1
|
Shi B, Wang X, Xue T, Liu J, Wu W, Luo Y, Zhu H, Pan D. Expression level of miR-146a is associated with the coronary lesion severity and clinical prognosis in patients with unstable angina pectoris. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2025; 24:200367. [PMID: 39872631 PMCID: PMC11770491 DOI: 10.1016/j.ijcrp.2025.200367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
Objective To investigate the association between plasma miR-146a expression levels, severity of coronary lesions, and clinical prognosis in patients with unstable angina pectoris (UAP). Methods A total of 100 patients with UAP and 100 controls were selected for assessment of plasma miRNA-146a expression levels. We assessed the severity of coronary lesions in patients with UAP using the Gensini score. Additionally, we analyzed the correlation between miR-146a expression and the degree of coronary artery stenosis in patients with UAP. The incidence of major adverse cardiovascular events (MACEs) was followed-up for 48 months after hospitalization and discharge. The median grouping method was employed to categorize patients into high- and low-expression groups based on their miR-146a levels. Thereafter, the incidence of MACEs in these groups was analyzed using the Kaplan-Meier method. Results The plasma expression level of miR-146a in the UAP group was 1.8-fold greater than that in the control group (Z = 6.970, P < 0.001) and correlated with the severity of coronary lesions; a high expression level was associated with a higher Gensini score (P < 0.05). Patients with high miR-146a expression levels showed a significantly higher incidence of MACEs than those with low miR-146a expression levels (log-rank test: P = 0.004). Conclusion Plasma miR-146a expression levels in patients with UAP correlated with the severity of coronary lesions, and patients with high miR-146a expression levels had poorer clinical prognoses than those with lower expression levels.
Collapse
Affiliation(s)
- Binbing Shi
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xiaotong Wang
- Department of Cardiology, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China
| | - Tongneng Xue
- Department of Cardiology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wanling Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
2
|
Abolfazli S, Karav S, Johnston TP, Sahebkar A. Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. Pharmacol Rep 2025:10.1007/s43440-025-00694-w. [PMID: 39832074 DOI: 10.1007/s43440-025-00694-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Zuo G, Zhang J, Xie H. Prognostic value of serum angiopoietin-like protein 2 in patients with acute coronary syndrome. BMC Cardiovasc Disord 2024; 24:709. [PMID: 39702007 DOI: 10.1186/s12872-024-04391-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Angiopoietin-like protein 2 (Angptl2) is a cytokine that is released to stimulate inflammation and accelerate atherogenesis. Our study sought to assess the predictive significance of serum Angptl2 in individuals diagnosed with acute coronary syndrome (ACS) and determine whether it can enhance prognostic performance beyond the GRACE risk score. METHODS We recruited a total of 1060 patients with ACS in a consecutive manner. The levels of Angptl2 in serum were analyzed at baseline. The subjects were then followed up for 12 months to monitor the occurrence of major adverse cardiovascular events (MACE). RESULTS The level of serum Angptl2 showed a positive correlation with the GRACE score (r = 0.54, p < 0.001). Survival analysis revealed that increased levels of serum Angptl2 were associated with higher occurrence of the composite of MACE (log-rank p < 0.001) and its specific components (log-rank p = 0.011 for all-cause death, p = 0.007 for non-fatal myocardial infarction and p < 0.001 for revascularization respectively). Throughout the follow-up period, 163 instances (15.4%) of endpoint events were documented. In terms of MACE, both serum Angptl2 levels (HR: 1.178, 95% CI: 1.058-1.313, p = 0.003) and the GRACE risk score (HR: 1.181, 95% CI: 1.007-1.385, p = 0.041) emerged as significant predictors following Cox multivariate adjustment. Additionally, the addition of serum Angptl2 to the GRACE score improved the predictive capacity for prognosis [increase in area under the receiveroperating characteristic curve (AUC) from 0.740 to 0.794, p = 0.020; net reclassification improvement (NRI) = 0.401, p = 0.001; integrated discrimination improvement (IDI) = 0.022, p = 0.008]. CONCLUSION Serum Angptl2 might be a useful prognostic biomarker and combining serum Angptl2 with the GRACE score increased the efficacy of prognosis prediction in ACS patients. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Guangfeng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai, Nanjing, 210006, China
| | - Juan Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai, Nanjing, 210006, China
| | - Hao Xie
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai, Nanjing, 210006, China.
| |
Collapse
|
4
|
Manikpurage HD, Ricard J, Houessou U, Bourgault J, Gagnon E, Gobeil É, Girard A, Li Z, Eslami A, Mathieu P, Bossé Y, Arsenault BJ, Thériault S. Association of genetically predicted levels of circulating blood lipids with coronary artery disease incidence. Atherosclerosis 2024; 401:119083. [PMID: 39674127 DOI: 10.1016/j.atherosclerosis.2024.119083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND AIMS Estimating the genetic risk of coronary artery disease (CAD) is now possible by aggregating data from genome-wide association studies (GWAS) into polygenic risk scores (PRS). Combining multiple PRS for specific circulating blood lipids could improve risk prediction. Here, we sought to evaluate the performance of PRS derived from CAD and blood lipids GWAS to predict the incidence of CAD. METHODS This study included individuals aged between 40 and 69 from UK Biobank. We conducted GWAS for blood lipids measured by nuclear magnetic resonance in individuals without lipid-lowering treatments (n = 73,915). Summary statistics were used to derive PRS in the remaining participants (n = 318,051). A PRSCAD was derived using the CARDIoGRAMplusC4D GWAS. Hazard ratios (HR) for CAD (n = 9017 out of 301,576; median follow-up: 12.6 years) were calculated per standard deviation increase in each PRS. Models' discrimination capacity and goodness-of-fit were evaluated. RESULTS Out of 30 PRS, 27 were significantly associated with the incidence of CAD (p < 0.0017). The optimal combination of PRS included PRS for CAD, VLDL-C, total cholesterol and triglycerides. Discriminative capacities were significantly increased in the model including PRSCAD and clinical risk factors (CRF) (C-statistic = 0.778 [0.773-0.782]) compared to the model with CRF only (C-statistic = 0.755 [0.751-0.760], difference = 0.022 [0.020-0.025]). Although the C-statistic remained similar when independent lipids PRS were added to the model with PRSCAD and CRF (C-statistic = 0.778 [0.773-0.783]), the goodness-of-fit was significantly increased (chi-square test statistic = 20.18, p = 1.56e-04). CONCLUSIONS Although independently associated with CAD incidence, blood lipids PRS provide modest improvement in the predictive performance when added to PRSCAD.
Collapse
Affiliation(s)
- Hasanga D Manikpurage
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Jasmin Ricard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Ursula Houessou
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Jérôme Bourgault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Eloi Gagnon
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Émilie Gobeil
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Arnaud Girard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Zhonglin Li
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada
| | - Aida Eslami
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada; Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, (QC), Canada
| | - Patrick Mathieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada; Department of Surgery, Faculty of Medicine, Université Laval, Québec, (QC), Canada
| | - Yohan Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada; Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, (QC), Canada
| | - Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, (QC), Canada
| | - Sébastien Thériault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, (QC), Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec, (QC), Canada.
| |
Collapse
|
5
|
van der Stouwe JG, Godly K, Kraler S, Godly J, Matter CM, Wenzl FA, von Eckardstein A, Räber L, Mach F, Obeid S, Templin C, Lüscher TF, Niederseer D. Body temperature, systemic inflammation and risk of adverse events in patients with acute coronary syndromes. Eur J Clin Invest 2024; 54:e14314. [PMID: 39350322 DOI: 10.1111/eci.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/18/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Inflammatory processes can trigger acute coronary syndromes (ACS) which may increase core body temperature (BT), a widely available low-cost marker of systemic inflammation. Herein, we aimed to delineate baseline characteristics of ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation ACS (NSTE-ACS) patients stratified by initial BT and to assess its predictive utility towards major adverse cardiovascular events (MACE) after the index ACS. METHODS From 2012 until 2017, a total of 1044 ACS patients, 517 with STEMI and 527 with NSTE-ACS, were prospectively recruited at the University Hospital Zurich. BT was measured by digital tympanic thermometer along with high-sensitivity C-reactive protein (hs-CRP) and cardiac troponin-T (hs-cTnT) levels prior to coronary angiography. Patients were stratified according to initial BT and uni- and multivariable regression models were fit to assess associations of BT with future MACE risk. RESULTS Among patients with STEMI, BT was not predictive of 1-year MACE, but a U-shaped relationship between BT and MACE risk was noted in those with NSTE-ACS (p = .029), translating into a 2.4-fold (HR, 2.44, 95% CI, 1.16-5.16) increased 1-year MACE risk in those with BT >36.8°C (reference: 36.6-36.8°C). Results remained robust in multivariable-adjusted analyses accounting for sex, age, diabetes, renal function and hs-cTnT. However, when introducing hs-CRP, the BT-MACE association did not prevail. CONCLUSIONS In prospectively recruited patients with ACS, initial BT shows a U-shaped relationship with 1-year MACE risk among those with NSTE-ACS, but not in those with STEMI. BT is a broadly available low-cost marker to identify ACS patients with high inflammatory burden, at high risk for recurrent ischaemic events, and thus potentially suitable for an anti-inflammatory intervention. REGISTRATION ClinicalTrials.gov Identifier: NCT01000701.
Collapse
Affiliation(s)
- Jan Gerrit van der Stouwe
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Cardiology, Cardiovascular Research Institute Basel, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Konstantin Godly
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Department of Cardiology and Internal Medicine, Cantonal Hospital Baden, Baden, Switzerland
| | - Julia Godly
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Christian M Matter
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- National Disease Registration and Analysis Service, NHS, London, UK
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | | | - Lorenz Räber
- Department of Cardiology, Inselspital Bern, Bern, Switzerland
| | - François Mach
- Department of Cardiology, University Hospital Geneva, Geneva, Switzerland
| | - Slayman Obeid
- Department of Cardiology, Kantonsspital Liestal, Liestal, Switzerland
| | - Christian Templin
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK
- Cardiovascular Academic Group, Kings College London, London, UK
| | - David Niederseer
- University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Hochgebirgsklinik, Medicine Campus Davos, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Medicine Campus Davos, Davos, Switzerland
| |
Collapse
|
6
|
Ajoolabady A, Pratico D, Lin L, Mantzoros CS, Bahijri S, Tuomilehto J, Ren J. Inflammation in atherosclerosis: pathophysiology and mechanisms. Cell Death Dis 2024; 15:817. [PMID: 39528464 PMCID: PMC11555284 DOI: 10.1038/s41419-024-07166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/26/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Atherosclerosis imposes a heavy burden on cardiovascular health due to its indispensable role in the pathogenesis of cardiovascular disease (CVD) such as coronary artery disease and heart failure. Ample clinical and experimental evidence has corroborated the vital role of inflammation in the pathophysiology of atherosclerosis. Hence, the demand for preclinical research into atherosclerotic inflammation is on the horizon. Indeed, the acquisition of an in-depth knowledge of the molecular and cellular mechanisms of inflammation in atherosclerosis should allow us to identify novel therapeutic targets with translational merits. In this review, we aimed to critically discuss and speculate on the recently identified molecular and cellular mechanisms of inflammation in atherosclerosis. Moreover, we delineated various signaling cascades and proinflammatory responses in macrophages and other leukocytes that promote plaque inflammation and atherosclerosis. In the end, we highlighted potential therapeutic targets, the pros and cons of current interventions, as well as anti-inflammatory and atheroprotective mechanisms.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | | | - Suhad Bahijri
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Jaakko Tuomilehto
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia.
- Department of Public Health, University of Helsinki, Helsinki, Finland.
- Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
7
|
Rubinstein G, Ilhan H, Bartenstein P, Lehner S, Hacker M, Todica A, Zacherl MJ, Fischer M. Peptide Receptor Radionuclide Therapy Using 90Y- and 177Lu-DOTATATE Modulating Atherosclerotic Plaque Inflammation: Longitudinal Monitoring by 68Ga-DOTATATE Positron Emissions Tomography/Computer Tomography. Diagnostics (Basel) 2024; 14:2486. [PMID: 39594152 PMCID: PMC11593158 DOI: 10.3390/diagnostics14222486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Atherosclerosis and its sequels, such as coronary artery disease and cerebrovascular stroke, still represent global health burdens. The pathogenesis of atherosclerosis consists of growing calcified plaques in the arterial wall and is accompanied by inflammatory processes, which are not entirely understood. This study aims to evaluate the effect of peptide receptor radionuclide therapy (PRRT) using 90Y- and 177Lu-DOTATATE on atherosclerotic plaque inflammation. Methods: Atherosclerotic plaques in 57 cancer patients receiving PRRT using 90Y- and 177Lu-DOTATATE were longitudinally monitored by 68Ga-DOTATATE PET/CT. The target-to-background ratio (TBR) and overall vessel uptake (OVU) were measured in eight distinct arterial regions (ascending aorta, aortic arch, descending aorta, abdominal aorta, both iliac arteries, and both carotid arteries) to monitor calcified plaques. Results: PET/CT analysis shows a positive correlation between calcified plaque scores and the 68Ga-DOTATATE overall vessel uptake (OVU) in cancer patients. After PRRT, an initially high OVU was observed to decrease in the therapy group compared to the control group. An excellent correlation could be shown for each target-to-background ratio (TBR) to the OVU, especially the ascending aorta. Conclusions: The ascending aorta could present a future reference for estimating generalized atherosclerotic inflammatory processes. PRRT might represent a therapeutic approach to modulating atherosclerotic plaques.
Collapse
Affiliation(s)
- German Rubinstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Sebastian Lehner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Marcus Hacker
- Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrei Todica
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
- DIE RADIOLOGIE, 80331 Munich, Germany
| | - Mathias Johannes Zacherl
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, 81377 Munich, Germany (M.J.Z.)
| | - Maximilian Fischer
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-Universität, Marchioninistrasse 15, 81377 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| |
Collapse
|
8
|
Fredman G, Serhan CN. Specialized pro-resolving mediators in vascular inflammation and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:808-823. [PMID: 38216693 DOI: 10.1038/s41569-023-00984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/14/2024]
Abstract
Timely resolution of the acute inflammatory response (or inflammation resolution) is an active, highly coordinated process that is essential to optimal health. Inflammation resolution is regulated by specific endogenous signalling molecules that function as 'stop signals' to terminate the inflammatory response when it is no longer needed; to actively promote healing, regeneration and tissue repair; and to limit pain. Specialized pro-resolving mediators are a superfamily of signalling molecules that initiate anti-inflammatory and pro-resolving actions. Without an effective and timely resolution response, inflammation can become chronic, a pathological state that is associated with many widely occurring human diseases, including atherosclerotic cardiovascular disease. Uncovering the mechanisms of inflammation resolution failure in cardiovascular diseases and identifying useful biomarkers for non-resolving inflammation are unmet needs. In this Review, we discuss the accumulating evidence that supports the role of non-resolving inflammation in atherosclerosis and the use of specialized pro-resolving mediators as therapeutic tools for the treatment of atherosclerotic cardiovascular disease. We highlight open questions about therapeutic strategies and mechanisms of disease to provide a framework for future studies on the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anaesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
King SD, Cai D, Pillay A, Fraunfelder MM, Allen LAH, Chen SY. SPA Promotes Atherosclerosis Through Mediating Macrophage Foam Cell Formation-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:e277-e287. [PMID: 39360411 PMCID: PMC11499019 DOI: 10.1161/atvbaha.124.321460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease in which macrophage foam cells play a central role in disease pathogenesis. SPA (surfactant protein A) is a lipid-associating protein involved with regulating macrophage function in various inflammatory diseases. However, the role of SPA in atherosclerosis and macrophage foam cell formation has not been investigated. METHODS SPA expression was assessed in healthy and atherosclerotic human coronary arteries and the brachiocephalic arteries of wild-type or ApoE-deficient mice fed high-fat diets for 4 weeks. Hypercholesteremic wild-type and SPA-deficient mice fed a high-fat diet for 6 weeks were investigated for atherosclerotic lesions in vivo. In vitro experiments using RAW264.7 macrophages, primary resident peritoneal macrophages extracted from wild-type or SPA-deficient mice, and human monocyte-derived macrophages from the peripheral blood of healthy donors determined the functional effects of SPA in macrophage foam cell formation. RESULTS SPA expression was increased in atherosclerotic lesions in humans and ApoE-deficient mice and in response to a proatherosclerotic stimulus in vitro. SPA deficiency reduced the lipid profiles induced by hypercholesterolemia, attenuated atherosclerosis, and reduced the number of lesion-associated macrophage foam cells. In vitro studies revealed that SPA deficiency reduced intracellular cholesterol accumulation and macrophage foam cell formation. Mechanistically, SPA deficiency dramatically downregulated the expression of scavenger receptor CD36 (cluster of differentiation antigen 36) cellular and lesional expression. Importantly, SPA also increased CD36 expression in human monocyte-derived macrophages. CONCLUSIONS Our results elucidate that SPA is a novel factor promoting atherosclerosis development. SPA enhances macrophage foam cell formation and atherosclerosis by increasing scavenger receptor CD36 expression, leading to increasing cellular OxLDL influx.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- CD36 Antigens/deficiency
- Cells, Cultured
- Cholesterol/metabolism
- Cholesterol/blood
- Diet, High-Fat
- Disease Models, Animal
- Foam Cells/metabolism
- Foam Cells/pathology
- Lipoproteins, LDL/metabolism
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Plaque, Atherosclerotic
- Pulmonary Surfactant-Associated Protein A
- RAW 264.7 Cells
Collapse
Affiliation(s)
- Skylar D. King
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Dunpeng Cai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
| | - Alisha Pillay
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO
| | | | - Lee-Ann H. Allen
- Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO
| | - Shi-You Chen
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO
- Department of Molecular Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO
- The Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO
| |
Collapse
|
10
|
Huang Z, Lam S, Lin Z, Zhou L, Pei L, Song A, Wang T, Zhang Y, Qi R, Huang S. Predicting major adverse cardiac events using radiomics nomogram of pericoronary adipose tissue based on CCTA: A multi-center study. Med Phys 2024; 51:8348-8361. [PMID: 39042398 DOI: 10.1002/mp.17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/19/2024] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND The evolution of coronary atherosclerotic heart disease (CAD) is intricately linked to alterations in the pericoronary adipose tissue (PCAT). In recent epochs, characteristics of the PCAT have progressively ascended as focal points of research in CAD risk stratification and individualized clinical decision-making. Harnessing radiomic methodologies allows for the meticulous extraction of imaging features from these adipose deposits. Coupled with machine learning paradigms, we endeavor to establish predictive models for the onset of major adverse cardiovascular events (MACE). PURPOSE To appraise the predictive utility of radiomic features of PCAT derived from coronary computed tomography angiography (CCTA) in forecasting MACE. METHODS We retrospectively incorporated data from 314 suspected or confirmed CAD patients admitted to our institution from June 2019 to December 2022. An additional cohort of 242 patients from two external institutions was encompassed for external validation. The endpoint under consideration was the occurrence of MACE after a 1-year follow-up. MACE was delineated as cardiovascular mortality, newly diagnosed myocardial infarction, hospitalization (or re-hospitalization) for heart failure, and coronary target vessel revascularization occurring more than 30 days post-CCTA examination. All enrolled patients underwent CCTA scanning. Radiomic features were meticulously extracted from the optimal diastolic phase axial slices of CCTA images. Feature reduction was achieved through a composite feature selection algorithm, laying the groundwork for the radiomic signature model. Both univariate and multivariate analyses were employed to assess clinical variables. A multifaceted logistic regression analysis facilitated the crafting of a clinical-radiological-radiomic combined model (or nomogram). Receiver operating characteristic (ROC) curves, calibration, and decision curve analyses (DCA) were delineated, with the area under the ROC curve (AUCs) computed to gauge the predictive prowess of the clinical model, radiomic model, and the synthesized ensemble. RESULTS A total of 12 radiomic features closely associated with MACE were identified to establish the radiomic model. Multivariate logistic regression results demonstrated that smoking, age, hypertension, and dyslipidemia were significantly correlated with MACE. In the integrated nomogram, which amalgamated clinical, imaging, and radiomic parameters, the diagnostic performance was as follows: 0.970 AUC, 0.949 accuracy (ACC), 0.833 sensitivity (SEN), 0.981 specificity (SPE), 0.926 positive predictive value (PPV), and 0.955 negative predictive value (NPV). The calibration curve indicated a commendable concordance of the nomogram, and the decision curve analysis underscored its superior clinical utility. CONCLUSIONS The integration of radiomic signatures from PCAT based on CCTA, clinical indices, and imaging parameters into a nomogram stands as a promising instrument for prognosticating MACE events.
Collapse
Affiliation(s)
- Zhaoheng Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Saikit Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnical University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zihe Lin
- Department of Computing, The Hong Kong Polytechnical University, Hong Kong, China
| | - Linjia Zhou
- Department of Medical Informatics, Nantong University, Nantong, China
| | - Liangchen Pei
- School of Automation, Southeast University, Nanjing, China
| | - Anyi Song
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Tianle Wang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Yuanpeng Zhang
- Department of Medical Informatics, Nantong University, Nantong, China
| | - Rongxing Qi
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| | - Sheng Huang
- Department of Radiology, The Second Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
11
|
Cancro FP, Bellino M, Silverio A, Di Maio M, Esposito L, Palumbo R, Manna ML, Formisano C, Ferruzzi G, Vecchione C, Galasso G. Novel Targets and Strategies Addressing Residual Cardiovascular Risk in Post-acute Coronary Syndromes Patients. Transl Med UniSa 2024; 26:99-110. [PMID: 39385797 PMCID: PMC11460530 DOI: 10.37825/2239-9747.1058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 10/12/2024] Open
Abstract
Despite the advancement in secondary cardiovascular prevention strategies for post-acute coronary syndrome (ACS) patients, the development of new drugs addressing dyslipidemia and the personalization of dual antiplatelet therapies (DAPT), these patients continue to suffer a significant incidence of recurrent ischemic events. Therefore, novel targets that can be tackled to reduce cardiovascular risk are needed to improve the outcome of this very high-risk population. The role of chronic inflammation and inflammasome in the development and progression of atherosclerosis has been broadly investigated in patients with established coronary artery disease (CAD) and recent randomized trials have highlighted the possibility to manage these targets with specific drugs such as colchicine and monocolonal antibodies with a significant improvement of cardiovascular outcomes in post-ACS patients. Lipoprotein(a) [Lp(a)] is the most promising non-traditional risk factor and has shown to predict worse outcome in post-ACS patients. Lowering Lp(a) through PCSK9 inhibitors and specific targeted therapies has shown positive results in reducing adverse cardiovascular events in patients with established CAD. The effect of microbiome and its alteration in gut dysbiosis seems to actively participate in residual cardiovascular risk of CAD patients; however, the risk-modifying effect of targeted-microbiome therapies hasn't been yet investigated in large population-based studies. Long-term outcome of post-ACS patients is a complex puzzle of multiple factors. In this minireview, we summarize the emerging risk factors that may interplay in the residual risk of post-ACS patients and their possible prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Francesco P. Cancro
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Michele Bellino
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Angelo Silverio
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Marco Di Maio
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Luca Esposito
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Rossana Palumbo
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Martina L. Manna
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Ciro Formisano
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Germano Ferruzzi
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Carmine Vecchione
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| | - Gennaro Galasso
- Department of Medicine Surgery and Dentistry, University of Salerno, Baronissi, SA,
Italy
| |
Collapse
|
12
|
Farahmandpour F, Haidari F, Heidari Z, Hajarzadeh S, Ahangarpour A. Whey Protein Intervention and Inflammatory Factors and Oxidative Stress: Systematic Review and Meta-analysis of Randomized Controlled Trials. Nutr Rev 2024:nuae100. [PMID: 39196774 DOI: 10.1093/nutrit/nuae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
CONTEXT Whey protein (WP), a high-biological-value protein contained in milk, may have anti-inflammatory properties and can reduce proinflammatory cytokines; however, the current evidence is inconclusive. OBJECTIVE The aim of this study was to further investigate the effects of whey protein supplementation on inflammatory factors and oxidative stress in adults. DATA SOURCES We conducted a comprehensive search up to March 2022 using relevant key words in databases such as PubMed, Scopus, Embase, and the Cochrane Central Register of Controlled Trials, focusing on randomized controlled trials (RCTs). DATA EXTRACTION RCTs that examined the impact of WP on C-reactive protein, tumor necrosis factor alpha, interleukin-6, glutathione, malondialdehyde, and total antioxidant capacity were selected independently by 2 authors. Results were pooled using a random-effects model as weighted mean differences and 95% CIs. DATA ANALYSIS The results of the present study demonstrated that WP supplementation had no significant effect on the modulation of inflammation and oxidative stress compared with the control. None of the predefined subgroup analyses explained the differences in the effects of WP supplementation on inflammatory factors and oxidative stress. CONCLUSION This research suggests that WP supplementation had no significant effect on inflammatory factors and oxidative stress. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42022325855.
Collapse
Affiliation(s)
- Fatemeh Farahmandpour
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Fatemeh Haidari
- School of Health, Medical and Applied Sciences, CQ University, Brisbane, 4701, Australia
| | - Zeinab Heidari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Samaneh Hajarzadeh
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| | - Akram Ahangarpour
- Department of Physiology, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, 6135715794, Iran
| |
Collapse
|
13
|
Băghină RM, Crișan S, Luca S, Pătru O, Lazăr MA, Văcărescu C, Negru AG, Luca CT, Gaiță D. Association between Inflammation and New-Onset Atrial Fibrillation in Acute Coronary Syndromes. J Clin Med 2024; 13:5088. [PMID: 39274304 PMCID: PMC11396258 DOI: 10.3390/jcm13175088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Acute coronary syndrome (ACS) is a complex clinical syndrome that encompasses acute myocardial infarction (AMI) and unstable angina (UA). Its underlying mechanism refers to coronary plaque disruption, with consequent platelet aggregation and thrombosis. Inflammation plays an important role in the progression of atherosclerosis by mediating the removal of necrotic tissue following myocardial infarction and shaping the repair processes that are essential for the recovery process after ACS. As a chronic inflammatory disorder, atherosclerosis is characterized by dysfunctional immune inflammation involving interactions between immune (macrophages, T lymphocytes, and monocytes) and vascular cells (endothelial cells and smooth muscle cells). New-onset atrial fibrillation (NOAF) is one of the most common arrhythmic complications in the setting of acute coronary syndromes, especially in the early stages, when the myocardial inflammatory reaction is at its maximum. The main changes in the atrial substrate are due to atrial ischemia and acute infarcts that can be attributed to neurohormonal factors. The high incidence of atrial fibrillation (AF) post-myocardial infarction may be secondary to inflammation. Inflammatory response and immune system cells have been involved in the initiation and development of atrial fibrillation. Several inflammatory indexes, such as C-reactive protein and interleukins, have been demonstrated to be predictive of prognosis in patients with ACS. The cell signaling activation patterns associated with fibrosis, apoptosis, and hypertrophy are forms of cardiac remodeling that occur at the atrial level, predisposing to AF. According to a recent study, the presence of fibrosis and lymphomononuclear infiltration in the atrial tissue was associated with a prior history of AF. However, inflammation may contribute to both the occurrence/maintenance of AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Ruxandra-Maria Băghină
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simina Crișan
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Silvia Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Oana Pătru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Mihai-Andrei Lazăr
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Văcărescu
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Alina Gabriela Negru
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Constantin-Tudor Luca
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dan Gaiță
- Cardiology Department, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
- Research Center of the Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| |
Collapse
|
14
|
Bottardi A, Prado GFA, Lunardi M, Fezzi S, Pesarini G, Tavella D, Scarsini R, Ribichini F. Clinical Updates in Coronary Artery Disease: A Comprehensive Review. J Clin Med 2024; 13:4600. [PMID: 39200741 PMCID: PMC11354290 DOI: 10.3390/jcm13164600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024] Open
Abstract
Despite significant goals achieved in diagnosis and treatment in recent decades, coronary artery disease (CAD) remains a high mortality entity and continues to pose substantial challenges to healthcare systems globally. After the latest guidelines, novel data have emerged and have not been yet considered for routine practice. The scope of this review is to go beyond the guidelines, providing insights into the most recent clinical updates in CAD, focusing on non-invasive diagnostic techniques, risk stratification, medical management and interventional therapies in the acute and stable scenarios. Highlighting and synthesizing the latest developments in these areas, this review aims to contribute to the understanding and management of CAD helping healthcare providers worldwide.
Collapse
Affiliation(s)
- Andrea Bottardi
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| | - Guy F. A. Prado
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
- Department of Clinical and Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Mattia Lunardi
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simone Fezzi
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| | - Gabriele Pesarini
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| | - Domenico Tavella
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| | - Roberto Scarsini
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| | - Flavio Ribichini
- Division of Cardiology, Cardio-Thoracic Department, University of Verona, 37100 Verona, Italy; (A.B.); (G.F.A.P.); (S.F.); (G.P.); (D.T.); (R.S.); (F.R.)
| |
Collapse
|
15
|
Ryan M, Raby E, Whiley L, Masuda R, Lodge S, Nitschke P, Maker GL, Wist J, Holmes E, Wood FM, Nicholson JK, Fear MW, Gray N. Nonsevere Burn Induces a Prolonged Systemic Metabolic Phenotype Indicative of a Persistent Inflammatory Response Postinjury. J Proteome Res 2024; 23:2893-2907. [PMID: 38104259 PMCID: PMC11302432 DOI: 10.1021/acs.jproteome.3c00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/19/2023]
Abstract
Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have an elevated incidence postburn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalize intervention strategies, and improve acute care, reducing the risk of chronic comorbidity.
Collapse
Affiliation(s)
- Monique
J. Ryan
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Edward Raby
- Burns
Service of Western Australia, WA Department
of Health, Murdoch, Western Australia 6150, Australia
- Department
of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia 6009, Australia
- Department
of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Reika Masuda
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Samantha Lodge
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Philipp Nitschke
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Garth L. Maker
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Julien Wist
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Department
of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Fiona M. Wood
- Burns
Service of Western Australia, WA Department
of Health, Murdoch, Western Australia 6150, Australia
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Fiona
Wood Foundation, Perth, Western Australia 6150, Australia
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Institute
of Global Health Innovation, Imperial College
London, London SW7 2AZ, United Kingdom
| | - Mark W. Fear
- Burn
Injury Research Unit, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Fiona
Wood Foundation, Perth, Western Australia 6150, Australia
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute,
Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| |
Collapse
|
16
|
Chen X, Fang M, Hong J, Guo Y. Longitudinal Variations in Th and Treg Cells Before and After Percutaneous Coronary Intervention, and Their Intercorrelations and Prognostic Value in Acute Syndrome Patients. Inflammation 2024:10.1007/s10753-024-02062-x. [PMID: 38874809 DOI: 10.1007/s10753-024-02062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
T helper (Th) and regulatory T (Treg) cells regulate atherosclerosis, plaque, inflammation to involve in acute coronary syndrome (ACS). The current study aimed to investigate the clinical implications of Th and Treg cells in ACS patients receiving percutaneous coronary intervention (PCI). Blood Th1, Th2, Th17 and Treg cells were detected in 160 ACS patients before PCI, after PCI, at 1 month (M). Short physical performance battery (SPPB) at M1/M3 and major adverse cardiac event (MACE) during follow-ups were evaluated. Th1 and Th17 both showed upward trends during PCI, then greatly declined at M1 (P < 0.001). Th2 exhibited an upward trend during PCI but decreased slightly at M1 (P < 0.001). Treg remained stable during PCI but elevated at M1 (P < 0.001). Moreover, a positive correlation between Th1 and Th17, a negative correlation between Th17 and Treg, were discovered at several timepoints (most P < 0.050). Interestingly, the receiver operating curve (ROC) analyses revealed that Th1 [area under curve (AUC) between 0.633-0.645] and Th17 (AUC between 0.626-0.699) exhibited values estimating SPPB score <= 6 points at M1 or M3 to some extent. Importantly, Th1 (AUC between 0.708-0.710), Th17 (AUC between 0.694-0.783), and Treg (AUC between 0.706-0.729) predicted MACE risk. Multivariate models involving Th and Treg cells along with other characteristics revealed acceptable values estimating SPPB score <= 6 points at M1 or M3 (AUC between 0.690-0.813), and good values predicting MACE risk (AUC between 0.830-0.971). Dynamic variations in Th and Treg cells can predict the prognosis of ACS patients receiving PCI.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China.
| | - Mingcheng Fang
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Jingxuan Hong
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Yansong Guo
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| |
Collapse
|
17
|
Karnewar S, Karnewar V, Deaton R, Shankman LS, Benavente ED, Williams CM, Bradley X, Alencar GF, Bulut GB, Kirmani S, Baylis RA, Zunder ER, den Ruijter HM, Pasterkamp G, Owens GK. IL-1β Inhibition Partially Negates the Beneficial Effects of Diet-Induced Atherosclerosis Regression in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1379-1392. [PMID: 38695167 PMCID: PMC11111338 DOI: 10.1161/atvbaha.124.320800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions is the global leading cause of death. The most common and effective means to reduce these major adverse cardiovascular events, including myocardial infarction and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, we know little regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. METHODS Smooth muscle cell lineage-tracing Apoe-/- mice were fed a high-cholesterol Western diet for 18 weeks and then a zero-cholesterol standard laboratory diet for 12 weeks before treating them with an IL (interleukin)-1β or control antibody for 8 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of smooth muscle cell and other lesion cells by smooth muscle cell lineage tracing combined with single-cell RNA sequencing, cytometry by time-of-flight, and immunostaining plus high-resolution confocal microscopic z-stack analysis. RESULTS Lipid lowering by switching Apoe-/- mice from a Western diet to a standard laboratory diet reduced LDL cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden, as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1β antibody treatment after diet-induced reductions in lipids resulted in multiple detrimental changes including increased plaque burden and brachiocephalic artery lesion size, as well as increasedintraplaque hemorrhage, necrotic core area, and senescence as compared with IgG control antibody-treated mice. Furthermore, IL-1β antibody treatment upregulated neutrophil degranulation pathways but downregulated smooth muscle cell extracellular matrix pathways likely important for the protective fibrous cap. CONCLUSIONS Taken together, IL-1β appears to be required for the maintenance of standard laboratory diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.
Collapse
MESH Headings
- Animals
- Interleukin-1beta/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Disease Models, Animal
- Plaque, Atherosclerotic
- Mice
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice, Knockout, ApoE
- Male
- Diet, Western
- Mice, Inbred C57BL
- Aorta/pathology
- Aorta/metabolism
- Aorta/drug effects
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Diet, High-Fat
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Brachiocephalic Trunk/pathology
- Brachiocephalic Trunk/metabolism
- Brachiocephalic Trunk/drug effects
Collapse
Affiliation(s)
- Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Vaishnavi Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Rebecca Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Ernest D. Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gamze B. Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Sara Kirmani
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| |
Collapse
|
18
|
Xie J, Lin H, Zuo A, Shao J, Sun W, Wang S, Song J, Yao W, Luo Y, Sun J, Wang M. The JMJD family of histone demethylase and their intimate links to cardiovascular disease. Cell Signal 2024; 116:111046. [PMID: 38242266 DOI: 10.1016/j.cellsig.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The incidence rate and mortality rate of cardiovascular disease rank first in the world. It is associated with various high-risk factors, and there is no single cause. Epigenetic modifications, such as DNA methylation or histone modification, actively participate in the initiation and development of cardiovascular diseases. Histone lysine methylation is a type of histone post-translational modification. The human Jumonji C domain (JMJD) protein family consists of more than 30 members. JMJD proteins participate in many key nuclear processes and play a key role in the specific regulation of gene expression, DNA damage and repair, and DNA replication. Importantly, increasing evidence shows that JMJD proteins are abnormally expressed in cardiovascular diseases, which may be a potential mechanism for the occurrence and development of these diseases. Here, we discuss the key roles of JMJD proteins in various common cardiovascular diseases. This includes histone lysine demethylase, which has been studied in depth, and less-studied JMJD members. Furthermore, we focus on the epigenetic changes induced by each JMJD member, summarize recent research progress, and evaluate their relationship with cardiovascular diseases and therapeutic potential.
Collapse
Affiliation(s)
- Jiarun Xie
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haoyu Lin
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Anna Zuo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junqiao Shao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wei Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Shaoting Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jianda Song
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wang Yao
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanyu Luo
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jia Sun
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
19
|
Lipscomb M, Walis S, Marinello M, Mena HA, MacNamara KC, Spite M, Fredman G. Resolvin D2 limits atherosclerosis progression via myeloid cell-GPR18. FASEB J 2024; 38:e23555. [PMID: 38498346 DOI: 10.1096/fj.202302336rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Resolvins, in part, mediate inflammation-resolution programs. Indeed, Resolvin D2 (RvD2) activates GPR18, a G-protein-coupled receptor, and limits plaque progression, though the cellular targets of RvD2 remain unknown. Here, we developed a humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow-derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. To understand the functions of RvD2-GPR18 in atherosclerosis, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr-/- recipients. For these experiments, we treated each genotype with either Vehicle/PBS or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis, increased cleaved caspase-3+ cells and decreased percentage of Arginase-1+ -Mac2+ cells without a change in overall Mac2+ plaque macrophages, compared with fl/fl➔Ldlr-/- transplanted mice. RvD2 treatment decreased plaque necrosis, the percent of cleaved caspase-3+ cells and increased the percent of Arginase-1+ -Mac2+ cells in fl/fl➔Ldlr-/- mice, but not in the mKO➔Ldlr-/- transplanted mice. These results suggest that GPR18 plays a causal role in limiting atherosclerosis progression and that RvD2's ability to limit plaque necrosis is in part dependent on myeloid GRP18.
Collapse
Affiliation(s)
- Masharh Lipscomb
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Sean Walis
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Michael Marinello
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| | - Hebe Agustina Mena
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katherine C MacNamara
- The Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Gabrielle Fredman
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, USA
| |
Collapse
|
20
|
Liu J, Cepeda M, Frangaj B, Shimbo D. The Burden of Cardiovascular Disease in the Post-COVID Era. Prim Care 2024; 51:1-11. [PMID: 38278564 DOI: 10.1016/j.pop.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
In 2019, before the COVID-19 pandemic, cardiovascular disease (CVD) was the leading cause of death. Since 2020, the pandemic has had far-reaching effects on the landscape of health care including CVD prevention and management. Recent decreases in life expectancy in the United States could potentially be explained by issues related to disruptions in CVD prevention and control of CVD risk factors from the COVID-19 pandemic. This article reviews the effects of the SARS-CoV-2 virus and the accompanying pandemic on CVD risk factor prevention and management in the United States. Potential solutions are also proposed for these patients.
Collapse
Affiliation(s)
- Justin Liu
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, 60 Haven Avenue (Tower 1), Level B2 (Lobby Level) - Office Suite B234, New York, NY 10032, USA
| | - Maria Cepeda
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, 60 Haven Avenue (Tower 1), Level B2 (Lobby Level) - Office Suite B234, New York, NY 10032, USA
| | - Brulinda Frangaj
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, 60 Haven Avenue (Tower 1), Level B2 (Lobby Level) - Office Suite B234, New York, NY 10032, USA
| | - Daichi Shimbo
- Department of Medicine, Division of Cardiology, Columbia University Irving Medical Center, 60 Haven Avenue (Tower 1), Level B2 (Lobby Level) - Office Suite B234, New York, NY 10032, USA.
| |
Collapse
|
21
|
Guo J, Huang Y, Pang L, Zhou Y, Yuan J, Zhou B, Fu M. Association of systemic inflammatory response index with ST segment elevation myocardial infarction and degree of coronary stenosis: a cross-sectional study. BMC Cardiovasc Disord 2024; 24:98. [PMID: 38336634 PMCID: PMC10858502 DOI: 10.1186/s12872-024-03751-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Systemic Inflammatory Response Index (SIRI), a composite inflammatory marker encompassing neutrophils, monocytes, and lymphocytes, has been recognized as a reliable marker of systemic inflammation. This article undertakes an analysis of clinical data from ST-segment Elevation Myocardial Infarction (STEMI) patients, aiming to comprehensively assess the relationship between SIRI, STEMI, and the degree of coronary stenosis. METHODS The study involved 1809 patients diagnosed with STEMI between the years 2020 and 2023. Univariate and multivariate logistic regression analyses were conducted to evaluate the risk factors for STEMI. Receiver operating characteristic (ROC) curves were generated to determine the predictive power of SIRI and neutrophil-to-lymphocyte ratio (NLR). Spearman correlation analysis was performed to assess the correlation between SIRI, NLR, and the Gensini score (GS). RESULTS Multivariate logistic regression analysis showed that the SIRI was the independent risk factor for STEMI (adjusted odds ratio (OR) in the highest quartile = 24.96, 95% confidence interval (CI) = 15.32-40.66, P < 0.001). In addition, there is a high correlation between SIRI and GS (β:28.54, 95% CI: 24.63-32.46, P < 0.001). The ROC curve analysis was performed to evaluate the predictive ability of SIRI and NLR for STEMI patients. The area under the curve (AUC) for SIRI was 0.789. The AUC for NLR was 0.754. Regarding the prediction of STEMI in different gender groups, the AUC for SIRI in the male group was 0.771. The AUC for SIRI in the female group was 0.807. Spearman correlation analysis showed that SIRI exhibited a stronger correlation with GS, while NLR was lower (SIRI: r = 0.350, P < 0.001) (NLR: r = 0.313, P < 0.001). CONCLUSION The study reveals a strong correlation between the SIRI and STEMI as well as the degree of coronary artery stenosis. In comparison to NLR, SIRI shows potential in predicting acute myocardial infarction and the severity of coronary artery stenosis. Additionally, SIRI exhibits a stronger predictive capability for female STEMI patients compared to males.
Collapse
Affiliation(s)
- Jiongchao Guo
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Yating Huang
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Lamei Pang
- Department of Endocrinology, Hefei BOE Hospital, Hefei, 230000, Anhui, China
| | - Yuan Zhou
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Jingjing Yuan
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Bingfeng Zhou
- Department of Cardiology, Hefei BOE Hospital, Hefei, 230000, Anhui, China.
| | - Minmin Fu
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China.
| |
Collapse
|
22
|
Walker ME, De Matteis R, Perretti M, Dalli J. Resolvin T4 enhances macrophage cholesterol efflux to reduce vascular disease. Nat Commun 2024; 15:975. [PMID: 38316794 PMCID: PMC10844649 DOI: 10.1038/s41467-024-44868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
While cardiovascular disease (CVD) is one of the major co-morbidities in patients with rheumatoid arthritis (RA), the mechanism(s) that contribute to CVD in patients with RA remain to be fully elucidated. Herein, we observe that plasma concentrations of 13-series resolvin (RvT)4 negatively correlate with vascular lipid load in mouse inflammatory arthritis. Administration of RvT4 to male arthritic mice fed an atherogenic diet significantly reduces atherosclerosis. Assessment of the mechanisms elicited by this mediator demonstrates that RvT4 activates cholesterol efflux in lipid laden macrophages via a Scavenger Receptor class B type 1 (SR-BI)-Neutral Cholesterol Ester Hydrolase-dependent pathway. This leads to the reprogramming of lipid laden macrophages yielding tissue protection. Pharmacological inhibition or knockdown of macrophage SR-BI reverses the vasculo-protective activities of RvT4 in vitro and in male mice in vivo. Together these findings elucidate a RvT4-SR-BI centered mechanism that orchestrates macrophage responses to limit atherosclerosis during inflammatory arthritis.
Collapse
Affiliation(s)
- Mary E Walker
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Roberta De Matteis
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Mauro Perretti
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - Jesmond Dalli
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
- Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
23
|
Zeinalabedini M, Ladaninezhad M, Mobarakeh KA, Hoshiar-Rad A, Shekari S, Askarpour SA, Ardekanizadeh NH, Esmaeili M, Abdollahi M, Doaei S, Khoshdooz S, Ajami M, Gholamalizadeh M. Association of dietary fats with ischemic heart disease (IHD): a case-control study. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:19. [PMID: 38303014 PMCID: PMC10832209 DOI: 10.1186/s41043-023-00489-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/15/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND This study aimed to investigate the association between different types of dietary fats with ischemic heart disease (IHD). METHODS This case-control study was conducted on 443 cases and 453 controls aged 40-80 years in Tehran, Iran. The semi-quantitative 237-item food frequency questionnaire (FFQ) was used to assess the amount of food intake. Nutritionist IV was applied to test the amount of consumption of dietary fats. RESULTS The case group had a lower intake of docosahexaenoic acid (DHA) (11.36 ± 12.58 vs. 14.19 ± 19.57, P = 0.01) than the control group. A negative association was found between IHD and DHA (OR 0.98, CI 95% 0.97-0.99, P = 0.01). No significant association was observed between IHD with the intake of cholesterol, trans fatty acids (TFA), saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), eicosatetraenoic acid (EPA), and α-Linolenic acid (ALA). CONCLUSION It was found that DHA may reduce the risk of IHD, whereas there was no significant association between other types of dietary fats with the odds of IHD. If the results of this study are confirmed in future research, a higher intake of DHA in diet can be recommended as a strategy to prevent IHD events.
Collapse
Affiliation(s)
- Mobina Zeinalabedini
- Department of Community Nutrition, School of Nutritional Sciences and dietetic, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ladaninezhad
- School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi Mobarakeh
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan, Iran
| | - Anahita Hoshiar-Rad
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Shekari
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Ali Askarpour
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mina Esmaeili
- Department of Nutrition Research, National Nutrition and Food Technology Research Institute, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Morteza Abdollahi
- Social Determinants of Health Research Center, and National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Doaei
- Department of Community Nutrition, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | - Marjan Ajami
- Department of Food and Nutrition Policy and Planning Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Gholamalizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
LIU H, FENG J, LIU J, CHENG C, HU G. Efficacy of Jiangzhi Xiaoban tablet on toll-like receptor 4/nuclear factor-kappa B/nod-like receptor protein 3 signaling pathway in mice with atherosclerosis induced by high-fat diet. J TRADIT CHIN MED 2024; 44:88-94. [PMID: 38213243 PMCID: PMC10774719 DOI: 10.19852/j.cnki.jtcm.20231121.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/02/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To study the effect of Jiangzhi Xiaoban tablet (, JZXB) on toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB)/Nod-like receptor protein 3 (NLRP3) signaling pathway expression in atherosclerosis (AS) mice by establishing a mouse model of AS, and to explore its mechanism of prevention and treatment of AS. METHODS Sixty-four male C57BL/6J mice were randomly divided into two groups, 12 in the normal control group and 52 in the model group (MOD). Seven weeks later, two mice in each of the above two groups were randomly sacrificed, and the whole aortic tissue of the mice was taken out for hematoxylin-eosin staining. After successful modeling, 50 mice in the modeling group were randomly divided into 5 groups: MOD, atorvastatin group (ATO), low-dose group of JZXB (JZXB-L), middle-dose group of JZXB (JZXB-M), and high-dose group of JZXB (JZXB-H), 10 mice in each group. The mice in each group were killed after 6 weeks of preventive administration. HE staining was used to observe the pathological changes of aorta in AS mice. The levels of serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were detected by automatic biochemical analyzer. The levels of inflammatory factor interleukin-1β (IL-1β) were detected by enzyme linked immunosorbent assay. The expression of TLR4, NF-κB and NLRP3 proteins in aortic tissue was detected by immunohistochemistry. RESULTS Compared with the MOD, the levels of serum TC, TG and LDL-C in the JZXB-H and ATO were significantly decreased, while the level of HDL-C was significantly increased. The levels of serum TG, LDL-C in the JZXB-M were significantly decreased, and the level of HDL-C was significantly increased. Compared with the MOD, the levels of IL-1β were significantly decreased, aortic lesions were significantly improved, and the expression of TLR4, NF-κB, and NLRP3 proteins in the aortic tissue was significantly decreased in the JZXB-H, JZXB-M, and ATO. CONCLUSION JZXB has inhibitory effect on atherosclerosis in mice, and its mechanism may be through regulating the TLR4/NF-κB/NLRP3 signaling pathway and reducing the inflammatory response, so as to play a role in inhibiting atherosclerosis.
Collapse
Affiliation(s)
- Huihui LIU
- 1 Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jun FENG
- 2 Department of Geriatrics, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Jianhe LIU
- 3 Department of Cardiology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Choufu CHENG
- 3 Department of Cardiology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Guoheng HU
- 4 Department of Neurology, the First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| |
Collapse
|
25
|
Li F, Liu X, Zhao L, Wang H, Zhang L, Xing W, Cui J. Vitamin B6 Turnover Predicts Long-term Mortality Risk in Patients with Type 2 Diabetes. Curr Dev Nutr 2024; 8:102073. [PMID: 38312433 PMCID: PMC10830545 DOI: 10.1016/j.cdnut.2023.102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
Background Inflammation can increase vitamin B6 uptake and catabolism. Higher vitamin B6 turnover [4-pyridoxic acid (4-PA)/pyridoxal 5'-phosphate (PLP) ratio], was associated with mortality risk in the general population. Objectives We aimed to investigate the association between 4-PA/PLP and long-term mortality in patients with type 2 diabetes mellitus (T2DM), an inflammatory disease. Methods In this prospective cohort study from the National Health and Nutrition Examination Survey (NHANES) cycles 2005-2010, the concentrations of 4-PA and PLP in plasma were measured using high-performance liquid chromatography, with mortality data updated to 31 December 2019. We included 2074 patients with T2DM aged between 20 and 85 y at baseline. Results There were 739 deaths among 2279 patients with T2DM with a median follow-up of 11.83 y. In the age- and sex-adjusted COX model (model 1), 4-PA/PLP was positively associated with mortality in patients with T2DM [hazard ratio (HR) and 95% confidence interval (CI) highest compared with lowest quartiles: 35.55 (18.29, 69.09); P < 0.001], and in model 3, which was adjusted for demographics as well as inflammation, nutrition, and renal function, high 4-PA/PLP concentrations remained an independent risk factor for mortality in patients with T2DM [HR (95% CI) highest compared with lowest quartiles: 5.03 (2.46, 10.30); P < 0.001]. In restricted cubic spline (RCS), the link between 4-PA/PLP and all-cause mortality displays a positive correlation. Patients with died within the previous 2 y were excluded, the sensitivity analysis had no effect on the association between 4-PA/PLP and mortality in patients with T2DM. Finally, comparable results were found in subgroup analyses of specific-cause mortality. Conclusion Higher vitamin B6 turnover is associated with long-term mortality risk in patients with T2DM. 4-PA/PLP may serve as a convenient prognostic marker in T2DM management.
Collapse
Affiliation(s)
| | | | | | - Hongyi Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Lili Zhang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Weiwei Xing
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Song ZK, Zhao L, Liu DS, Zhao LN, Peng QB, Li ZY, Wu JY, Chen SK, Huang FZ, Chen X, Lin TX, Guan L, Meng WP, Guo JW, Su YN, He XX, Liang SJ, Zhu P, Zheng SY, Du SL, Liu X. Macrophage KLF15 prevents foam cell formation and atherosclerosis via transcriptional suppression of OLR-1. J Mol Cell Cardiol 2024; 186:57-70. [PMID: 37984156 DOI: 10.1016/j.yjmcc.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Macrophage-derived foam cells are a hallmark of atherosclerosis. Scavenger receptors, including lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (OLR-1), are the principal receptors responsible for the uptake and modification of LDL, facilitating macrophage lipid load and the uptake of oxidized LDL by arterial wall cells. Krüppel-like factor 15 (KLF15) is a transcription factor that regulates the expression of genes by binding to the promoter during transcription. Therefore, this study aimed to investigate the precise role of macrophage KLF15 in atherogenesis. METHODS We used two murine models of atherosclerosis: mice injected with an adeno-associated virus (AAV) encoding the Asp374-to-Tyr mutant version of human PCSK9, followed by 12 weeks on a high-fat diet (HFD), and ApoE-/-- mice on a HFD. We subsequently injected mice with AAV-KLF15 and AAV-LacZ to assess the role of KLF15 in the development of atherosclerosis in vivo. Oil Red O, H&E, and Masson's trichome staining were used to evaluate atherosclerotic lesions. Western blots and RT-qPCR were used to assess protein and mRNA levels, respectively. RESULTS We determined that KLF15 expression was downregulated during atherosclerosis formation, and KLF15 overexpression prevented atherosclerosis progression. KLF15 expression levels did not affect body weight or serum lipid levels in mice. However, KLF15 overexpression in macrophages prevented foam cell formation by reducing OLR-1-meditated lipid uptake. KLF15 directly targeted and transcriptionally downregulated OLR-1 levels. Restoration of OLR-1 reversed the beneficial effects of KLF15 in atherosclerosis. CONCLUSION Macrophage KLF15 transcriptionally downregulated OLR-1 expression to reduce lipid uptake, thereby preventing foam cell formation and atherosclerosis. Thus, our results suggest that KLF15 is a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Zheng-Kun Song
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Zhao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - De-Shen Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ling-Na Zhao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin-Bao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zi-Yao Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
| | - Jia-Yong Wu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si-Kai Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fang-Ze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Tian-Xiao Lin
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Li Guan
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wei-Peng Meng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jia-Wei Guo
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Yue-Nian Su
- Department of Rehabilitation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Xia He
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Si-Jia Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shao-Yi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Song-Lin Du
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Xiu Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
27
|
Rachieru C, Lighezan DF, Petrescu L, Târtea G, Goanță EV, Buzas R, Cirin L, Cozma D. The Significance of Inflammation in Atrial Fibrillation. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:59-66. [PMID: 38846471 PMCID: PMC11151943 DOI: 10.12865/chsj.50.01.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 06/09/2024]
Abstract
AIM The aim of the study was to assess the inflammatory status in individuals diagnosed with atrial fibrillation (Afi) and establish an association between this status and the clinicopathological features. MATERIAL AND METHODS Our study was conducted retrospectively and initially involved 278 patients. However, after excluding 27 patients, we ultimately ended up with 167 patients who had an inflammatory status and 84 patients who did not have an inflammatory status. These patients were then analyzed. RESULTS Patients who had inflammation showed higher values for the CHA2DS2-VASc and HAS-BLED scores (P= 0.0132 for CHA2DS2-VASc and P= 0.0024 for HAS-BLED). Also, it was observed that patients with associated inflammation exhibited an increase in both the volume and the area of the left atrium. Patients with hypertension had a higher prevalence of inflammation, with heart failure and with ischemic heart disease. It is worth noting that patients with atrial fibrillation and increased inflammatory status exhibited higher rates of stroke (22.75% vs 10.71% in patients without inflammation, odds ratio = 2.455, 95% confidence interval 1.161 to 5.425, p = 0.0253). CONCLUSIONS Our research has demonstrated that patients diagnosed with atrial fibrillation and exhibiting a heightened inflammatory status also present association with other comorbidities, including hypertension, heart failure, ischemic heart disease, and stroke.
Collapse
Affiliation(s)
- Ciprian Rachieru
- Department of Internal Medicine I, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Internal Medicine, Municipal Emergency Hospital, Timisoara, Romania
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Daniel-Florin Lighezan
- Department of Internal Medicine I, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Internal Medicine, Municipal Emergency Hospital, Timisoara, Romania
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Lucian Petrescu
- Department of Cardiology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Cardiology, Institute of Cardiovascular Diseases, Timisoara, Romania
| | - Georgică Târtea
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Romania
- Department of Cardiology, Emergency County Hospital of Craiova, Romania
| | - Emilia Violeta Goanță
- Department of Cardiology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Cardiology, Emergency County Hospital of Craiova, Romania
| | - Roxana Buzas
- Department of Internal Medicine I, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Internal Medicine, Municipal Emergency Hospital, Timisoara, Romania
- Center for Advanced Research in Cardiovascular Pathology and Hemostaseology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Liviu Cirin
- Department of Cardiology, Institute of Cardiovascular Diseases, Timisoara, Romania
| | - Dragoș Cozma
- Department of Cardiology, Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Department of Cardiology, Institute of Cardiovascular Diseases, Timisoara, Romania
| |
Collapse
|
28
|
Jin M, Fang J, Wang JJ, Shao X, Xu SW, Liu PQ, Ye WC, Liu ZP. Regulation of toll-like receptor (TLR) signaling pathways in atherosclerosis: from mechanisms to targeted therapeutics. Acta Pharmacol Sin 2023; 44:2358-2375. [PMID: 37550526 PMCID: PMC10692204 DOI: 10.1038/s41401-023-01123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/04/2023] [Indexed: 08/09/2023] Open
Abstract
Atherosclerosis, one of the life-threatening cardiovascular diseases (CVDs), has been demonstrated to be a chronic inflammatory disease, and inflammatory and immune processes are involved in the origin and development of the disease. Toll-like receptors (TLRs), a class of pattern recognition receptors that trigger innate immune responses by identifying pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs), regulate numerous acute and chronic inflammatory diseases. Recent studies reveal that TLRs have a vital role in the occurrence and development of atherosclerosis, including the initiation of endothelial dysfunction, interaction of various immune cells, and activation of a number of other inflammatory pathways. We herein summarize some other inflammatory signaling pathways, protein molecules, and cellular responses associated with TLRs, such as NLRP3, Nrf2, PCSK9, autophagy, pyroptosis and necroptosis, which are also involved in the development of AS. Targeting TLRs and their regulated inflammatory events could be a promising new strategy for the treatment of atherosclerotic CVDs. Novel drugs that exert therapeutic effects on AS through TLRs and their related pathways are increasingly being developed. In this article, we comprehensively review the current knowledge of TLR signaling pathways in atherosclerosis and actively seek potential therapeutic strategies using TLRs as a breakthrough point in the prevention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- Mei Jin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Jian Fang
- Affiliated Huadu Hospital, Southern Medical University (People's Hospital of Huadu District), Guangzhou, 510800, China
| | - Jiao-Jiao Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China
| | - Xin Shao
- Department of Food Science and Engineering, Jinan University, Guangzhou, 511436, China
| | - Suo-Wen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Qing Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| | - Zhi-Ping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Qin Z, Yu L, Zhang Y, Xu Q, Li C, Zhao S, Xi X, Tian Y, Wang Z, Tian J, Yu B. Coronary artery calcification and plaque stability: an optical coherence tomography study. Heliyon 2023; 9:e23191. [PMID: 38149191 PMCID: PMC10750051 DOI: 10.1016/j.heliyon.2023.e23191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/12/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
Background Coronary artery calcification (CAC), a surrogate of atherosclerosis, is related to stent underexpansion and adverse cardiac events. However, the effect of CAC on plaque stability is still controversial and the morphological significance of CAC has yet to be elucidated. Methods A retrospective series of 419 patients with acute coronary syndrome (ACS) who underwent optical coherence tomography (OCT) were enrolled. Patients were classified into three groups based on the calcification size in culprit plaques and the features of the culprit and non-culprit plaques among these groups were compared. Logistic regression was used to analyze independent risk factors for culprit plaque rupture and the nonlinear relationship between calcification parameters and culprit plaque rupture. Furthermore, we compared the detailed calcification parameters of different kinds of plaques. Results A total of 419 culprit plaques and 364 non-culprit plaques were identified. The incidence of calcification was 53.9 % in culprit plaques and 50.3 % in non-culprit plaques. Compared with culprit plaques without calcification, plaque rupture, macrophages and cholesterol crystals were more frequently observed in the spotty calcification group, and the lipid length was longer; the incidence of macrophages and cholesterol crystals was higher in the macrocalcification group. Calcification tended to be smaller in ruptured plaques than in non-ruptured plaques. Moreover, the arc and length of calcification were greater in culprit plaques than in non-culprit plaques. Conclusions Vulnerable features were more frequently observed in culprit plaques with spotty calcification, whereas the presence of macrocalcification calcifications did not significantly increase plaque vulnerability. Calcification tends to be larger in culprit plaques than in non-culprit plaques.
Collapse
Affiliation(s)
- Zhifeng Qin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Li Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanwen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Qinglu Xu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Chao Li
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Suhong Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Xiangwen Xi
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Yanan Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Zhao Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| |
Collapse
|
30
|
Gao Y, Li Y, Chen X, Wu C, Guo Z, Bai G, Liu T, Li G. The Systemic Inflammation Index Predicts Poor Clinical Prognosis in Patients with Initially Diagnosed Acute Coronary Syndrome Undergoing Primary Coronary Angiography. J Inflamm Res 2023; 16:5205-5219. [PMID: 38026253 PMCID: PMC10655605 DOI: 10.2147/jir.s435398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Systemic inflammation index (SII: neutrophil count * platelet count/lymphocyte count) is a new inflammatory marker that can reflect the degree of systemic inflammatory response after coronary artery disease (CAD). However, the predictive value of the SII for clinical prognosis in patients with initially diagnosed acute coronary syndrome (ACS) has yet to be thoroughly studied. Patients and Methods Patients with initially diagnosed ACS who underwent primary coronary angiography in our hospital from January 2019 to April 2021 were included in this study. 757 patients with ACS who underwent primary coronary angiography were enrolled. According to the baseline SII level, the patients were divided into a high SII group and a low SII group. The primary endpoint was major cardiovascular events (MACEs), defined as cardiac death, non-fatal myocardial infarction (MI), and non-fatal stroke. Results At a median follow-up of 33.9 months, 140 (18.5%) MACEs were recorded. Receiver operating characteristic (ROC) curve analysis showed that SII's best cut-off value for predicting MACEs was 713.9*109/L. Kaplan-Meier survival curve analysis showed that the survival rate of the low SII group was higher than the high SII group (P<0.001). Compared with the low SII group, the risk of MACEs was significantly increased in the high SII group (89 cases (33.3%) vs.51 patients (10.4%), P<0.001). Univariate and multivariate Cox regression analysis manifested that high SII level was independently associated with the occurrence of MACEs in patients with ACS undergoing primary coronary angiography (adjusted hazard ratio [HR]: 2.915, 95% confidence interval (CI%): 1.830-4.641, P<0.001). Adding SII to the conventional risk factor model improved the predictive value of MACEs. Conclusion This study showed that elevated SII was associated with adverse cardiovascular prognosis in patients with ACS undergoing primary coronary angiography, making SII a valuable predictor of poor prognosis in patients with ACS undergoing primary coronary angiography.
Collapse
Affiliation(s)
- Yi Gao
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Yuqing Li
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Xiaolin Chen
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Chen Wu
- Department of Emergency Medicine, The Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Ziqiang Guo
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Geng Bai
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Tong Liu
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Logic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, 300211, People’s Republic of China
| |
Collapse
|
31
|
Karnewar S, Karnewar V, Deaton R, Shankman LS, Benavente ED, Williams CM, Bradley X, Alencar GF, Bulut GB, Kirmani S, Baylis RA, Zunder ER, den Ruijter HM, Pasterkamp G, Owens GK. IL-1β inhibition partially negates the beneficial effects of diet-induced lipid lowering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562255. [PMID: 37873280 PMCID: PMC10592822 DOI: 10.1101/2023.10.13.562255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Thromboembolic events secondary to rupture or erosion of advanced atherosclerotic lesions are the leading cause of death in the world. The most common and effective means to reduce these major adverse cardiovascular events (MACE), including myocardial infarction (MI) and stroke, is aggressive lipid lowering via a combination of drugs and dietary modifications. However, little is known regarding the effects of reducing dietary lipids on the composition and stability of advanced atherosclerotic lesions, the mechanisms that regulate these processes, and what therapeutic approaches might augment the benefits of lipid lowering. Methods Smooth muscle cell (SMC)-lineage tracing Apoe-/- mice were fed a Western diet (WD) for 18 weeks and then switched to a low-fat chow diet for 12 weeks. We assessed lesion size and remodeling indices, as well as the cellular composition of aortic and brachiocephalic artery (BCA) lesions, indices of plaque stability, overall plaque burden, and phenotypic transitions of SMC, and other lesion cells by SMC-lineage tracing combined with scRNA-seq, CyTOF, and immunostaining plus high resolution confocal microscopic z-stack analysis. In addition, to determine if treatment with a potent inhibitor of inflammation could augment the benefits of chow diet-induced reductions in LDL-cholesterol, SMC-lineage tracing Apoe-/- mice were fed a WD for 18 weeks and then chow diet for 12 weeks prior to treating them with an IL-1β or control antibody (Ab) for 8-weeks. Results Lipid-lowering by switching Apoe-/- mice from a WD to a chow diet reduced LDL-cholesterol levels by 70% and resulted in multiple beneficial effects including reduced overall aortic plaque burden as well as reduced intraplaque hemorrhage and necrotic core area. However, contrary to expectations, IL-1β Ab treatment resulted in multiple detrimental changes including increased plaque burden, BCA lesion size, as well as increased cholesterol crystal accumulation, intra-plaque hemorrhage, necrotic core area, and senescence as compared to IgG control Ab treated mice. Furthermore, IL-1β Ab treatment upregulated neutrophil degranulation pathways but down-regulated SMC extracellular matrix pathways likely important for the protective fibrous cap. Conclusions Taken together, IL-1β appears to be required for chow diet-induced reductions in plaque burden and increases in multiple indices of plaque stability.
Collapse
Affiliation(s)
- Santosh Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Vaishnavi Karnewar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Rebecca Deaton
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Laura S. Shankman
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Ernest D. Benavente
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Corey M. Williams
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Xenia Bradley
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gabriel F. Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Gamze B. Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Sara Kirmani
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Richard A. Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Eli R. Zunder
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| | - Hester M. den Ruijter
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, USA
| |
Collapse
|
32
|
Driscoll DF, Welty FK, Bistrian BR. Omega-3 Fatty Acids as Antiarrhythmic Drugs: Upstream Target Modulators Affecting Acute and Long-Term Pathological Alterations in Cardiac Structure and Function. Crit Care Explor 2023; 5:e0977. [PMID: 37753235 PMCID: PMC10519500 DOI: 10.1097/cce.0000000000000977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVES Postoperative atrial fibrillation (POAF) is a common complication in the acute care period following coronary artery bypass grafting (CABG) surgery that is associated with significant morbidity and mortality in both short-term and long-term settings. Recently, the Vaughn Williams Classification of antiarrhythmic agents, first proposed in 1975 and widely viewed as the authoritative description of their electrophysiologic actions, was updated and notably omega-3 fatty acids (Ω-3 fatty acids) have been included in class VII, described as "upstream target modulators," to mitigate pathological structural and electrophysiological remodeling changes in the aged and/or injured myocardium. DATA SOURCES A PubMed literature search was performed. STUDY SELECTION Studies examining the significance of complications in patients undergoing isolated CABG surgery were selected for inclusion. DATA EXTRACTION Relevant data were qualitatively assessed and narratively summarized. DATA SYNTHESIS POAF occurs in approximately 30% of patients, and inflammation from chronic coronary artery disease preoperatively, as well as acute atrial inflammation from surgery postoperatively are the leading causes. Inflammation underlies its pathophysiology; therefore Ω-3 fatty acids not only exhibit antiarrhythmic properties but are an effective anti-inflammatory treatment that may reduce the clinical risks of POAF. CONCLUSIONS At present no effective prophylaxis is available to address POAF following CABG surgery. Clinical approaches that focus on the inflammatory response in this setting may optimize the response to treatment. The current literature supports the hypothesis that Ω-3 fatty acids may acutely reduce the inflammatory response via favorable alterations in the metabolism of prostaglandins and leukotrienes (eicosanoids) and specialized pro-resolving mediators.
Collapse
Affiliation(s)
- David F Driscoll
- Stable Solutions LLC, Easton MA
- Department of Medicine, UMASS Chan Medical School, Worcester, MA
| | | | | |
Collapse
|
33
|
Wang T, Cheng Z, Zhao R, Cheng J, Ren H, Zhang P, Liu P, Hao Q, Zhang Q, Yu X, Sun D, Zhang D. Sirt6 enhances macrophage lipophagy and improves lipid metabolism disorder by regulating the Wnt1/β-catenin pathway in atherosclerosis. Lipids Health Dis 2023; 22:156. [PMID: 37736721 PMCID: PMC10515036 DOI: 10.1186/s12944-023-01891-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023] Open
Abstract
Lipid metabolism disorders are considerably involved in the pathology of atherosclerosis; nevertheless, the fundamental mechanism is still largely unclear. This research sought to examine the function of lipophagy in lipid metabolism disorder-induced atherosclerosis and its fundamental mechanisms. Previously, Sirt6 has been reported to stimulate plaque stability by promoting macrophage autophagy. However, its role in macrophage lipophagy and its relationship with Wnt1 remains to be established. In this study, ApoE-/-: Sirt6-/- and ApoE-/-: Sirt6Tg mice were used and lipid droplets were analysed via transmission electron microscopy and Bodipy 493/503 staining in vitro. Atherosclerotic plaques in ApoE-/-: Sirt6-/- mice showed greater necrotic cores and lower stability score. Reconstitution of Sirt6 in atherosclerotic mice improved lipid metabolism disorder and prevented the progression of atherosclerosis. Furthermore, macrophages with Ac-LDL intervention showed more lipid droplets and increased expression of adipophilin and PLIN2. Reconstitution of Sirt6 recruited using SNF2H suppressed Wnt1 expression and improved lipid metabolism disorder by promoting lipophagy. In addition, downregulation of Sirt6 expression in Ac-LDL-treated macrophages inhibited lipid droplet degradation and stimulated foam cell formation. Innovative discoveries in the research revealed that atherosclerosis is caused by lipid metabolism disorders due to downregulated Sirt6 expression. Thus, modulating Sirt6's function in lipid metabolism might be a useful therapeutic approach for treating atherosclerosis.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ran Zhao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Cheng
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - He Ren
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengke Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Pengyun Liu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qimeng Hao
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaolei Yu
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Dongwei Zhang
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
34
|
Jing M, Xi H, Zhu H, Zhang X, Xu Z, Wu S, Sun J, Deng L, Han T, Zhang B, Zhou J. Is there an association between coronary artery inflammation and coronary atherosclerotic burden? Quant Imaging Med Surg 2023; 13:6048-6058. [PMID: 37711803 PMCID: PMC10498248 DOI: 10.21037/qims-23-147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/12/2023] [Indexed: 09/16/2023]
Abstract
Background As for the coronary artery inflammation and coronary atherosclerotic burden, which are used to assess the risk of adverse cardiac events in patients, it is unclear whether there is any certain correlation between them. Therefore, the purpose of this study was to explore the potential relationship between coronary artery inflammation and coronary atherosclerotic burden. Methods A total of 346 eligible patients underwent assessment of computed tomography (CT) attenuation values of pericoronary adipose tissue (PCAT) in the right coronary artery and Agatston coronary artery calcium (CAC) based on coronary CT angiography. These measurements were utilized to evaluate coronary inflammation and atherosclerotic burden, respectively. Patients with a CAC score of 0 were categorized into groups based on the presence or absence of coronary artery disease (CAD). CAC scores of 10, 100, and 400 were chosen as cutoff values to compare differences in PCAT attenuation values across different CAC scores. Results When comparing all CAD patients to non-CAD patients, a significantly higher PCAT attenuation was observed in CAD patients (-87.54±9.39 vs. -93.45±7.42 HU, P=0.000). The PCAT attenuation in CAD patients with a CAC score of 0 was significantly higher than that in patients with a CAC score greater than 0 and in non-CAD patients with a CAC score of 0 (-82.63±8.70 vs. -90.38±8.59 vs. -93.45±7.42 HU, P=0.000). The PCAT attenuation values did not exhibit significant differences among different CAC scores (all P>0.05); however, it was highest in CAD patients with a CAC score of 0 (P<0.05). Body mass index, hyperlipidemia, hypertension, and PCAT attenuation were identified as independent risk factors in both CAD patients with a CAC score of 0 and patients with a CAC score greater than 0 (all P<0.05). Conclusions The results of this study suggest that a direct relationship between coronary inflammation and coronary atherosclerotic burden is not evident. Nonetheless, it is noteworthy that coronary inflammation was most pronounced in CAD patients with a CAC score of 0, while CAC score did not demonstrate an association with inflammation.
Collapse
Affiliation(s)
- Mengyuan Jing
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Huaze Xi
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Hao Zhu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | | | - Zheng Xu
- Shukun Technology Co., Beijing, China
| | - Shijie Wu
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiachen Sun
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Liangna Deng
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Tao Han
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Bin Zhang
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| |
Collapse
|
35
|
Zhao J, Xie Y, Meng Z, Liu C, Wu Y, Zhao F, Ma X, Christopher TA, Lopez BJ, Wang Y. COVID-19 and cardiovascular complications: updates of emergency medicine. EMERGENCY AND CRITICAL CARE MEDICINE 2023; 3:104-114. [PMID: 38314258 PMCID: PMC10836842 DOI: 10.1097/ec9.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and SARS-CoV-2 variants, has become a global pandemic resulting in significant morbidity and mortality. Severe cases of COVID-19 are characterized by hypoxemia, hyper-inflammation, cytokine storm in lung. Clinical studies have reported an association between COVID-19 and cardiovascular disease (CVD). Patients with CVD tend to develop severe symptoms and mortality if contracted COVID-19 with further elevations of cardiac injury biomarkers. Furthermore, COVID-19 itself can induce and promoted CVD development, including myocarditis, arrhythmia, acute coronary syndrome, cardiogenic shock, and venous thromboembolism. Although the direct etiology of SARS-CoV-2 induced cardiac injury remains unknown and under-investigated, it is suspected that it is related to myocarditis, cytokine-mediated injury, microvascular injury, and stress-related cardiomyopathy. Despite vaccinations having provided the most effective approach to reducing mortality overall, an adapted treatment paradigm and regular monitoring of cardiac injury biomarkers is critical for improving outcomes in vulnerable populations at risk for severe COVID-19. In this review, we focus on the latest progress in clinic and research on the cardiovascular complications of COVID-19 and provide a perspective of treating cardiac complications deriving from COVID-19 in Emergency Medicine.
Collapse
Affiliation(s)
- Jianli Zhao
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | - Yaoli Xie
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zhijun Meng
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
| | - Caihong Liu
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yalin Wu
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | - Fujie Zhao
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| | - Xinliang Ma
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Bernard J. Lopez
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yajing Wang
- Emergency Medicine Department, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
36
|
Chatterjee A, Saha R, Mishra A, Shilkar D, Jayaprakash V, Sharma P, Sarkar B. Molecular Determinants, Clinical Manifestations and Effects of Immunization on Cardiovascular Health During COVID-19 Pandemic Era - A Review. Curr Probl Cardiol 2023; 48:101250. [PMID: 35577079 PMCID: PMC9098920 DOI: 10.1016/j.cpcardiol.2022.101250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023]
Abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has enveloped the world into an unprecedented pandemic since 2019. Significant damage to multiple organs, such as the lungs and heart, has been extensively reported. Cardiovascular injury by ACE2 downregulation, hypoxia-induced myocardial injury, and systemic inflammatory responses complicate the disease. This virus causes multisystem inflammatory syndrome in children with similar symptoms to adult SARS-CoV-2-induced myocarditis. While several treatment strategies and immunization programs have been implemented to control the menace of this disease, the risk of long-term cardiovascular damage associated with the disease has not been adequately assessed. In this review, we surveyed and summarized all the available information on the effects of COVID-19 on cardiovascular health as well as comorbidities. We also examined several case reports on post-immunization cardiovascular complications.
Collapse
Affiliation(s)
- Amrita Chatterjee
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Rajdeep Saha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arpita Mishra
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA.
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
37
|
Zhang X, Cai H, Xu H, Dong S, Ma H. Critical roles of m 6A methylation in cardiovascular diseases. Front Cardiovasc Med 2023; 10:1187514. [PMID: 37273867 PMCID: PMC10235536 DOI: 10.3389/fcvm.2023.1187514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) have been established as a major cause of mortality globally. However, the exact pathogenesis remains obscure. N6-methyladenosine (m6A) methylation is the most common epigenetic modification on mRNAs regulated by methyltransferase complexes (writers), demethylase transferases (erasers) and binding proteins (readers). It is now understood that m6A is a major player in physiological and pathological cardiac processes. m6A methylation are potentially involved in many mechanisms, for instance, regulation of calcium homeostasis, endothelial function, different forms of cell death, autophagy, endoplasmic reticulum stress, macrophage response and inflammation. In this review, we will summarize the molecular functions of m6A enzymes. We mainly focus on m6A-associated mechanisms and functions in CVDs, especially in heart failure and ischemia heart disease. We will also discuss the potential application and clinical transformation of m6A modification.
Collapse
Affiliation(s)
- Xinmin Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
- The Public Laboratory Platform of the First Hospital of Jilin University, Changchun, China
| | - He Cai
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China
| | - He Xu
- Department of Integrative Medicine, Lequn Branch, The First Hospital of Jilin University, Changchun, China
| | - Su Dong
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Haichun Ma
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
38
|
Puddu A, Montecucco F, Maggi D. Caveolin-1 and Atherosclerosis: Regulation of LDLs Fate in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24108869. [PMID: 37240214 DOI: 10.3390/ijms24108869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Caveolae are 50-100 nm cell surface plasma membrane invaginations observed in terminally differentiated cells. They are characterized by the presence of the protein marker caveolin-1. Caveolae and caveolin-1 are involved in regulating several signal transduction pathways and processes. It is well recognized that they have a central role as regulators of atherosclerosis. Caveolin-1 and caveolae are present in most of the cells involved in the development of atherosclerosis, including endothelial cells, macrophages, and smooth muscle cells, with evidence of either pro- or anti-atherogenic functions depending on the cell type examined. Here, we focused on the role of caveolin-1 in the regulation of the LDLs' fate in endothelial cells.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
39
|
Cimmino G, Muscoli S, De Rosa S, Cesaro A, Perrone MA, Selvaggio S, Selvaggio G, Aimo A, Pedrinelli R, Mercuro G, Romeo F, Perrone Filardi P, Indolfi C, Coronelli M. Evolving concepts in the pathophysiology of atherosclerosis: from endothelial dysfunction to thrombus formation through multiple shades of inflammation. J Cardiovasc Med (Hagerstown) 2023; 24:e156-e167. [PMID: 37186566 DOI: 10.2459/jcm.0000000000001450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Atherosclerosis is the anatomo-pathological substrate of most cardio, cerebro and vascular diseases such as acute and chronic coronary syndromes, stroke and peripheral artery diseases. The pathophysiology of atherosclerotic plaque and its complications are under continuous investigation. In the last 2 decades our understanding on the formation, progression and complication of the atherosclerotic lesion has greatly improved and the role of immunity and inflammation is now well documented and accepted. The conventional risk factors modulate endothelial function determining the switch to a proatherosclerotic phenotype. From this point, lipid accumulation with an imbalance from cholesterol influx and efflux, foam cells formation, T-cell activation, cytokines release and matrix-degrading enzymes production occur. Lesions with high inflammatory rate become vulnerable and prone to rupture. Once complicated, the intraplaque thrombogenic material, such as the tissue factor, is exposed to the flowing blood, thus inducing coagulation cascade activation, platelets aggregation and finally intravascular thrombus formation that leads to clinical manifestations of this disease. Nonconventional risk factors, such as gut microbiome, are emerging novel markers of atherosclerosis. Several data indicate that gut microbiota may play a causative role in formation, progression and complication of atherosclerotic lesions. The gut dysbiosis-related inflammation and gut microbiota-derived metabolites have been proposed as the main working hypothesis in contributing to disease formation and progression. The current evidence suggest that the conventional and nonconventional risk factors may modulate the degree of inflammation of the atherosclerotic lesion, thus influencing its final fate. Based on this hypothesis, targeting inflammation seems to be a promising approach to further improve our management of atherosclerotic-related diseases.
Collapse
Affiliation(s)
- Giovanni Cimmino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
| | | | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples
- Division of Cardiology, A.O.R.N. 'Sant'Anna e San Sebastiano', Caserta
| | - Marco A Perrone
- Department of Cardiology and CardioLab, University of Rome Tor Vergata, Rome
| | | | | | - Alberto Aimo
- Fondazione Toscana Gabriele Monasterio
- Institute of Life Sciences, Scuola Superiore Sant'Anna
| | - Roberto Pedrinelli
- Critical Care Medicine-Cardiology Division, Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa
| | - Giuseppe Mercuro
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi, Cagliari
| | | | - Pasquale Perrone Filardi
- Dipartimento di Scienze Biomediche Avanzate, Università degli Studi di Napoli 'Federico II', Napoli
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro
| | - Maurizio Coronelli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Lipscomb M, Walis S, Marinello M, Mena HA, Spite M, Fredman G. Resolvin D2-GPR18 Signaling on Myeloid Cells Limits Plaque Necrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535493. [PMID: 37066358 PMCID: PMC10104042 DOI: 10.1101/2023.04.03.535493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Introduction/Objective Dysregulated inflammation-resolution programs are associated with atherosclerosis progression. Inflammation-resolution is in part mediated by Resolvins, including Resolvin D2 (RvD2). RvD2, which activates a G-protein coupled receptor (GPCR) called GPR18, limits plaque progression. Cellular targets of RvD2 are not known. Approach and Results Here we developed humanized GPR18 floxed ("fl/fl") and a myeloid (Lysozyme M Cre) GPR18 knockout (mKO) mouse. We functionally validated this model by assessing efferocytosis in bone marrow derived macrophages (BMDMs) and found that RvD2 enhanced efferocytosis in the fl/fl, but not in the mKO BMDMs. We employed two different models to evaluate the role of GPR18 in atherosclerosis. We first used the PCSK9-gain of function approach and found increased necrosis in the plaques of the mKO mice compared with fl/fl mice. Next, we performed a bone marrow transfer of fl/fl or mKO bone marrow into Ldlr -/- recipients. For these experiments, we treated each genotype with either Veh or RvD2 (25 ng/mouse, 3 times/week for 3 weeks). Myeloid loss of GPR18 resulted in significantly more necrosis and cleaved caspase-3 + cells compared with fl/fl transplanted mice. RvD2 treatment decreased plaques necrosis and cleaved caspase-3 + cells in fl/fl, but not in the mKO transplanted mice. Conclusions These results are the first to suggest a causative role for endogenous RvD2 signaling on myeloid cells in limiting plaque necrosis. Moreover, these results provide a mechanistic basis for RvD2 as a therapy limiting plaque necrosis.
Collapse
|
41
|
López-Candales A, Sawalha K. Improving diagnostic assessments in the ever-changing landscape of atherosclerosis. J Cardiovasc Med (Hagerstown) 2023; 24:221-229. [PMID: 36952387 DOI: 10.2459/jcm.0000000000001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
As our understanding of atherosclerotic vascular injury continues to evolve, so should our diagnostic approaches. Emerging data have recently challenged our basic understanding in linking ischemia to its adverse outcomes as well as the need for invasive testing for both diagnosis and treatment. The advent of coronary computed tomography in providing improved visualization of coronary arteries has led to the identification of both subclinical atherosclerosis and high-risk coronary lesions. Recognition of asymptomatic coronary artery disease (CAD) with objective localization of subclinical coronary atherosclerosis improves atherosclerotic cardiovascular risk assessment and allows healthcare providers to take effective primary prevention measures. Therefore, reshaping the diagnostic landscape in proposing new testing modalities would be highly dependent on local resource availability and the reading expertise of each clinical practice and medical institution. The main objective of this Review is to propose a potentially new diagnostic approach of simply using noninvasive stress testing or coronary angiography in the routine assessment of CAD.
Collapse
Affiliation(s)
| | - Khalid Sawalha
- Nutrition and Metabolism Fellowship, University of Missouri-Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
42
|
Etter D, Warnock G, Koszarski F, Niemann T, Mikail N, Bengs S, Buechel RR, Kaufmann P, Gebhard C, Rossi A. Towards universal comparability of pericoronary adipose tissue attenuation: a coronary computed tomography angiography phantom study. Eur Radiol 2023; 33:2324-2330. [PMID: 36472700 PMCID: PMC10017558 DOI: 10.1007/s00330-022-09274-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Different computed tomography (CT) scanners, variations in acquisition protocols, and technical parameters employed for image reconstruction may introduce bias in the analysis of pericoronary adipose tissue (PCAT) attenuation derived from coronary computed tomography angiography (CCTA). Therefore, the aim of this study was to establish the effect of tube voltage, measured as kilovoltage peak (kVp), and iterative reconstruction on PCAT mean attenuation (PCATMA). METHODS Twelve healthy ex vivo porcine hearts were injected with iodine-enriched agar-agar to allow for ex vivo CCTA imaging on a 256-slice CT and a dual-source CT system. Images were acquired at tube voltages of 80, 100, 120, and 140 kVp and reconstructed by using both filtered back projection and iterative reconstruction algorithms. PCATMA was measured semi-automatically on CCTA images in the proximal segment of coronary arteries. RESULTS The tube voltage showed a significant effect on PCATMA measurements on both the 256-slice CT scanner (p < 0.001) and the dual-source CT system (p = 0.013), resulting in higher attenuation values with increasing tube voltage. Similarly, the use of iterative reconstructions was associated with a significant increase of PCATMA (256-slice CT: p < 0.001 and dual-source CT: p = 0.014). Averaged conversion factors to correct PCATMA measurements for tube voltage other than 120 kVp were 1.267, 1.080 and 0.947 for 80, 100, and 140 kVp, respectively. CONCLUSION PCATMA values are significantly affected by acquisition and reconstruction parameters. The same tube voltage and reconstruction type are recommended when PCAT attenuation is used in multicenter and longitudinal studies. KEY POINTS • The tube voltage used for CCTA acquisition affects pericoronary adipose tissue attenuation, resulting in higher attenuation values of fat with increasing tube voltage. • Conversion factors for pericoronary adipose tissue attenuation values could be used to adjust for differences in attenuation between scans performed at different tube voltages. • In longitudinal CCTA studies employing pericoronary adipose tissue attenuation as imaging endpoint, it is recommended to maintain tube voltage and image reconstruction type constant across serial scans.
Collapse
Affiliation(s)
- Dominik Etter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Geoff Warnock
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Frederic Koszarski
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tilo Niemann
- Department of Radiology, Kantonsspital Baden, 5400, Baden, Switzerland
| | - Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, 8952, Schlieren, Switzerland.
| |
Collapse
|
43
|
King SD, Cai D, Fraunfelder MM, Chen SY. Surfactant protein A promotes atherosclerosis through mediating macrophage foam cell formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533959. [PMID: 36993244 PMCID: PMC10055352 DOI: 10.1101/2023.03.23.533959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
BACKGROUND Atherosclerosis is a progressive inflammatory disease where macrophage foam cells play a central role in the pathogenesis. Surfactant protein A (SPA) is a lipid-associating protein involved with regulating macrophage function in various inflammatory diseases. However, the role of SPA in atherosclerosis and macrophage foam cell formation has not been investigated. METHODS Primary resident peritoneal macrophages were extracted from wildtype (WT) and SPA deficient (SPA -/- ) mice to determine the functional effects of SPA in macrophage foam cell formation. SPA expression was assessed in healthy vessels and atherosclerotic aortic tissue from the human coronary artery and WT or apolipoprotein e-deficient (ApoE -/- ) mice brachiocephalic arteries fed high fat diets (HFD) for 4 weeks. Hypercholesteremic WT and SPA -/- mice fed a HFD for 6 weeks were investigated for atherosclerotic lesions in vivo . RESULTS In vitro experiments revealed that global SPA deficiency reduced intracellular cholesterol accumulation and macrophage foam cell formation. Mechanistically, SPA -/- dramatically decreased CD36 cellular and mRNA expression. SPA expression was increased in atherosclerotic lesions in humans and ApoE -/- mice. In vivo SPA deficiency attenuated atherosclerosis and reduced the number of lesion-associated macrophage foam cells. CONCLUSIONS Our results elucidate that SPA is a novel factor for atherosclerosis development. SPA enhances macrophage foam cell formation and atherosclerosis through increasing scavenger receptor cluster of differentiation antigen 36 (CD36) expression.
Collapse
|
44
|
Stotts C, Corrales-Medina VF, Rayner KJ. Pneumonia-Induced Inflammation, Resolution and Cardiovascular Disease: Causes, Consequences and Clinical Opportunities. Circ Res 2023; 132:751-774. [PMID: 36927184 DOI: 10.1161/circresaha.122.321636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pneumonia is inflammation in the lungs, which is usually caused by an infection. The symptoms of pneumonia can vary from mild to life-threatening, where severe illness is often observed in vulnerable populations like children, older adults, and those with preexisting health conditions. Vaccines have greatly reduced the burden of some of the most common causes of pneumonia, and the use of antimicrobials has greatly improved the survival to this infection. However, pneumonia survivors do not return to their preinfection health trajectories but instead experience an accelerated health decline with an increased risk of cardiovascular disease. The mechanisms of this association are not well understood, but a persistent dysregulated inflammatory response post-pneumonia appears to play a central role. It is proposed that the inflammatory response during pneumonia is left unregulated and exacerbates atherosclerotic vascular disease, which ultimately leads to adverse cardiac events such as myocardial infarction. For this reason, there is a need to better understand the inflammatory cross talk between the lungs and the heart during and after pneumonia to develop therapeutics that focus on preventing pneumonia-associated cardiovascular events. This review will provide an overview of the known mechanisms of inflammation triggered during pneumonia and their relevance to the increased cardiovascular risk that follows this infection. We will also discuss opportunities for new clinical approaches leveraging strategies to promote inflammatory resolution pathways as a novel therapeutic target to reduce the risk of cardiac events post-pneumonia.
Collapse
Affiliation(s)
- Cameron Stotts
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| | - Vicente F Corrales-Medina
- Centre for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., V.F.C.-M.).,Department of Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (V.F.C-M).,Ottawa Hospital Research Institute, Ottawa, ON, Canada (V.F.C.-M)
| | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada (C.S., K.J.R).,University of Ottawa Heart Institute, Ottawa, ON, Canada (C.S., K.J.R)
| |
Collapse
|
45
|
Aging-Accelerated Mouse Prone 8 (SAMP8) Mice Experiment and Network Pharmacological Analysis of Aged Liupao Tea Aqueous Extract in Delaying the Decline Changes of the Body. Antioxidants (Basel) 2023; 12:antiox12030685. [PMID: 36978933 PMCID: PMC10045736 DOI: 10.3390/antiox12030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Aging and metabolic disorders feedback and promote each other and are closely related to the occurrence and development of cardiovascular disease, type 2 diabetes, neurodegeneration and other degenerative diseases. Liupao tea is a geographical indication product of Chinese dark tea, with a “red, concentrated, aged and mellow” flavor quality. In this study, the aqueous extract of aged Liupao tea (ALPT) administered by continuous gavage significantly inhibited the increase of visceral fat and damage to the intestinal–liver–microbial axis in high-fat modeling of SAMP8 (P8+HFD) mice. Its potential mechanism is that ALPT significantly inhibited the inflammation and aggregation formation pathway caused by P8+HFD, increased the abundance of short-chain fatty acid producing bacteria Alistipes, Alloprevotella and Bacteroides, and had a calorie restriction effect. The results of the whole target metabolome network pharmacological analysis showed that there were 139 potential active components in the ALPT aqueous extract, and the core targets of their actions were SRC, TP53, AKT1, MAPK3, VEGFA, EP300, EGFR, HSP90AA1, CASP3, etc. These target genes were mainly enriched in cancer, neurodegenerative diseases, glucose and lipid metabolism and other pathways of degenerative changes. Molecular docking further verified the reliability of network pharmacology. The above results indicate that Liupao tea can effectively delay the body’s degenerative changes through various mechanisms and multi-target effects. This study revealed that dark tea such as Liupao tea has significant drinking value in a modern and aging society.
Collapse
|
46
|
Secondary Cardiovascular Prevention after Acute Coronary Syndrome: Emerging Risk Factors and Novel Therapeutic Targets. J Clin Med 2023; 12:jcm12062161. [PMID: 36983163 PMCID: PMC10056379 DOI: 10.3390/jcm12062161] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The control of cardiovascular risk factors, the promotion of a healthy lifestyle, and antithrombotic therapy are the cornerstones of secondary prevention after acute coronary syndrome (ACS). However, many patients have recurrent ischemic events despite the optimal control of traditional modifiable risk factors and the use of tailored pharmacological therapy, including new-generation antiplatelet and lipid-lowering agents. This evidence emphasizes the importance of identifying novel risk factors and targets to optimize secondary preventive strategies. Lipoprotein(a) (Lp(a)) has emerged as an independent predictor of adverse events after ACS. New molecules such as anti-PCSK9 monoclonal antibodies, small interfering RNAs, and antisense oligonucleotides can reduce plasma Lp(a) levels and are associated with a long-term outcome benefit after the index event. The inflammatory stimulus and the inflammasome, pivotal elements in the development and progression of atherosclerosis, have been widely investigated in patients with coronary artery disease. More recently, randomized clinical trials including post-ACS patients treated with colchicine and monoclonal antibodies targeting cytokines yielded promising results in the reduction in major cardiovascular events after an ACS. Gut dysbiosis has also raised great interest for its potential pathophysiological role in cardiovascular disease. This evidence, albeit preliminary and needing confirmation by larger population-based studies, suggests the possibility of targeting the gut microbiome in particularly high-risk populations. The risk of recurrent ischemic events after ACS is related to the complex interaction between intrinsic predisposing factors and environmental triggers. The identification of novel risk factors and targets is fundamental to customizing patient clinical management with a precision medicine perspective.
Collapse
|
47
|
Gurgoglione FL, Denegri A, Russo M, Calvieri C, Benatti G, Niccoli G. Intracoronary Imaging of Coronary Atherosclerotic Plaque: From Assessment of Pathophysiological Mechanisms to Therapeutic Implication. Int J Mol Sci 2023; 24:5155. [PMID: 36982230 PMCID: PMC10049285 DOI: 10.3390/ijms24065155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of morbidity and mortality worldwide. Several cardiovascular risk factors are implicated in atherosclerotic plaque promotion and progression and are responsible for the clinical manifestations of coronary artery disease (CAD), ranging from chronic to acute coronary syndromes and sudden coronary death. The advent of intravascular imaging (IVI), including intravascular ultrasound, optical coherence tomography and near-infrared diffuse reflectance spectroscopy has significantly improved the comprehension of CAD pathophysiology and has strengthened the prognostic relevance of coronary plaque morphology assessment. Indeed, several atherosclerotic plaque phenotype and mechanisms of plaque destabilization have been recognized with different natural history and prognosis. Finally, IVI demonstrated benefits of secondary prevention therapies, such as lipid-lowering and anti-inflammatory agents. The purpose of this review is to shed light on the principles and properties of available IVI modalities along with their prognostic significance.
Collapse
Affiliation(s)
| | - Andrea Denegri
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, 31015 Conegliano, Italy
| | - Camilla Calvieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University, 00185 Rome, Italy
| | - Giorgio Benatti
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| | - Giampaolo Niccoli
- Cardiology Department, University of Parma, 43126 Parma, Italy
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43126 Parma, Italy
| |
Collapse
|
48
|
Lipoxin and glycation in SREBP signaling: Insight into diabetic cardiomyopathy and associated lipotoxicity. Prostaglandins Other Lipid Mediat 2023; 164:106698. [PMID: 36379414 DOI: 10.1016/j.prostaglandins.2022.106698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Diabetes and cardiovascular diseases are the leading cause of morbidity and mortality worldwide. Diabetes increases cardiovascular risk through hyperglycemia and atherosclerosis. Chronic hyperglycemia accelerates glycation reaction, which forms advanced glycation end products (AGEs). Additionally, hyperglycemia with enhanced levels of cholesterol, native and oxidized low-density lipoproteins, free fatty acids, and oxidative stress induces lipotoxicity. Accelerated glycation and disturbed lipid metabolism are characteristic features of diabetic heart failure. SREBP signaling plays a significant role in lipid and glucose homeostasis. AGEs increase lipotoxicity in diabetic cardiomyopathy by inhibiting SREBP signaling. While anti-inflammatory lipid mediators, lipoxins resolve inflammation caused by lipotoxicity by upregulating the PPARγ expression and regulating CD36. PPARγ connects the bridge between glycation and lipoxin in SREBP signaling. A summary of treatment modalities against diabetic cardiomyopathy is given in brief. This review indicates the novel therapeutic approach in the crosstalk between glycation and lipoxin in SREBP signaling.
Collapse
|
49
|
Hu F, Yu H, Zong J, Xue J, Wen Z, Chen M, Du L, Chen T. The impact of hypertension for metabolites in patients with acute coronary syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:50. [PMID: 36819519 PMCID: PMC9929784 DOI: 10.21037/atm-22-6409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Background Acute coronary syndrome (ACS) is one of the leading causes of death and is often accompanied by hypertension. Methods We investigated whether hypertension affects the metabolism of patients with ACS. Serum samples were provided from healthy controls (HCs; n=26), patients with ACS (n=20), or those patients with ACS complicated with hypertension (HTN, n=21), and all were subjected to non-targeted metabolomics analyses based on gas chromatography-mass spectrometry (GC/MS). Differential metabolites were screened using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) provided metabolic pathways related to these metabolites. Results Compared to those in the HC group, 12 metabolites were significantly upregulated and 6 significantly downregulated in the ACS group; among these, L-cystine and isocitric acid showed the most obvious differences, respectively. Compared to those in the ACS group, 3 metabolites were significantly upregulated and 2 metabolites were significantly downregulated in the ACS-HTN group, among which oleic acid and chenodeoxycholic acid showed the most marked difference, respectively. The five most prominent metabolic pathways involved in differential metabolites between the ACS and HC groups were arginine biosynthesis; oxidative phosphorylation; alanine, aspartate and glutamate metabolism; citrate cycle; and glucagon signaling pathway. The metabolic pathways between the ACS and ACS-HTN groups were steroid biosynthesis, fatty acid biosynthesis, arginine biosynthesis, primary bile acid biosynthesis, and tyrosine metabolism. Conclusions A comprehensive study of the changes in circulatory metabolomics and the influence of HTN was conducted in patients with ACS. A serum metabolomics test can be used to identify differentially metabolized molecules and allow the classification of patients with ACS or those complicated with HTN.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huajiong Yu
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Department of Cardiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Ji Zong
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Jianing Xue
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Zuoshi Wen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Mengjia Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Luping Du
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Ting Chen
- Department of Cardiology, the First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China;,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
50
|
Taman H, Mageed N, Elmorsy M, Elfayoumy S, Elawady M, Farid A, Abdelmonem M, Abdelbaser I. Heart rate variability as an indicator of COVID-19 induced myocardial injury: a retrospective cohort study. BMC Anesthesiol 2023; 23:17. [PMID: 36627579 PMCID: PMC9830621 DOI: 10.1186/s12871-023-01975-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Heart rate variability (HRV) is a valuable indicator of autonomic nervous system integrity and can be a prognostic tool of COVID-19 induced myocardial affection. This study aimed to compare HRV indices between patients who developed myocardial injury and those without myocardial injury in COVID-19 patients who were admitted to intensive care unit (ICU). METHODS In this retrospective study, the data from 238 COVID-19 adult patients who were admitted to ICU from April 2020 to June 2021 were collected. The patients were assigned to myocardial injury and non-myocardial injury groups. The main collected data were R-R intervals, standard deviation of NN intervals (SDANN) and the root mean square of successive differences between normal heartbeats (RMSSD) that were measured daily during the first five days of ICU admission. RESULTS The R-R intervals, the SDANN and the RMSSD were significantly shorter in the myocardial injury group than the non-myocardial group at the first, t second, third, fourth and the fifth days of ICU admission. There were no significant differences between the myocardial injury and the non-myocardial injury groups with regard the number of patients who needed mechanical ventilation, ICU length of stay and the number of ICU deaths. CONCLUSIONS From the results of this retrospective study, we concluded that the indices of HRV were greatly affected in COVID-19 patients who developed myocardial injury.
Collapse
Affiliation(s)
- Hani Taman
- grid.10251.370000000103426662Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516 Egypt
| | - Nabil Mageed
- grid.10251.370000000103426662Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516 Egypt
| | - Mohamed Elmorsy
- grid.462079.e0000 0004 4699 2981Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Sherif Elfayoumy
- Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Portsaid University, Portsaid, Egypt
| | - Mostafa Elawady
- grid.10251.370000000103426662Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516 Egypt
| | - Ahmed Farid
- grid.10251.370000000103426662Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516 Egypt
| | - Mohamed Abdelmonem
- grid.4827.90000 0001 0658 8800Swansea University Medical School, Swansea, UK
| | - Ibrahim Abdelbaser
- grid.10251.370000000103426662Department of Anesthesia and Surgical Intensive Care, Faculty of Medicine, Mansoura University, 2 El-Gomhouria Street, Mansoura, 35516 Egypt
| |
Collapse
|