1
|
Hohendanner F, Boegner M, Huettemeister J, Zhang K, Dreysse S, Knosalla C, Falk V, Schoenrath F, Just IA, Stawowy P. Microvascular dysfunction in heart transplantation is associated with altered cardiomyocyte mitochondrial structure and unimpaired excitation-contraction coupling. PLoS One 2024; 19:e0303540. [PMID: 38820336 PMCID: PMC11142617 DOI: 10.1371/journal.pone.0303540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
INTRODUCTION Microvascular dysfunction (MVD) is a hallmark feature of chronic graft dysfunction in patients that underwent orthotopic heart transplantation (OHT) and is the main contributor to impaired long-term graft survival. The aim of this study was to determine the effect of MVD on functional and structural properties of cardiomyocytes isolated from ventricular biopsies of OHT patients. METHODS We included 14 patients post-OHT, who had been transplanted for 8.1 years [5.0; 15.7 years]. Mean age was 49.6 ± 14.3 years; 64% were male. Coronary microvasculature was assessed using guidewire-based coronary flow reserve(CFR)/index of microvascular resistance (IMR) measurements. Ventricular myocardial biopsies were obtained and cardiomyocytes were isolated using enzymatic digestion. Cells were electrically stimulated and subcellular Ca2+ signalling as well as mitochondrial density were measured using confocal imaging. RESULTS MVD measured by IMR was present in 6 of 14 patients with a mean IMR of 53±10 vs. 12±2 in MVD vs. controls (CTRL), respectively. CFR did not differ between MVD and CTRL. Ca2+ transients during excitation-contraction coupling in isolated ventricular cardiomyocytes from a subset of patients showed unaltered amplitudes. In addition, Ca2+ release and Ca2+ removal were not significantly different between MVD and CTRL. However, mitochondrial density was significantly increased in MVD vs. CTRL (34±1 vs. 29±2%), indicating subcellular changes associated with MVD. CONCLUSION In-vivo ventricular microvascular dysfunction post OHT is associated with preserved excitation-contraction coupling in-vitro, potentially owing to compensatory changes on the mitochondrial level or due to the potentially reversible cause of the disease.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Markus Boegner
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Judith Huettemeister
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Kun Zhang
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Stephan Dreysse
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph Knosalla
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Volkmar Falk
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Institute of Translational Medicine, Translational Cardiovascular Technologies, Zurich, Switzerland
| | - Felix Schoenrath
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Isabell Anna Just
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Philipp Stawowy
- Department of Cardiology, Deutsches Herzzentrum der Charité, Angiology and Intensive Care Medicine, Berlin, Germany
- Charité –Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
2
|
Mehrhof F, Hüttemeister J, Tanacli R, Bock M, Bögner M, Schoenrath F, Falk V, Zips D, Hindricks G, Gerds-Li JH, Hohendanner F. Cardiac radiotherapy transiently alters left ventricular electrical properties and induces cardiomyocyte-specific ventricular substrate changes in heart failure. Europace 2023; 26:euae005. [PMID: 38193546 PMCID: PMC10803027 DOI: 10.1093/europace/euae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024] Open
Abstract
AIMS Ongoing clinical trials investigate the therapeutic value of stereotactic cardiac radioablation (cRA) in heart failure patients with ventricular tachycardia. Animal data indicate an effect on local cardiac conduction properties. However, the exact mechanism of cRA in patients remains elusive. Aim of the current study was to investigate in vivo and in vitro myocardial properties in heart failure and ventricular tachycardia upon cRA. METHODS AND RESULTS High-density 3D electroanatomic mapping in sinus rhythm was performed in a patient with a left ventricular assist device and repeated ventricular tachycardia episodes upon several catheter-based endocardial radio-frequency ablation attempts. Subsequent to electroanatomic mapping and cRA of the left ventricular septum, two additional high-density electroanatomic maps were obtained at 2- and 4-month post-cRA. Myocardial tissue samples were collected from the left ventricular septum during 4-month post-cRA from the irradiated and borderzone regions. In addition, we performed molecular biology and mitochondrial density measurements of tissue and isolated cardiomyocytes. Local voltage was altered in the irradiated region of the left ventricular septum during follow-up. No change of local voltage was observed in the control (i.e. borderzone) region upon irradiation. Interestingly, local activation time was significantly shortened upon irradiation (2-month post-cRA), a process that was reversible (4-month post-cRA). Molecular biology unveiled an increased expression of voltage-dependent sodium channels in the irradiated region as compared with the borderzone, while Connexin43 and transforming growth factor beta were unchanged (4-month post-cRA). Moreover, mitochondrial density was decreased in the irradiated region as compared with the borderzone. CONCLUSION Our study supports the notion of transiently altered cardiac conduction potentially related to structural and functional cellular changes as an underlying mechanism of cRA in patients with ventricular tachycardia.
Collapse
Affiliation(s)
- Felix Mehrhof
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Hüttemeister
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Radu Tanacli
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Matthias Bock
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Markus Bögner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum der Charité, Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
- Klinik für Herz-, Thorax- und Gefäßchirurgie, Deutsches Herzzentrum der Charité, Berlin, Germany
- Translational Cardiovascular Technologies, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Berlin, Germany
| | - Daniel Zips
- Klinik für Radioonkologie und Strahlentherapie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Gerhard Hindricks
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| | - Jin-Hong Gerds-Li
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Felix Hohendanner
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Augustenburger Platz 1, Germany, 13353 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site, Berlin, Germany
| |
Collapse
|
3
|
Li J, Sundnes J, Hou Y, Laasmaa M, Ruud M, Unger A, Kolstad TR, Frisk M, Norseng PA, Yang L, Setterberg IE, Alves ES, Kalakoutis M, Sejersted OM, Lanner JT, Linke WA, Lunde IG, de Tombe PP, Louch WE. Stretch Harmonizes Sarcomere Strain Across the Cardiomyocyte. Circ Res 2023; 133:255-270. [PMID: 37401464 PMCID: PMC10355805 DOI: 10.1161/circresaha.123.322588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Increasing cardiomyocyte contraction during myocardial stretch serves as the basis for the Frank-Starling mechanism in the heart. However, it remains unclear how this phenomenon occurs regionally within cardiomyocytes, at the level of individual sarcomeres. We investigated sarcomere contractile synchrony and how intersarcomere dynamics contribute to increasing contractility during cell lengthening. METHODS Sarcomere strain and Ca2+ were simultaneously recorded in isolated left ventricular cardiomyocytes during 1 Hz field stimulation at 37 °C, at resting length and following stepwise stretch. RESULTS We observed that in unstretched rat cardiomyocytes, differential sarcomere deformation occurred during each beat. Specifically, while most sarcomeres shortened during the stimulus, ≈10% to 20% of sarcomeres were stretched or remained stationary. This nonuniform strain was not traced to regional Ca2+ disparities but rather shorter resting lengths and lower force production in systolically stretched sarcomeres. Lengthening of the cell recruited additional shortening sarcomeres, which increased contractile efficiency as less negative, wasted work was performed by stretched sarcomeres. Given the known role of titin in setting sarcomere dimensions, we next hypothesized that modulating titin expression would alter intersarcomere dynamics. Indeed, in cardiomyocytes from mice with titin haploinsufficiency, we observed greater variability in resting sarcomere length, lower recruitment of shortening sarcomeres, and impaired work performance during cell lengthening. CONCLUSIONS Graded sarcomere recruitment directs cardiomyocyte work performance, and harmonization of sarcomere strain increases contractility during cell stretch. By setting sarcomere dimensions, titin controls sarcomere recruitment, and its lowered expression in haploinsufficiency mutations impairs cardiomyocyte contractility.
Collapse
Affiliation(s)
- Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Yufeng Hou
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Marianne Ruud
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Andreas Unger
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Terje R. Kolstad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Per Andreas Norseng
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
| | | | - Ingunn E. Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Estela S. Alves
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Michaeljohn Kalakoutis
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Ole M. Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Johanna T. Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.S.A., M.K., J.T.L.)
| | - Wolfgang A. Linke
- Institute of Physiology II, University of Münster, Germany (A.U., W.A.L.)
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| | - Pieter P. de Tombe
- Department of Physiology and Biophysics, University of Illinois at Chicago (P.P.d.T.)
- Phymedexp, Université de Montpellier, INSERM, CNRS, France (P.P.d.T.)
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., P.A.N., I.E.S., O.M.S., I.G.L., W.E.L.)
- KG Jebsen Center for Cardiac Research, University of Oslo, Norway (J.L., Y.H., M.L., M.R., T.R.K., M.F., I.E.S., O.M.S., I.G.L., W.E.L.)
| |
Collapse
|
4
|
Hohendanner F, Prabhu A, Wilck N, Stangl V, Pieske B, Stangl K, Althoff TF. G q-Mediated Arrhythmogenic Signaling Promotes Atrial Fibrillation. Biomedicines 2023; 11:biomedicines11020526. [PMID: 36831062 PMCID: PMC9953645 DOI: 10.3390/biomedicines11020526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Atrial fibrillation (AF) is promoted by various stimuli like angiotensin II, endothelin-1, epinephrine/norepinephrine, vagal activation, or mechanical stress, all of which activate receptors coupled to G-proteins of the Gαq/Gα11-family (Gq). Besides pro-fibrotic and pro-inflammatory effects, Gq-mediated signaling induces inositol trisphosphate receptor (IP3R)-mediated intracellular Ca2+ mobilization related to delayed after-depolarisations and AF. However, direct evidence of arrhythmogenic Gq-mediated signaling is absent. METHODS AND RESULTS To define the role of Gq in AF, transgenic mice with tamoxifen-inducible, cardiomyocyte-specific Gαq/Gα11-deficiency (Gq-KO) were created and exposed to intracardiac electrophysiological studies. Baseline electrophysiological properties, including heart rate, sinus node recovery time, and atrial as well as AV nodal effective refractory periods, were comparable in Gq-KO and control mice. However, inducibility and mean duration of AF episodes were significantly reduced in Gq-KO mice-both before and after vagal stimulation. To explore underlying mechanisms, left atrial cardiomyocytes were isolated from Gq-KO and control mice and electrically stimulated to study Ca2+-mobilization during excitation-contraction coupling using confocal microscopy. Spontaneous arrhythmogenic Ca2+ waves and sarcoplasmic reticulum content-corrected Ca2+ sparks were less frequent in Gq-KO mice. Interestingly, nuclear but not cytosolic Ca2+ transient amplitudes were significantly decreased in Gq-KO mice. CONCLUSION Gq-signaling promotes arrhythmogenic atrial Ca2+-release and AF in mice. Targeting this pathway, ideally using Gq-selective, biased receptor ligands, may be a promising approach for the treatment and prevention of AF. Importantly, the atrial-specific expression of the Gq-effector IP3R confers atrial selectivity mitigating the risk of life-threatening ventricular pro-arrhythmic effects.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ashok Prabhu
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nicola Wilck
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a Cooperation of Charité–Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125 Berlin, Germany
- Department of Nephrology and Medical Intensive Care Medicine, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Verena Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology and German Heart Center, Campus Virchow-Klinikum, Charité–University Medicine Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Karl Stangl
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Till F. Althoff
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 13316 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany
- Department of Cardiology and Angiology, Charité Campus Mitte, Charité–University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Arrhythmia Section, Cardiovascular Institute (ICCV), Hospital Clínic, Universitat de Barcelona, C/Villarroel N° 170, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275551; Fax: +34-93-4513045
| |
Collapse
|
5
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology—UMR-S 1180, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
6
|
Wang EY, Kuzmanov U, Smith JB, Dou W, Rafatian N, Lai BFL, Lu RXZ, Wu Q, Yazbeck J, Zhang XO, Sun Y, Gramolini A, Radisic M. An organ-on-a-chip model for pre-clinical drug evaluation in progressive non-genetic cardiomyopathy. J Mol Cell Cardiol 2021; 160:97-110. [PMID: 34216608 DOI: 10.1016/j.yjmcc.2021.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023]
Abstract
Angiotensin II (Ang II) presents a critical mediator in various pathological conditions such as non-genetic cardiomyopathy. Osmotic pump infusion in rodents is a commonly used approach to model cardiomyopathy associated with Ang II. However, profound differences in electrophysiology and pharmacokinetics between rodent and human cardiomyocytes may limit predictability of animal-based experiments. This study investigates the application of an Organ-on-a-chip (OOC) system in modeling Ang II-induced progressive cardiomyopathy. The disease model is constructed to recapitulate myocardial response to Ang II in a temporal manner. The long-term tissue cultivation and non-invasive functional readouts enable monitoring of both acute and chronic cardiac responses to Ang II stimulation. Along with mapping of cytokine secretion and proteomic profiles, this model presents an opportunity to quantitatively measure the dynamic pathological changes that could not be otherwise identified in animals. Further, we present this model as a testbed to evaluate compounds that target Ang II-induced cardiac remodeling. Through assessing the effects of losartan, relaxin, and saracatinib, the drug screening data implicated multifaceted cardioprotective effects of relaxin in restoring contractile function and reducing fibrotic remodeling. Overall, this study provides a controllable platform where cardiac activities can be explicitly observed and tested over the pathological process. The facile and high-content screening can facilitate the evaluation of potential drug candidates in the pre-clinical stage.
Collapse
Affiliation(s)
- Erika Yan Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Uros Kuzmanov
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jacob B Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Naimeh Rafatian
- Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada
| | - Benjamin Fook Lun Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Joshua Yazbeck
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Xiao-Ou Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Anthony Gramolini
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
7
|
Lim K, Ting SMS, Hamborg T, McGregor G, Oxborough D, Tomkins C, Xu D, Thadhani R, Lewis G, Bland R, Banerjee P, Fletcher S, Krishnan NS, Higgins R, Zehnder D, Hiemstra TF. Cardiovascular Functional Reserve Before and After Kidney Transplant. JAMA Cardiol 2021; 5:420-429. [PMID: 32022839 DOI: 10.1001/jamacardio.2019.5738] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Importance Restitution of kidney function by transplant confers a survival benefit in patients with end-stage renal disease. Investigations of mechanisms involved in improved cardiovascular survival have relied heavily on static measures from echocardiography or cardiac magnetic resonance imaging and have provided conflicting results to date. Objectives To evaluate cardiovascular functional reserve in patients with end-stage renal disease before and after kidney transplant and to assess functional and morphologic alterations of structural-functional dynamics in this population. Design, Setting, and Participants This prospective, nonrandomized, single-center, 3-arm, controlled cohort study, the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) study, included patients with stage 5 chronic kidney disease (CKD) who underwent kidney transplant (KTR group), patients with stage 5 CKD who were wait-listed and had not undergone transplant (NTWC group), and patients with hypertension only (HTC group) seen at a single center from April 1, 2010, to January 1, 2013. Patients were followed up longitudinally for up to 1 year after kidney transplant. Clinical data collection was completed February 2014. Data analysis was performed from June 1, 2014, to March 5, 2015. Further analysis on baseline and prospective data was performed from June 1, 2017, to July 31, 2019. Main Outcomes and Measures Cardiovascular functional reserve was objectively quantified using state-of-the-art cardiopulmonary exercise testing in parallel with transthoracic echocardiography. Results Of the 253 study participants (mean [SD] age, 48.5 [12.7] years; 141 [55.7%] male), 81 were in the KTR group, 85 in the NTWC group, and 87 in the HTC group. At baseline, mean (SD) maximum oxygen consumption (V̇O2max) was significantly lower in the CKD groups (KTR, 20.7 [5.8] mL · min-1 · kg-1; NTWC, 18.9 [4.7] mL · min-1 · kg-1) compared with the HTC group (24.9 [7.1] mL · min-1 · kg-1) (P < .001). Mean (SD) cardiac left ventricular mass index was higher in patients with CKD (KTR group, 104.9 [36.1] g/m2; NTWC group, 113.8 [37.7] g/m2) compared with the HTC group (87.8 [16.9] g/m2), (P < .001). Mean (SD) left ventricular ejection fraction was significantly lower in the patients with CKD (KTR group, 60.1% [8.6%]; NTWC group, 61.4% [8.9%]) compared with the HTC group (66.1% [5.9%]) (P < .001). Kidney transplant was associated with a significant improvement in V̇O2max in the KTR group at 12 months (22.5 [6.3] mL · min-1 · kg-1; P < .001), but the value did not reach the V̇O2max in the HTC group (26.0 [7.1] mL · min-1 · kg-1) at 12 months. V̇O2max decreased in the NTWC group at 12 months compared with baseline (17.7 [4.1] mL · min-1 · kg-1, P < .001). Compared with the KTR group (63.2% [6.8%], P = .02) or the NTWC group (59.3% [7.6%], P = .003) at baseline, transplant was significantly associated with improved left ventricular ejection fraction at 12 months but not with left ventricular mass index. Conclusions and Relevance The findings suggest that kidney transplant is associated with improved cardiovascular functional reserve after 1 year. In addition, cardiopulmonary exercise testing was sensitive enough to detect a decline in cardiovascular functional reserve in wait-listed patients with CKD. Improved V̇O2max may in part be independent from structural alterations of the heart and depend more on ultrastructural changes after reversal of uremia.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Stephen M S Ting
- Department of Medicine, University Hospitals Birmingham National Health Service Foundation Trust, Birmingham, United Kingdom
| | - Thomas Hamborg
- Pragmatic Clinical Trials Unit, Centre for Primary Care and Public Health, Queen Mary, University of London, London, United Kingdom
| | - Gordon McGregor
- Department of Nephrology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom.,Department of Cardiology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - David Oxborough
- Research Institutes of Sports and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Claudia Tomkins
- Department of Pathology Service, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Dihua Xu
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Ravi Thadhani
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Gregory Lewis
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston
| | - Rosemary Bland
- Division of Biomedical Sciences, University of Warwick, Coventry, United Kingdom
| | - Prithwish Banerjee
- Department of Cardiology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom.,Centre for Innovative Research Across the Life Course, Coventry University, Coventry, United Kingdom
| | - Simon Fletcher
- Department of Nephrology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Nithya S Krishnan
- Department of Nephrology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Robert Higgins
- Department of Nephrology, University Hospital Coventry and Warwickshire National Health Service Trust, Coventry, United Kingdom
| | - Daniel Zehnder
- Department of Nephrology, North Cumbria University Hospital National Health Service Trust, Carlisle, United Kingdom.,Department of Acute Medicine, North Cumbria University Hospital National Health Service Trust, Carlisle, United Kingdom
| | - Thomas F Hiemstra
- Cambridge Clinical Trials Unit and School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Bode D, Semmler L, Wakula P, Hegemann N, Primessnig U, Beindorff N, Powell D, Dahmen R, Ruetten H, Oeing C, Alogna A, Messroghli D, Pieske BM, Heinzel FR, Hohendanner F. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF. Cardiovasc Diabetol 2021; 20:7. [PMID: 33413413 PMCID: PMC7792219 DOI: 10.1186/s12933-020-01208-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sodium-glucose linked transporter type 2 (SGLT-2) inhibition has been shown to reduce cardiovascular mortality in heart failure independently of glycemic control and prevents the onset of atrial arrhythmias, a common co-morbidity in heart failure with preserved ejection fraction (HFpEF). The mechanism behind these effects is not fully understood, and it remains unclear if they could be further enhanced by additional SGLT-1 inhibition. We investigated the effects of chronic treatment with the dual SGLT-1&2 inhibitor sotagliflozin on left atrial (LA) remodeling and cellular arrhythmogenesis (i.e. atrial cardiomyopathy) in a metabolic syndrome-related rat model of HFpEF. METHODS 17 week-old ZSF-1 obese rats, a metabolic syndrome-related model of HFpEF, and wild type rats (Wistar Kyoto), were fed 30 mg/kg/d sotagliflozin for 6 weeks. At 23 weeks, LA were imaged in-vivo by echocardiography. In-vitro, Ca2+ transients (CaT; electrically stimulated, caffeine-induced) and spontaneous Ca2+ release were recorded by ratiometric microscopy using Ca2+-sensitive fluorescent dyes (Fura-2) during various experimental protocols. Mitochondrial structure (dye: Mitotracker), Ca2+ buffer capacity (dye: Rhod-2), mitochondrial depolarization (dye: TMRE) and production of reactive oxygen species (dye: H2DCF) were visualized by confocal microscopy. Statistical analysis was performed with 2-way analysis of variance followed by post-hoc Bonferroni and student's t-test, as applicable. RESULTS Sotagliflozin ameliorated LA enlargement in HFpEF in-vivo. In-vitro, LA cardiomyocytes in HFpEF showed an increased incidence and amplitude of arrhythmic spontaneous Ca2+ release events (SCaEs). Sotagliflozin significantly reduced the magnitude of SCaEs, while their frequency was unaffected. Sotagliflozin lowered diastolic [Ca2+] of CaT at baseline and in response to glucose influx, possibly related to a ~ 50% increase of sodium sodium-calcium exchanger (NCX) forward-mode activity. Sotagliflozin prevented mitochondrial swelling and enhanced mitochondrial Ca2+ buffer capacity in HFpEF. Sotagliflozin improved mitochondrial fission and reactive oxygen species (ROS) production during glucose starvation and averted Ca2+ accumulation upon glycolytic inhibition. CONCLUSION The SGLT-1&2 inhibitor sotagliflozin ameliorated LA remodeling in metabolic HFpEF. It also improved distinct features of Ca2+-mediated cellular arrhythmogenesis in-vitro (i.e. magnitude of SCaEs, mitochondrial Ca2+ buffer capacity, diastolic Ca2+ accumulation, NCX activity). The safety and efficacy of combined SGLT-1&2 inhibition for the treatment and/or prevention of atrial cardiomyopathy associated arrhythmias should be further evaluated in clinical trials.
Collapse
MESH Headings
- Animals
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Atrial Function, Left/drug effects
- Atrial Remodeling/drug effects
- Calcium Signaling/drug effects
- Disease Models, Animal
- Glycosides/pharmacology
- Heart Atria/drug effects
- Heart Atria/metabolism
- Heart Atria/physiopathology
- Heart Failure/drug therapy
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Metabolic Syndrome/complications
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Mitochondrial Dynamics/drug effects
- Mitochondrial Swelling/drug effects
- Rats, Inbred WKY
- Rats, Zucker
- Reactive Oxygen Species/metabolism
- Sodium-Calcium Exchanger/metabolism
- Sodium-Glucose Transporter 1/antagonists & inhibitors
- Sodium-Glucose Transporter 1/metabolism
- Sodium-Glucose Transporter 2/metabolism
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Rats
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Lukas Semmler
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitaetsmedizin Berlin, Berlin, Germany
| | - David Powell
- Lexicon Pharmaceuticals, Metabolism Research, Houston, TX, USA
| | - Raphael Dahmen
- Sanofi-Aventis Deutschland GmbH, Research & Development, 65926, Frankfurt am Main, Germany
| | - Hartmut Ruetten
- Sanofi-Aventis Deutschland GmbH, Research & Development, 65926, Frankfurt am Main, Germany
| | - Christian Oeing
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Alessio Alogna
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Messroghli
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, 13353, Berlin, Germany
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center Berlin, 13353, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
9
|
Lim K, McGregor G, Coggan AR, Lewis GD, Moe SM. Cardiovascular Functional Changes in Chronic Kidney Disease: Integrative Physiology, Pathophysiology and Applications of Cardiopulmonary Exercise Testing. Front Physiol 2020; 11:572355. [PMID: 33041870 PMCID: PMC7522507 DOI: 10.3389/fphys.2020.572355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The development of cardiovascular disease during renal impairment involves striking multi-tiered, multi-dimensional complex alterations encompassing the entire oxygen transport system. Complex interactions between target organ systems involving alterations of the heart, vascular, musculoskeletal and respiratory systems occur in Chronic Kidney Disease (CKD) and collectively contribute to impairment of cardiovascular function. These systemic changes have challenged our diagnostic and therapeutic efforts, particularly given that imaging cardiac structure at rest, rather than ascertainment under the stress of exercise, may not accurately reflect the risk of premature death in CKD. The multi-systemic nature of cardiovascular disease in CKD patients provides strong rationale for an integrated approach to the assessment of cardiovascular alterations in this population. State-of-the-art cardiopulmonary exercise testing (CPET) is a powerful, dynamic technology that enables the global assessment of cardiovascular functional alterations and reflects the integrative exercise response and complex machinery that form the oxygen transport system. CPET provides a wealth of data from a single assessment with mechanistic, physiological and prognostic utility. It is an underutilized technology in the care of patients with kidney disease with the potential to help advance the field of cardio-nephrology. This article reviews the integrative physiology and pathophysiology of cardio-renal impairment, critical new insights derived from CPET technology, and contemporary evidence for potential applications of CPET technology in patients with kidney disease.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gordon McGregor
- Coventry University Hospital, Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University - Purdue University, Indianapolis, IN, United States
| | - Gregory D Lewis
- Division of Cardiology, The Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Oxidative Stress and Inflammatory Modulation of Ca 2+ Handling in Metabolic HFpEF-Related Left Atrial Cardiomyopathy. Antioxidants (Basel) 2020; 9:antiox9090860. [PMID: 32937823 PMCID: PMC7555173 DOI: 10.3390/antiox9090860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome-mediated heart failure with preserved ejection fraction (HFpEF) is commonly accompanied by left atrial (LA) cardiomyopathy, significantly affecting morbidity and mortality. We evaluate the role of reactive oxygen species (ROS) and intrinsic inflammation (TNF-α, IL-10) related to dysfunctional Ca2+ homeostasis of LA cardiomyocytes in a rat model of metabolic HFpEF. ZFS-1 obese rats showed features of HFpEF and atrial cardiomyopathy in vivo: increased left ventricular (LV) mass, E/e’ and LA size and preserved LV ejection fraction. In vitro, LA cardiomyocytes exhibited more mitochondrial-fission (MitoTracker) and ROS-production (H2DCF). In wildtype (WT), pro-inflammatory TNF-α impaired cellular Ca2+ homeostasis, while anti-inflammatory IL-10 had no notable effect (confocal microscopy; Fluo-4). In HFpEF, TNF-α had no effect on Ca2+ homeostasis associated with decreased TNF-α receptor expression (western blot). In addition, IL-10 substantially improved Ca2+ release and reuptake, while IL-10 receptor-1 expression was unaltered. Oxidative stress in metabolic syndrome mediated LA cardiomyopathy was increased and anti-inflammatory treatment positively affected dysfunctional Ca2+ homeostasis. Our data indicates, that patients with HFpEF-related LA dysfunction might profit from IL-10 targeted therapy, which should be further explored in preclinical trials.
Collapse
|
11
|
Kilfoil PJ, Lotteau S, Zhang R, Yue X, Aynaszyan S, Solymani RE, Cingolani E, Marbán E, Goldhaber JI. Distinct features of calcium handling and β-adrenergic sensitivity in heart failure with preserved versus reduced ejection fraction. J Physiol 2020; 598:5091-5108. [PMID: 32829489 PMCID: PMC7693093 DOI: 10.1113/jp280425] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 12/21/2022] Open
Abstract
Key points Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation‐contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in β‐adrenergic sensitivity. These differences in EC coupling and β‐adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF.
Abstract Heart failure with reduced or preserved ejection fraction (respectively, HFrEF and HFpEF) is the leading cause of death in developed countries. Although numerous therapies improve outcomes in HFrEF, there are no effective treatments for HFpEF. We studied phenotypically verified rat models of HFrEF and HFpEF to compare excitation‐contraction (EC) coupling and protein expression in these two forms of heart failure. Dahl salt‐sensitive rats were fed a high‐salt diet (8% NaCl) from 7 weeks of age to induce HFpEF. Impaired diastolic relaxation and preserved ejection fraction were confirmed in each animal echocardiographically, and clinical signs of heart failure were documented. To generate HFrEF, Sprague‐Dawley (SD) rats underwent permanent left anterior descending coronary artery ligation which, 8–10 weeks later, led to systolic dysfunction (verified echocardiographically) and clinical signs of heart failure. Calcium (Ca2+) transients were measured in isolated cardiomyocytes under field stimulation or patch clamp. Ultra‐high‐speed laser scanning confocal imaging captured Ca2+ sparks evoked by voltage steps. Western blotting and PCR were used to assay changes in EC coupling protein and RNA expression. Cardiomyocytes from rats with HFrEF exhibited impaired EC coupling, including decreased Ca2+ transient (CaT) amplitude and defective couplon recruitment, associated with transverse (t)‐tubule disruption. In stark contrast, HFpEF cardiomyocytes showed saturated EC coupling (increased ICa, high probability of couplon recruitment with greater Ca2+ release synchrony, increased CaT) and preserved t‐tubule integrity. β‐Adrenergic stimulation of HFpEF myocytes with isoprenaline (isoproterenol) failed to elicit robust increases in ICa or CaT and relaxation kinetics. Fundamental differences in EC coupling distinguish HFrEF from HFpEF. Heart failure (HF), the leading cause of death in developed countries, occurs in the setting of reduced (HFrEF) or preserved (HFpEF) ejection fraction. Unlike HFrEF, there are no effective treatments for HFpEF, which accounts for ∼50% of heart failure. Abnormal intracellular calcium dynamics in cardiomyocytes have major implications for contractility and rhythm, but compared to HFrEF, very little is known about calcium cycling in HFpEF. We used rat models of HFpEF and HFrEF to reveal distinct differences in intracellular calcium regulation and excitation‐contraction (EC) coupling. While HFrEF is characterized by defective EC coupling at baseline, HFpEF exhibits enhanced coupling fidelity, further aggravated by a reduction in β‐adrenergic sensitivity. These differences in EC coupling and β‐adrenergic sensitivity may help explain why therapies that work in HFrEF are ineffective in HFpEF.
Collapse
Affiliation(s)
- Peter J Kilfoil
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Sabine Lotteau
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Rui Zhang
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Xin Yue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Stephan Aynaszyan
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Ryan E Solymani
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eugenio Cingolani
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Eduardo Marbán
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| | - Joshua I Goldhaber
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA, USA
| |
Collapse
|
12
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
13
|
Primessnig U, Bracic T, Levijoki J, Otsomaa L, Pollesello P, Falcke M, Pieske B, Heinzel FR. Long-term effects of Na + /Ca 2+ exchanger inhibition with ORM-11035 improves cardiac function and remodelling without lowering blood pressure in a model of heart failure with preserved ejection fraction. Eur J Heart Fail 2019; 21:1543-1552. [PMID: 31762174 DOI: 10.1002/ejhf.1619] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 12/28/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is increasingly common but there is currently no established pharmacological therapy. We hypothesized that ORM-11035, a novel specific Na+ /Ca2+ exchanger (NCX) inhibitor, improves cardiac function and remodelling independent of effects on arterial blood pressure in a model of cardiorenal HFpEF. METHODS AND RESULTS Rats were subjected to subtotal nephrectomy (NXT) or sham operation. Eight weeks after intervention, treatment for 16 weeks with ORM-11035 (1 mg/kg body weight) or vehicle was initiated. At 24 weeks, blood pressure measurements, echocardiography and pressure-volume loops were performed. Contractile function, Ca2+ transients and NCX-mediated Ca2+ extrusion were measured in isolated ventricular cardiomyocytes. NXT rats (untreated) showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV end-diastolic pressure (LVEDP) elevation, increased brain natriuretic peptide (BNP) levels, preserved ejection fraction and pulmonary congestion. In cardiomyocytes from untreated NXT rats, early relaxation was prolonged and NCX-mediated Ca2+ extrusion was decreased. Chronic treatment with ORM-11035 significantly reduced LV hypertrophy and cardiac remodelling without lowering systolic blood pressure. LVEDP [14 ± 3 vs. 9 ± 2 mmHg; NXT (n = 12) vs. NXT + ORM (n = 12); P = 0.0002] and BNP levels [71 ± 12 vs. 49 ± 11 pg/mL; NXT (n = 12) vs. NXT + ORM (n = 12); P < 0.0001] were reduced after ORM treatment. LV cardiomyocytes from ORM-treated rats showed improved active relaxation and diastolic cytosolic Ca2+ decay as well as restored NCX-mediated Ca2+ removal, indicating NCX modulation with ORM-11035 as a promising target in the treatment of HFpEF. CONCLUSION Chronic inhibition of NCX with ORM-11035 significantly attenuated cardiac remodelling and diastolic dysfunction without lowering systemic blood pressure in this model of HFpEF. Therefore, long-term treatment with selective NCX inhibitors such as ORM-11035 should be evaluated further in the treatment of heart failure.
Collapse
Affiliation(s)
- Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Department of Cardiology, Medical University of Graz, Graz, Austria.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Taja Bracic
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | | | | | | | - Martin Falcke
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Department of Physics, Humboldt Universität, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| |
Collapse
|
14
|
Li S, Chopra A, Keung W, Chan CWY, Costa KD, Kong CW, Hajjar RJ, Chen CS, Li RA. Sarco/endoplasmic reticulum Ca2+-ATPase is a more effective calcium remover than sodium-calcium exchanger in human embryonic stem cell-derived cardiomyocytes. Am J Physiol Heart Circ Physiol 2019; 317:H1105-H1115. [DOI: 10.1152/ajpheart.00540.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human pluripotent stem cell (hPSCs)-derived ventricular (V) cardiomyocytes (CMs) display immature Ca2+–handing properties with smaller transient amplitudes and slower kinetics due to such differences in crucial Ca2+-handling proteins as the poor sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) pump but robust Na+-Ca2+ exchanger (NCX) activities in human embryonic stem cell (ESC)-derived VCMs compared with adult. Despite their fundamental importance in excitation-contraction coupling, the relative contribution of SERCA and NCX to Ca2+-handling of hPSC-VCMs remains unexplored. We systematically altered the activities of SERCA and NCX in human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) and their engineered microtissues, followed by examining the resultant phenotypic consequences. SERCA overexpression in hESC-VCMs shortened the decay of Ca2+ transient at low frequencies (0.5 Hz) without affecting the amplitude, SR Ca2+ content and Ca2+ baseline. Interestingly, short hairpin RNA-based NCX suppression did not prolong the transient decay, indicating a compensatory response for Ca2+ removal. Although hESC-VCMs and their derived microtissues exhibited negative frequency-transient/force responses, SERCA overexpression rendered them less negative at high frequencies (>2 Hz) by accelerating Ca2+ sequestration. We conclude that for hESC-VCMs and their microtissues, SERCA, rather than NCX, is the main Ca2+ remover during diastole; poor SERCA expression is the leading cause for immature negative-frequency/force responses, which can be partially reverted by forced expression. Combinatorial approach to mature calcium handling in hESC-VCMs may help shed further mechanistic insights. NEW & NOTEWORTHY In this study of human pluripotent stem cell-derived cardiomyocytes, we studied the role of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and Na+-Ca2+ exchanger (NCX) in Ca2+ handling. Our data support the notion that SERCA is more effective in cytosolic calcium removal than the NCX.
Collapse
Affiliation(s)
- Sen Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Anant Chopra
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Wendy Keung
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Camie W. Y. Chan
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Kevin D. Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Chi-Wing Kong
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, Manhattan, New York
| | - Christopher S. Chen
- Department of Bioengineering, Boston University, Boston, Massachusetts
- Harvard Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts
| | - Ronald A. Li
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Pokfulam, Hong Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
- Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong
| |
Collapse
|
15
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
16
|
Bode D, Lindner D, Schwarzl M, Westermann D, Deissler P, Primessnig U, Hegemann N, Blatter LA, van Linthout S, Tschöpe C, Schoenrath F, Soltani S, Stamm C, Duesterhoeft V, Rolim N, Wisløff U, Knosalla C, Falk V, Pieske BM, Heinzel FR, Hohendanner F. The role of fibroblast - Cardiomyocyte interaction for atrial dysfunction in HFpEF and hypertensive heart disease. J Mol Cell Cardiol 2019; 131:53-65. [PMID: 31005484 DOI: 10.1016/j.yjmcc.2019.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/17/2019] [Indexed: 12/28/2022]
Abstract
AIMS Atrial contractile dysfunction is associated with increased mortality in heart failure (HF). We have shown previously that a metabolic syndrome-based model of HFpEF and a model of hypertensive heart disease (HHD) have impaired left atrial (LA) function in vivo (rat). In this study we postulate, that left atrial cardiomyocyte (CM) and cardiac fibroblast (CF) paracrine interaction related to the inositol 1,4,5-trisphosphate signalling cascade is pivotal for the manifestation of atrial mechanical dysfunction in HF and that quantitative atrial remodeling is highly disease-dependent. METHODS AND RESULTS Differential remodeling was observed in HHD and HFpEF as indicated by an increase of atrial size in vivo (HFpEF), unchanged fibrosis (HHD and HFpEF) and a decrease of CM size (HHD). Baseline contractile performance of rat CM in vitro was enhanced in HFpEF. Upon treatment with conditioned medium from their respective stretched CF (CM-SF), CM (at 21 weeks) of WT showed increased Ca2+ transient (CaT) amplitudes related to the paracrine activity of the inotrope endothelin (ET-1) and inositol 1,4,5-trisphosphate induced Ca2+ release. Concentration of ET-1 was increased in CM-SF and atrial tissue from WT as compared to HHD and HFpEF. In HHD, CM-SF had no relevant effect on CaT kinetics. However, in HFpEF, CM-SF increased diastolic Ca2+ and slowed Ca2+ removal, potentially contributing to an in-vivo decompensation. During disease progression (i.e. at 27 weeks), HFpEF displayed dysfunctional excitation-contraction-coupling (ECC) due to lower sarcoplasmic-reticulum Ca2+ content unrelated to CF-CM interaction or ET-1, but associated with enhanced nuclear [Ca2+]. In human patients, tissue ET-1 was not related to the presence of arterial hypertension or obesity. CONCLUSIONS Atrial remodeling is a complex entity that is highly disease and stage dependent. The activity of fibrosis related to paracrine interaction (e.g. ET-1) might contribute to in vitro and in vivo atrial dysfunction. However, during later stages of disease, ECC is impaired unrelated to CF.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Germany; Universitäres Herzzentrum Hamburg, Klinik für Allgemeine und Interventionelle Kardiologie, 20246 Hamburg, Germany
| | - Michael Schwarzl
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Germany; Universitäres Herzzentrum Hamburg, Klinik für Allgemeine und Interventionelle Kardiologie, 20246 Hamburg, Germany
| | - Dirk Westermann
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg, Germany; Universitäres Herzzentrum Hamburg, Klinik für Allgemeine und Interventionelle Kardiologie, 20246 Hamburg, Germany
| | - Peter Deissler
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Lothar A Blatter
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Sophie van Linthout
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Carsten Tschöpe
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Felix Schoenrath
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Sajjad Soltani
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Christof Stamm
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Volker Duesterhoeft
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Natale Rolim
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Ulrik Wisløff
- K.G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Christoph Knosalla
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Volkmar Falk
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Department of Cardiothoracic Surgery, German Heart Center Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany; Department of Cardiothoracic Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Germany
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany; Department of Internal Medicine and Cardiology, German Heart Center Berlin, 13353 Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, 13353 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany.
| |
Collapse
|
17
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2019; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
18
|
Galectin-1 attenuates cardiomyocyte hypertrophy through splice-variant specific modulation of CaV1.2 calcium channel. Biochim Biophys Acta Mol Basis Dis 2019; 1865:218-229. [DOI: 10.1016/j.bbadis.2018.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/17/2018] [Accepted: 08/14/2018] [Indexed: 11/22/2022]
|
19
|
Hamilton S, Terentyeva R, Kim TY, Bronk P, Clements RT, O-Uchi J, Csordás G, Choi BR, Terentyev D. Pharmacological Modulation of Mitochondrial Ca 2+ Content Regulates Sarcoplasmic Reticulum Ca 2+ Release via Oxidation of the Ryanodine Receptor by Mitochondria-Derived Reactive Oxygen Species. Front Physiol 2018; 9:1831. [PMID: 30622478 PMCID: PMC6308295 DOI: 10.3389/fphys.2018.01831] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
In a physiological setting, mitochondria increase oxidative phosphorylation during periods of stress to meet increased metabolic demand. This in part is mediated via enhanced mitochondrial Ca2+ uptake, an important regulator of cellular ATP homeostasis. In a pathophysiological setting pharmacological modulation of mitochondrial Ca2+ uptake or retention has been suggested as a therapeutic strategy to improve metabolic homeostasis or attenuate Ca2+-dependent arrhythmias in cardiac disease states. To explore the consequences of mitochondrial Ca2+ accumulation, we tested the effects of kaempferol, an activator of mitochondrial Ca2+ uniporter (MCU), CGP-37157, an inhibitor of mitochondrial Na+/Ca2+ exchanger, and MCU inhibitor Ru360 in rat ventricular myocytes (VMs) from control rats and rats with hypertrophy induced by thoracic aortic banding (TAB). In periodically paced VMs under β-adrenergic stimulation, treatment with kaempferol (10 μmol/L) or CGP-37157 (1 μmol/L) enhanced mitochondrial Ca2+ accumulation monitored by mitochondrial-targeted Ca2+ biosensor mtRCamp1h. Experiments with mitochondrial membrane potential-sensitive dye TMRM revealed this was accompanied by depolarization of the mitochondrial matrix. Using redox-sensitive OMM-HyPer and ERroGFP_iE biosensors, we found treatment with kaempferol or CGP-37157 increased the levels of reactive oxygen species (ROS) in mitochondria and the sarcoplasmic reticulum (SR), respectively. Confocal Ca2+ imaging showed that accelerated Ca2+ accumulation reduced Ca2+ transient amplitude and promoted generation of spontaneous Ca2+ waves in VMs paced under ISO, suggestive of abnormally high activity of the SR Ca2+ release channel ryanodine receptor (RyR). Western blot analyses showed increased RyR oxidation after treatment with kaempferol or CGP-37157 vs. controls. Furthermore, in freshly isolated TAB VMs, confocal Ca2+ imaging demonstrated that enhancement of mitochondrial Ca2+ accumulation further perturbed global Ca2+ handling, increasing the number of cells exhibiting spontaneous Ca2+ waves, shortening RyR refractoriness and decreasing SR Ca2+ content. In ex vivo optically mapped TAB hearts, kaempferol exacerbated proarrhythmic phenotype. On the contrary, incubation of cells with MCU inhibitor Ru360 (2 μmol/L, 30 min) normalized RyR oxidation state, improved intracellular Ca2+ homeostasis and reduced triggered activity in ex vivo TAB hearts. These findings suggest facilitation of mitochondrial Ca2+ uptake in cardiac disease can exacerbate proarrhythmic disturbances in Ca2+ homeostasis via ROS and enhanced activity of oxidized RyRs, while strategies to reduce mitochondrial Ca2+ accumulation can be protective.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Radmila Terentyeva
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Tae Yun Kim
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Peter Bronk
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Richard T. Clements
- Department of Surgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, RI, United States
| | - Jin O-Uchi
- Lillehei Heart Institute University of Minnesota, Cancer and Cardiovascular Research Building, Minneapolis, MN, United States
| | - György Csordás
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bum-Rak Choi
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| | - Dmitry Terentyev
- Department of Medicine, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, Cardiovascular Research Center, Providence, RI, United States
| |
Collapse
|
20
|
Mhatre KN, Wakula P, Klein O, Bisping E, Völkl J, Pieske B, Heinzel FR. Crosstalk between FGF23- and angiotensin II-mediated Ca 2+ signaling in pathological cardiac hypertrophy. Cell Mol Life Sci 2018; 75:4403-4416. [PMID: 30062428 PMCID: PMC11105615 DOI: 10.1007/s00018-018-2885-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023]
Abstract
Heart failure (HF) manifestation and progression are driven by systemic activation of neuroendocrine signaling cascades, such as the renin-angiotensin aldosterone system (RAAS). Fibroblast growth factor 23 (FGF23), an endocrine hormone, is linked to HF and cardiovascular mortality. It is also a mediator of left-ventricular hypertrophy (LVH). In vivo, high circulating levels of FGF23 are associated with an altered systemic RAAS response. FGF23 is proposed to trigger pathological signaling mediated by Ca2+-regulated transcriptional pathways. In the present study, we investigated Ca2+-dependent signaling of FGF23 in ventricular cardiomyocytes and its association with angiotensin II (ATII). In neonatal rat ventricular myocytes (NRVMs), both ATII and FGF23 induced hypertrophy as observed by an increase in cell area and hypertrophic gene expression. Furthermore, FGF23 activates nuclear Ca2+-regulated CaMKII-HDAC4 pathway, similar to ATII. In addition to a global increase in cytoplasmic Ca2+, FGF23, like ATII, induced inositol 1, 4, 5-triphosphate (IP3)-induced Ca2+ release from the nucleoplasmic Ca2+ store, associated with cellular hypertrophy. Interestingly, ATII receptor antagonist, losartan, significantly attenuated FGF23-induced changes in Ca2+ homeostasis and cellular hypertrophy suggesting an involvement of ATII receptor-mediated signaling. In addition, application of FGF23 increased intracellular expression of ATII peptide and its secretion in NRVMs, confirming the participation of ATII. In conclusion, FGF23 and ATII share a common mechanism of IP3-nuclear Ca2+-dependent cardiomyocyte hypertrophy. FGF23-mediated cellular hypertrophy is associated with increased production and secretion of ATII by cardiomyocytes. These findings indicate a pathophysiological role of the cellular angiotensin system in FGF23-induced hypertrophy in ventricular cardiomyocytes.
Collapse
Affiliation(s)
- Ketaki N Mhatre
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany
| | - Oliver Klein
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany
| | - Egbert Bisping
- Department of Cardiology, Medical University Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Jakob Völkl
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Department of Internal Medicine and Cardiology, German Heart Center, 13353, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, 13353, Berlin, Germany.
- German Center for Cardiovascular Research (DZHK), Berlin, Germany.
| |
Collapse
|
21
|
Crossman DJ, Shen X, Jüllig M, Munro M, Hou Y, Middleditch M, Shrestha D, Li A, Lal S, Dos Remedios CG, Baddeley D, Ruygrok PN, Soeller C. Increased collagen within the transverse tubules in human heart failure. Cardiovasc Res 2018; 113:879-891. [PMID: 28444133 DOI: 10.1093/cvr/cvx055] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
Abstract
Aims In heart failure transverse-tubule (t-tubule) remodelling disrupts calcium release, and contraction. T-tubules in human failing hearts exhibit increased labelling by wheat germ agglutinin (WGA), a lectin that binds to the dystrophin-associated glycoprotein complex. We hypothesized changes in this complex may explain the increased WGA labelling and contribute to t-tubule remodelling in the failing human heart. In this study we sought to identify the molecules responsible for this increased WGA labelling. Methods and results Confocal and super-resolution fluorescence microscopy and proteomic analyses were used to quantify left ventricle samples from healthy donors and patients with idiopathic dilated cardiomyopathy (IDCM). Confocal microscopy demonstrated both WGA and dystrophin were located at t-tubules. Super-resolution microscopy revealed that WGA labelling of t-tubules is largely located within the lumen while dystrophin was restricted to near the sarcolemma. Western blots probed with WGA reveal a 5.7-fold increase in a 140 kDa band in IDCM. Mass spectrometry identified this band as type VI collagen (Col-VI) comprised of α1(VI), α2(VI), and α3(VI) chains. Pertinently, mutations in Col-VI cause muscular dystrophy. Western blotting identified a 2.4-fold increased expression and 3.2-fold increased WGA binding of Col-VI in IDCM. Confocal images showed that Col-VI is located in the t-tubules and that their diameter increased in the IDCM samples. Super-resolution imaging revealed Col-VI was restricted to the t-tubule lumen where increases were associated with displacement in the sarcolemma as identified from dystrophin labelling. Samples were also labelled for type I, III, and IV collagen. Both confocal and super-resolution imaging identified that these collagens were also present within t-tubule lumen. Conclusion Increased expression and labelling of collagen in IDCM samples indicates fibrosis may contribute to t-tubule remodelling in human heart failure.
Collapse
Affiliation(s)
- David J Crossman
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Xin Shen
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Mia Jüllig
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Michelle Munro
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Yufeng Hou
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Martin Middleditch
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Darshan Shrestha
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Amy Li
- Bosch Institute, University of Sydney, Fisher Road Sydney, NSW 2006, Australia
| | - Sean Lal
- Bosch Institute, University of Sydney, Fisher Road Sydney, NSW 2006, Australia
| | | | - David Baddeley
- Department of Cell Biology, Yale University, West Campus, 300 Heffernan Drive, Haven, CT 06515, USA
| | - Peter N Ruygrok
- Department of Cardiology, Auckland City Hospital, Auckland 1042, New Zealand
| | - Christian Soeller
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.,Living Systems Institute and Biomedical Physics, University of Exeter, Stocker Road, Exeter EX4QL, UK
| |
Collapse
|
22
|
Xie A, Song Z, Liu H, Zhou A, Shi G, Wang Q, Gu L, Liu M, Xie LH, Qu Z, Dudley SC. Mitochondrial Ca 2+ Influx Contributes to Arrhythmic Risk in Nonischemic Cardiomyopathy. J Am Heart Assoc 2018; 7:e007805. [PMID: 29627768 PMCID: PMC6015427 DOI: 10.1161/jaha.117.007805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is associated with increased arrhythmia risk and triggered activity. Abnormal Ca2+ handling is thought to underlie triggered activity, and mitochondria participate in Ca2+ homeostasis. METHODS AND RESULTS A model of nonischemic HF was induced in C57BL/6 mice by hypertension. Computer simulations were performed using a mouse ventricular myocyte model of HF. Isoproterenol-induced premature ventricular contractions and ventricular fibrillation were more prevalent in nonischemic HF mice than sham controls. Isolated myopathic myocytes showed decreased cytoplasmic Ca2+ transients, increased mitochondrial Ca2+ transients, and increased action potential duration at 90% repolarization. The alteration of action potential duration at 90% repolarization was consistent with in vivo corrected QT prolongation and could be explained by augmented L-type Ca2+ currents, increased Na+-Ca2+ exchange currents, and decreased total K+ currents. Of myopathic ventricular myocytes, 66% showed early afterdepolarizations (EADs) compared with 17% of sham myocytes (P<0.05). Intracellular application of 1 μmol/L Ru360, a mitochondrial Ca2+ uniporter-specific antagonist, could reduce mitochondrial Ca2+ transients, decrease action potential duration at 90% repolarization, and ameliorate EADs. Furthermore, genetic knockdown of mitochondrial Ca2+ uniporters inhibited mitochondrial Ca2+ uptake, reduced Na+-Ca2+ exchange currents, decreased action potential duration at 90% repolarization, suppressed EADs, and reduced ventricular fibrillation in nonischemic HF mice. Computer simulations showed that EADs promoted by HF remodeling could be abolished by blocking either the mitochondrial Ca2+ uniporter or the L-type Ca2+ current, consistent with the experimental observations. CONCLUSIONS Mitochondrial Ca2+ handling plays an important role in EADs seen with nonischemic cardiomyopathy and may represent a therapeutic target to reduce arrhythmic risk in this condition.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Zhen Song
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Anyu Zhou
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Guangbin Shi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Qiongying Wang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lianzhi Gu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Man Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School Rutgers, The State University of New Jersey, Newark, NJ
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Samuel C Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
23
|
Cellular mechanisms of metabolic syndrome-related atrial decompensation in a rat model of HFpEF. J Mol Cell Cardiol 2017; 115:10-19. [PMID: 29289652 DOI: 10.1016/j.yjmcc.2017.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 11/30/2017] [Accepted: 12/27/2017] [Indexed: 11/23/2022]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is present in about 50% of HF patients. Atrial remodeling is common in HFpEF and associated with increased mortality. We postulate that atrial remodeling is associated with atrial dysfunction in vivo related to alterations in cardiomyocyte Calcium (Ca) signaling and remodeling. We examined atrial function in vivo and Ca transients (CaT) (Fluo4-AM, field stim) in atrial cardiomyocytes of ZSF-1 rats without (Ln; lean hypertensive) and with metabolic syndrome (Ob; obese, hypertensive, diabetic) and HFpEF. RESULTS At 21weeks Ln showed an increased left ventricular (LV) mass and left ventricular end-diastolic pressure (LVEDP), but unchanged left atrial (LA) size and preserved atrial ejection fraction vs. wild-type (WT). CaT amplitude in atrial cardiomyocytes was increased in Ln (2.9±0.2 vs. 2.3±0.2F/F0 in WT; n=22 cells/group; p<0.05). Studying subcellular Ca release in more detail, we found that local central cytosolic CaT amplitude was increased, while subsarcolemmal CaT amplitudes remained unchanged. Moreover, Sarcoplasmic reticulum (SR) Ca content (caffeine) was preserved while Ca spark frequency and tetracaine-dependent SR Ca leak were significantly increased in Ln. Ob mice developed a HFpEF phenotype in vivo, LA area was significantly increased and atrial in vivo function was impaired, despite increased atrial CaT amplitudes in vitro (2.8±0.2; p<0.05 vs. WT). Ob cells showed alterations of the tubular network possibly contributing to the observed phenotype. CaT kinetics as well as SR Ca in Ob were not significantly different from WT, but SR Ca leak remained increased. Angiotensin II (Ang II) reduced in vitro cytosolic CaT amplitudes and let to active nuclear Ca release in Ob but not in Ln or WT. SUMMARY In hypertensive ZSF-1 rats, a possibly compensatory increase of cytosolic CaT amplitude and increased SR Ca leak precede atrial remodeling and HFpEF. Atrial remodeling in ZSF-1 HFpEF is associated with an altered tubular network in-vitro and atrial contractile dysfunction in vivo, indicating insufficient compensation. Atrial cardiomyocyte dysfunction in vitro is induced by the addition of angiotensin II.
Collapse
|
24
|
Singh JK, Barsegyan V, Bassi N, Marszalec W, Tai S, Mothkur S, Mulla M, Nico E, Shiferaw Y, Aistrup GL, Wasserstrom JA. T-tubule remodeling and increased heterogeneity of calcium release during the progression to heart failure in intact rat ventricle. Physiol Rep 2017; 5:5/24/e13540. [PMID: 29279414 PMCID: PMC5742703 DOI: 10.14814/phy2.13540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/29/2023] Open
Abstract
A highly organized transverse‐tubule (TT) system is essential to normal Ca2+ cycling and cardiac function. We explored the relationship between the progressive disruption of TTs and resulting Ca2+ cycling during the development of heart failure (HF). Confocal imaging was used to measure Ca2+ transients and 2‐D z‐stack images in left ventricular epicardial myocytes of intact hearts from spontaneously hypertensive rats (SHR) and Wistar‐Kyoto control rats. TT organization was measured as the organizational index (OI) derived from a fast Fourier transform of TT organization. We found little decrease in the synchrony of Ca2+ release with TT loss until TT remodeling was severe, suggesting a TT “reserve” characterized by a wide range of TT remodeling with little effect on synchrony of release but beyond which variability in release shows an accelerating sensitivity to TT loss. To explain this observation, we applied a computational model of spatially distributed Ca2+ signaling units to investigate the relationship between OI and excitation‐contraction coupling. Our model showed that release heterogeneity exhibits a nonlinear relationship on both the spatial distribution of release units and the separation between L‐type Ca2+ channels and ryanodine receptors. Our results demonstrate a unique relationship between the synchrony of Ca2+ release and TT organization in myocytes of intact rat ventricle that may contribute to both the compensated and decompensated phases of heart failure.
Collapse
Affiliation(s)
- Jasleen K Singh
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Varderes Barsegyan
- Department of Physics and Astronomy, California State University, Northridge, California
| | - Nikhil Bassi
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Marszalec
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shannon Tai
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Shruthi Mothkur
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maaz Mulla
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Elsa Nico
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yohannes Shiferaw
- Department of Physics and Astronomy, California State University, Northridge, California
| | - Gary L Aistrup
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - John Andrew Wasserstrom
- Department of Medicine (Cardiology), The Feinberg Cardiovascular Research Institute Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
25
|
Garcia-Canadilla P, Rodriguez JF, Palazzi MJ, Gonzalez-Tendero A, Schönleitner P, Balicevic V, Loncaric S, Luiken JJFP, Ceresa M, Camara O, Antoons G, Crispi F, Gratacos E, Bijnens B. A two dimensional electromechanical model of a cardiomyocyte to assess intra-cellular regional mechanical heterogeneities. PLoS One 2017; 12:e0182915. [PMID: 28837585 PMCID: PMC5570434 DOI: 10.1371/journal.pone.0182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/26/2017] [Indexed: 01/01/2023] Open
Abstract
Experimental studies on isolated cardiomyocytes from different animal species and human hearts have demonstrated that there are regional differences in the Ca2+ release, Ca2+ decay and sarcomere deformation. Local deformation heterogeneities can occur due to a combination of factors: regional/local differences in Ca2+ release and/or re-uptake, intra-cellular material properties, sarcomere proteins and distribution of the intracellular organelles. To investigate the possible causes of these heterogeneities, we developed a two-dimensional finite-element electromechanical model of a cardiomyocyte that takes into account the experimentally measured local deformation and cytosolic [Ca2+] to locally define the different variables of the constitutive equations describing the electro/mechanical behaviour of the cell. Then, the model was individualised to three different rat cardiac cells. The local [Ca2+] transients were used to define the [Ca2+]-dependent activation functions. The cell-specific local Young's moduli were estimated by solving an inverse problem, minimizing the error between the measured and simulated local deformations along the longitudinal axis of the cell. We found that heterogeneities in the deformation during contraction were determined mainly by the local elasticity rather than the local amount of Ca2+, while in the relaxation phase deformation was mainly influenced by Ca2+ re-uptake. Our electromechanical model was able to successfully estimate the local elasticity along the longitudinal direction in three different cells. In conclusion, our proposed model seems to be a good approximation to assess the heterogeneous intracellular mechanical properties to help in the understanding of the underlying mechanisms of cardiomyocyte dysfunction.
Collapse
Affiliation(s)
| | - Jose F. Rodriguez
- LaBS, Chemistry, materials and chemical engineering department “Giulio Natta”, Politecnico di Milano, Milano, Italy
| | - Maria J. Palazzi
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Gonzalez-Tendero
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Vedrana Balicevic
- Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia
| | - Sven Loncaric
- Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | | | - Mario Ceresa
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Camara
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gudrun Antoons
- Dept. of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Fatima Crispi
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Eduard Gratacos
- BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu), Fetal i+D Fetal Medicine Research Center, IDIBAPS, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Bart Bijnens
- Dept. of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Oskouie SK, Prenner SB, Shah SJ, Sauer AJ. Differences in Repolarization Heterogeneity Among Heart Failure With Preserved Ejection Fraction Phenotypic Subgroups. Am J Cardiol 2017; 120:601-606. [PMID: 28651852 DOI: 10.1016/j.amjcard.2017.05.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/22/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a highly heterogeneous syndrome associated with multiple medical comorbidities and pathophysiologic pathways or phenotypes. We recently developed a phenomapping method combining deep phenotyping with machine learning analysis to classify HFpEF patients into 3 clinically distinct phenotypic subgroups (phenogroups) with different clinical outcomes. Phenogroup #1 was younger with lower B-type natriuretic peptide levels, phenogroup #2 had the highest prevalence of obesity and diabetes mellitus, and phenogroup #3 was the oldest with the most factors for chronic kidney disease, the most dysfunctional myocardial mechanics, and the highest adverse outcomes. The pathophysiological differences between these phenogroups, however, remain incompletely described. We sought to evaluate whether these 3 groups differ on the basis of repolarization heterogeneity, which has previously been linked to adverse outcomes in HFpEF. The T-peak to T-end (TpTe) interval, a well-validated index of repolarization heterogeneity, was measured by 2 readers blinded to each other and all other clinical data on the electrocardiograms of 201 HFpEF patients enrolled in a systematic observational study. TpTe duration was associated with higher B-type natriuretic peptide level (p = 0.006), increased QRS-T angle (p = 0.008), and lower septal e' velocity (p = 0.007). TpTe duration was greatest in phenogroup #3 (100.4 ± 24.5 ms) compared with phenogroups #1 (91.2 ± 17.3 ms) and #2 (90.2 ± 17.0 ms) (p = 0.0098). On multivariable analyses, increased TpTe was independently associated with the high-risk phenogroup #3 classification. In conclusion, repolarization heterogeneity is a marker of a specific subset of HFpEF patients identified using unsupervised machine learning analysis and therefore may be a key pathophysiologic marker in this subset of HFpEF patients.
Collapse
|
27
|
Wallner M, Khafaga M, Kolesnik E, Vafiadis A, Schwantzer G, Eaton DM, Curcic P, Köstenberger M, Knez I, Rainer PP, Pichler M, Pieske B, Lewinski DV. Istaroxime, a potential anticancer drug in prostate cancer, exerts beneficial functional effects in healthy and diseased human myocardium. Oncotarget 2017; 8:49264-49274. [PMID: 28514771 PMCID: PMC5564766 DOI: 10.18632/oncotarget.17540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/14/2017] [Indexed: 12/28/2022] Open
Abstract
The current gold standard for prostate cancer treatment is androgen deprivation therapy and antiandrogenic agents. However, adverse cardiovascular events including heart failure can limit therapeutic use. Istaroxime, which combines Na+-K+-ATPase (NKA) inhibition with sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) stimulation, has recently shown promising anti-neoplastic effects in prostate cancer (PC) models and may also improve cardiac function. Considering the promising anticancer effects of istaroxime, we aimed to assess its functional effects on human myocardium.
Collapse
Affiliation(s)
- Markus Wallner
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140 PA, United States of America
| | - Mounir Khafaga
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Ewald Kolesnik
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Aris Vafiadis
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Gerold Schwantzer
- Institute for Medical Informatics, Statistics, and Documentation, Medical University of Graz, 8036 Graz, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, 19140 PA, United States of America
| | - Pero Curcic
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Martin Köstenberger
- Department of Pediatric Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Igor Knez
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Peter P Rainer
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Martin Pichler
- Division of Clinical Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Burkert Pieske
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.,Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité University Medicine, Berlin, 13353 Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, Berlin, 13353 Berlin, Germany
| | - Dirk Von Lewinski
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
28
|
Klassen MP, Peters CJ, Zhou S, Williams HH, Jan LY, Jan YN. Age-dependent diastolic heart failure in an in vivo Drosophila model. eLife 2017; 6. [PMID: 28328397 PMCID: PMC5362267 DOI: 10.7554/elife.20851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/11/2017] [Indexed: 12/13/2022] Open
Abstract
While the signals and complexes that coordinate the heartbeat are well established, how the heart maintains its electromechanical rhythm over a lifetime remains an open question with significant implications to human health. Reasoning that this homeostatic challenge confronts all pulsatile organs, we developed a high resolution imaging and analysis toolset for measuring cardiac function in intact, unanesthetized Drosophila melanogaster. We demonstrate that, as in humans, normal aging primarily manifests as defects in relaxation (diastole) while preserving contractile performance. Using this approach, we discovered that a pair of two-pore potassium channel (K2P) subunits, largely dispensable early in life, are necessary for terminating contraction (systole) in aged animals, where their loss culminates in fibrillatory cardiac arrest. As the pumping function of its heart is acutely dispensable for survival, Drosophila represents a uniquely accessible model for understanding the signaling networks maintaining cardiac performance during normal aging.
Collapse
Affiliation(s)
- Matthew P Klassen
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Christian J Peters
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Shiwei Zhou
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Hannah H Williams
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lily Yeh Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yuh Nung Jan
- Department of Physiology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
29
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
30
|
TRPC3 positively regulates reactive oxygen species driving maladaptive cardiac remodeling. Sci Rep 2016; 6:37001. [PMID: 27833156 PMCID: PMC5105134 DOI: 10.1038/srep37001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidase 2 (Nox2) function as key mediators of mechanotransduction during both physiological adaptation to mechanical load and maladaptive remodeling of the heart. This is despite low levels of cardiac Nox2 expression. The mechanism underlying the transition from adaptation to maladaptation remains obscure, however. We demonstrate that transient receptor potential canonical 3 (TRPC3), a Ca2+-permeable channel, acts as a positive regulator of ROS (PRROS) in cardiomyocytes, and specifically regulates pressure overload-induced maladaptive cardiac remodeling in mice. TRPC3 physically interacts with Nox2 at specific C-terminal sites, thereby protecting Nox2 from proteasome-dependent degradation and amplifying Ca2+-dependent Nox2 activation through TRPC3-mediated background Ca2+ entry. Nox2 also stabilizes TRPC3 proteins to enhance TRPC3 channel activity. Expression of TRPC3 C-terminal polypeptide abolished TRPC3-regulated ROS production by disrupting TRPC3-Nox2 interaction, without affecting TRPC3-mediated Ca2+ influx. The novel TRPC3 function as a PRROS provides a mechanistic explanation for how diastolic Ca2+ influx specifically encodes signals to induce ROS-mediated maladaptive remodeling and offers new therapeutic possibilities.
Collapse
|
31
|
Hohendanner F, DeSantiago J, Heinzel FR, Blatter LA. Dyssynchronous calcium removal in heart failure-induced atrial remodeling. Am J Physiol Heart Circ Physiol 2016; 311:H1352-H1359. [PMID: 27694214 DOI: 10.1152/ajpheart.00375.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that in atrial myocytes from a rabbit left ventricular heart failure (HF) model, spatial inhomogeneity and temporal dyssynchrony of Ca removal during excitation-contraction coupling together with increased Na/Ca exchange (NCX) activity generate a substrate for proarrhythmic Ca release. Ca removal occurs via Ca reuptake into the sarcoplasmic reticulum and extrusion via NCX exclusively in the cell periphery since rabbit atrial myocytes lack transverse tubules. Ca removal kinetics were assessed by the time constant τ of decay of local peripheral subsarcolemmal (SS) and central (CT) action potential (AP)-induced Ca transients (CaTs) recorded in confocal line scan mode (using Fluo-4). Spatial and temporal dyssynchrony of Ca removal was quantified by CV TAU, defined as the standard deviation of local τ along the transverse cell axis divided by mean τ. In normal cells CT CaT decline was slower compared with the SS domain, while in HF cells decline was accelerated, became equal in SS and CT regions, and a significant increase of CV TAU indicated an increased Ca removal dyssynchrony. In HF atrial cells NCX upregulation was accompanied by an overall higher incidence of spontaneous Ca waves and a higher propensity of arrhythmogenic Ca waves, defined as waves that triggered APs due to NCX-mediated membrane depolarization. NCX inhibition normalized CV TAU in HF atrial cells and decreased the propensity of Ca waves. In summary, HF atrial myocytes show accelerated but dyssynchronous diastolic Ca removal and altered sarcoplasmic reticulum Ca-ATPase (SERCA) and NCX activity that result in increased susceptibility to arrhythmia.
Collapse
Affiliation(s)
- F Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - J DeSantiago
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - F R Heinzel
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - L A Blatter
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
32
|
Ying X, Weiqing L, Guihua L, Juhong Z, Huang Z. Effect of Valsartan on Sarcoplasmic Reticulum Ca2+-ATPase Pump of the Left Ventricular Myocardium in Rats with Heart Failure with Preserved Ejection Fraction. Biomed Hub 2016; 1:1-9. [PMID: 31988887 PMCID: PMC6945928 DOI: 10.1159/000448132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/30/2016] [Indexed: 11/19/2022] Open
Abstract
Objectives The aim was to investigate the effects of valsartan on the sarcoplasmic reticulum Ca2+-ATPase pump (SERCA) and L-type Ca2+ channel current (I<sub>CaL</sub>) of the left ventricular myocardium in rats with heart failure with preserved ejection fraction. Methods The 30-week-old male spontaneously hypertensive rats (SHRs) are randomly divided into the non-Valsartan and Valsartan groups, and the 30-week-old male Wistar-Kyoto rats served as control rats. The expression of SERCA is measured by Western blot. The I<sub>CaL</sub> is measured by whole-cell patch clamp. The left ventricular end-diastolic pressure and left ventricular relaxation time constant quantity are measured at the same time. Results The left ventricular end-diastolic pressure is much higher in SHRs compared with that in control rats (p < 0.01). The left ventricular relaxation time constant quantity is markedly extended in SHRs compared with control rats (p < 0.01). Valsartan cannot increase the expression of SERCA nor decrease the density of I<sub>CaL</sub> compared with the non-Valsartan group (p > 0.05). Conclusions Valsartan has no effect on SERCA and I<sub>CaL</sub> of the left ventricular myocardium in rats with heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Xiao Ying
- Department of Anesthesiology, Sun Yat-sen University, Guangzhou, China
| | - Long Weiqing
- Department of Clinical Laboratory, Sun Yat-sen University, Guangzhou, China
| | - Lu Guihua
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhang Juhong
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhibin Huang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Altered mitochondrial expression genes in patients receiving right ventricular apical pacing. Exp Mol Pathol 2016; 100:469-75. [DOI: 10.1016/j.yexmp.2016.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 11/22/2022]
|
34
|
Primessnig U, Schönleitner P, Höll A, Pfeiffer S, Bracic T, Rau T, Kapl M, Stojakovic T, Glasnov T, Leineweber K, Wakula P, Antoons G, Pieske B, Heinzel FR. Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction. Eur J Heart Fail 2016; 18:987-97. [DOI: 10.1002/ejhf.524] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Affiliation(s)
- Uwe Primessnig
- Department of Cardiology; Charité University Medicine Berlin; Campus Virchow-Klinikum Berlin Germany
- Department of Cardiology; Medical University of Graz; Graz Austria
- German Centre for Cardiovascular Research (DZHK); partner site Berlin, Germany
| | - Patrick Schönleitner
- Department of Cardiology; Medical University of Graz; Graz Austria
- Department of Physiology; Maastricht University; Maastricht The Netherlands
| | - Alexander Höll
- Department of Cardiology; Medical University of Graz; Graz Austria
| | - Susanne Pfeiffer
- Department of Cardiology; Medical University of Graz; Graz Austria
| | - Taja Bracic
- Department of Cardiology; Medical University of Graz; Graz Austria
| | - Thomas Rau
- Department of Cardiology; Medical University of Graz; Graz Austria
| | - Martin Kapl
- Department of Cardiology; Medical University of Graz; Graz Austria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics; Medical University of Graz; Graz Austria
| | - Toma Glasnov
- Institute of Chemistry; University of Graz; Graz Austria
| | | | - Paulina Wakula
- Department of Cardiology; Charité University Medicine Berlin; Campus Virchow-Klinikum Berlin Germany
- German Centre for Cardiovascular Research (DZHK); partner site Berlin, Germany
| | - Gudrun Antoons
- Department of Cardiology; Medical University of Graz; Graz Austria
- Department of Physiology; Maastricht University; Maastricht The Netherlands
| | - Burkert Pieske
- Department of Cardiology; Charité University Medicine Berlin; Campus Virchow-Klinikum Berlin Germany
- Department of Cardiology; Medical University of Graz; Graz Austria
- German Centre for Cardiovascular Research (DZHK); partner site Berlin, Germany
| | - Frank R. Heinzel
- Department of Cardiology; Charité University Medicine Berlin; Campus Virchow-Klinikum Berlin Germany
- Department of Cardiology; Medical University of Graz; Graz Austria
- German Centre for Cardiovascular Research (DZHK); partner site Berlin, Germany
| |
Collapse
|
35
|
Hohendanner F, Maxwell JT, Blatter LA. Cytosolic and nuclear calcium signaling in atrial myocytes: IP3-mediated calcium release and the role of mitochondria. Channels (Austin) 2016; 9:129-38. [PMID: 25891132 DOI: 10.1080/19336950.2015.1040966] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In rabbit atrial myocytes Ca signaling has unique features due to the lack of transverse (t) tubules, the spatial arrangement of mitochondria and the contribution of inositol-1,4,5-trisphosphate (IP3) receptor-induced Ca release (IICR). During excitation-contraction coupling action potential-induced elevation of cytosolic [Ca] originates in the cell periphery from Ca released from the junctional sarcoplasmic reticulum (j-SR) and then propagates by Ca-induced Ca release from non-junctional (nj-) SR toward the cell center. The subsarcolemmal region between j-SR and the first array of nj-SR Ca release sites is devoid of mitochondria which results in a rapid propagation of activation through this domain, whereas the subsequent propagation through the nj-SR network occurs at a velocity typical for a propagating Ca wave. Inhibition of mitochondrial Ca uptake with the Ca uniporter blocker Ru360 accelerates propagation and increases the amplitude of Ca transients (CaTs) originating from nj-SR. Elevation of cytosolic IP3 levels by rapid photolysis of caged IP3 has profound effects on the magnitude of subcellular CaTs with increased Ca release from nj-SR and enhanced CaTs in the nuclear compartment. IP3 uncaging restricted to the nucleus elicites 'mini'-Ca waves that remain confined to this compartment. Elementary IICR events (Ca puffs) preferentially originate in the nucleus in close physical association with membrane structures of the nuclear envelope and the nucleoplasmic reticulum. The data suggest that in atrial myocytes the nucleus is an autonomous Ca signaling domain where Ca dynamics are primarily governed by IICR.
Collapse
Key Words
- 2-APB, 2-aminoethoxydiphenyl borate
- AP, action potential
- CICR, Ca-induced Ca release
- CRU, Ca release units
- CT, central
- CaT, Ca transient
- ECC, excitation-contraction coupling
- IICR
- IICR, IP3R-induced Ca release
- IP3
- IP3R, Inositol-1,4,5-trisphosphate receptor
- LCC, L-type Ca channels
- MCU, mitochondrial Ca uniporter
- NE, nuclear envelope
- NFAT, nuclear factor of activated T cells
- NPR, nucleoplasmic reticulum
- RyR, ryanodine receptor
- SR, sarcoplasmic reticulum
- SS, subsarcolemmal
- TF50, time to half-maximal amplitude
- TZ, transition zone.
- [Ca]i, cytosolic Ca concentration
- [Ca]mito, mitochondrial Ca concentration
- atria
- excitation-contraction coupling
- j-SR, junctional SR
- mitochondria
- nj-SR, non-junctional SR
- nuclear calcium
- t-tubule, transverse tubule
Collapse
Affiliation(s)
- Felix Hohendanner
- a Department of Molecular Biophysics and Physiology ; Rush University Medical Center ; Chicago , IL USA
| | | | | |
Collapse
|
36
|
Tousoulis D. Factors affecting left ventricular function: The new era of the Hellenic Journal of Cardiology in Elsevier group. Hellenic J Cardiol 2016; 57:71-2. [PMID: 27445019 DOI: 10.1016/j.hjc.2016.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
37
|
Leite S, Rodrigues S, Tavares-Silva M, Oliveira-Pinto J, Alaa M, Abdellatif M, Fontoura D, Falcão-Pires I, Gillebert TC, Leite-Moreira AF, Lourenço AP. Afterload-induced diastolic dysfunction contributes to high filling pressures in experimental heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2015; 309:H1648-54. [DOI: 10.1152/ajpheart.00397.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Myocardial stiffness and upward-shifted end-diastolic pressure-volume (P-V) relationship (EDPVR) are the key to high filling pressures in heart failure with preserved ejection fraction (HFpEF). Nevertheless, many patients may remain asymptomatic unless hemodynamic stress is imposed on the myocardium. Whether delayed relaxation induced by pressure challenge may contribute to high end-diastolic pressure (EDP) remains unsettled. Our aim was to assess the effect of suddenly imposed isovolumic afterload on relaxation and EDP, exploiting a highly controlled P-V experimental evaluation setup in the ZSF1 obese rat (ZSF1 Ob) model of HFpEF. Twenty-week-old ZSF1 Ob ( n = 12), healthy Wistar-Kyoto rats (WKY, n = 11), and hypertensive ZSF1 lean control rats (ZSF1 Ln, n = 10) underwent open-thorax left ventricular (LV) P-V hemodynamic evaluation under anesthesia with sevoflurane. EDPVR was obtained by inferior vena cava occlusions to assess LV ED chamber stiffness constant β, and single-beat isovolumic afterload acquisitions were obtained by swift occlusions of the ascending aorta. ZSF1 Ob showed increased ED stiffness, delayed relaxation, as assessed by time constant of isovolumic relaxation (τ), and elevated EDP with normal ejection fraction. Isovolumic afterload increased EDP without concomitant changes in ED volume or heart rate. In isovolumic beats, relaxation was delayed to the extent that time for complete relaxation as predicted by 3.5 × monoexponentially derived τ (τexp) exceeded effective filling time. EDP elevation correlated with reduced time available to relax, which was the only independent predictor of EDP rise in multiple linear regression. Our results suggest that delayed relaxation during pressure challenge is an important contributor to lung congestion and effort intolerance in HFpEF.
Collapse
Affiliation(s)
- Sara Leite
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Sara Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Tavares-Silva
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiology, Hospital São João, Porto, Portugal
| | - José Oliveira-Pinto
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Vascular Surgery, Hospital São João, Porto, Portugal
| | - Mohamed Alaa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Suez Canal University, Ismaileya, Egypt
| | - Mahmoud Abdellatif
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Dulce Fontoura
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino F. Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Cardiothoracic Surgery, Hospital São João, Porto, Portugal; and
| | - André P. Lourenço
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
- Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
- Department of Anesthesiology, Hospital São João, Porto, Portugal
| |
Collapse
|
38
|
Antoons G, Johnson DM, Dries E, Santiago DJ, Ozdemir S, Lenaerts I, Beekman JDM, Houtman MJC, Sipido KR, Vos MA. Calcium release near L-type calcium channels promotes beat-to-beat variability in ventricular myocytes from the chronic AV block dog. J Mol Cell Cardiol 2015; 89:326-34. [PMID: 26454162 DOI: 10.1016/j.yjmcc.2015.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 09/08/2015] [Accepted: 10/06/2015] [Indexed: 11/25/2022]
Abstract
Beat-to-beat variability of ventricular repolarization (BVR) has been proposed as a strong predictor of Torsades de Pointes (TdP). BVR is also observed at the myocyte level, and a number of studies have shown the importance of calcium handling in influencing this parameter. The chronic AV block (CAVB) dog is a model of TdP arrhythmia in cardiac hypertrophy, and myocytes from these animals show extensive remodeling, including of Ca(2+) handling. This remodeling process also leads to increased BVR. We aimed to determine the role that (local) Ca(2+) handling plays in BVR. In isolated LV myocytes an exponential relationship was observed between BVR magnitude and action potential duration (APD) at baseline. Inhibition of Ca(2+) release from sarcoplasmic reticulum (SR) with thapsigargin resulted in a reduction of [Ca(2+)]i, and of both BVR and APD. Increasing ICaL in the presence of thapsigargin restored APD but BVR remained low. In contrast, increasing ICaL with preserved Ca(2+) release increased both APD and BVR. Inhibition of Ca(2+) release with caffeine, as with thapsigargin, reduced BVR despite maintained APD. Simultaneous inhibition of Na(+)/Ca(2+) exchange and ICaL decreased APD and BVR to similar degrees, whilst increasing diastolic Ca(2+). Buffering of Ca(2+) transients with BAPTA reduced BVR for a given APD to a greater extent than buffering with EGTA, suggesting subsarcolemmal Ca(2+) transients modulated BVR to a larger extent than the cytosolic Ca(2+) transient. In conclusion, BVR in hypertrophied dog myocytes, at any APD, is strongly dependent on SR Ca(2+) release, which may act through modulation of the l-type Ca(2+) current in a subsarcolemmal microdomain.
Collapse
Affiliation(s)
- Gudrun Antoons
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands; Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Daniel M Johnson
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Eef Dries
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Demetrio J Santiago
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Semir Ozdemir
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium; Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ilse Lenaerts
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium
| | - Jet D M Beekman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Karin R Sipido
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven (University of Leuven), Leuven, Belgium.
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| |
Collapse
|
39
|
Heinzel FR, Hohendanner F, Jin G, Sedej S, Edelmann F. Myocardial hypertrophy and its role in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2015; 119:1233-42. [PMID: 26183480 DOI: 10.1152/japplphysiol.00374.2015] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/09/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is the most common myocardial structural abnormality associated with heart failure with preserved ejection fraction (HFpEF). LVH is driven by neurohumoral activation, increased mechanical load, and cytokines associated with arterial hypertension, chronic kidney disease, diabetes, and other comorbidities. Here we discuss the experimental and clinical evidence that links LVH to diastolic dysfunction and qualifies LVH as one diagnostic marker for HFpEF. Mechanisms leading to diastolic dysfunction in LVH are incompletely understood, but may include extracellular matrix changes, vascular dysfunction, as well as altered cardiomyocyte mechano-elastical properties. Beating cardiomyocytes from HFpEF patients have not yet been studied, but we and others have shown increased Ca(2+) turnover and impaired relaxation in cardiomyocytes from hypertrophied hearts. Structural myocardial remodeling can lead to heterogeneity in regional myocardial contractile function, which contributes to diastolic dysfunction in HFpEF. In the clinical setting of patients with compound comorbidities, diastolic dysfunction may occur independently of LVH. This may be one explanation why current approaches to reduce LVH have not been effective to improve symptoms and prognosis in HFpEF. Exercise training, on the other hand, in clinical trials improved exercise tolerance and diastolic function, but did not reduce LVH. Thus current clinical evidence does not support regression of LVH as a surrogate marker for (short-term) improvement of HFpEF.
Collapse
Affiliation(s)
- Frank R Heinzel
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany;
| | - Felix Hohendanner
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Ge Jin
- Cardiology Department, The Second Affiliated Hospital & YuYing Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, P. R. China; and Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Frank Edelmann
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
40
|
Doleschal B, Primessnig U, Wölkart G, Wolf S, Schernthaner M, Lichtenegger M, Glasnov TN, Kappe CO, Mayer B, Antoons G, Heinzel F, Poteser M, Groschner K. TRPC3 contributes to regulation of cardiac contractility and arrhythmogenesis by dynamic interaction with NCX1. Cardiovasc Res 2015; 106:163-73. [PMID: 25631581 PMCID: PMC4362401 DOI: 10.1093/cvr/cvv022] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Aim TRPC3 is a non-selective cation channel, which forms a Ca2+ entry pathway involved in cardiac remodelling. Our aim was to analyse acute electrophysiological and contractile consequences of TRPC3 activation in the heart. Methods and results We used a murine model of cardiac TRPC3 overexpression and a novel TRPC3 agonist, GSK1702934A, to uncover (patho)physiological functions of TRPC3. GSK1702934A induced a transient, non-selective conductance and prolonged action potentials in TRPC3-overexpressing myocytes but lacked significant electrophysiological effects in wild-type myocytes. GSK1702934A transiently enhanced contractility and evoked arrhythmias in isolated Langendorff hearts from TRPC3-overexpressing but not wild-type mice. Interestingly, pro-arrhythmic effects outlasted TRPC3 current activation, were prevented by enhanced intracellular Ca2+ buffering, and suppressed by the NCX inhibitor 3′,4′-dichlorobenzamil hydrochloride. GSK1702934A substantially promoted NCX currents in TRPC3-overexpressing myocytes. The TRPC3-dependent electrophysiologic, pro-arrhythmic, and inotropic actions of GSK1702934A were mimicked by angiotensin II (AngII). Immunocytochemistry demonstrated colocalization of TRPC3 with NCX1 and disruption of local interaction upon channel activation by either GSK1702934A or AngII. Conclusion Cardiac TRPC3 mediates Ca2+ and Na+ entry in proximity of NCX1, thereby elevating cellular Ca2+ levels and contractility. Excessive activation of TRPC3 is associated with transient cellular Ca2+ overload, spatial uncoupling between TRPC3 and NCX1, and arrhythmogenesis. We propose TRPC3-NCX micro/nanodomain communication as determinant of cardiac contractility and susceptibility to arrhythmogenic stimuli.
Collapse
Affiliation(s)
| | - Uwe Primessnig
- Department of Cardiology, Medical University of Graz, Graz, Austria Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria
| | - Gerald Wölkart
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Stefan Wolf
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Michaela Schernthaner
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | | | - Toma N Glasnov
- Institute of Chemistry, University of Graz, Graz, Austria Christian Doppler Laboratory for Continuous Flow Chemistry, Institute of Chemistry, University of Graz, Graz, Austria
| | - C Oliver Kappe
- Institute of Chemistry, University of Graz, Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Gudrun Antoons
- Department of Cardiology, Medical University of Graz, Graz, Austria Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria
| | - Frank Heinzel
- Department of Cardiology, Medical University of Graz, Graz, Austria Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria
| | - Michael Poteser
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| | - Klaus Groschner
- Ludwig Boltzmann Institute of Translational Heart Failure Research, Graz, Austria Institute of Biophysics, Medical University of Graz, Harrachgasse 21, Graz 8010, Austria
| |
Collapse
|
41
|
Hammer KP, Hohendanner F, Blatter LA, Pieske BM, Heinzel FR. Variations in local calcium signaling in adjacent cardiac myocytes of the intact mouse heart detected with two-dimensional confocal microscopy. Front Physiol 2015; 5:517. [PMID: 25628569 PMCID: PMC4290493 DOI: 10.3389/fphys.2014.00517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Abstract
Dyssynchronous local Ca release within individual cardiac myocytes has been linked to cellular contractile dysfunction. Differences in Ca kinetics in adjacent cells may also provide a substrate for inefficient contraction and arrhythmias. In a new approach we quantify variation in local Ca transients between adjacent myocytes in the whole heart. Langendorff-perfused mouse hearts were loaded with Fluo-8 AM to detect Ca and Di-4-ANEPPS to visualize cell membranes. A spinning disc confocal microscope with a fast camera allowed us to record Ca signals within an area of 465 μm by 315 μm with an acquisition speed of 55 fps. Images from multiple transients recorded at steady state were registered to their time point in the cardiac cycle to restore averaged local Ca transients with a higher temporal resolution. Local Ca transients within and between adjacent myocytes were compared with regard to amplitude, time to peak and decay at steady state stimulation (250 ms cycle length). Image registration from multiple sequential Ca transients allowed reconstruction of high temporal resolution (2.4 ± 1.3 ms) local CaT in 2D image sets (N = 4 hearts, n = 8 regions). During steady state stimulation, spatial Ca gradients were homogeneous within cells in both directions and independent of distance between measured points. Variation in CaT amplitudes was similar across the short and the long side of neighboring cells. Variations in TAU and TTP were similar in both directions. Isoproterenol enhanced the CaT but not the overall pattern of spatial heterogeneities. Here we detected and analyzed local Ca signals in intact mouse hearts with high temporal and spatial resolution, taking into account 2D arrangement of the cells. We observed significant differences in the variation of CaT amplitude along the long and short axis of cardiac myocytes. Variations of Ca signals between neighboring cells may contribute to the substrate of cardiac remodeling.
Collapse
Affiliation(s)
- Karin P Hammer
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Internal Medicine II, University Hospital Regensburg Regensburg, Germany
| | - Felix Hohendanner
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Lothar A Blatter
- Molecular Biophysics and Physiology, Rush Medical College, Rush University Chicago, IL, USA
| | - Burkert M Pieske
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| | - Frank R Heinzel
- Department of Cardiology, Medical University of Graz Graz, Austria ; Department of Cardiology, Charité-Universitaetsmedizin Berlin Berlin, Germany
| |
Collapse
|
42
|
Hohendanner F, Walther S, Maxwell JT, Kettlewell S, Awad S, Smith GL, Lonchyna VA, Blatter LA. Inositol-1,4,5-trisphosphate induced Ca2+ release and excitation-contraction coupling in atrial myocytes from normal and failing hearts. J Physiol 2014; 593:1459-77. [PMID: 25416623 DOI: 10.1113/jphysiol.2014.283226] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/10/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Impaired calcium (Ca(2+)) signalling is the main contributor to depressed ventricular contractile function and occurrence of arrhythmia in heart failure (HF). Here we report that in atrial cells of a rabbit HF model, Ca(2+) signalling is enhanced and we identified the underlying cellular mechanisms. Enhanced Ca(2+) transients (CaTs) are due to upregulation of inositol-1,4,5-trisphosphate receptor induced Ca(2+) release (IICR) and decreased mitochondrial Ca(2+) sequestration. Enhanced IICR, however, together with an increased activity of the sodium-calcium exchange mechanism, also facilitates spontaneous Ca(2+) release in form of arrhythmogenic Ca(2+) waves and spontaneous action potentials, thus enhancing the arrhythmogenic potential of atrial cells. Our data show that enhanced Ca(2+) signalling in HF provides atrial cells with a mechanism to improve ventricular filling and to maintain cardiac output, but also increases the susceptibility to develop atrial arrhythmias facilitated by spontaneous Ca(2+) release. ABSTRACT We studied excitation-contraction coupling (ECC) and inositol-1,4,5-triphosphate (IP3)-dependent Ca(2+) release in normal and heart failure (HF) rabbit atrial cells. Left ventricular HF was induced by combined volume and pressure overload. In HF atrial myocytes diastolic [Ca(2+)]i was increased, action potential (AP)-induced Ca(2+) transients (CaTs) were larger in amplitude, primarily due to enhanced Ca(2+) release from central non-junctional sarcoplasmic reticulum (SR) and centripetal propagation of activation was accelerated, whereas HF ventricular CaTs were depressed. The larger CaTs were due to enhanced IP3 receptor-induced Ca(2+) release (IICR) and reduced mitochondrial Ca(2+) buffering, consistent with a reduced mitochondrial density and Ca(2+) uptake capacity in HF. Elementary IP3 receptor-mediated Ca(2+) release events (Ca(2+) puffs) were more frequent in HF atrial myoctes and were detected more often in central regions of the non-junctional SR compared to normal cells. HF cells had an overall higher frequency of spontaneous Ca(2+) waves and a larger fraction of waves (termed arrhythmogenic Ca(2+) waves) triggered APs and global CaTs. The higher propensity of arrhythmogenic Ca(2+) waves resulted from the combined action of enhanced IICR and increased activity of sarcolemmal Na(+)-Ca(2+) exchange depolarizing the cell membrane. In conclusion, the data support the hypothesis that in atrial myocytes from hearts with left ventricular failure, enhanced CaTs during ECC exert positive inotropic effects on atrial contractility which facilitates ventricular filling and contributes to maintaining cardiac output. However, HF atrial cells were also more susceptible to developing arrhythmogenic Ca(2+) waves which might form the substrate for atrial rhythm disorders frequently encountered in HF.
Collapse
Affiliation(s)
- Felix Hohendanner
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Williams R. Circulation Research
“In This Issue” Anthology. Circ Res 2014. [DOI: 10.1161/res.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Loffredo FS, Nikolova AP, Pancoast JR, Lee RT. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 2014; 115:97-107. [PMID: 24951760 DOI: 10.1161/circresaha.115.302929] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Age-related diastolic dysfunction is a major factor in the epidemic of heart failure. In patients hospitalized with heart failure, HFpEF is now as common as heart failure with reduced ejection fraction. We now have many successful treatments for heart failure with reduced ejection fraction, while specific treatment options for HFpEF patients remain elusive. The lack of treatments for HFpEF reflects our very incomplete understanding of this constellation of diseases. There are many pathophysiological factors in HFpEF, but aging appears to play an important role. Here, we propose that aging of the myocardium is itself a specific pathophysiological process. New insights into the aging heart, including hormonal controls and specific molecular pathways, such as microRNAs, are pointing to myocardial aging as a potentially reversible process. While the overall process of aging remains mysterious, understanding the molecular pathways of myocardial aging has never been more important. Unraveling these pathways could lead to new therapies for the enormous and growing problem of HFpEF.
Collapse
Affiliation(s)
- Francesco S Loffredo
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Andriana P Nikolova
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - James R Pancoast
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Richard T Lee
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
45
|
Santulli G, Ciccarelli M, Trimarco B, Iaccarino G. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the β adrenergic system. Front Physiol 2013; 4:209. [PMID: 23964243 PMCID: PMC3740240 DOI: 10.3389/fphys.2013.00209] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 07/23/2013] [Indexed: 12/11/2022] Open
Abstract
Aging is a complex process characterized by a gradual decline in organ functional reserves, which eventually reduces the ability to maintain homeostasis. An exquisite feature of elderly subjects, which constitute a growing proportion of the world population, is the high prevalence of cardiovascular disorders, which negatively affect both the quality of life and the life expectancy. It is widely acknowledged that physical activity represents one of the foremost interventions capable in reducing the health burden of cardiovascular disease. Interestingly, the benefits of moderate-intensity physical activity have been established both in young and elderly subjects. Herein we provide a systematic and updated appraisal of the literature exploring the pathophysiological mechanisms evoked by physical activity in the elderly, focusing on the functional role of the β adrenergic system.
Collapse
Affiliation(s)
- Gaetano Santulli
- Department of Translational Medical Sciences, "Federico II" University Naples, Italy ; Department of Advanced Biomedical Sciences, "Federico II" University Naples, Italy ; College of Physicians and Surgeons, New York Presbyterian Hospital, Columbia University in the City of New York Manhattan, New York, NY, USA
| | | | | | | |
Collapse
|