growth. CONCLUSIONS We developed a strategy for detailed mapping of subcellular PDE-specific cAMP nanodomains. Our findings reveal a mechanism that explains the negative long-term clinical outcome observed in patients with heart failure treated with PDE3 inhibitors.
Collapse
Affiliation(s)
- Gunasekaran Subramaniam
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Katharina Schleicher
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Duangnapa Kovanich
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
- Centre for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Thailand (D.K.)
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Milda Folkmanaite
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Ying-Chi Chao
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Nicoletta C. Surdo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Now with Neuroscience Institute, National Research Council of Italy (CNR), Padova (N.C.S.)
| | - Andreas Koschinski
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Jianshu Hu
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, the Netherlands (D.K., A.S., A.J.R.H.)
| | - Maria Ercu
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Kyung Chan Park
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and German Centre for Cardiovascular Research, Partner Site Berlin (M.E., A.S., E.K.)
| | - Viviana Meraviglia
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, the Netherlands (V.M., M.B.)
- Department of Biology, University of Padua, Italy (M.B.)
- Veneto Institute of Molecular Medicine, Padua, Italy (M.B.)
| | - Sara Zanivan
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom (S.Z.)
- Institute of Cancer Sciences, University of Glasgow, United Kingdom (S.Z.)
| | - Svenja Hester
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry (S.H., S.M.), University of Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics (G.S., K.S., D.K., A.Z., M.F., Y.-C.C., N.C.S., A.K., J.H., K.C.P., M.Z.), University of Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre (M.Z.)
| |
Collapse
|
11
|
Regulation of cardiac function by cAMP nanodomains. Biosci Rep 2023; 43:232544. [PMID: 36749130 PMCID: PMC9970827 DOI: 10.1042/bsr20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a diffusible intracellular second messenger that plays a key role in the regulation of cardiac function. In response to the release of catecholamines from sympathetic terminals, cAMP modulates heart rate and the strength of contraction and ease of relaxation of each heartbeat. At the same time, cAMP is involved in the response to a multitude of other hormones and neurotransmitters. A sophisticated network of regulatory mechanisms controls the temporal and spatial propagation of cAMP, resulting in the generation of signaling nanodomains that enable the second messenger to match each extracellular stimulus with the appropriate cellular response. Multiple proteins contribute to this spatiotemporal regulation, including the cAMP-hydrolyzing phosphodiesterases (PDEs). By breaking down cAMP to a different extent at different locations, these enzymes generate subcellular cAMP gradients. As a result, only a subset of the downstream effectors is activated and a specific response is executed. Dysregulation of cAMP compartmentalization has been observed in cardiovascular diseases, highlighting the importance of appropriate control of local cAMP signaling. Current research is unveiling the molecular organization underpinning cAMP compartmentalization, providing original insight into the physiology of cardiac myocytes and the alteration associated with disease, with the potential to uncover novel therapeutic targets. Here, we present an overview of the mechanisms that are currently understood to be involved in generating cAMP nanodomains and we highlight the questions that remain to be answered.
Collapse
|
12
|
Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev 2023; 32:32/167/220206. [PMID: 36813290 PMCID: PMC9949383 DOI: 10.1183/16000617.0206-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/04/2022] [Indexed: 02/24/2023] Open
Abstract
Patients with interstitial lung disease can develop a progressive fibrosing phenotype characterised by an irreversible, progressive decline in lung function despite treatment. Current therapies slow, but do not reverse or stop, disease progression and are associated with side-effects that can cause treatment delay or discontinuation. Most crucially, mortality remains high. There is an unmet need for more efficacious and better-tolerated and -targeted treatments for pulmonary fibrosis. Pan-phosphodiesterase 4 (PDE4) inhibitors have been investigated in respiratory conditions. However, the use of oral inhibitors can be complicated due to class-related systemic adverse events, including diarrhoea and headaches. The PDE4B subtype, which has an important role in inflammation and fibrosis, has been identified in the lungs. Preferentially targeting PDE4B has the potential to drive anti-inflammatory and antifibrotic effects via a subsequent increase in cAMP, but with improved tolerability. Phase I and II trials of a novel PDE4B inhibitor in patients with idiopathic pulmonary fibrosis have shown promising results, stabilising pulmonary function measured by change in forced vital capacity from baseline, while maintaining an acceptable safety profile. Further research into the efficacy and safety of PDE4B inhibitors in larger patient populations and for a longer treatment period is needed.
Collapse
Affiliation(s)
- Martin Kolb
- Department of Respiratory Medicine, Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada,Firestone Institute for Respiratory Health, St Joseph's Healthcare, Hamilton, ON, Canada
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, APHP, Paris, France,INSERM, Unité 1152, Université Paris Cité, Paris, France
| | - Toby M. Maher
- Keck Medicine of USC, Los Angeles, CA, USA,National Heart and Lung Institute, Imperial College London, London, UK,Corresponding author: Toby M. Maher ()
| |
Collapse
|
13
|
Tadros R, Zheng SL, Grace C, Jordà P, Francis C, Jurgens SJ, Thomson KL, Harper AR, Ormondroyd E, West DM, Xu X, Theotokis PI, Buchan RJ, McGurk KA, Mazzarotto F, Boschi B, Pelo E, Lee M, Noseda M, Varnava A, Vermeer AM, Walsh R, Amin AS, van Slegtenhorst MA, Roslin N, Strug LJ, Salvi E, Lanzani C, de Marvao A, Roberts JD, Tremblay-Gravel M, Giraldeau G, Cadrin-Tourigny J, L'Allier PL, Garceau P, Talajic M, Pinto YM, Rakowski H, Pantazis A, Baksi J, Halliday BP, Prasad SK, Barton PJ, O'Regan DP, Cook SA, de Boer RA, Christiaans I, Michels M, Kramer CM, Ho CY, Neubauer S, Matthews PM, Wilde AA, Tardif JC, Olivotto I, Adler A, Goel A, Ware JS, Bezzina CR, Watkins H. Large scale genome-wide association analyses identify novel genetic loci and mechanisms in hypertrophic cardiomyopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.28.23285147. [PMID: 36778260 PMCID: PMC9915807 DOI: 10.1101/2023.01.28.23285147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality with both monogenic and polygenic components. We here report results from the largest HCM genome-wide association study (GWAS) and multi-trait analysis (MTAG) including 5,900 HCM cases, 68,359 controls, and 36,083 UK Biobank (UKB) participants with cardiac magnetic resonance (CMR) imaging. We identified a total of 70 loci (50 novel) associated with HCM, and 62 loci (32 novel) associated with relevant left ventricular (LV) structural or functional traits. Amongst the common variant HCM loci, we identify a novel HCM disease gene, SVIL, which encodes the actin-binding protein supervillin, showing that rare truncating SVIL variants cause HCM. Mendelian randomization analyses support a causal role of increased LV contractility in both obstructive and non-obstructive forms of HCM, suggesting common disease mechanisms and anticipating shared response to therapy. Taken together, the findings significantly increase our understanding of the genetic basis and molecular mechanisms of HCM, with potential implications for disease management.
Collapse
Affiliation(s)
- Rafik Tadros
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sean L Zheng
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Christopher Grace
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paloma Jordà
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Catherine Francis
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sean J Jurgens
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kate L Thomson
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Oxford Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Andrew R Harper
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Elizabeth Ormondroyd
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dominique M West
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Xiao Xu
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Pantazis I Theotokis
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Rachel J Buchan
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Kathryn A McGurk
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Francesco Mazzarotto
- National Heart & Lung Institute, Imperial College London, London, UK
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | | | - Michael Lee
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Michela Noseda
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Amanda Varnava
- National Heart & Lung Institute, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
| | - Alexa Mc Vermeer
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Department of Clinical Genetics, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
| | - Roddy Walsh
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Marjon A van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole Roslin
- The Centre for Applied Genomics, Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lisa J Strug
- Departments of Statistical Sciences and Computer Science, Data Sciences Institute, University of Toronto, Toronto, ON, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
- Ontario Regional Centre, Canadian Statistical Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, Nephrology Operative Unit, IRCCS San Raffaele Hospital, Milan, Italy
- Chair of Nephrology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio de Marvao
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, ON, Canada
| | - Maxime Tremblay-Gravel
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Genevieve Giraldeau
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Philippe L L'Allier
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Patrick Garceau
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Mario Talajic
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | | | - Antonis Pantazis
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - John Baksi
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Brian P Halliday
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sanjay K Prasad
- National Heart & Lung Institute, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Paul Jr Barton
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Stuart A Cook
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart Centre Singapore, Singapore
- Duke-National University of Singapore Medical School, Singapore
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Imke Christiaans
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michelle Michels
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher M Kramer
- Department of Medicine, Cardiovascular Division, University of Virginia Health, Charlottesville, VA, USA
| | - Carolyn Y Ho
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, NIHR Oxford Health Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Arthur A Wilde
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
- Department of Clinical Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- ECGen, Cardiogenetics Focus Group of EHRA, France
| | - Jean-Claude Tardif
- Cardiovascular Genetics Centre, Montreal Heart Institute, Montreal, QC, Canada
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, Meyer Children Hospital, University of Florence, Florence, Italy
| | - Arnon Adler
- Division of Cardiology, Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anuj Goel
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - James S Ware
- National Heart & Lung Institute, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Program in Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart, (ERN GUARD-HEART; https://guardheart.ern-net.eu)
| | - Hugh Watkins
- Radcliffe Department of Medicine, University of Oxford, Division of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Cyclic nucleotide phosphodiesterases as therapeutic targets in cardiac hypertrophy and heart failure. Nat Rev Cardiol 2023; 20:90-108. [PMID: 36050457 DOI: 10.1038/s41569-022-00756-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) modulate the neurohormonal regulation of cardiac function by degrading cAMP and cGMP. In cardiomyocytes, multiple PDE isozymes with different enzymatic properties and subcellular localization regulate local pools of cyclic nucleotides and specific functions. This organization is heavily perturbed during cardiac hypertrophy and heart failure (HF), which can contribute to disease progression. Clinically, PDE inhibition has been considered a promising approach to compensate for the catecholamine desensitization that accompanies HF. Although PDE3 inhibitors, such as milrinone or enoximone, have been used clinically to improve systolic function and alleviate the symptoms of acute HF, their chronic use has proved to be detrimental. Other PDEs, such as PDE1, PDE2, PDE4, PDE5, PDE9 and PDE10, have emerged as new potential targets to treat HF, each having a unique role in local cyclic nucleotide signalling pathways. In this Review, we describe cAMP and cGMP signalling in cardiomyocytes and present the various PDE families expressed in the heart as well as their modifications in pathological cardiac hypertrophy and HF. We also appraise the evidence from preclinical models as well as clinical data pointing to the use of inhibitors or activators of specific PDEs that could have therapeutic potential in HF.
Collapse
|
15
|
Arige V, Yule DI. Spatial and temporal crosstalk between the cAMP and Ca 2+ signaling systems. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119293. [PMID: 35588944 DOI: 10.1016/j.bbamcr.2022.119293] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/31/2022]
Abstract
The ubiquitous secondary messengers, Ca2+ and cAMP, play a vital role in shaping a diverse array of physiological processes. More significantly, accumulating evidence over the past several decades underpin extensive crosstalk between these two canonical messengers in discrete sub-cellular nanodomains across various cell types. Within such specialized nanodomains, each messenger fine-tunes signaling to maintain homeostasis by manipulating the activities of cellular machinery accountable for the metabolism or activity of the complementary pathway. Interaction between these messengers is ensured by scaffolding proteins which tether components of the signaling machinery in close proximity. Disruption of dynamic communications between Ca2+ and cAMP at these loci consequently is linked to several pathological conditions. This review summarizes recent novel mechanisms underlying effective crosstalk between Ca2+ and cAMP in such nanodomains.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA..
| |
Collapse
|
16
|
Mani A. PDE4DIP in health and diseases. Cell Signal 2022; 94:110322. [PMID: 35346821 PMCID: PMC9618167 DOI: 10.1016/j.cellsig.2022.110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Cyclic-AMP (cAMP), the first second messenger to be identified, is synthesized, and is universally utilized as a second messenger, and plays important roles in integrity, and function of organs, including heart. Through its coupling with other intracellular messengers, cAMP facilitates excitation-contraction coupling, increases heart rate and conduction velocity. It is degraded by a class of enzymes called cAMP-dependent phosphodiesterase (PDE), with PDE3 and PDE4 being the predominant isoforms in the heart. This highly diverse class of enzymes degrade cAMP and through anchoring proteins generates dynamic microdomains to target specific proteins and control specific cell functions in response to various stimuli. The impaired function of the anchoring protein either by inherited genetic mutations or acquired injuries results in altered intracellular targeting, and blunted responsiveness to stimulating pathways and contributes to pathological cardiac remodeling, cardiac arrhythmias and reduced cell survival. Recent genetic studies provide compelling evidence for an association between the variants in the anchoring protein PDE4DIP and atrial fibrillation, stroke, and heart failure.
Collapse
Affiliation(s)
- Arya Mani
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, Zhu Z, Xu T, Zhang Y. Association of DNA Methylation in Blood Pressure-Related Genes With Ischemic Stroke Risk and Prognosis. Front Cardiovasc Med 2022; 9:796245. [PMID: 35345488 PMCID: PMC8957103 DOI: 10.3389/fcvm.2022.796245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundA genome-wide association study identified 12 genetic loci influencing blood pressure and implicated a role of DNA methylation. However, the relationship between methylation and ischemic stroke has not yet been clarified. We conducted a large-sample sequencing study to identify blood leukocyte DNA methylations as novel biomarkers for ischemic stroke risk and prognosis based on previously identified genetic loci.MethodsMethylation levels of 17 genes were measured by sequencing in 271 ischemic stroke cases and 323 controls, and the significant associations were validated in another independent sample of 852 cases and 925 controls. The associations between methylation levels and ischemic stroke risk and prognosis were evaluated.ResultsMethylation of AMH, C17orf82, HDAC9, IGFBP3, LRRC10B, PDE3A, PRDM6, SYT7 and TBX2 was significantly associated with ischemic stroke. Compared to participants without any hypomethylated targets, the odds ratio (OR) (95% confidence interval, CI) for those with 9 hypomethylated genes was 1.41 (1.33–1.51) for ischemic stroke. Adding methylation levels of the 9 genes to the basic model of traditional risk factors significantly improved the risk stratification for ischemic stroke. Associations between AMH, HDAC9, IGFBP3, PDE3A and PRDM6 gene methylation and modified Rankin Scale scores were significant after adjustment for covariates. Lower methylation levels of AMH, C17orf82, PRDM6 and TBX2 were significantly associated with increased 3-month mortality. Compared to patients without any hypomethylated targets, the OR (95% CI) for those with 4 hypomethylated targets was 1.12 (1.08–1.15) for 3-month mortality (P = 2.28 × 10−10).ConclusionThe present study identified blood leukocyte DNA methylations as potential factors affecting ischemic stroke risk and prognosis among Han Chinese individuals.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yonghong Zhang
| |
Collapse
|
18
|
Calamera G, Moltzau LR, Levy FO, Andressen KW. Phosphodiesterases and Compartmentation of cAMP and cGMP Signaling in Regulation of Cardiac Contractility in Normal and Failing Hearts. Int J Mol Sci 2022; 23:2145. [PMID: 35216259 PMCID: PMC8880502 DOI: 10.3390/ijms23042145] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Cardiac contractility is regulated by several neural, hormonal, paracrine, and autocrine factors. Amongst these, signaling through β-adrenergic and serotonin receptors generates the second messenger cyclic AMP (cAMP), whereas activation of natriuretic peptide receptors and soluble guanylyl cyclases generates cyclic GMP (cGMP). Both cyclic nucleotides regulate cardiac contractility through several mechanisms. Phosphodiesterases (PDEs) are enzymes that degrade cAMP and cGMP and therefore determine the dynamics of their downstream effects. In addition, the intracellular localization of the different PDEs may contribute to regulation of compartmented signaling of cAMP and cGMP. In this review, we will focus on the role of PDEs in regulating contractility and evaluate changes in heart failure.
Collapse
Affiliation(s)
| | | | | | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, P.O. Box 1057 Blindern, 0316 Oslo, Norway; (G.C.); (L.R.M.); (F.O.L.)
| |
Collapse
|
19
|
Agarwal SR, Sherpa RT, Moshal KS, Harvey RD. Compartmentalized cAMP signaling in cardiac ventricular myocytes. Cell Signal 2022; 89:110172. [PMID: 34687901 PMCID: PMC8602782 DOI: 10.1016/j.cellsig.2021.110172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/03/2023]
Abstract
Activation of different receptors that act by generating the common second messenger cyclic adenosine monophosphate (cAMP) can elicit distinct functional responses in cardiac myocytes. Selectively sequestering cAMP activity to discrete intracellular microdomains is considered essential for generating receptor-specific responses. The processes that control this aspect of compartmentalized cAMP signaling, however, are not completely clear. Over the years, technological innovations have provided critical breakthroughs in advancing our understanding of the mechanisms underlying cAMP compartmentation. Some of the factors identified include localized production of cAMP by differential distribution of receptors, localized breakdown of this second messenger by targeted distribution of phosphodiesterase enzymes, and limited diffusion of cAMP by protein kinase A (PKA)-dependent buffering or physically restricted barriers. The aim of this review is to provide a discussion of our current knowledge and highlight some of the gaps that still exist in the field of cAMP compartmentation in cardiac myocytes.
Collapse
|
20
|
Bork NI, Kuret A, Cruz Santos M, Molina CE, Reiter B, Reichenspurner H, Friebe A, Skryabin BV, Rozhdestvensky TS, Kuhn M, Lukowski R, Nikolaev VO. Rise of cGMP by partial phosphodiesterase-3A degradation enhances cardioprotection during hypoxia. Redox Biol 2021; 48:102179. [PMID: 34763298 PMCID: PMC8590074 DOI: 10.1016/j.redox.2021.102179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
3',5'-cyclic guanosine monophosphate (cGMP) is a druggable second messenger regulating cell growth and survival in a plethora of cells and disease states, many of which are associated with hypoxia. For example, in myocardial infarction and heart failure (HF), clinical use of cGMP-elevating drugs improves disease outcomes. Although they protect mice from ischemia/reperfusion (I/R) injury, the exact mechanism how cardiac cGMP signaling is regulated in response to hypoxia is still largely unknown. By monitoring real-time cGMP dynamics in murine and human cardiomyocytes using in vitro and in vivo models of hypoxia/reoxygenation (H/R) and I/R injury combined with biochemical methods, we show that hypoxia causes rapid but partial degradation of cGMP-hydrolyzing phosphodiesterase-3A (PDE3A) protein via the autophagosomal-lysosomal pathway. While increasing cGMP in hypoxia prevents cell death, partially reduced PDE3A does not change the pro-apoptotic second messenger 3',5'-cyclic adenosine monophosphate (cAMP). However, it leads to significantly enhanced protective effects of clinically relevant activators of nitric oxide-sensitive guanylyl cyclase (NO-GC). Collectively, our mouse and human data unravel a new mechanism by which cardiac cGMP improves hypoxia-associated disease conditions.
Collapse
Affiliation(s)
- Nadja I Bork
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Melanie Cruz Santos
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Beate Reiter
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart & Vascular Center Hamburg, Hamburg, Germany
| | - Andreas Friebe
- Physiologisches Institut, University of Würzburg, Würzburg, Germany
| | - Boris V Skryabin
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Timofey S Rozhdestvensky
- Core Facility Transgenic Animal and Genetic Engineering Models (TRAM), University of Münster, Münster, Germany
| | - Michaela Kuhn
- Physiologisches Institut, University of Würzburg, Würzburg, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
21
|
Muller GK, Song J, Jani V, Wu Y, Liu T, Jeffreys WPD, O’Rourke B, Anderson ME, Kass DA. PDE1 Inhibition Modulates Ca v1.2 Channel to Stimulate Cardiomyocyte Contraction. Circ Res 2021; 129:872-886. [PMID: 34521216 PMCID: PMC8553000 DOI: 10.1161/circresaha.121.319828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Grace K Muller
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joy Song
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vivek Jani
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuejin Wu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ting Liu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William PD Jeffreys
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian O’Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark E Anderson
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
22
|
Harvey RD, Clancy CE. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding. J Physiol 2021; 599:4527-4544. [PMID: 34510451 DOI: 10.1113/jp280801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
The small diffusible second messenger 3',5'-cyclic adenosine monophosphate (cAMP) is found in virtually every cell in our bodies, where it mediates responses to a variety of different G protein coupled receptors (GPCRs). In the heart, cAMP plays a critical role in regulating many different aspects of cardiac myocyte function, including gene transcription, cell metabolism, and excitation-contraction coupling. Yet, not all GPCRs that stimulate cAMP production elicit the same responses. Subcellular compartmentation of cAMP is essential to explain how different receptors can utilize the same diffusible second messenger to elicit unique functional responses. However, the mechanisms contributing to this behaviour and its significance in producing physiological and pathological responses are incompletely understood. Mathematical modelling has played an essential role in gaining insight into these questions. This review discusses what we currently know about cAMP compartmentation in cardiac myocytes and questions that are yet to be answered.
Collapse
Affiliation(s)
- Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, NV, 89557, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, CA, 95616, USA
| |
Collapse
|
23
|
Gilotra NA, DeVore AD, Povsic TJ, Hays AG, Hahn VS, Agunbiade TA, DeLong A, Satlin A, Chen R, Davis R, Kass DA. Acute Hemodynamic Effects and Tolerability of Phosphodiesterase-1 Inhibition With ITI-214 in Human Systolic Heart Failure. Circ Heart Fail 2021; 14:e008236. [PMID: 34461742 DOI: 10.1161/circheartfailure.120.008236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND PDE1 (phosphodiesterase type 1) hydrolyzes cyclic adenosine and guanosine monophosphate. ITI-214 is a highly selective PDE1 inhibitor that induces arterial vasodilation and positive inotropy in larger mammals. Here, we assessed pharmacokinetics, hemodynamics, and tolerability of single-dose ITI-214 in humans with stable heart failure with reduced ejection fraction. METHODS Patients with heart failure with reduced ejection fraction were randomized 3:1 to 10, 30, or 90 mg ITI-214 single oral dose or placebo (n=9/group). Vital signs and electrocardiography were monitored predose to 5 hours postdose and transthoracic echoDoppler cardiography predose and 2-hours postdose. RESULTS Patient age averaged 54 years; 42% female, and 60% Black. Mean systolic blood pressure decreased 3 to 8 mm Hg (P<0.001) and heart rate increased 5 to 9 bpm (P≤0.001 for 10, 30 mg doses, RM-ANCOVA). After 4 hours, neither blood pressure or heart rate significantly differed among cohorts (supine or standing). ITI-214 increased mean left ventricular power index, a relatively load-insensitive inotropic index, by 0.143 Watts/mL2·104 (P=0.03, a +41% rise; 5-71 CI) and cardiac output by 0.83 L/min (P=0.002, +31%, 13-49 CI) both at the 30 mg dose. Systemic vascular resistance declined with 30 mg (-564 dynes·s/cm-5, P<0.001) and 90 mg (-370, P=0.016). Diastolic changes were minimal, and no parameters were significantly altered with placebo. ITI-214 was well-tolerated. Five patients had mild-moderate hypotension or orthostatic hypotension recorded adverse events. There were no significant changes in arrhythmia outcome and no serious adverse events. CONCLUSIONS Single-dose ITI-214 is well-tolerated and confers inodilator effects in humans with heart failure with reduced ejection fraction. Further investigations of its therapeutic utility are warranted. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT03387215.
Collapse
Affiliation(s)
- Nisha A Gilotra
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (N.A.G., A.G.H., V.S.H., T.A.A., D.A.K.)
| | - Adam D DeVore
- Duke University School of Medicine, Durham, NC (A.D.D.)
| | | | - Allison G Hays
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (N.A.G., A.G.H., V.S.H., T.A.A., D.A.K.)
| | - Virginia S Hahn
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (N.A.G., A.G.H., V.S.H., T.A.A., D.A.K.)
| | - Tolu A Agunbiade
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (N.A.G., A.G.H., V.S.H., T.A.A., D.A.K.)
| | - Allison DeLong
- Duke Clinical Research Institute, Durham, NC (T.J.P., A.D.)
| | - Andrew Satlin
- Intra-Cellular Therapies, Inc, New York, NY (A.S., R.C., R.D.)
| | - Richard Chen
- Intra-Cellular Therapies, Inc, New York, NY (A.S., R.C., R.D.)
| | - Robert Davis
- Intra-Cellular Therapies, Inc, New York, NY (A.S., R.C., R.D.)
| | - David A Kass
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (N.A.G., A.G.H., V.S.H., T.A.A., D.A.K.)
| |
Collapse
|
24
|
Vinogradova TM, Lakatta EG. Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021. [PMID: 34445119 DOI: 10.3390/ijms22168414.pmid:34445119;pmcid:pmc8395138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| |
Collapse
|
25
|
Dual Activation of Phosphodiesterase 3 and 4 Regulates Basal Cardiac Pacemaker Function and Beyond. Int J Mol Sci 2021; 22:ijms22168414. [PMID: 34445119 PMCID: PMC8395138 DOI: 10.3390/ijms22168414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022] Open
Abstract
The sinoatrial (SA) node is the physiological pacemaker of the heart, and resting heart rate in humans is a well-known risk factor for cardiovascular disease and mortality. Consequently, the mechanisms of initiating and regulating the normal spontaneous SA node beating rate are of vital importance. Spontaneous firing of the SA node is generated within sinoatrial nodal cells (SANC), which is regulated by the coupled-clock pacemaker system. Normal spontaneous beating of SANC is driven by a high level of cAMP-mediated PKA-dependent protein phosphorylation, which rely on the balance between high basal cAMP production by adenylyl cyclases and high basal cAMP degradation by cyclic nucleotide phosphodiesterases (PDEs). This diverse class of enzymes includes 11 families and PDE3 and PDE4 families dominate in both the SA node and cardiac myocardium, degrading cAMP and, consequently, regulating basal cardiac pacemaker function and excitation-contraction coupling. In this review, we will demonstrate similarities between expression, distribution, and colocalization of various PDE subtypes in SANC and cardiac myocytes of different species, including humans, focusing on PDE3 and PDE4. Here, we will describe specific targets of the coupled-clock pacemaker system modulated by dual PDE3 + PDE4 activation and provide evidence that concurrent activation of PDE3 + PDE4, operating in a synergistic manner, regulates the basal cardiac pacemaker function and provides control over normal spontaneous beating of SANCs through (PDE3 + PDE4)-dependent modulation of local subsarcolemmal Ca2+ releases (LCRs).
Collapse
|
26
|
Colombe AS, Pidoux G. Cardiac cAMP-PKA Signaling Compartmentalization in Myocardial Infarction. Cells 2021; 10:cells10040922. [PMID: 33923648 PMCID: PMC8073060 DOI: 10.3390/cells10040922] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Under physiological conditions, cAMP signaling plays a key role in the regulation of cardiac function. Activation of this intracellular signaling pathway mirrors cardiomyocyte adaptation to various extracellular stimuli. Extracellular ligand binding to seven-transmembrane receptors (also known as GPCRs) with G proteins and adenylyl cyclases (ACs) modulate the intracellular cAMP content. Subsequently, this second messenger triggers activation of specific intracellular downstream effectors that ensure a proper cellular response. Therefore, it is essential for the cell to keep the cAMP signaling highly regulated in space and time. The temporal regulation depends on the activity of ACs and phosphodiesterases. By scaffolding key components of the cAMP signaling machinery, A-kinase anchoring proteins (AKAPs) coordinate both the spatial and temporal regulation. Myocardial infarction is one of the major causes of death in industrialized countries and is characterized by a prolonged cardiac ischemia. This leads to irreversible cardiomyocyte death and impairs cardiac function. Regardless of its causes, a chronic activation of cardiac cAMP signaling is established to compensate this loss. While this adaptation is primarily beneficial for contractile function, it turns out, in the long run, to be deleterious. This review compiles current knowledge about cardiac cAMP compartmentalization under physiological conditions and post-myocardial infarction when it appears to be profoundly impaired.
Collapse
|
27
|
Rudokas MW, Post JP, Sataray-Rodriguez A, Sherpa RT, Moshal KS, Agarwal SR, Harvey RD. Compartmentation of β 2 -adrenoceptor stimulated cAMP responses by phosphodiesterase types 2 and 3 in cardiac ventricular myocytes. Br J Pharmacol 2021; 178:1574-1587. [PMID: 33475150 DOI: 10.1111/bph.15382] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE In cardiac myocytes, cyclic AMP (cAMP) produced by both β1 - and β2 -adrenoceptors increases L-type Ca2+ channel activity and myocyte contraction. However, only cAMP produced by β1 -adrenoceptors enhances myocyte relaxation through phospholamban-dependent regulation of the sarco/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2). Here we have tested the hypothesis that stimulation of β2 -adrenoceptors produces a cAMP signal that is unable to reach SERCA2 and determine what role, if any, phosphodiesterase (PDE) activity plays in this compartmentation. EXPERIMENTAL APPROACH The cAMP responses produced by β1 -and β2 -adrenoceptor stimulation were studied in adult rat ventricular myocytes using two different fluorescence resonance energy transfer (FRET)-based biosensors, the Epac2-camps, which is expressed uniformly throughout the cytoplasm of the entire cell and the Epac2-αKAP, which is targeted to the SERCA2 signalling complex. KEY RESULTS Selective activation of β1 - or β2 -adrenoceptors produced cAMP responses detected by Epac2-camps. However, only stimulation of β1 -adrenoceptors produced a cAMP response detected by Epac2-αKAP. Yet, stimulation of β2 -adrenoceptors was able to produce a cAMP signal detected by Epac2-αKAP in the presence of selective inhibitors of PDE2 or PDE3, but not PDE4. CONCLUSION AND IMPLICATIONS These results support the conclusion that cAMP produced by β2 -adrenoceptor stimulation was not able to reach subcellular locations where the SERCA2 pump is located. Furthermore, this compartmentalized response is due at least in part to PDE2 and PDE3 activity. This discovery could lead to novel PDE-based therapeutic treatments aimed at correcting cardiac relaxation defects associated with certain forms of heart failure.
Collapse
Affiliation(s)
| | - John P Post
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Rinzhin T Sherpa
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | - Karni S Moshal
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| | | | - Robert D Harvey
- Department of Pharmacology, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
28
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
29
|
De Jong KA, Nikolaev VO. Multifaceted remodelling of cAMP microdomains driven by different aetiologies of heart failure. FEBS J 2021; 288:6603-6622. [DOI: 10.1111/febs.15706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/22/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Kirstie A. De Jong
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| | - Viacheslav O. Nikolaev
- Institute of Experimental Cardiovascular Research University Medical Center Hamburg‐Eppendorf Hamburg Germany
- German Center for Cardiovascular Research (DZHK) partner site Hamburg/Kiel/Lübeck D‐20246 Hamburg Germany
| |
Collapse
|
30
|
Abstract
The field of cAMP signaling is witnessing exciting developments with the recognition that cAMP is compartmentalized and that spatial regulation of cAMP is critical for faithful signal coding. This realization has changed our understanding of cAMP signaling from a model in which cAMP connects a receptor at the plasma membrane to an intracellular effector in a linear pathway to a model in which cAMP signals propagate within a complex network of alternative branches and the specific functional outcome strictly depends on local regulation of cAMP levels and on selective activation of a limited number of branches within the network. In this review, we cover some of the early studies and summarize more recent evidence supporting the model of compartmentalized cAMP signaling, and we discuss how this knowledge is starting to provide original mechanistic insight into cell physiology and a novel framework for the identification of disease mechanisms that potentially opens new avenues for therapeutic interventions. SIGNIFICANCE STATEMENT: cAMP mediates the intracellular response to multiple hormones and neurotransmitters. Signal fidelity and accurate coordination of a plethora of different cellular functions is achieved via organization of multiprotein signalosomes and cAMP compartmentalization in subcellular nanodomains. Defining the organization and regulation of subcellular cAMP nanocompartments is necessary if we want to understand the complex functional ramifications of pharmacological treatments that target G protein-coupled receptors and for generating a blueprint that can be used to develop precision medicine interventions.
Collapse
Affiliation(s)
- Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anna Zerio
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel J Lobo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Abi-Gerges A, Castro L, Leroy J, Domergue V, Fischmeister R, Vandecasteele G. Selective changes in cytosolic β-adrenergic cAMP signals and L-type Calcium Channel regulation by Phosphodiesterases during cardiac hypertrophy. J Mol Cell Cardiol 2021; 150:109-121. [PMID: 33184031 DOI: 10.1016/j.yjmcc.2020.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023]
Abstract
Background In cardiomyocytes, phosphodiesterases (PDEs) type 3 and 4 are the predominant enzymes that degrade cAMP generated by β-adrenergic receptors (β-ARs), impacting notably the regulation of the L-type Ca2+ current (ICa,L). Cardiac hypertrophy (CH) is accompanied by a reduction in PDE3 and PDE4, however, whether this affects the dynamic regulation of cytosolic cAMP and ICa,L is not known. Methods and Results CH was induced in rats by thoracic aortic banding over a time period of five weeks and was confirmed by anatomical measurements. Left ventricular myocytes (LVMs) were isolated from CH and sham-operated (SHAM) rats and transduced with an adenovirus encoding a Förster resonance energy transfer (FRET)-based cAMP biosensor or subjected to the whole-cell configuration of the patch-clamp technique to measure ICa,L. Aortic stenosis resulted in a 46% increase in heart weight to body weight ratio in CH compared to SHAM. In SHAM and CH LVMs, a short isoprenaline stimulation (Iso, 100 nM, 15 s) elicited a similar transient increase in cAMP with a half decay time (t1/2off) of ~50 s. In both groups, PDE4 inhibition with Ro 20-1724 (10 μM) markedly potentiated the amplitude and slowed the decline of the cAMP transient, this latter effect being more pronounced in SHAM (t1/2off ~ 250 s) than in CH (t1/2off ~ 150 s, P < 0.01). In contrast, PDE3 inhibition with cilostamide (1 μM) had no effect on the amplitude of the cAMP transient and a minimal effect on its recovery in SHAM, whereas it potentiated the amplitude and slowed the decay in CH (t1/2off ~ 80 s). Iso pulse stimulation also elicited a similar transient increase in ICa,L in SHAM and CH, although the duration of the rising phase was delayed in CH. Inhibition of PDE3 or PDE4 potentiated ICa,L amplitude in SHAM but not in CH. Besides, while only PDE4 inhibition slowed down the decline of ICa,L in SHAM, both PDE3 and PDE4 contributed in CH. Conclusion These results identify selective alterations in cytosolic cAMP and ICa,L regulation by PDE3 and PDE4 in CH, and show that the balance between PDE3 and PDE4 for the regulation of β-AR responses is shifted toward PDE3 during CH.
Collapse
Affiliation(s)
- Aniella Abi-Gerges
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos, Lebanon
| | - Liliana Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, 75005, Paris, France
| | - Jérôme Leroy
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Valérie Domergue
- UMS-IPSIT, INSERM, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Rodolphe Fischmeister
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Grégoire Vandecasteele
- Signaling and Cardiovascular Pathophysiology, INSERM, UMR-S1180, Université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
32
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
33
|
Abstract
The cyclic nucleotides cyclic adenosine-3′,5′-monophosphate (cAMP) and cyclic guanosine-3′,5′-monophosphate (cGMP) maintain physiological cardiac contractility and integrity. Cyclic nucleotide–hydrolysing phosphodiesterases (PDEs) are the prime regulators of cAMP and cGMP signalling in the heart. During heart failure (HF), the expression and activity of multiple PDEs are altered, which disrupt cyclic nucleotide levels and promote cardiac dysfunction. Given that the morbidity and mortality associated with HF are extremely high, novel therapies are urgently needed. Herein, the role of PDEs in HF pathophysiology and their therapeutic potential is reviewed. Attention is given to PDEs 1–5, and other PDEs are briefly considered. After assessing the role of each PDE in cardiac physiology, the evidence from pre-clinical models and patients that altered PDE signalling contributes to the HF phenotype is examined. The potential of pharmacologically harnessing PDEs for therapeutic gain is considered.
Collapse
|
34
|
Lindner M, Mehel H, David A, Leroy C, Burtin M, Friedlander G, Terzi F, Mika D, Fischmeister R, Prié D. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Res Cardiol 2020; 115:51. [PMID: 32699940 DOI: 10.1007/s00395-020-0810-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 02/01/2023]
Abstract
The concentration of fibroblast growth factor 23 (FGF23) rises progressively in renal failure (RF). High FGF23 concentrations have been consistently associated with adverse cardiovascular outcomes or death, in chronic kidney disease (CKD), heart failure or liver cirrhosis. We identified the mechanisms whereby high concentrations of FGF23 can increase the risk of death of cardiovascular origin. We studied the effects of FGF23 and Klotho in adult rat ventricular cardiomyocytes (ARVMs) and on the heart of mice with CKD. We show that FGF23 increases the frequency of spontaneous calcium waves (SCWs), a marker of cardiomyocyte arrhythmogenicity, in ARVMs. FGF23 increased sarcoplasmic reticulum Ca2+ leakage, basal phosphorylation of Ca2+-cycling proteins including phospholamban and ryanodine receptor type 2. These effects are secondary to a decrease in phosphodiesterase 4B (PDE4B) in ARVMs and in heart of mice with RF. Soluble Klotho, a circulating form of the FGF23 receptor, prevents FGF23 effects on ARVMs by increasing PDE3A and PDE3B expression. Our results suggest that the combination of high FGF23 and low sKlotho concentrations decreases PDE activity in ARVMs, which favors the occurrence of ventricular arrhythmias and may participate in the high death rate observed in patients with CKD.
Collapse
Affiliation(s)
| | - Hind Mehel
- INSERM U1151-CNRS UMR8253, Paris, France
| | | | | | | | - Gérard Friedlander
- INSERM U1151-CNRS UMR8253, Paris, France
- Université de Paris Faculté de Médecine, Paris, France
- Service de Physiologie Explorations Fonctionnelles Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm U1180, 92296, Châtenay-Malabry, France
| | | | - Dominique Prié
- INSERM U1151-CNRS UMR8253, Paris, France.
- Université de Paris Faculté de Médecine, Paris, France.
- Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
35
|
Imaging cAMP nanodomains in the heart. Biochem Soc Trans 2020; 47:1383-1392. [PMID: 31670375 PMCID: PMC6824676 DOI: 10.1042/bst20190245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/13/2023]
Abstract
3′-5′-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that modulates multiple cellular functions. It is now well established that cAMP can mediate a plethora of functional effects via a complex system of local regulatory mechanisms that result in compartmentalized signalling. The use of fluorescent probes to monitor cAMP in intact, living cells have been instrumental in furthering our appreciation of this ancestral and ubiquitous pathway and unexpected details of the nano-architecture of the cAMP signalling network are starting to emerge. Recent evidence shows that sympathetic control of cardiac contraction and relaxation is achieved via generation of multiple, distinct pools of cAMP that lead to differential phosphorylation of target proteins localized only tens of nanometres apart. The specific local control at these nanodomains is enabled by a distinct signalosome where effectors, targets, and regulators of the cAMP signal are clustered. In this review, we focus on recent advances using targeted fluorescent reporters for cAMP and how they have contributed to our current understanding of nanodomain cAMP signalling in the heart. We briefly discuss how this information can be exploited to design novel therapies and we highlight some of the questions that remain unanswered.
Collapse
|
36
|
Sucharov CC, Nakano SJ, Slavov D, Schwisow JA, Rodriguez E, Nunley K, Medway A, Stafford N, Nelson P, McKinsey TA, Movsesian M, Minobe W, Carroll IA, Taylor MRG, Bristow MR. A PDE3A Promoter Polymorphism Regulates cAMP-Induced Transcriptional Activity in Failing Human Myocardium. J Am Coll Cardiol 2020; 73:1173-1184. [PMID: 30871701 DOI: 10.1016/j.jacc.2018.12.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/20/2018] [Accepted: 12/10/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND The phosphodiesterase 3A (PDE3A) gene encodes a PDE that regulates cardiac myocyte cyclic adenosine monophosphate (cAMP) levels and myocardial contractile function. PDE3 inhibitors (PDE3i) are used for short-term treatment of refractory heart failure (HF), but do not produce uniform long-term benefit. OBJECTIVES The authors tested the hypothesis that drug target genetic variation could explain clinical response heterogeneity to PDE3i in HF. METHODS PDE3A promoter studies were performed in a cloned luciferase construct. In human left ventricular (LV) preparations, mRNA expression was measured by reverse transcription polymerase chain reaction, and PDE3 enzyme activity by cAMP-hydrolysis. RESULTS The authors identified a 29-nucleotide (nt) insertion (INS)/deletion (DEL) polymorphism in the human PDE3A gene promoter beginning 2,214 nt upstream from the PDE3A1 translation start site. Transcription factor ATF3 binds to the INS and represses cAMP-dependent promoter activity. In explanted failing LVs that were homozygous for PDE3A DEL and had been treated with PDE3i pre-cardiac transplantation, PDE3A1 mRNA abundance and microsomal PDE3 enzyme activity were increased by 1.7-fold to 1.8-fold (p < 0.05) compared with DEL homozygotes not receiving PDE3i. The basis for the selective up-regulation in PDE3A gene expression in DEL homozygotes treated with PDE3i was a cAMP response element enhancer 61 nt downstream from the INS, which was repressed by INS. The DEL homozygous genotype frequency was also enriched in patients with HF. CONCLUSIONS A 29-nt INS/DEL polymorphism in the PDE3A promoter regulates cAMP-induced PDE3A gene expression in patients treated with PDE3i. This molecular mechanism may explain response heterogeneity to this drug class, and may inform a pharmacogenetic strategy for a more effective use of PDE3i in HF.
Collapse
Affiliation(s)
- Carmen C Sucharov
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado.
| | - Stephanie J Nakano
- Department of Pediatrics, University of Colorado Denver, Children's Hospital Colorado, Aurora, Colorado
| | - Dobromir Slavov
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Jessica A Schwisow
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Erin Rodriguez
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Karin Nunley
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Allen Medway
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Natalie Stafford
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Penny Nelson
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Timothy A McKinsey
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado; University of Colorado Anschutz Medical Campus Consortium for Fibrosis Research & Translation, Aurora, Colorado
| | - Matthew Movsesian
- Cardiology Section, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Internal Medicine (Cardiovascular Medicine), University of Utah School of Medicine, Salt Lake City, Utah; Department of Pharmacology & Toxicology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Wayne Minobe
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | | | - Matthew R G Taylor
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado
| | - Michael R Bristow
- Division of Cardiology and Cardiovascular Institute, University of Colorado Denver, Aurora, Colorado; ARCA Biopharma, Westminster, Colorado
| |
Collapse
|
37
|
Zhao J, Xu T, Zhou Y, Zhou Y, Xia Y, Li D. B-type natriuretic peptide and its role in altering Ca 2+-regulatory proteins in heart failure-mechanistic insights. Heart Fail Rev 2019; 25:861-871. [PMID: 31820203 DOI: 10.1007/s10741-019-09883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Heart failure (HF) is a worldwide disease with high levels of morbidity and mortality. The pathogenesis of HF is complicated and involves imbalances in hormone and electrolyte. B-type natriuretic peptide (BNP) has served as a biomarker of HF severity, and in recent years, it has been used to treat the disease, thanks to its cardio-protective effects, such as diuresis, natriuresis, and vasodilatation. In stage C/D HF, symptoms are severe despite elevated BNP. Disturbances in Ca2+ homeostasis are often a dominating feature of the disease, causing Ca2+-regulatory protein dysfunction, including reduced expression and activity of sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), impaired ryanodine receptors (RYRs) function, intensive Na+-Ca2+ exchanger (NCX), and downregulation of S100A1. The relationship between natriuretic peptides (NPs) and Ca2+-regulatory proteins has been widely studied and represents important mechanisms in the etiology of HF. In this review, we present evidence that BNP may regulate Ca2+-regulatory proteins, in particular, suppressing SERCA2a and S100A1 expression. However, relationships between BNP and other Ca2+-regulatory proteins remain vague.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Tongda Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yao Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - You Zhou
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Yong Xia
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
38
|
Hashimoto T, Kim GE, Tunin RS, Adesiyun T, Hsu S, Nakagawa R, Zhu G, O'Brien JJ, Hendrick JP, Davis RE, Yao W, Beard D, Hoxie HR, Wennogle LP, Lee DI, Kass DA. Acute Enhancement of Cardiac Function by Phosphodiesterase Type 1 Inhibition. Circulation 2019; 138:1974-1987. [PMID: 30030415 DOI: 10.1161/circulationaha.117.030490] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Phosphodiesterase type-1 (PDE1) hydrolyzes cAMP and cGMP and is constitutively expressed in the heart, although cardiac effects from its acute inhibition in vivo are largely unknown. Existing data are limited to rodents expressing mostly the cGMP-favoring PDE1A isoform. Human heart predominantly expresses PDE1C with balanced selectivity for cAMP and cGMP. Here, we determined the acute effects of PDE1 inhibition in PDE1C-expressing mammals, dogs, and rabbits, in normal and failing hearts, and explored its regulatory pathways. METHODS Conscious dogs chronically instrumented for pressure-volume relations were studied before and after tachypacing-induced heart failure (HF). A selective PDE1 inhibitor (ITI-214) was administered orally or intravenously±dobutamine. Pressure-volume analysis in anesthetized rabbits tested the role of β-adrenergic and adenosine receptor signaling on ITI-214 effects. Sarcomere and calcium dynamics were studied in rabbit left ventricular myocytes. RESULTS In normal and HF dogs, ITI-214 increased load-independent contractility, improved relaxation, and reduced systemic arterial resistance, raising cardiac output without altering systolic blood pressure. Heart rate increased, but less so in HF dogs. ITI-214 effects were additive to β-adrenergic receptor agonism (dobutamine). Dobutamine but not ITI-214 increased plasma cAMP. ITI-214 induced similar cardiovascular effects in rabbits, whereas mice displayed only mild vasodilation and no contractility effects. In rabbits, β-adrenergic receptor blockade (esmolol) prevented ITI-214-mediated chronotropy, but inotropy and vasodilation remained unchanged. By contrast, adenosine A2B-receptor blockade (MRS-1754) suppressed ITI-214 cardiovascular effects. Adding fixed-rate atrial pacing did not alter the findings. ITI-214 alone did not affect sarcomere or whole-cell calcium dynamics, whereas β-adrenergic receptor agonism (isoproterenol) or PDE3 inhibition (cilostamide) increased both. Unlike cilostamide, which further enhanced shortening and peak calcium when combined with isoproterenol, ITI-214 had no impact on these responses. Both PDE1 and PDE3 inhibitors increased shortening and accelerated calcium decay when combined with forskolin, yet only cilostamide increased calcium transients. CONCLUSIONS PDE1 inhibition by ITI-214 in vivo confers acute inotropic, lusitropic, and arterial vasodilatory effects in PDE1C-expressing mammals with and without HF. The effects appear related to cAMP signaling that is different from that provided via β-adrenergic receptors or PDE3 modulation. ITI-214, which has completed phase I trials, may provide a novel therapy for HF.
Collapse
Affiliation(s)
- Toru Hashimoto
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Grace E Kim
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Richard S Tunin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Tolulope Adesiyun
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.).,Dr Adesiyun's current affiliation is Department of Cardiovascular Medicine, Kyushu University Hospital3 Chome-1-1 Maidashi, Higashi Ward, Fukuoka, Japan
| | - Steven Hsu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Ryo Nakagawa
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - Jennifer J O'Brien
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Joseph P Hendrick
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Robert E Davis
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Wei Yao
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - David Beard
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Helen R Hoxie
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Lawrence P Wennogle
- Intra-Cellular Therapies, Inc, New York, NY (J.J.O'B., J.P.H., R.E.D., W.Y., D.B., H.R.H., L.P.W.)
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (T.H., G.E.K., R.S.T., T.A., S.H., R.N., G.Z., D.I.L., D.A.K.)
| |
Collapse
|
39
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Tan H, Wu W, Xu M, Pineda-Lucena A, Garcia-Osta A, Oyarzabal J. Multitarget Approach for the Treatment of Alzheimer's Disease: Inhibition of Phosphodiesterase 9 (PDE9) and Histone Deacetylases (HDACs) Covering Diverse Selectivity Profiles. ACS Chem Neurosci 2019; 10:4076-4101. [PMID: 31441641 DOI: 10.1021/acschemneuro.9b00303] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Here, we present a series of dual-target phosphodiesterase 9 (PDE9) and histone deacetylase (HDAC) inhibitors devised as pharmacological tool compounds for assessing the implications of these two targets in Alzheimer's disease (AD). These novel inhibitors were designed taking into account the key pharmacophoric features of known selective PDE9 inhibitors as well as privileged chemical structures, bearing zinc binding groups (hydroxamic acids and ortho-amino anilides) that hit HDAC targets. These substituents were selected according to rational criteria and previous knowledge from our group to explore diverse HDAC selectivity profiles (pan-HDAC, HDAC6 selective, and class I selective) that were confirmed in biochemical screens. Their functional response in inducing acetylation of histone and tubulin and phosphorylation of cAMP response element binding (CREB) was measured as a requisite for further progression into complete in vitro absorption, distribution, metabolism and excretion (ADME) and in vivo brain penetration profiling. Compound 31b, a selective HDAC6 inhibitor with acceptable brain permeability, was chosen for assessing in vivo efficacy of these first-in-class inhibitors, as well as studying their mode of action (MoA).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Pathology, Anatomy and Physiology Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | | | | | | | | | | | | - Maria Espelosin
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Susana Ursua
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | - Haizhong Tan
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Wei Wu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | - Musheng Xu
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, fourth Avenue, Tianjin 300456, PR China
| | | | - Ana Garcia-Osta
- Health Research Institute of Navarra (IDISNA), E-31008 Pamplona, Spain
| | | |
Collapse
|
40
|
Vinogradova TM, Sirenko S, Lukyanenko YO, Yang D, Tarasov KV, Lyashkov AE, Varghese NJ, Li Y, Chakir K, Ziman B, Lakatta EG. Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4. Circ Arrhythm Electrophysiol 2019; 11:e005896. [PMID: 29880528 DOI: 10.1161/circep.117.005896] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/27/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.
Collapse
Affiliation(s)
- Tatiana M Vinogradova
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD.
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yevgeniya O Lukyanenko
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Dongmei Yang
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Kirill V Tarasov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Alexey E Lyashkov
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Nevin J Varghese
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Yue Li
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Khalid Chakir
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Bruce Ziman
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Gerontology Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD
| |
Collapse
|
41
|
West TM, Wang Q, Deng B, Zhang Y, Barbagallo F, Reddy GR, Chen D, Phan KS, Xu B, Isidori A, Xiang YK. Phosphodiesterase 5 Associates With β2 Adrenergic Receptor to Modulate Cardiac Function in Type 2 Diabetic Hearts. J Am Heart Assoc 2019; 8:e012273. [PMID: 31311394 PMCID: PMC6761630 DOI: 10.1161/jaha.119.012273] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background In murine heart failure models and in humans with diabetic‐related heart hypertrophy, inhibition of phosphodiesterase 5 (PDE5) by sildenafil improves cardiac outcomes. However, the mechanism by which sildenafil improves cardiac function is unclear. We have observed a relationship between PDE5 and β2 adrenergic receptor (β2AR), which is characterized here as a novel mechanistic axis by which sildenafil improves symptoms of diabetic cardiomyopathy. Methods and Results Wild‐type and β2AR knockout mice fed a high fat diet (HFD) were treated with sildenafil, and echocardiogram analysis was performed. Cardiomyocytes were isolated for excitation‐contraction (E‐C) coupling, fluorescence resonant energy transfer, and proximity ligation assays; while heart tissues were implemented for biochemical and histological analyses. PDE5 selectively associates with β2AR, but not β1 adrenergic receptor, and inhibition of PDE5 with sildenafil restores the impaired response to adrenergic stimulation in HFD mice and isolated ventriculomyocytes. Sildenafil enhances β adrenergic receptor (βAR)‐stimulated cGMP and cAMP signals in HFD myocytes. Consequently, inhibition of PDE5 leads to protein kinase G–, and to a lesser extent, calcium/calmodulin‐dependent kinase II–dependent improvements in adrenergically stimulated E‐C coupling. Deletion of β2AR abolishes sildenafil's effect. Although the PDE5‐β2AR association is not altered in HFD, phosphodiesterase 3 displays an increased association with the β2AR‐PDE5 complex in HFD myocytes. Conclusions This study elucidates mechanisms by which the β2AR‐PDE5 axis can be targeted for treating diabetic cardiomyopathy. Inhibition of PDE5 enhances β2AR stimulation of cGMP and cAMP signals, as well as protein kinase G–dependent E‐C coupling in HFD myocytes.
Collapse
Affiliation(s)
- Toni M West
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Qingtong Wang
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Bingqing Deng
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,Sun-Yet Sen Memorial hospital Sun-Yet Sen University Guangzhou China
| | - Yu Zhang
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,College of Pharmacy Guangzhou Medical University Guangzhou China
| | - Federica Barbagallo
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,Department of Experimental Medicine Sapienza University of Rome Rome Italy
| | - Gopireddy R Reddy
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Dana Chen
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Kyle S Phan
- Department of Pharmacology University of California Davis School of Medicine Davis CA
| | - Bing Xu
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,College of Pharmacy Guangzhou Medical University Guangzhou China
| | - Andres Isidori
- Department of Experimental Medicine Sapienza University of Rome Rome Italy
| | - Yang K Xiang
- Department of Pharmacology University of California Davis School of Medicine Davis CA.,VA Northern California Health Care System Mather CA
| |
Collapse
|
42
|
Okatan EN, Turan B. The contribution of phosphodiesterases to cardiac dysfunction in rats with metabolic syndrome induced by a high-carbohydrate diet. Can J Physiol Pharmacol 2019; 97:1064-1072. [PMID: 31299169 DOI: 10.1139/cjpp-2019-0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metabolic syndrome (MetS) is a cluster of risk factors, including insulin resistance among others, underlying the development of diabetes and (or) cardiovascular diseases. Studies show a close relationship between cardiac dysfunction and abnormal cAMP catabolism, which contributes to pathological remodelling. Stimulating the synthesis of cAMP via suppression of phosphodiesterases (PDEs) has positive therapeutic effects. Therefore, we examined the role of PDEs on cardiac dysfunction in high-carbohydrate diet-induced MetS rats. We first demonstrated significantly high expression levels of PDE3 and PDE4, the most highly expressed subtypes, together with depressed cAMP levels in heart tissue from MetS rats. Second, we demonstrated the activity of these PDEs by using either their basal or PDE inhibitor-induced intracellular levels of cAMP and Ca2+, the transient intracellular Ca2+ changes under electrical stimulation, isometric contractions in papillary muscle strips and some key signalling proteins (such as RyR2, PLN, PP1A, and PKA) are responsible for the Ca2+ homeostasis in isolated cardiomyocytes from MetS rats. The clear recovery in decreased basal cAMP levels, increased protein expression levels of PDE3 and PDE4, and positive responses in the altered Ca2+ homeostasis to PDE inhibitors as seen in our study can provide important insights about the roles of activated PDEs in depressed contractile activity in hearts from MetS rats.
Collapse
Affiliation(s)
- Esma N Okatan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.,Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.,Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| |
Collapse
|
43
|
Berger M, Raslan Z, Aburima A, Magwenzi S, Wraith KS, Spurgeon BEJ, Hindle MS, Law R, Febbraio M, Naseem KM. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: the role of phosphodiesterase 3A. Haematologica 2019; 105:808-819. [PMID: 31289200 PMCID: PMC7049344 DOI: 10.3324/haematol.2018.213348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/04/2019] [Indexed: 01/01/2023] Open
Abstract
Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36−/− murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.
Collapse
Affiliation(s)
- Martin Berger
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.,Department of Internal Medicine 1, University Hospital RWTH Aachen, Aachen, Germany.,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Zaher Raslan
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ahmed Aburima
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Simbarashe Magwenzi
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Katie S Wraith
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Robert Law
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Maria Febbraio
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Khalid M Naseem
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK .,Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
44
|
Polidovitch N, Yang S, Sun H, Lakin R, Ahmad F, Gao X, Turnbull PC, Chiarello C, Perry CG, Manganiello V, Yang P, Backx PH. Phosphodiesterase type 3A (PDE3A), but not type 3B (PDE3B), contributes to the adverse cardiac remodeling induced by pressure overload. J Mol Cell Cardiol 2019; 132:60-70. [DOI: 10.1016/j.yjmcc.2019.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 01/11/2023]
|
45
|
Synergic PDE3 and PDE4 control intracellular cAMP and cardiac excitation-contraction coupling in a porcine model. J Mol Cell Cardiol 2019; 133:57-66. [PMID: 31158360 DOI: 10.1016/j.yjmcc.2019.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/30/2019] [Indexed: 11/23/2022]
Abstract
AIMS Cyclic AMP phosphodiesterases (PDEs) are important modulators of the cardiac response to β-adrenergic receptor (β-AR) stimulation. PDE3 is classically considered as the major cardiac PDE in large mammals and human, while PDE4 is preponderant in rodents. However, it remains unclear whether PDE4 also plays a functional role in large mammals. Our purpose was to understand the role of PDE4 in cAMP hydrolysis and excitation-contraction coupling (ECC) in the pig heart, a relevant pre-clinical model. METHODS AND RESULTS Real-time cAMP variations were measured in isolated adult pig right ventricular myocytes (APVMs) using a Förster resonance energy transfer (FRET) biosensor. ECC was investigated in APVMs loaded with Fura-2 and paced at 1 Hz allowing simultaneous measurement of intracellular Ca2+ and sarcomere shortening. The expression of the different PDE4 subfamilies was assessed by Western blot in pig right ventricles and APVMs. Similarly to PDE3 inhibition with cilostamide (Cil), PDE4 inhibition with Ro 20-1724 (Ro) increased cAMP levels and inotropy under basal conditions. PDE4 inhibition enhanced the effects of the non-selective β-AR agonist isoprenaline (Iso) and the effects of Cil, and increased spontaneous diastolic Ca2+ waves (SCWs) in these conditions. PDE3A, PDE4A, PDE4B and PDE4D subfamilies are expressed in pig ventricles. In APVMs isolated from a porcine model of repaired tetralogy of Fallot which leads to right ventricular failure, PDE4 inhibition also exerts inotropic and pro-arrhythmic effects. CONCLUSIONS Our results show that PDE4 controls ECC in APVMs and suggest that PDE4 inhibitors exert inotropic and pro-arrhythmic effects upon PDE3 inhibition or β-AR stimulation in our pre-clinical model. Thus, PDE4 inhibitors should be used with caution in clinics as they may lead to arrhythmogenic events upon stress.
Collapse
|
46
|
cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors. J Mol Cell Cardiol 2019; 131:112-121. [PMID: 31028775 DOI: 10.1016/j.yjmcc.2019.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 12/29/2022]
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger produced in response to the stimulation of G protein-coupled receptors (GPCRs). It regulates a plethora of pathophysiological processes in different organs, including the cardiovascular system. It is now clear that cAMP is not uniformly distributed within cardiac myocytes but confined in specific subcellular compartments where it modulates key players of the excitation-contraction coupling as well as other processes including gene transcription, mitochondrial homeostasis and cell death. This review will cover the major cAMP microdomains in cardiac myocytes. We will describe recent work using pioneering tools developed for investigating the organization and the function of the major cAMP microdomains in cardiomyocytes, including the plasma membrane, the sarcoplasmic reticulum, the myofilaments, the nucleus and the mitochondria.
Collapse
|
47
|
Rabal O, Sánchez-Arias JA, Cuadrado-Tejedor M, de Miguel I, Pérez-González M, García-Barroso C, Ugarte A, Estella-Hermoso de Mendoza A, Sáez E, Espelosin M, Ursua S, Haizhong T, Wei W, Musheng X, Garcia-Osta A, Oyarzabal J. Discovery of in Vivo Chemical Probes for Treating Alzheimer's Disease: Dual Phosphodiesterase 5 (PDE5) and Class I Histone Deacetylase Selective Inhibitors. ACS Chem Neurosci 2019; 10:1765-1782. [PMID: 30525452 DOI: 10.1021/acschemneuro.8b00648] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to determine the contributions of histone deacetylase (HDAC) isoforms to the beneficial effects of dual phosphodiesterase 5 (PDE5) and pan-HDAC inhibitors on in vivo models of Alzheimer's disease (AD), we have designed, synthesized, and tested novel chemical probes with the desired target compound profile of PDE5 and class I HDAC selective inhibitors. Compared to previous hydroxamate-based series, these molecules exhibit longer residence times on HDACs. In this scenario, shorter or longer preincubation times may have a significant impact on the IC50 values of these compounds and therefore on their corresponding selectivity profiles on the different HDAC isoforms. On the other hand, different chemical series have been explored and, as expected, some pairwise comparisons show a clear impact of the scaffold on biological responses (e.g., 35a vs 40a). The lead identification process led to compound 29a, which shows an adequate ADME-Tox profile and in vivo target engagement (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation) in the central nervous system (CNS), suggesting that this compound represents an optimized chemical probe; thus, 29a has been assayed in a mouse model of AD (Tg2576).
Collapse
Affiliation(s)
| | | | - Mar Cuadrado-Tejedor
- Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | - Tan Haizhong
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | - Wu Wei
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | - Xu Musheng
- WuXi Apptec (Tianjin) Co. Ltd., TEDA, No. 111 HuangHai Road, Fourth Avenue, Tianjin 300456, PR China
| | | | | |
Collapse
|
48
|
Li D, Paterson DJ. Pre-synaptic sympathetic calcium channels, cyclic nucleotide-coupled phosphodiesterases and cardiac excitability. Semin Cell Dev Biol 2019; 94:20-27. [PMID: 30658154 DOI: 10.1016/j.semcdb.2019.01.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/07/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
In sympathetic neurons innervating the heart, action potentials activate voltage-gated Ca2+ channels and evoke Ca2+ entry into presynaptic terminals triggering neurotransmitter release. Binding of transmitters to specific receptors stimulates signal transduction pathways that cause changes in cardiac function. The mechanisms contributing to presynaptic Ca2+ dynamics involve regulation of endogenous Ca2+ buffers, in particular the endoplasmic reticulum, mitochondria and cyclic nucleotide targeted pathways. The purpose of this review is to summarize and highlight recent findings about Ca2+ homeostasis in cardiac sympathetic neurons and how modulation of second messengers can drive neurotransmission and affect myocyte excitability in cardiovascular disease. Moreover, we discuss the underlying mechanism of abnormal intracellular Ca2+ homeostasis and signaling in these neurons, and speculate on the role of phosphodiesterases as a therapeutic target to restore normal autonomic transmission in disease states of overactivity.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
49
|
Chan SHH, Chan JYH. Phosphodiesterase 2 as a Therapeutic Target for Heart Failure: Is Upregulation an Option? Circ Res 2018; 120:13-16. [PMID: 28057782 DOI: 10.1161/circresaha.116.310250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Samuel H H Chan
- From the Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan, Republic of China
| | - Julie Y H Chan
- From the Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Taiwan, Republic of China.
| |
Collapse
|
50
|
Liu Z, Hua J, Cai W, Zhan Q, Lai W, Zeng Q, Ren H, Xu D. N‑terminal truncated peroxisome proliferator‑activated receptor‑γ coactivator‑1α alleviates phenylephrine‑induced mitochondrial dysfunction and decreases lipid droplet accumulation in neonatal rat cardiomyocytes. Mol Med Rep 2018; 18:2142-2152. [PMID: 29901150 PMCID: PMC6072228 DOI: 10.3892/mmr.2018.9158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/30/2018] [Indexed: 11/05/2022] Open
Abstract
N‑terminal truncated peroxisome proliferator‑activated receptor‑γ coactivator‑1α (NT‑PGC‑1α) is an alternative splice variant of PGC‑1α. NT‑PGC‑1α exhibits stronger anti‑obesity effects in adipose tissue than PGC‑1α; however, NT‑PGC‑1α has not yet been investigated in neonatal rat cardiomyocytes (NRCMs). The present study aimed to investigate the role of NT‑PGC‑1α in mitochondrial fatty acid metabolism and its possible regulatory mechanism in NRCMs. NRCMs were exposed to phenylephrine (PE) or angiotensin II (Ang II) to induce cardiac hypertrophy. Following this, NRCMs were infected with adenovirus expressing NT‑PGC‑1α, and adenosine 5'‑triphsophate (ATP) levels, reactive oxygen species (ROS) generation and mitochondrial membrane potential were subsequently detected. In addition, western blotting, lipid droplet staining and oxygen consumption assays were performed to examine the function of NT‑PGC‑1α in fatty acid metabolism. NT‑PGC‑1α was demonstrated to be primarily expressed in the cytoplasm, which differed from full‑length PGC‑1α, which was predominantly expressed in the nucleus. NT‑PGC‑1α overexpression alleviated mitochondrial function impairment, including ATP generation, ROS production and mitochondrial membrane potential integrity. Furthermore, NT‑PGC‑1α overexpression alleviated the PE‑induced suppression of fatty acid metabolism‑associated protein expression, increased extracellular oxygen consumption and decreased lipid droplet accumulation in NRCMs. Taken together, the present study demonstrated that NT‑PGC‑1α alleviated PE‑induced mitochondrial impairment and decreased lipid droplet accumulation in NRCMs, indicating that NT‑PGC‑1α may have ameliorated mitochondrial energy defects in NRCMs, and may be considered as a potential target for the treatment of heart failure.
Collapse
Affiliation(s)
- Zuheng Liu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jinghai Hua
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wanqiang Cai
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiong Zhan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wenyan Lai
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Hao Ren
- Key Laboratory for Organ Failure Research, Ministry of Education of The People's Republic of China, Guangzhou, Guangdong 510515, P.R. China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|