1
|
Liu J, Shen Y, Duan K, He X, Wang R, Chen Y, Li R, Sun J, Qiu X, Chen T, Wang J, Wang H. Novel biomimetic sandwich-structured electrospun cardiac patches with moderate adhesiveness and excellent electrical conductivity. J Mech Behav Biomed Mater 2024; 163:106828. [PMID: 39647339 DOI: 10.1016/j.jmbbm.2024.106828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024]
Abstract
Clinical cardiac patches exhibit unsatisfied biocompatibility, low adhesion, and inadequate compliance and suboptimal mechanical properties for cardiac disorders repair. To address these challenges, herein we have innovatively proposed a biomimetic nanofiber electrospun membrane with a sandwich structure strategy. The composite patch comprises a stretchable polyurethane (PU) as basic material, then infiltrated with biocompatible silk fibroin methacryloyl (Silk-MA) as the middle layer via electrospinning and finally covered with Bio-ILs (chemically modified biocompatible ionic liquids) to impart electrical conductivity. Results indicated that the incorporation of Bio-ILs significantly enhances the conductivity reaching 2877 mS/m; particularly due to the positive charges of Bio-ILs, the composite film exhibits mild adhesive properties, inducing minimal damage to the substrate tissue. Furthermore, the basic PU of bilayer nanofiber membrane increased the film's stretching strain to approximately 250%, the Silk-MA hydrogel coating changed the film from hydrophobic to hydrophilic, creating a favorable and biocompatible microenvironment. Finally, in vitro experiments on cardiomyocytes confirmed that the material exhibits low cytotoxicity and excellent biocompatibility. Overall, the biomimetic sandwich electrospun membrane could restore electrical conduction and synchronized contraction function, providing a promising strategy for the treatment of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jing Liu
- The Second Rehabilitation Hospital of Shanghai, China; Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yinyang Shen
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Kaikai Duan
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangming He
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyu Wang
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yeping Chen
- The Second Rehabilitation Hospital of Shanghai, China
| | - Ruoyu Li
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialu Sun
- The Second Rehabilitation Hospital of Shanghai, China
| | - Xiaoyi Qiu
- The Second Rehabilitation Hospital of Shanghai, China
| | - Tao Chen
- Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jie Wang
- The Second Rehabilitation Hospital of Shanghai, China.
| | - Hui Wang
- The Second Rehabilitation Hospital of Shanghai, China; Engineering Research Center of Intelligent Rehabilitation for Traditional Chinese Medicine, Ministry of Education, School of Rehabilitation Science, Institute of Rehabilitation Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Chu Q, Jiang X, Xiao Y. Rebuilding the myocardial microenvironment to enhance mesenchymal stem cells-mediated regeneration in ischemic heart disease. Front Bioeng Biotechnol 2024; 12:1468833. [PMID: 39372432 PMCID: PMC11452912 DOI: 10.3389/fbioe.2024.1468833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that exhibit significant potential in regenerative medicine. Previous studies have demonstrated that MSCs-based therapy can improve heart function in ischemia-injured hearts, offering an exciting therapeutic intervention for myocardial ischemic infarction, a leading cause of worldwide mortality and disability. However, the efficacy of MSCs-based therapies is significantly disturbed by the myocardial microenvironment, which undergoes substantial changes following ischemic injury. After the ischemic injury, blood vessels become obstructed and damaged, and cardiomyocytes experience ischemic conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading to the rapid production of several cytokines and chemokines, including vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable. MSCs respond to these cytokines and chemokines by homing to the injured site and participating in myocardial regeneration. However, the deteriorated microenvironment in the injured myocardium poses challenges for cell survival, interacting with MSCs, and constraining their homing, retention, and migration capabilities, thereby limiting their regenerative potential. This review discusses how the deteriorated microenvironment negatively affects the ability of MSCs to promote myocardial regeneration. Recent studies have shown that optimizing the microenvironment through the promotion of angiogenesis can significantly enhance the efficacy of MSCs in treating myocardial infarction. This approach harnesses the full therapeutic potential of MSCs-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Laboratory Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Innovation Institute for Integration of Medicine and Engineering, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Postgraduate, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Rubiś P, Banyś P, Krupiński M, Mielnik M, Wiśniowska-Śmiałek S, Dziewięcka E, Urbańczyk-Zawadzka M. Temporal progression of replacement and interstitial fibrosis in optimally managed dilated cardiomyopathy patients: A prospective study. Int J Cardiol 2024; 407:131988. [PMID: 38547964 DOI: 10.1016/j.ijcard.2024.131988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/25/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND To prospectively examine the dynamic evolution of fibrotic processes within a one-year in patients with dilated cardiomyopathy (DCM). METHODS Between May 2019 and September 2020, 102 DCM patients (mean age 45.2 ± 11.8 years, EF 29.9 ± 11.6%) underwent cardiac magnetic resonance (CMR-1). After 13.9 ± 2.9 months, 92 of these patients underwent a follow-up CMR (CMR-2). Replacement fibrosis was assessed via late gadolinium enhancement (LGE), quantified in terms of LGE mass and extent. Interstitial fibrosis was evaluated via T1-mapping and expressed as extracellular volume fraction (ECV). This data, along with left ventricular (LV) mass, facilitated the calculation of LV matrix and cellular volumes. RESULTS At CMR-1, LGE was present in 45 patients (48.9%), whereas at CMR-2 LGE was detected in 46 (50%) (p = 0.88). Although LGE mass remained stable, LGE extent increased from 2.18 ± 4.1% to 2.7 ± 4.6% (p < 0.01). Conversely, ECV remained unchanged [27.7% (25.5-31.3) vs. 26.7% (24.5-29.9); p = 0.19]; however, LV matrix and cell volumes exhibited a noteworthy regression. During a subsequent follow-up of 19.2 ± 9 months (spanning from CMR-2 to April 30th, 2023), the composite primary outcome (all-cause mortality, HTX, LVAD or heart failure worsening) was evident in 18 patients. Only the LV matrix volume index at follow-up was an independent predictor of outcome (OR 1.094; 95%CI 1.004-1.192; p < 0.05). CONCLUSIONS In optimally managed DCM patients, both replacement and interstitial fibrosis remained stable over the course of one year. In contrast, LV matrix and cell volumes displayed significant regression. LV matrix volume index at 12-month follow-up was found to be an independent predictor of outcome in DCM.
Collapse
Affiliation(s)
- Pawel Rubiś
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland.
| | - Paweł Banyś
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Maciej Krupiński
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Małgorzata Mielnik
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| | - Sylwia Wiśniowska-Śmiałek
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Ewa Dziewięcka
- Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland; Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, Institute of Cardiology, Krakow Specialist Hospital named after St. John Paul II, Poland
| | - Małgorzata Urbańczyk-Zawadzka
- Department of Radiology, Krakow Specialist Hospital named after St. John Paul II, Pradnicka street 80, 31-202 Krakow, Poland
| |
Collapse
|
4
|
Bhushan S, Huang X, Jiang F, Xiao Z. Impact of angiotensin receptor-neprilysin inhibition (ARNI) in improving ejection fraction and left and right ventricular remodeling in heart failure. Curr Probl Cardiol 2024; 49:102464. [PMID: 38369206 DOI: 10.1016/j.cpcardiol.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Angiotensin receptor neprilysin inhibitors (ARNI), a new therapeutic class of agents acting on the renin angiotensin aldosterone system (RAAS) and neutral endopeptidase system has been developed in treatment of ventricular remodeling and has attracted considerable attention. The first in class is LCZ696, which is a molecule that combines Valsartan (ARB) and Sacubitril (neprilysin inhibitor) within a single substance. Sacubitril-Valsartan is the first angiotensin receptor enkephalin inhibitors (ARNI), which can block angiotensin II type 1 receptor (AT1R) while inhibiting enkephalin (NEP) and effectively reverse ventricular remodeling in heart failure patients. It has been recommended by the European and American authoritative guidelines on heart failure as Class I for the treatment of chronic heart failure particularly as intensive care medicine. Sacubitril-Valsartan demonstrated significant effects in improving left ventricular performance and remodeling in patients with heart failure with reduced ejection fraction. Sacubitril acts on increased levels of circulating natriuretic peptides by preventing their enzymatic breakdown and Valsartan, which acts to lessen the effects of the RAAS. However, not more research has been done on its effects on the right ventricle remodeling. This review aimed to assess the impact of angiotensin receptor neprilysin inhibitors on left and right ventricular remodeling in heart failure patients.
Collapse
Affiliation(s)
- Sandeep Bhushan
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Xin Huang
- Department of Anesthesiology, West China Hospital of Medicine, Sichuan University, Sichuan 610017, China
| | - Fenglin Jiang
- Department of Anesthesia and Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| |
Collapse
|
5
|
Khanna A, Oropeza BP, Huang NF. Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy. J Biomed Mater Res A 2024; 112:512-523. [PMID: 37668192 PMCID: PMC11089005 DOI: 10.1002/jbm.a.37602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/16/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular organ-on-a-chip (OoC) devices are composed of engineered or native functional tissues that are cultured under controlled microenvironments inside microchips. These systems employ microfabrication and tissue engineering techniques to recapitulate human physiology. This review focuses on human OoC systems to model cardiovascular diseases, to perform drug screening, and to advance personalized medicine. We also address the challenges in the generation of organ chips that can revolutionize the large-scale application of these systems for drug development and personalized therapy.
Collapse
Affiliation(s)
| | - Beu P. Oropeza
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Ngan F. Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, California, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, California, USA
- Center for Tissue Regeneration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
6
|
Qiu Y, Song X, Liu Y, Wu Y, Shi J, Zhang F, Pan Y, Cao Z, Zhang K, Liu J, Chu Y, Yuan X, Wu D. Application of recombinant TGF-β1 inhibitory peptide to alleviate isoproterenol-induced cardiac fibrosis. Appl Microbiol Biotechnol 2023; 107:6251-6262. [PMID: 37606791 DOI: 10.1007/s00253-023-12722-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Cardiac fibrosis is a remodeling process of the cardiac interstitium, characterized by abnormal metabolism of the extracellular matrix, excessive accumulation of collagen fibers, and scar tissue hyperplasia. Persistent activation and transdifferentiation into myofibroblasts of cardiac fibroblasts promote the progression of fibrosis. Transforming growth factor-β1 (TGF-β1) is a pivotal factor in cardiac fibrosis. Latency-associated peptide (LAP) is essential for activating TGF-β1 and its binding to the receptor. Thus, interference with TGF-β1 and the signaling pathways using LAP may attenuate cardiac fibrosis. Recombinant full-length and truncated LAP were previously constructed, expressed, and purified. Their effects on cardiac fibrosis were investigated in isoproterenol (ISO)-induced cardiac fibroblasts (CFs) and C57BL/6 mice. The study showed that LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis, improved cardiac function, and alleviated myocardial injury in ISO-induced mice. LAP and tLAP alleviated the histopathological alterations and inhibited the elevated expression of inflammatory and fibrosis-related markers in cardiac tissue. In addition, LAP and tLAP decreased the ISO-induced elevated expression of TGF-β, αvβ3, αvβ5, p-Smad2, and p-Smad3. The study indicated that LAP and tLAP attenuated ISO-induced cardiac fibrosis via suppressing TGF-β/Smad pathway. This study may provide a potential approach to alleviate cardiac fibrosis. KEY POINTS: • LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis. • LAP and tLAP improved cardiac function and alleviated myocardial injury, inflammation, and fibrosis in ISO-induced mice. • LAP and tLAP attenuated cardiac fibrosis via suppressing TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yufei Qiu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xudong Song
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Fan Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Keke Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jingruo Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
7
|
Xu L, Su Y, Yang X, Bai X, Wang Y, Zhuo C, Meng Z. Gramine protects against pressure overload-induced pathological cardiac hypertrophy through Runx1-TGFBR1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154779. [PMID: 37023527 DOI: 10.1016/j.phymed.2023.154779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Gramine, also named 3-(N,N-dimethylaminomethyl) indole, is a indole alkaloid. It is mainly extracted from various natural raw plants. Despite being the simplest 3-aminomethylindole, Gramine has broad pharmaceutical and therapeutic effects, such as vasodilatation, antioxidation, mitochondrial bioenergetics-related effects, and angiogenesis via modulation of TGFβ signaling. However, there is little information available about Gramine's role in heart disease, especially pathological cardiac hypertrophy. PURPOSE To investigate Gramine's effect on pathological cardiac hypertrophy and clarify the mechanisms behind its action. METHODS In the in vitro experiment, Gramine (25 μM or 50 μM) was used to investigate its role in Angiotensin II-induced primary neonatal rat cardiomyocytes (NRCMs) hypertrophy. In the in vivo experiment, Gramine (50 mg/kg or 100 mg/kg) was administrated to investigate its role in transverse aortic constriction (TAC) surgery mice. Additionally, we explored the mechanisms underlying these roles through Western blot, Real-time PCR, genome-wide transcriptomic analysis, chromatin immunoprecipitation and molecular docking studies. RESULTS The in vitro data demonstrated that Gramine treatment obviously improved primary cardiomyocyte hypertrophy induced by Angiotensin II, but had few effects on the activation of fibroblasts. The in vivo experiments indicated that Gramine significantly mitigated TAC-induced myocardial hypertrophy, interstitial fibrosis and cardiac dysfunction. Mechanistically, RNA sequencing and further bioinformatics analysis demonstrated that transforming growth factor β (TGFβ)-related signaling pathway was enriched significantly and preferentially in Gramine-treated mice as opposed to vehicle-treated mice during pathological cardiac hypertrophy. Moreover, this cardio-protection of Gramine was found to mainly involved in TGFβ receptor 1 (TGFBR1)- TGFβ activated kinase 1 (TAK1)-p38 MAPK signal cascade. Further exploration showed that Gramine restrained the up-regulation of TGFBR1 by binding to Runt-related transcription factor 1 (Runx1), thereby alleviating pathological cardiac hypertrophy. CONCLUSION Our findings provided a substantial body of evidence that Gramine possessed a potential druggability in pathological cardiac hypertrophy via suppressing the TGFBR1-TAK1-p38 MAPK signaling axis through interaction with transcription factor Runx1.
Collapse
Affiliation(s)
- Longwei Xu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Su
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xueyang Bai
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chengui Zhuo
- Department of Cardiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| | - Zhe Meng
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
8
|
Ferrer-Curriu G, Soler-Botija C, Charvatova S, Motais B, Roura S, Galvez-Monton C, Monguió-Tortajada M, Iborra-Egea O, Emdin M, Lupón J, Aimo A, Bagó JR, Bayés-Genís A. Preclinical scenario of targeting myocardial fibrosis with chimeric antigen receptor (CAR) immunotherapy. Biomed Pharmacother 2023; 158:114061. [PMID: 36495661 DOI: 10.1016/j.biopha.2022.114061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is present in an important proportion of myocardial disorders. Injury activates cardiac fibroblasts, which deposit excess extracellular matrix, increasing tissue stiffness, impairing cardiac function, and leading to heart failure. Clinical therapies that directly target excessive fibrosis are limited, and more effective treatments are needed. Immunotherapy based on chimeric antigen receptor (CAR) T cells is a novel technique that redirects T lymphocytes toward specific antigens to eliminate the target cells. It is currently used in haematological cancers but has demonstrated efficacy in mouse models of hypertensive cardiac fibrosis, with activated fibroblasts as the target cells. CAR T cell therapy is associated with significant toxicities, but CAR natural killer cells can overcome efficacy and safety limitations. The use of CAR immunotherapy offers a potential alternative to current therapies for fibrosis reduction and restoration of cardiac function in patients with myocardial fibrosis.
Collapse
Affiliation(s)
- Gemma Ferrer-Curriu
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Charvatova
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Benjamin Motais
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona 08500, Spain
| | - Carolina Galvez-Monton
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Oriol Iborra-Egea
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Michele Emdin
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Pisa, Italy, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Josep Lupón
- Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Alberto Aimo
- Cardiology Division, Fondazione Toscana Gabriele Monasterio, Pisa, Italy; Interdisciplinary Center of Health Science, Scuola Superiore Sant'Anna, Pisa, Italy, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Juli R Bagó
- Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic; Department of Haematooncology, University Hospital Ostrava, 708 00 Ostrava, Czech Republic; Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Antoni Bayés-Genís
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain; CIBERCV, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain; Department of Medicine, UAB, Barcelona, Spain; Bellvitge Biomedical Biomedical Research Institute (IDIBELL), Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Litwin SE, East CA. Assessing clinical and biomarker characteristics to optimize the benefits of sacubitril/valsartan in heart failure. Front Cardiovasc Med 2022; 9:1058998. [PMID: 36620638 PMCID: PMC9815716 DOI: 10.3389/fcvm.2022.1058998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Of the various medical therapies for heart failure (HF), sacubitril/valsartan is a first-in-class angiotensin receptor-neprilysin inhibitor that combines sacubitril, a pro-drug that is further metabolized to the neprilysin inhibitor sacubitrilat, and the angiotensin II type 1 receptor blocker valsartan. Inhibition of neprilysin and blockade of the angiotensin II type 1 receptor with sacubitril/valsartan increases vasoactive peptide levels, increasing vasodilation, natriuresis, and diuresis. Left ventricular ejection fraction (LVEF) is widely used to classify HF, to assist with clinical decision-making, for patient selection in HF clinical trials, and to optimize the benefits of sacubitril/valsartan in HF. However, as HF is a complex syndrome that occurs on a continuum of overlapping and changing phenotypes, patient classification based solely on LVEF becomes problematic. LVEF measurement can be imprecise, have low reproducibility, and often changes over time. LVEF may not accurately reflect inherent disease heterogeneity and complexity, and the addition of alternate criteria to LVEF may improve phenotyping of HF and help guide treatment choices. Sacubitril/valsartan may work, in part, by mechanisms that are not directly related to the LVEF. For example, this drug may exert antifibrotic and neurohumoral modulatory effects through inhibition or activation of several signaling pathways. In this review, we discuss markers of cardiac remodeling, fibrosis, systemic inflammation; activation of neurohormonal pathways, including the natriuretic system and the sympathetic nervous system; the presence of comorbidities; patient characteristics; hemodynamics; and HF signs and symptoms that may all be used to (1) better understand the mechanisms of action of sacubitril/valsartan and (2) help to identify subsets of patients who might benefit from treatment, regardless of LVEF.
Collapse
Affiliation(s)
- Sheldon E. Litwin
- Division of Cardiology, Medical University of South Carolina, Charleston, SC, United States,Ralph H. Johnson Veterans Affairs Health Network, Charleston, SC, United States,*Correspondence: Sheldon E. Litwin,
| | - Cara A. East
- Baylor Soltero Cardiovascular Research Center, Baylor Scott and White Research Institute, Dallas, TX, United States
| |
Collapse
|
10
|
Zhu L, Wang Y, Zhao S, Lu M. Detection of myocardial fibrosis: Where we stand. Front Cardiovasc Med 2022; 9:926378. [PMID: 36247487 PMCID: PMC9557071 DOI: 10.3389/fcvm.2022.926378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial fibrosis, resulting from the disturbance of extracellular matrix homeostasis in response to different insults, is a common and important pathological remodeling process that is associated with adverse clinical outcomes, including arrhythmia, heart failure, or even sudden cardiac death. Over the past decades, multiple non-invasive detection methods have been developed. Laboratory biomarkers can aid in both detection and risk stratification by reflecting cellular and even molecular changes in fibrotic processes, yet more evidence that validates their detection accuracy is still warranted. Different non-invasive imaging techniques have been demonstrated to not only detect myocardial fibrosis but also provide information on prognosis and management. Cardiovascular magnetic resonance (CMR) is considered as the gold standard imaging technique to non-invasively identify and quantify myocardial fibrosis with its natural ability for tissue characterization. This review summarizes the current understanding of the non-invasive detection methods of myocardial fibrosis, with the focus on different techniques and clinical applications of CMR.
Collapse
Affiliation(s)
- Leyi Zhu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yining Wang
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shihua Zhao
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Minjie Lu
- State Key Laboratory of Cardiovascular Disease, Department of Magnetic Resonance Imaging, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Cardiovascular Imaging (Cultivation), Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Minjie Lu
| |
Collapse
|
11
|
Assessment of Myocardial Diastolic Dysfunction as a Result of Myocardial Infarction and Extracellular Matrix Regulation Disorders in the Context of Mesenchymal Stem Cell Therapy. J Clin Med 2022; 11:jcm11185430. [PMID: 36143077 PMCID: PMC9502668 DOI: 10.3390/jcm11185430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The decline in cardiac contractility due to damage or loss of cardiomyocytes is intensified by changes in the extracellular matrix leading to heart remodeling. An excessive matrix response in the ischemic cardiomyopathy may contribute to the elevated fibrotic compartment and diastolic dysfunction. Fibroproliferation is a defense response aimed at quickly closing the damaged area and maintaining tissue integrity. Balance in this process is of paramount importance, as the reduced post-infarction response causes scar thinning and more pronounced left ventricular remodeling, while excessive fibrosis leads to impairment of heart function. Under normal conditions, migration of progenitor cells to the lesion site occurs. These cells have the potential to differentiate into myocytes in vitro, but the changed micro-environment in the heart after infarction does not allow such differentiation. Stem cell transplantation affects the extracellular matrix remodeling and thus may facilitate the improvement of left ventricular function. Studies show that mesenchymal stem cell therapy after infarct reduces fibrosis. However, the authors did not specify whether they meant the reduction of scarring as a result of regeneration or changes in the matrix. Research is also necessary to rule out long-term negative effects of post-acute infarct stem cell therapy.
Collapse
|
12
|
Bustamante-Pozo M, Ramirez-Sanchez I, Garate-Carrillo A, Ito B, Navarrete V, Haro M, Garcia R, Carson N, Ceballos G, Villarreal F. (-)-Epicatechin Ameliorates Cardiac Fibrosis in a Female Rat Model of Pre-Heart Failure with Preserved Ejection Fraction. J Med Food 2022; 25:836-844. [PMID: 35917528 PMCID: PMC9419952 DOI: 10.1089/jmf.2021.0158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
One of the most abundant flavonoids present in cacao is (-)-epicatechin (Epi) and this flavanol has been linked to the cardiovascular health promoting actions of cocoa products. We previously demonstrated that Epi reduces infarct size in rodent models of ischemia/reperfusion and permanent coronary occlusion. Reduced infarct size was associated with decreased left ventricular (LV) oxidative stress (OS) and indicators of inflammation factors, which foster myocardial fibrosis. In this study, we examine the antifibrotic actions of Epi in an aging female rat model of pre-heart failure with preserved ejection fraction (pre-HFpEF) as well as its potential to mitigate plasma levels of OS, proinflammatory/profibrotic cytokines, and improve passive and active LV function. Epi treatment [1 mg/(kg·d)] was provided daily by gavage from 21 to 22 months of age, whereas controls received water. A Millar catheter was used to assess hemodynamic function. Subsequently, hearts were arrested in diastole, a balloon inserted into the LV and passive pressure-volume curves generated. Fixed LV sections were processed for collagen area fraction quantification using Sirius Red staining. Treatment with Epi did not lead to detectable changes in LV contractile function. However, passive LV pressure volume curves were significantly right shifted with Epi. Collagen area fraction values indicated that Epi treatment significantly reduces LV fibrosis. Epi also significantly reduced plasma OS markers and levels of profibrotic and proinflammatory cytokines. In conclusion, Epi reduces cardiac fibrosis in an aged, female rat model of pre-HFpEF, which correlates with significant reductions in OS and cytokine levels in the absence of changes in LV contractile function.
Collapse
Affiliation(s)
- Moises Bustamante-Pozo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Departamento de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Departamento de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Departamento de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Bruce Ito
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Viridiana Navarrete
- Departamento de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Moises Haro
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Ricardo Garcia
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Cardiovascular and Fibrotic Diseases Department, Brystol-Myers Squibb, New York, New York, USA
| | - Nancy Carson
- Cardiovascular and Fibrotic Diseases Department, Brystol-Myers Squibb, New York, New York, USA
| | - Guillermo Ceballos
- Departamento de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Research Department, VA San Diego Health Care, San Diego, California, USA.,Address correspondence to: Francisco Villarreal, MD, PhD, Department of Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive BSB4028, La Jolla, CA 92093-0613J, USA,
| |
Collapse
|
13
|
Ding C, Zhang Q, Jiang X, Wei D, Xu S, Li Q, Wu M, Wang H. The Analysis of Potential Diagnostic and Therapeutic Targets for the Occurrence and Development of Gastric Cancer Based on Bioinformatics. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4321466. [PMID: 35756405 PMCID: PMC9232307 DOI: 10.1155/2022/4321466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Objective Gastric cancer is among the most common malignant tumors of the digestive system. This study explored the molecular mechanisms and potential therapeutic targets for gastric cancer occurrence and progression using bioinformatics. Methods The gastric cancer microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database. The R package was used for data mining and screening differentially expressed genes (DEGs). Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis were performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Based on the protein-protein interaction (PPI) network analysis, core targets and core subsets were screened. Then, the relationship between the expression level of the core genes and the prognosis of gastric cancer patients was analyzed using the Gene Expression Profiling Interactive Analysis (GEPIA) database. Results Using the GSE19826 and GSE54129 datasets, a total of 550 DEGs were identified, including 248 upregulated and 302 downregulated genes. GO and KEGG analyses showed that the upregulated DEGs were mainly enriched in the extracellular matrix (ECM) organization of the biological process (BP), the collagen-containing ECM of cellular component (CC), and the ECM structural constituent of molecular function (MF). DEGs were also enriched in human papillomavirus infections, the focal adhesion pathway, PI3K-Akt signaling pathway, and among others. The downregulated DEGs were mainly enriched in digestion, basal part of the cell, and aldo-keto reductase (NADP) activity. And the above pathways were enriched primarily in the metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome P450, and retinol metabolism. Five core genes, including COL1A2, COL3A1, BGN, FN1, and VCAN, were significantly highly expressed in gastric cancer patients and were associated with poor prognosis. Conclusion This study identified new potential molecular targets closely related to gastric cancer occurrence and development via mining public data using bioinformatics analysis methods.
Collapse
Affiliation(s)
- Chuan Ding
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Qiqi Zhang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xinying Jiang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Diandian Wei
- Department of Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Shu Xu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Qingdai Li
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Meng Wu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226000, China
| | - Hongbin Wang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| |
Collapse
|
14
|
Jayawardena E, Medzikovic L, Ruffenach G, Eghbali M. Role of miRNA-1 and miRNA-21 in Acute Myocardial Ischemia-Reperfusion Injury and Their Potential as Therapeutic Strategy. Int J Mol Sci 2022; 23:ijms23031512. [PMID: 35163436 PMCID: PMC8836257 DOI: 10.3390/ijms23031512] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Coronary artery disease remains the leading cause of death. Acute myocardial infarction (MI) is characterized by decreased blood flow to the coronary arteries, resulting in cardiomyocytes death. The most effective strategy for treating an MI is early and rapid myocardial reperfusion, but restoring blood flow to the ischemic myocardium can induce further damage, known as ischemia-reperfusion (IR) injury. Novel therapeutic strategies are critical to limit myocardial IR injury and improve patient outcomes following reperfusion intervention. miRNAs are small non-coding RNA molecules that have been implicated in attenuating IR injury pathology in pre-clinical rodent models. In this review, we discuss the role of miR-1 and miR-21 in regulating myocardial apoptosis in ischemia-reperfusion injury in the whole heart as well as in different cardiac cell types with special emphasis on cardiomyocytes, fibroblasts, and immune cells. We also examine therapeutic potential of miR-1 and miR-21 in preclinical studies. More research is necessary to understand the cell-specific molecular principles of miRNAs in cardioprotection and application to acute myocardial IR injury.
Collapse
|
15
|
Zhong C, Min K, Zhao Z, Zhang C, Gao E, Huang Y, Zhang X, Baldini M, Roy R, Yang X, Koch WJ, Bennett AM, Yu J. MAP Kinase Phosphatase-5 Deficiency Protects Against Pressure Overload-Induced Cardiac Fibrosis. Front Immunol 2021; 12:790511. [PMID: 34992607 PMCID: PMC8724134 DOI: 10.3389/fimmu.2021.790511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Cardiac fibrosis, a pathological condition due to excessive extracellular matrix (ECM) deposition in the myocardium, is associated with nearly all forms of heart disease. The processes and mechanisms that regulate cardiac fibrosis are not fully understood. In response to cardiac injury, macrophages undergo marked phenotypic and functional changes and act as crucial regulators of myocardial fibrotic remodeling. Here we show that the mitogen-activated protein kinase (MAPK) phosphatase-5 (MKP-5) in macrophages is involved in pressure overload-induced cardiac fibrosis. Cardiac pressure overload resulting from transverse aortic constriction (TAC) leads to the upregulation of Mkp-5 gene expression in the heart. In mice lacking MKP-5, p38 MAPK and JNK were hyperactivated in the heart, and TAC-induced cardiac hypertrophy and myocardial fibrosis were attenuated. MKP-5 deficiency upregulated the expression of the ECM-degrading matrix metalloproteinase-9 (Mmp-9) in the Ly6Clow (M2-type) cardiac macrophage subset. Consistent with in vivo findings, MKP-5 deficiency promoted MMP-9 expression and activity of pro-fibrotic macrophages in response to IL-4 stimulation. Furthermore, using pharmacological inhibitors against p38 MAPK, JNK, and ERK, we demonstrated that MKP-5 suppresses MMP-9 expression through a combined effect of p38 MAPK/JNK/ERK, which subsequently contributes to the inhibition of ECM-degrading activity. Taken together, our study indicates that pressure overload induces MKP-5 expression and facilitates cardiac hypertrophy and fibrosis. MKP-5 deficiency attenuates cardiac fibrosis through MAPK-mediated regulation of MMP-9 expression in Ly6Clow cardiac macrophages.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Translational Medicine, School of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Kisuk Min
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Kinesiology, University of Texas at El Paso, El Paso, TX, United States
| | - Zhiqiang Zhao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Cheng Zhang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Erhe Gao
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yan Huang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Xinbo Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Margaret Baldini
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Rajika Roy
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Anton M. Bennett
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, United States
| | - Jun Yu
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
- Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Abstract
Myocardial fibrosis is associated with adverse events in idiopathic dilated cardiomyopathy. Cardiac MRI with late gadolinium enhancement can detect myocardial fibrosis. We evaluated the conditional survival of children and adolescents based on native T1 mapping (combined proton signal from myocytes and interstitium prior to contrast administration by the measurement of myocardial and blood relaxation time) as a means to assess myocardial fibrosis. This retrospective case-cohort over a 3-year period included all consecutive patients (aged ≤ 21 years) with advanced heart failure from dilated cardiomyopathy (echocardiographic left ventricular ejection fraction ≤ 45% and NYHA class ≥ 2) who underwent cardiac MRI.Conditional survival (follow-up ≥ 6 months after cardiac MRI) was assessed to include NYHA functional class and time to event (death or heart transplantation). A total of 57 patients (mean age 11.7 ± 6.1 years; 58% male) had a median NYHA Class III (31/57) and median left ventricular ejection fraction 25% (20-38%). Survival data were available in 82% patients (46/57) and the crude mortality rate was 24% (11/46) and one patient (2%) underwent heart transplantation. The median native T1 was elevated at 1351 ms (95% CI 1332, 1394) and it showed no difference between the groups who survived to those who died. Performing a multilevel regression analysis on prognosis failed to predict 6-month conditional survival.
Collapse
|
17
|
Huethorst E, Mortensen P, Simitev RD, Gao H, Pohjolainen L, Talman V, Ruskoaho H, Burton FL, Gadegaard N, Smith GL. Conventional rigid 2D substrates cause complex contractile signals in monolayers of human induced pluripotent stem cell-derived cardiomyocytes. J Physiol 2021; 600:483-507. [PMID: 34761809 PMCID: PMC9299844 DOI: 10.1113/jp282228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
Abstract Human induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CM) in monolayers interact mechanically via cell–cell and cell–substrate adhesion. Spatiotemporal features of contraction were analysed in hiPSC‐CM monolayers (1) attached to glass or plastic (Young's modulus (E) >1 GPa), (2) detached (substrate‐free) and (3) attached to a flexible collagen hydrogel (E = 22 kPa). The effects of isoprenaline on contraction were compared between rigid and flexible substrates. To clarify the underlying mechanisms, further gene expression and computational studies were performed. HiPSC‐CM monolayers exhibited multiphasic contractile profiles on rigid surfaces in contrast to hydrogels, substrate‐free cultures or single cells where only simple twitch‐like time‐courses were observed. Isoprenaline did not change the contraction profile on either surface, but its lusitropic and chronotropic effects were greater in hydrogel compared with glass. There was no significant difference between stiff and flexible substrates in regard to expression of the stress‐activated genes NPPA and NPPB. A computational model of cell clusters demonstrated similar complex contractile interactions on stiff substrates as a consequence of cell‐to‐cell functional heterogeneity. Rigid biomaterial surfaces give rise to unphysiological, multiphasic contractions in hiPSC‐CM monolayers. Flexible substrates are necessary for normal twitch‐like contractility kinetics and interpretation of inotropic interventions.
![]() Key points Spatiotemporal contractility analysis of human induced pluripotent stem cell‐derived cardiomyocyte (hiPSC‐CM) monolayers seeded on conventional, rigid surfaces (glass or plastic) revealed the presence of multiphasic contraction patterns across the monolayer with a high variability, despite action potentials recorded in the same areas being identical. These multiphasic patterns are not present in single cells, in detached monolayers or in monolayers seeded on soft substrates such as a hydrogel, where only ‘twitch’‐like transients are observed. HiPSC‐CM monolayers that display a high percentage of regions with multiphasic contraction have significantly increased contractile duration and a decreased lusotropic drug response. There is no indication that the multiphasic contraction patterns are associated with significant activation of the stress‐activated NPPA or NPPB signalling pathways. A computational model of cell clusters supports the biological findings that the rigid surface and the differential cell–substrate adhesion underly multiphasic contractile behaviour of hiPSC‐CMs.
Collapse
Affiliation(s)
- Eline Huethorst
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Peter Mortensen
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Radostin D Simitev
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
| | - Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
18
|
Xiao X, Wang M, Qiu X, Ling W, Chu X, Huang Y, Li T. Construction of extracellular matrix-based 3D hydrogel and its effects on cardiomyocytes. Exp Cell Res 2021; 408:112843. [PMID: 34563515 DOI: 10.1016/j.yexcr.2021.112843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/26/2023]
Abstract
Some discoveries resulted from 2-dimensional (2D) cultured cardiac cells have been disqualified in animal testing and later clinical trials. Extracellular matrix (ECM) plays a vital role in cardiac homeostasis, cardiac ECM (cECM)-based 3D cell cultures can mimics the physiological and pathological conditions in vivo closely, it is hopeful of addressing this challenge. Construction of cECM-based 3-dimensional (3D) hydrogel (cECM3DH) and its effects on cell behaviors were studied here. The results indicated that cellular compartments could be efficiently removed from heart tissue via sodium dodecyl sulfonate (SDS)- and Triton X-100-mediated decellularization, remaining the natural fibrous network structure and major proteins. 3D hydrogel consisted of 1 × 107 cells/mL cells and 75% cECM could promote the proliferation and anti-apoptosis ability of human embryonic kidney (HEK)-293T cells. 0.25% trypsin or 0.20% collagenase was suitable to retrieve these cells from 3D hydrogel for further researches. Compared with 2D culture system, cECM3DH could significantly increase the proportion of GATA 4+ cardiomyocytes (CMs) derived from heart tissue of neonatal mouse or induced differentiation of embryonic stem cells (ESCs) (P < 0.05) The expression levels of mature genes including cTnT, JCN, CaV1.2, MYL2, CASQ2, NCX1, and Cx43 of these CMs in adult pig cECM-based 3D hydrogel (APcECM3DH) were significantly higher than that in 2D culture system and in newborn piglet cECM-based 3D hydrogel (NPcECM3DH), respectively (P < 0.05). Therefore, cECM3DH supports the generation of primary CMs and ESC-derived CMs, APcECM3DH was more conducive to promoting CM maturation, which contributes to building 3D model for pathogenesis exploration, drug screening, and regenerative medicine of heart diseases.
Collapse
Affiliation(s)
- Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Institute of Laboratory Animal Science, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China.
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Wenhui Ling
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
19
|
Garate-Carrillo A, Ramirez-Sanchez I, Nguyen J, Gonzalez J, Ceballos G, Villarreal F. Antifibrotic Effects of (-)-Epicatechin on High Glucose Stimulated Cardiac Fibroblasts. J Med Food 2021; 24:1177-1185. [PMID: 34227843 DOI: 10.1089/jmf.2020.0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiac fibrosis is one of the hallmarks of a diabetic cardiomyopathy. When activated, cardiac fibroblasts (CFs) increase the production of extracellular matrix proteins. Transforming growth factor (TGF)-β1 is known to mediate cardiac fibrosis through the SMAD pathway. High glucose (HG = 25 mM) cell culture media can activate CFs using TGF-β1. There is a need to identify effective antifibrotic agents. Studies in animals indicate that treatment with (-)-epicatechin (Epi) appears capable of reducing myocardial fibrosis. Epi binds to G-protein coupled estrogen receptor (GPER) and activates downstream pathways. We evaluated the potential of Epi to mitigate the development of a profibrotic phenotype in HG stimulated CFs. CF primary cultures were isolated from young male rats and were exposed for up to 48 h HG media and treated with vehicle or 1 μM Epi. Relevant profibrotic end points were measured by the use of various biochemical assays. HG exposure of CFs increased TGF-β1 protein levels by ∼15%, fibronectin ∼25%, urea levels ∼60%, proline incorporation ∼70%, and total collagen ∼15%. Epi treatment was able to significantly block HG induced increases in TGF-β1, fibronectin, urea, proline, and total collagen protein levels. GPER levels were reduced by HG and restored in CFs treated with Epi an effect associated with the activation (i.e., phosphorylation) of c-Src. Epi treatment also reverted SMAD levels. Altogether, results demonstrate that CFs cultured in HG acquire a profibrotic phenotype, which is blocked by Epi an effect, likely mediated at least, in part, by GPER effects on the SMAD/TGF-β1 pathway.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,National Polytechnic Institute, Higher Education School of Medicine, Graduate Studies and Research Area, Mexico City, Mexico D.F
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,National Polytechnic Institute, Higher Education School of Medicine, Graduate Studies and Research Area, Mexico City, Mexico D.F
| | | | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Guillermo Ceballos
- National Polytechnic Institute, Higher Education School of Medicine, Graduate Studies and Research Area, Mexico City, Mexico D.F
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA.,VA San Diego Health Care, San Diego, California, USA
| |
Collapse
|
20
|
Lagoutte P, Bettler E, Vadon-Le Goff S, Moali C. Procollagen C-proteinase enhancer-1 (PCPE-1), a potential biomarker and therapeutic target for fibrosis. Matrix Biol Plus 2021; 11:100062. [PMID: 34435180 PMCID: PMC8377038 DOI: 10.1016/j.mbplus.2021.100062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
The correct balance between collagen synthesis and degradation is essential for almost every aspect of life, from development to healthy aging, reproduction and wound healing. When this balance is compromised by external or internal stress signals, it very often leads to disease as is the case in fibrotic conditions. Fibrosis occurs in the context of defective tissue repair and is characterized by the excessive, aberrant and debilitating deposition of fibril-forming collagens. Therefore, the numerous proteins involved in the biosynthesis of fibrillar collagens represent a potential and still underexploited source of therapeutic targets to prevent fibrosis. One such target is procollagen C-proteinase enhancer-1 (PCPE-1) which has the unique ability to accelerate procollagen maturation by BMP-1/tolloid-like proteinases (BTPs) and contributes to trigger collagen fibrillogenesis, without interfering with other BTP functions or the activities of other extracellular metalloproteinases. This role is achieved through a fine-tuned mechanism of action that is close to being elucidated and offers promising perspectives for drug design. Finally, the in vivo data accumulated in recent years also confirm that PCPE-1 overexpression is a general feature and early marker of fibrosis. In this review, we describe the results which presently support the driving role of PCPE-1 in fibrosis and discuss the questions that remain to be solved to validate its use as a biomarker or therapeutic target.
Collapse
Key Words
- ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs
- AS, aortic valve stenosis
- BMP, bone morphogenetic protein
- Biomarker
- CKD, chronic kidney disease
- CP, C-propeptide
- CUB, complement, Uegf, BMP-1
- CVD, cardiovascular disease
- Collagen
- DMD, Duchenne muscular dystrophy
- ECM, extracellular matrix
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- Fibrillogenesis
- Fibrosis
- HDL, high-density lipoprotein
- HSC, hepatic stellate cell
- HTS, hypertrophic scar
- IPF, idiopathic pulmonary fibrosis
- LDL, low-density lipoprotein
- MI, myocardial infarction
- MMP, matrix metalloproteinase
- NASH, nonalcoholic steatohepatitis
- NTR, netrin
- OPMD, oculopharyngeal muscular dystrophy
- PABPN1, poly(A)-binding protein nuclear 1
- PCP, procollagen C-proteinase
- PCPE, procollagen C-proteinase enhancer
- PNP, procollagen N-proteinase
- Proteolysis
- SPC, subtilisin proprotein convertase
- TGF-β, transforming growth-factor β
- TIMP, tissue inhibitor of metalloproteinases
- TSPN, thrombospondin-like N-terminal
- Therapeutic target
- eGFR, estimated glomerular filtration rate
- mTLD, mammalian tolloid
- mTLL, mammalian tolloid-like
Collapse
Affiliation(s)
- Priscillia Lagoutte
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Emmanuel Bettler
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Sandrine Vadon-Le Goff
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| | - Catherine Moali
- University of Lyon, CNRS, Tissue Biology and Therapeutic Engineering Laboratory, LBTI, UMR5305, F-69367 Lyon, France
| |
Collapse
|
21
|
Beckert V, Rassmann S, Kayvanjoo AH, Klausen C, Bonaguro L, Botermann DS, Krause M, Moreth K, Spielmann N, da Silva-Buttkus P, Fuchs H, Gailus-Durner V, de Angelis MH, Händler K, Ulas T, Aschenbrenner AC, Mass E, Wachten D. Creld1 regulates myocardial development and function. J Mol Cell Cardiol 2021; 156:45-56. [PMID: 33773996 DOI: 10.1016/j.yjmcc.2021.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/25/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
CRELD1 (Cysteine-Rich with EGF-Like Domains 1) is a risk gene for non-syndromic atrioventricular septal defects in human patients. In a mouse model, Creld1 has been shown to be essential for heart development, particularly in septum and valve formation. However, due to the embryonic lethality of global Creld1 knockout (KO) mice, its cell type-specific function during peri- and postnatal stages remains unknown. Here, we generated conditional Creld1 KO mice lacking Creld1 either in the endocardium (KOTie2) or the myocardium (KOMyHC). Using a combination of cardiac phenotyping, histology, immunohistochemistry, RNA-sequencing, and flow cytometry, we demonstrate that Creld1 function in the endocardium is dispensable for heart development. Lack of myocardial Creld1 causes extracellular matrix remodeling and trabeculation defects by modulation of the Notch1 signaling pathway. Hence, KOMyHC mice die early postnatally due to myocardial hypoplasia. Our results reveal that Creld1 not only controls the formation of septa and valves at an early stage during heart development, but also cardiac maturation and function at a later stage. These findings underline the central role of Creld1 in mammalian heart development and function.
Collapse
Affiliation(s)
- Vera Beckert
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Sebastian Rassmann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Amir Hossein Kayvanjoo
- Life & Medical Institute (LIMES), Developmental Biology of the Immune System, University of Bonn, 53115 Bonn, Germany
| | - Christina Klausen
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Lorenzo Bonaguro
- Life & Medical Institute (LIMES), Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany
| | - Dominik Simon Botermann
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Melanie Krause
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University Munich, 85354 Freising, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Kristian Händler
- German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, 53127 Bonn, Germany
| | - Thomas Ulas
- Life & Medical Institute (LIMES), Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Single Cell Genomics and Epigenomics at the DZNE and the University of Bonn, 53127 Bonn, Germany
| | - Anna C Aschenbrenner
- Life & Medical Institute (LIMES), Genomics and Immunoregulation, University of Bonn, 53115 Bonn, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, 6500HB Nijmegen, the Netherlands
| | - Elvira Mass
- Life & Medical Institute (LIMES), Developmental Biology of the Immune System, University of Bonn, 53115 Bonn, Germany.
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
22
|
Guo F, Hall AR, Tape CJ, Ling S, Pointon A. Intra- and intercellular signaling pathways associated with drug-induced cardiac pathophysiology. Trends Pharmacol Sci 2021; 42:675-687. [PMID: 34092416 DOI: 10.1016/j.tips.2021.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022]
Abstract
Cardiac physiology and homeostasis are maintained by the interaction of multiple cell types, via both intra- and intercellular signaling pathways. Perturbations in these signaling pathways induced by oncology therapies can reduce cardiac function, ultimately leading to heart failure. As cancer survival increases, related cardiovascular complications are becoming increasingly prevalent, thus identifying the perturbations and cell signaling drivers of cardiotoxicity is increasingly important. Here, we discuss the homotypic and heterotypic cellular interactions that form the basis of intra- and intercellular cardiac signaling pathways, and how oncological agents disrupt these pathways, leading to heart failure. We also highlight the emerging systems biology techniques that can be applied, enabling a deeper understanding of the intra- and intercellular signaling pathways across multiple cell types associated with cardiovascular toxicity.
Collapse
Affiliation(s)
- Fei Guo
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK; Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Andrew R Hall
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Christopher J Tape
- Cell Communication Laboratory, Department of Oncology, University College London Cancer Institute, London, WC1E 6DD, UK
| | - Stephanie Ling
- Imaging and Data Analytics, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Functional and Mechanistic Safety, Clinical Pharmacology and Safety Sciences, Research and Development, AstraZeneca, Cambridge, UK.
| |
Collapse
|
23
|
Lack of Relationship between Fibrosis-Related Biomarkers and Cardiac Magnetic Resonance-Assessed Replacement and Interstitial Fibrosis in Dilated Cardiomyopathy. Cells 2021; 10:cells10061295. [PMID: 34071085 PMCID: PMC8224556 DOI: 10.3390/cells10061295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
The relationship between circulating fibrosis-related molecules and magnetic resonance-assessed cardiac fibrosis in dilated cardiomyopathy (DCM) is poorly understood. To compare circulating biomarkers between DCM patients with high and low fibrosis burdens, we performed a prospective, single-center, observational study. The study population was composed of 100 DCM patients (87 male, mean age 45.2 ± 11.8 years, mean ejection fraction 29.7% ± 10.1%). Replacement fibrosis was quantified by means of late gadolinium enhancement (LGE), whereas interstitial fibrosis was assessed via extracellular volume (ECV). Plasma concentrations of cardiotrophin-1, growth differentiation factor-15, platelet-derived growth factor, procollagen I C-terminal propeptide, procollagen III N-terminal propeptide, and C-terminal telopeptide of type I collagen were measured. There were 44% patients with LGE and the median ECV was 27.7%. None of analyzed fibrosis serum biomarkers were associated with the LGE or ECV, whereas NT-proBNP was independently associated with both LGE and ECV, and troponin T was associated with ECV. None of the circulating fibrosis markers differentiated between DCM patients with and without replacement fibrosis, or patients stratified according to median ECV. However, cardiac-specific markers, such as NT-proBNP and hs-TnT, were associated with fibrosis. Levels of circulating markers of fibrosis seem to have no utility in the diagnosis and monitoring of cardiac fibrosis in DCM.
Collapse
|
24
|
Hodges MM, Zgheib C, Liechty KW. A Large Mammalian Model of Myocardial Regeneration After Myocardial Infarction in Fetal Sheep. Adv Wound Care (New Rochelle) 2021; 10:174-190. [PMID: 32496979 DOI: 10.1089/wound.2018.0894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objective: Ischemic heart disease accounts for over 20% of all deaths worldwide. As the global population faces a rising burden of chronic diseases, such as hypertension, hyperlipidemia, and diabetes, the prevalence of heart failure due to ischemic heart disease is estimated to increase. We sought to develop a model that may more accurately identify therapeutic targets to mitigate the development of heart failure following myocardial infarction (MI). Approach: Having utilized fetal large mammalian models of scarless wound healing, we proposed a fetal ovine model of myocardial regeneration after MI. Results: Use of this model has identified critical pathways in the mammalian response to MI, which are differentially activated in the regenerative, fetal mammalian response to MI when compared to the reparative, scar-forming, adult mammalian response to MI. Innovation: While the foundation of myocardial regeneration research has been built on zebrafish and rodent models, effective therapies derived from these disease models have been lacking; therefore, we sought to develop a more representative ovine model of myocardial regeneration after MI to improve the identification of therapeutic targets designed to mitigate the development of heart failure following MI. Conclusions: To develop therapies aimed at mitigating this rising burden of disease, it is critical that the animal models we utilize closely reflect the physiology and pathology we observe in human disease. We encourage use of this ovine large mammalian model to facilitate identification of therapies designed to mitigate the growing burden of heart failure.
Collapse
Affiliation(s)
- Maggie M. Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
25
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Bracco Gartner TCL, Stein JM, Muylaert DEP, Bouten CVC, Doevendans PA, Khademhosseini A, Suyker WJL, Sluijter JPG, Hjortnaes J. Advanced In Vitro Modeling to Study the Paradox of Mechanically Induced Cardiac Fibrosis. Tissue Eng Part C Methods 2021; 27:100-114. [PMID: 33407000 DOI: 10.1089/ten.tec.2020.0298] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In heart failure, cardiac fibrosis is the result of an adverse remodeling process. Collagen is continuously synthesized in the myocardium in an ongoing attempt of the heart to repair itself. The resulting collagen depositions act counterproductively, causing diastolic dysfunction and disturbing electrical conduction. Efforts to treat cardiac fibrosis specifically have not been successful and the molecular etiology is only partially understood. The differentiation of quiescent cardiac fibroblasts to extracellular matrix-depositing myofibroblasts is a hallmark of cardiac fibrosis and a key aspect of the adverse remodeling process. This conversion is induced by a complex interplay of biochemical signals and mechanical stimuli. Tissue-engineered 3D models to study cardiac fibroblast behavior in vitro indicate that cyclic strain can activate a myofibroblast phenotype. This raises the question how fibroblast quiescence is maintained in the healthy myocardium, despite continuous stimulation of ultimately profibrotic mechanotransductive pathways. In this review, we will discuss the convergence of biochemical and mechanical differentiation signals of myofibroblasts, and hypothesize how these affect this paradoxical quiescence. Impact statement Mechanotransduction pathways of cardiac fibroblasts seem to ultimately be profibrotic in nature, but in healthy human myocardium, cardiac fibroblasts remain quiescent, despite continuous mechanical stimulation. We propose three hypotheses that could explain this paradoxical state of affairs. Furthermore, we provide suggestions for future research, which should lead to a better understanding of fibroblast quiescence and activation, and ultimately to new strategies for the prevention and treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Thomas C L Bracco Gartner
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dimitri E P Muylaert
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlijn V C Bouten
- Division of Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Pieter A Doevendans
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,Division of Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands.,Netherlands Heart Institute, Utrecht, the Netherlands.,Central Military Hospital, Utrecht, the Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Radiology, Chemical and Biomolecular Engineering, Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California, USA
| | - Willem J L Suyker
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division of Heart and Lungs, Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| | - Jesper Hjortnaes
- Division of Heart and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, the Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands.,University Utrecht, Utrecht, the Netherlands
| |
Collapse
|
27
|
Díez J, González A, Kovacic JC. Myocardial Interstitial Fibrosis in Nonischemic Heart Disease, Part 3/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2204-2218. [PMID: 32354386 DOI: 10.1016/j.jacc.2020.03.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022]
Abstract
Myocardial interstitial fibrosis (MIF) is a histological hallmark of several cardiac diseases that alter myocardial architecture and function and are associated with progression to heart failure. MIF is a diffuse and patchy process, appearing as a combination of interstitial microscars, perivascular collagen fiber deposition, and increased thickness of mysial collagen strands. Although MIF arises mainly because of alterations in fibrillar collagen turnover leading to collagen fiber accumulation, there are also alterations in other nonfibrillar extracellular matrix components, such as fibronectin and matricellular proteins. Furthermore, in addition to an excess of collagen, qualitative changes in collagen fibers also contribute to the detrimental impact of MIF. In this part 3 of a 4-part JACC Focus Seminar, we review the evidence on the complex mechanisms leading to MIF, as well as its contribution to systolic and diastolic cardiac dysfunction and impaired clinical outcomes in patients with nonischemic heart disease.
Collapse
Affiliation(s)
- Javier Díez
- Program of Cardiovascular Diseases, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Department of Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain; Department of Nephrology, University of Navarra Clinic, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain.
| | - Arantxa González
- Program of Cardiovascular Diseases, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarra Institute for Health Research, Pamplona, Spain; Centro de Investigación Biomédica en Red-Enfermedades Cardiovasculares (CIBERCV), Carlos III Institute of Health, Madrid, Spain
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
28
|
Dilated cardiomyopathy impairs mitochondrial biogenesis and promotes inflammation in an age- and sex-dependent manner. Aging (Albany NY) 2020; 12:24117-24133. [PMID: 33303703 PMCID: PMC7762497 DOI: 10.18632/aging.202283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathy (DCM) belongs to the myocardial diseases associated with a severe impairment of cardiac function, but the question of how sex and age affect this pathology has not been fully explored. Impaired energy homeostasis, mitochondrial dysfunction, and systemic inflammation are well-described phenomena associated with aging. In this study, we investigated if DCM affects these phenomena in a sex- and age-related manner. We analyzed the expression of mitochondrial and antioxidant proteins and the inflammatory state in DCM heart tissue from younger and older women and men. A significant downregulation of Sirt1 expression was detected in older DCM patients. Sex-related differences were observed in the phosphorylation of AMPK that only appeared in older males with DCM, possibly due to an alternative Sirt1 regulation mechanism. Furthermore, reduced expression of several mitochondrial proteins (TOM40, TIM23, Sirt3, and SOD2) and genes (cox1, nd4) was only detected in old DCM patients, suggesting that age has a greater effect than DCM on these alterations. Finally, an increased expression of inflammatory markers in older, failing hearts, with a stronger pro-inflammatory response in men, was observed. Together, these findings indicate that age- and sex-related increased inflammation and disturbance of mitochondrial homeostasis occurs in male individuals with DCM.
Collapse
|
29
|
Miao R, Lu Y, He X, Liu X, Chen Z, Wang J. Ubiquitin-specific protease 19 blunts pathological cardiac hypertrophy via inhibition of the TAK1-dependent pathway. J Cell Mol Med 2020; 24:10946-10957. [PMID: 32798288 PMCID: PMC7521154 DOI: 10.1111/jcmm.15724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 11/26/2022] Open
Abstract
Ubiquitin‐specific protease 19 (USP19) belongs to USP family and is involved in promoting skeletal muscle atrophy. Although USP19 is expressed in the heart, the role of USP19 in the heart disease remains unknown. The present study provides in vivo and in vitro data to reveal the role of USP19 in preventing pathological cardiac hypertrophy. We generated USP19‐knockout mice and isolated neonatal rat cardiomyocytes (NRCMs) that overexpressed or were deficient in USP19 to investigate the effect of USP19 on transverse aortic constriction (TAC) or phenylephrine (PE)‐mediated cardiac hypertrophy. Echocardiography, pathological and molecular analysis were used to determine the extent of cardiac hypertrophy, fibrosis, dysfunction and inflammation. USP19 expression was markedly increased in rodent hypertrophic heart or cardiomyocytes underwent TAC or PE culturing, the increase was mediated by the reduction of Seven In Absentia Homolog‐2. The extent of TAC‐induced cardiac hypertrophy, fibrosis, dysfunction and inflammation in USP19‐knockout mice was exacerbated. Consistently, gain‐of‐function and loss‐of‐function approaches that involved USP19 in cardiomyocytes suggested that the down‐regulation of USP19 promoted the hypertrophic phenotype, while the up‐regulation of USP19 improved the worsened phenotype. Mechanistically, the USP19‐elicited cardiac hypertrophy improvement was attributed to the abrogation of the transforming growth factor beta‐activated kinase 1 (TAK1)‐p38/JNK1/2 transduction. Furthermore, the inhibition of TAK1 abolished the aggravated hypertrophy induced by the loss of USP19. In conclusion, the present study revealed that USP19 and the downstream of TAK1‐p38/JNK1/2 signalling pathway might be a potential target to attenuate pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Rujia Miao
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yao Lu
- Department of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xue He
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuelian Liu
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhiheng Chen
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Bayes-Genis A, Núñez J, Lupón J. Sacubitril/Valsartan as Antifibrotic Drug: Rejuvenating the Fibrosed HFpEF Heart. J Am Coll Cardiol 2020; 76:515-517. [PMID: 32731929 DOI: 10.1016/j.jacc.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cariovaculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Universitat Autònoma Barcelona, Barcelona, Spain.
| | - Julio Núñez
- Centro de Investigación Biomédica en Red Enfermedades Cariovaculares, Instituto de Salud Carlos III, Madrid, Spain; Cardiology Department, Hospital Clínico Universitario de Valencia, Universitat de Valencia, Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana, Valencia, Spain
| | - Josep Lupón
- Heart Institute (iCor), University Hospital Germans Trias i Pujol, Badalona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cariovaculares, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Universitat Autònoma Barcelona, Barcelona, Spain
| |
Collapse
|
31
|
Bouvet M, Claude O, Roux M, Skelly D, Masurkar N, Mougenot N, Nadaud S, Blanc C, Delacroix C, Chardonnet S, Pionneau C, Perret C, Yaniz-Galende E, Rosenthal N, Trégouët DA, Marazzi G, Silvestre JS, Sassoon D, Hulot JS. Anti-integrin α v therapy improves cardiac fibrosis after myocardial infarction by blunting cardiac PW1 + stromal cells. Sci Rep 2020; 10:11404. [PMID: 32647159 PMCID: PMC7347632 DOI: 10.1038/s41598-020-68223-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
There is currently no therapy to limit the development of cardiac fibrosis and consequent heart failure. We have recently shown that cardiac fibrosis post-myocardial infarction (MI) can be regulated by resident cardiac cells with a fibrogenic signature and identified by the expression of PW1 (Peg3). Here we identify αV-integrin (CD51) as an essential regulator of cardiac PW1+ cells fibrogenic behavior. We used transcriptomic and proteomic approaches to identify specific cell-surface markers for cardiac PW1+ cells and found that αV-integrin (CD51) was expressed in almost all cardiac PW1+ cells (93% ± 1%), predominantly as the αVβ1 complex. αV-integrin is a subunit member of the integrin family of cell adhesion receptors and was found to activate complex of latent transforming growth factor beta (TGFβ at the surface of cardiac PW1+ cells. Pharmacological inhibition of αV-integrin reduced the profibrotic action of cardiac PW1+CD51+ cells and was associated with improved cardiac function and animal survival following MI coupled with a reduced infarct size and fibrotic lesion. These data identify a targetable pathway that regulates cardiac fibrosis in response to an ischemic injury and demonstrate that pharmacological inhibition of αV-integrin could reduce pathological outcomes following cardiac ischemia.
Collapse
Affiliation(s)
- Marion Bouvet
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | - Olivier Claude
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | - Maguelonne Roux
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition (ICAN), Paris, France
| | - Dan Skelly
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Nihar Masurkar
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Univ Paris 06, PECMV, UMS28, Paris, France
| | - Sophie Nadaud
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition (ICAN), Paris, France
| | - Catherine Blanc
- Sorbonne Université, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Clément Delacroix
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | - Solenne Chardonnet
- Sorbonne Université, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Cédric Pionneau
- Sorbonne Université, Inserm, UMS Omique, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, 75013, Paris, France
| | - Claire Perret
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition (ICAN), Paris, France
| | - Elisa Yaniz-Galende
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition (ICAN), Paris, France
| | | | - David-Alexandre Trégouët
- Sorbonne Université, UPMC Univ Paris 06, INSERM, Institute of Cardio Metabolism and Nutrition (ICAN), Paris, France.,INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Giovanna Marazzi
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | | | - David Sassoon
- Université de Paris, PARCC, INSERM, 56 Rue Leblanc, 75015, Paris, France
| | | |
Collapse
|
32
|
Cao JW, Duan SY, Zhang HX, Chen Y, Guo M. Zinc Deficiency Promoted Fibrosis via ROS and TIMP/MMPs in the Myocardium of Mice. Biol Trace Elem Res 2020; 196:145-152. [PMID: 31625053 DOI: 10.1007/s12011-019-01902-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/11/2019] [Indexed: 02/07/2023]
Abstract
Zinc (Zn) is an important trace element in the body that has antioxidant effects. It has been proven that Zn deficiency can cause oxidative stress. The purpose of the present study was to clarify the effect and mechanism of Zn deficiency on myocardial fibrosis. Mice were fed with different Zn levels dietary for 9 weeks: Zn-normal group (ZnN, 34 mg Zn/kg), Zn-deficient group (ZnD, 2 mg Zn/kg), and Zn-adequate group (ZnA, 100 mg Zn/kg). We found that the Zn-deficient diet reduced the Zn concentration in myocardial tissue. Moreover, the TUNEL results demonstrated that cardiomyocytes in the ZnD group died in large numbers. Furthermore, ROS levels were significantly increased, and metallothionein (MT) expression levels decreased in the ZnD group. The results of Sirius Red staining indicated an increase in collagen in the ZnD group. Moreover, the ELISA results showed that collagen I, III, and IV and fibronectin (FN) were increased. In addition, the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) was detected by RT-qPCR. The results showed that the expression of TIMP-1 in the ZnD group was increased, while MMPs were decreased. Immunohistochemical results showed an increase in the content of α-smooth muscle actin (α-SMA), while H&E staining showed an increase in interstitial width and a decrease in the number of cardiac cells. All data suggest that Zn deficiency enhances the oxidative stress response of myocardial tissue and eventually triggers myocardial fibrosis.
Collapse
Affiliation(s)
- Jing-Wen Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shi-Yu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hong-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
33
|
Zhang S, Wang W, Wu X, Zhou X. Regulatory Roles of Circular RNAs in Coronary Artery Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 21:172-179. [PMID: 32585625 PMCID: PMC7321795 DOI: 10.1016/j.omtn.2020.05.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/26/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Coronary artery disease (CAD) is a cardiac disorder caused by abnormal structure or function of the coronary artery, which leads to myocardial ischemia and hypoxia. CAD is a major cause of morbidity and mortality worldwide. Although there are currently effective drug therapies, there is a pressing need to find novel molecular therapeutic targets for CAD. The development of molecular biology technology has allowed the recognition of circular RNAs (circRNAs) as a novel class of noncoding RNAs that regulate gene function. The pathological roles of circRNAs in CAD have not, however, been comprehensively summarized. In this article, we review published research linking circRNAs to CAD and summarize the regulatory roles of circRNAs in the pathogenesis of coronary atherosclerosis, myocardial infarction, ischemia/reperfusion injury, and ischemic heart failure.
Collapse
Affiliation(s)
- Shuchen Zhang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | - Wenjing Wang
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | - Xiaoguang Wu
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China.
| |
Collapse
|
34
|
Zhou T, Wang J, Xu J, Zheng C, Niu Y, Wang C, Xu F, Yuan L, Zhao X, Liang L, Xu P. A Smart Fluorescent Probe for NO Detection and Application in Myocardial Fibrosis Imaging. Anal Chem 2020; 92:5064-5072. [DOI: 10.1021/acs.analchem.9b05435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Petz A, Grandoch M, Gorski DJ, Abrams M, Piroth M, Schneckmann R, Homann S, Müller J, Hartwig S, Lehr S, Yamaguchi Y, Wight TN, Gorressen S, Ding Z, Kötter S, Krüger M, Heinen A, Kelm M, Gödecke A, Flögel U, Fischer JW. Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ Res 2020; 124:1433-1447. [PMID: 30916618 DOI: 10.1161/circresaha.118.313285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.
Collapse
Affiliation(s)
- Anne Petz
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marcel Abrams
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Piroth
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Susanne Homann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Julia Müller
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Y.Y.)
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA (T.N.W.)
| | - Simone Gorressen
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhaoping Ding
- Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sebastian Kötter
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Krüger
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Andre Heinen
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Malte Kelm
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Axel Gödecke
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
36
|
Abstract
Fibrosis is the abnormal deposition of extracellular matrix, which can lead to organ dysfunction, morbidity, and death. The disease burden caused by fibrosis is substantial, and there are currently no therapies that can prevent or reverse fibrosis. Metabolic alterations are increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types. As a result, metabolically targeted therapies could become important strategies for fibrosis reduction. Indeed, some of the pathways targeted by antifibrotic drugs in development - such as the activation of transforming growth factor-β and the deposition of extracellular matrix - have metabolic implications. This Review summarizes the evidence to date and describes novel opportunities for the discovery and development of drugs for metabolic reprogramming, their associated challenges, and their utility in reducing fibrosis. Fibrotic therapies are potentially relevant to numerous common diseases such as cirrhosis, non-alcoholic steatohepatitis, chronic renal disease, heart failure, diabetes, idiopathic pulmonary fibrosis, and scleroderma.
Collapse
|
37
|
Croft AJ, Ngo DTM, Sverdlov AL. Anthracycline-Induced Cardiotoxicity: Time to Focus on Cardioprotection Again. Heart Lung Circ 2019; 28:1454-1456. [PMID: 31495502 DOI: 10.1016/j.hlc.2019.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A J Croft
- Faculty of Health and Medicine, The University of Newcastle, NSW and Cardio-oncology Research Group, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - D T M Ngo
- Faculty of Health and Medicine, The University of Newcastle, NSW and Cardio-oncology Research Group, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - A L Sverdlov
- Faculty of Health and Medicine, The University of Newcastle, NSW and Cardio-oncology Research Group, Hunter Medical Research Institute, Newcastle, NSW, Australia; Cardiovascular Department, John Hunter Hospital, Newcastle, NSW, Australia.
| |
Collapse
|
38
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
40
|
Zhu Y, Pan W, Yang T, Meng X, Jiang Z, Tao L, Wang L. Upregulation of Circular RNA CircNFIB Attenuates Cardiac Fibrosis by Sponging miR-433. Front Genet 2019; 10:564. [PMID: 31316543 PMCID: PMC6611413 DOI: 10.3389/fgene.2019.00564] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiac fibrosis is the pathological consequence of fibroblast proliferation and fibroblast-to-myofibroblast transition. As a new class of endogenous non-coding RNAs, circular RNAs (circRNAs) have been identified in many cardiovascular diseases including fibrosis, generally acting as microRNA (miRNA) sponges. Here, we report that the expression of circRNA-circNFIB was decreased in mice post-myocardial infarction heart samples, as well as in primary adult cardiac fibroblasts treated with TGF-β. Forced expression of circNFIB decreased cell proliferation in both NIH/3T3 cells and primary adult fibroblasts as evidenced by EdU incorporation. Conversely, inhibition of circNFIB promoted adult fibroblast proliferation. Furthermore, circNFIB was identified as a miR-433 endogenous sponge. Overexpression of circNFIB could attenuate pro-proliferative effects induced by the miR-433 mimic while inhibition of circNFIB exhibited opposite results. Finally, upregulation of circNFIB also reversed the expression levels of target genes and downstream signaling pathways of miR-433. In conclusion, circNFIB is critical for protection against cardiac fibrosis. The circNFIB-miR-433 axis may represent a novel therapeutic approach for treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Wen Pan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Tingting Yang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiangmin Meng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Zheyi Jiang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| | - Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
41
|
Bracco Gartner TCL, Deddens JC, Mol EA, Magin Ferrer M, van Laake LW, Bouten CVC, Khademhosseini A, Doevendans PA, Suyker WJL, Sluijter JPG, Hjortnaes J. Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis. Front Cardiovasc Med 2019; 6:52. [PMID: 31080805 PMCID: PMC6497755 DOI: 10.3389/fcvm.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 04/09/2019] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibroblasts play a key role in chronic heart failure. The conversion from cardiac fibroblast to myofibroblast as a result of cardiac injury, will lead to excessive matrix deposition and a perpetuation of pro-fibrotic signaling. Cardiac cell therapy for chronic heart failure may be able to target fibroblast behavior in a paracrine fashion. However, no reliable human fibrotic tissue model exists to evaluate this potential effect of cardiac cell therapy. Using a gelatin methacryloyl hydrogel and human fetal cardiac fibroblasts (hfCF), we created a 3D in vitro model of human cardiac fibrosis. This model was used to study the possibility to modulate cellular fibrotic responses. Our approach demonstrated paracrine inhibitory effects of cardiac progenitor cells (CPC) on both cardiac fibroblast activation and collagen synthesis in vitro and revealed that continuous cross-talk between hfCF and CPC seems to be indispensable for the observed anti-fibrotic effect.
Collapse
Affiliation(s)
- Tom C L Bracco Gartner
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Soft Tissue Engineering and Mechanobiology, Department of Biomedical Technology, Eindhoven University of Technology, Eindhoven, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands
| | - Janine C Deddens
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emma A Mol
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Marina Magin Ferrer
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linda W van Laake
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Technology, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Radiology, Department of Chemical and Biomolecular Engineering, Director of Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA, United States
| | - Pieter A Doevendans
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands.,Netherlands Heart Institute, Utrecht, Netherlands.,Central Military Hospital, Utrecht, Netherlands
| | - Willem J L Suyker
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| | - Jesper Hjortnaes
- Division Heart, and Lungs, Department of Cardiothoracic Surgery, University Medical Center Utrecht, Utrecht, Netherlands.,Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, Netherlands.,Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
Stempien-Otero A. Maintaining Matrix Composure Under Stress. Circ Res 2019; 124:1149-1150. [PMID: 30973810 DOI: 10.1161/circresaha.119.314843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- April Stempien-Otero
- From the Departments of Medicine and Pathology, University of Washington School of Medicine, Seattle
| |
Collapse
|
43
|
Barefield DY, McNamara JW, Lynch TL, Kuster DWD, Govindan S, Haar L, Wang Y, Taylor EN, Lorenz JN, Nieman ML, Zhu G, Luther PK, Varró A, Dobrev D, Ai X, Janssen PML, Kass DA, Jones WK, Gilbert RJ, Sadayappan S. Ablation of the calpain-targeted site in cardiac myosin binding protein-C is cardioprotective during ischemia-reperfusion injury. J Mol Cell Cardiol 2019; 129:236-246. [PMID: 30862451 PMCID: PMC7222036 DOI: 10.1016/j.yjmcc.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is essential for normal heart function and protects the heart from ischemia-reperfusion (I/R) injury. It is known that protein kinase-A (PKA)-mediated phosphorylation of cMyBP-C prevents I/R-dependent proteolysis, whereas dephosphorylation of cMyBP-C at PKA sites correlates with its degradation. While sites on cMyBP-C associated with phosphorylation and proteolysis co-localize, the mechanisms that link cMyBP-C phosphorylation and proteolysis during cardioprotection are not well understood. Therefore, we aimed to determine if abrogation of cMyBP-C proteolysis in association with calpain, a calcium-activated protease, confers cardioprotection during I/R injury. Calpain is activated in both human ischemic heart samples and ischemic mouse myocardium where cMyBP-C is dephosphorylated and undergoes proteolysis. Moreover, cMyBP-C is a substrate for calpain proteolysis and cleaved by calpain at residues 272-TSLAGAGRR-280, a domain termed as the calpain-target site (CTS). Cardiac-specific transgenic (Tg) mice in which the CTS motif was ablated were bred into a cMyBP-C null background. These Tg mice were conclusively shown to possess a normal basal structure and function by analysis of histology, electron microscopy, immunofluorescence microscopy, Q-space MRI of tissue architecture, echocardiography, and hemodynamics. However, the genetic ablation of the CTS motif conferred resistance to calpain-mediated proteolysis of cMyBP-C. Following I/R injury, the loss of the CTS reduced infarct size compared to non-transgenic controls. Collectively, these findings demonstrate the physiological significance of calpain-targeted cMyBP-C proteolysis and provide a rationale for studying inhibition of calpain-mediated proteolysis of cMyBP-C as a therapeutic target for cardioprotection.
Collapse
Affiliation(s)
- David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Center for Genetic Medicine, Northwestern University, Chicago, IL, USA.
| | - James W McNamara
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Thomas L Lynch
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Diederik W D Kuster
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, the Netherlands
| | - Suresh Govindan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Lauren Haar
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Yang Wang
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Erik N Taylor
- Department of Physiology and Biophysics, Boston University, Boston, MA, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Guangshuo Zhu
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Andras Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xun Ai
- Department of Physiology and Biophysics, Rush University, Chicago, IL, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Walter Keith Jones
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center and Brown University, Providence, RI, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA; Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
44
|
Hodges MM, Zgheib C, Xu J, Hu J, Dewberry LC, Hilton SA, Allukian MW, Gorman JH, Gorman RC, Liechty KW. Differential Expression of Transforming Growth Factor-β1 Is Associated With Fetal Regeneration After Myocardial Infarction. Ann Thorac Surg 2019; 108:59-66. [PMID: 30690019 DOI: 10.1016/j.athoracsur.2018.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Global extracellular matrix (ECM)-related gene expression is decreased after myocardial infarction (MI) in fetal sheep when compared with adult sheep. Transforming growth factor (TGF)-β1 is a key regulator of ECM; therefore we hypothesize that TGF-β1 is differentially expressed in adult and fetal infarcts after MI. METHODS Adult and fetal sheep underwent MI via ligation of the left anterior descending coronary artery. Expression of TGF-β1 and ECM-related genes was evaluated by ovine-specific microarray and quantitative polymerase chain reaction. Fibroblasts from the left ventricle of adult and fetal hearts were treated with TGF-β1 or a TGF-β1 receptor inhibitor (LY36497) to evaluate the effect of TGF-β1 on ECM-related genes. RESULTS Col1a1, col3a1, and MMP9 expression were increased in adult infarcts 3 and 30 days after MI but were upregulated in fetal infarcts only 3 days after MI. Three days after MI elastin expression was increased in adult infarcts. Despite upregulation in adult infarcts both 3 and 30 days after MI, TGF-β1 was not upregulated in fetal infarcts at any time point. Inhibition of the TGF-β1 receptor in adult cardiac fibroblasts decreased expression of col1a1, col3a1, MMP9, elastin, and TIMP1, whereas treatment of fetal cardiac fibroblasts with TGF-β1 increased expression of these genes. CONCLUSIONS TGF-β1 is increased in adult infarcts compared with regenerative, fetal infarcts after MI. Although treatment of fetal cardiac fibroblasts with TGF-β1 conveys an adult phenotype, inhibition of TGF-β1 conveys a fetal phenotype to adult cardiac fibroblasts. Decreasing TGF-β1 after MI may facilitate myocardial regeneration by "fetalizing" the otherwise fibrotic, adult response to MI.
Collapse
Affiliation(s)
- Maggie M Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado.
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junyi Hu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Lindel C Dewberry
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Sarah A Hilton
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Myron W Allukian
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Joseph H Gorman
- Department of Surgery and Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert C Gorman
- Department of Surgery and Gorman Cardiovascular Research Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
45
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
46
|
Zeglinski MR, Moghadam AR, Ande SR, Sheikholeslami K, Mokarram P, Sepehri Z, Rokni H, Mohtaram NK, Poorebrahim M, Masoom A, Toback M, Sareen N, Saravanan S, Jassal DS, Hashemi M, Marzban H, Schaafsma D, Singal P, Wigle JT, Czubryt MP, Akbari M, Dixon IM, Ghavami S, Gordon JW, Dhingra S. Myocardial Cell Signaling During the Transition to Heart Failure. Compr Physiol 2018; 9:75-125. [DOI: 10.1002/cphy.c170053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
47
|
Almeida Paiva R, Martins-Marques T, Jesus K, Ribeiro-Rodrigues T, Zuzarte M, Silva A, Reis L, da Silva M, Pereira P, Vader P, Petrus Gerardus Sluijter J, Gonçalves L, Cruz MT, Girao H. Ischaemia alters the effects of cardiomyocyte-derived extracellular vesicles on macrophage activation. J Cell Mol Med 2018; 23:1137-1151. [PMID: 30516028 PMCID: PMC6349194 DOI: 10.1111/jcmm.14014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/14/2018] [Indexed: 12/24/2022] Open
Abstract
Myocardial ischaemia is associated with an exacerbated inflammatory response, as well as with a deregulation of intercellular communication systems. Macrophages have been implicated in the maintenance of heart homeostasis and in the progression and resolution of the ischaemic injury. Nevertheless, the mechanisms underlying the crosstalk between cardiomyocytes and macrophages remain largely underexplored. Extracellular vesicles (EVs) have emerged as key players of cell‐cell communication in cardiac health and disease. Hence, the main objective of this study was to characterize the impact of cardiomyocyte‐derived EVs upon macrophage activation. Results obtained demonstrate that EVs released by H9c2 cells induced a pro‐inflammatory profile in macrophages, via p38MAPK activation and increased expression of iNOS, IL‐1β and IL‐6, being these effects less pronounced with ischaemic EVs. EVs derived from neonatal cardiomyocytes, maintained either in control or ischaemia, induced a similar pattern of p38MAPK activation, expression of iNOS, IL‐1β, IL‐6, IL‐10 and TNFα. Importantly, adhesion of macrophages to fibronectin was enhanced by EVs released by cardiomyocytes under ischaemia, whereas phagocytic capacity and adhesion to cardiomyocytes were higher in macrophages incubated with control EVs. Additionally, serum‐circulating EVs isolated from human controls or acute myocardial infarction patients induce macrophage activation. According to our model, in basal conditions, cardiomyocyte‐derived EVs maintain a macrophage profile that ensure heart homeostasis, whereas during ischaemia, this crosstalk is affected, likely impacting healing and post‐infarction remodelling.
Collapse
Affiliation(s)
- Rafael Almeida Paiva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Tania Martins-Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Katia Jesus
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Teresa Ribeiro-Rodrigues
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Monica Zuzarte
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| | - Ana Silva
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Liliana Reis
- Cardiology Department, CHUC-HG, Coimbra, Portugal
| | | | - Paulo Pereira
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost Petrus Gerardus Sluijter
- Department of Cardiology, Division of Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,Interuniversity Cardiology Institute Netherlands (ICIN), Utrecht, The Netherlands
| | - Lino Gonçalves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Cardiology Department, CHUC-HG, Coimbra, Portugal
| | - Maria Teresa Cruz
- CNC.IBILI, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Henrique Girao
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,CNC.IBILI, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
48
|
Ma C, Luo H, Liu B, Li F, Tschöpe C, Fa X. Long noncoding RNAs: A new player in the prevention and treatment of diabetic cardiomyopathy? Diabetes Metab Res Rev 2018; 34:e3056. [PMID: 30160026 DOI: 10.1002/dmrr.3056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 12/20/2022]
Abstract
Diabetic cardiomyopathy (DCM) can cause extensive necrosis of the heart muscle by metabolic disorders and microangiopathy, with subclinical cardiac dysfunction, and eventually progress to heart failure, arrhythmia, and cardiogenic shock; severe patients may even die suddenly. Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding RNAs longer than 200 nucleotides. They have critical roles in various biological processes, including gene expression regulation, genomic imprinting, nuclear-cytoplasmic trafficking, RNA splicing, and translational control. Recent studies indicated that lncRNAs extensively participate in the development of diverse cardiac diseases, such as cardiac ischaemia, hypertrophy, and heart failure. Little is known about lncRNA in DCM. In this review, we summarize the current literature on lncRNAs in DCM studies, aiming to provide new methods for DCM's future prevention and treatment strategies.
Collapse
Affiliation(s)
- Chao Ma
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Huan Luo
- Department of Ophthalmology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bing Liu
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Xianen Fa
- Department of Cardiovascular Surgery, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Many Cells Make Life Work-Multicellularity in Stem Cell-Based Cardiac Disease Modelling. Int J Mol Sci 2018; 19:ijms19113361. [PMID: 30373227 PMCID: PMC6274721 DOI: 10.3390/ijms19113361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cardiac disease causes 33% of deaths worldwide but our knowledge of disease progression is still very limited. In vitro models utilising and combining multiple, differentiated cell types have been used to recapitulate the range of myocardial microenvironments in an effort to delineate the mechanical, humoral, and electrical interactions that modulate the cardiac contractile function in health and the pathogenesis of human disease. However, due to limitations in isolating these cell types and changes in their structure and function in vitro, the field is now focused on the development and use of stem cell-derived cell types, most notably, human-induced pluripotent stem cell-derived CMs (hiPSC-CMs), in modelling the CM function in health and patient-specific diseases, allowing us to build on the findings from studies using animal and adult human CMs. It is becoming increasingly appreciated that communications between cardiomyocytes (CMs), the contractile cell of the heart, and the non-myocyte components of the heart not only regulate cardiac development and maintenance of health and adult CM functions, including the contractile state, but they also regulate remodelling in diseases, which may cause the chronic impairment of the contractile function of the myocardium, ultimately leading to heart failure. Within the myocardium, each CM is surrounded by an intricate network of cell types including endothelial cells, fibroblasts, vascular smooth muscle cells, sympathetic neurons, and resident macrophages, and the extracellular matrix (ECM), forming complex interactions, and models utilizing hiPSC-derived cell types offer a great opportunity to investigate these interactions further. In this review, we outline the historical and current state of disease modelling, focusing on the major milestones in the development of stem cell-derived cell types, and how this technology has contributed to our knowledge about the interactions between CMs and key non-myocyte components of the heart in health and disease, in particular, heart failure. Understanding where we stand in the field will be critical for stem cell-based applications, including the modelling of diseases that have complex multicellular dysfunctions.
Collapse
|
50
|
Chen J, Zhan Y, Wang Y, Han D, Tao B, Luo Z, Ma S, Wang Q, Li X, Fan L, Li C, Deng H, Cao F. Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomater 2018; 80:154-168. [PMID: 30218777 DOI: 10.1016/j.actbio.2018.09.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 09/01/2018] [Accepted: 09/11/2018] [Indexed: 01/23/2023]
Abstract
Poor functional survival of the engrafted stem cells limits the therapeutic efficacy of stem-cell-based therapy for myocardial infarction (MI). Cardiac patch-based system for cardiac repair has emerged as a potential regenerative strategy for MI. This study aimed to design a cardiac patch to improve the retention of the engrafted stem cells and provide mechanical scaffold for preventing the ventricular remodeling post-MI. The patches were fabricated with electrospinning cellulose nanofibers modified with chitosan/silk fibroin (CS/SF) multilayers via layer-by-layer (LBL) coating technology. The patches engineered with adipose tissue-derived mesenchymal stem cells (AD-MSCs) (cell nano-patch) were adhered to the epicardium of the infarcted region in rat hearts. Bioluminescence imaging (BLI) revealed higher cell viability in the cell nano-patch group compared with the intra-myocardial injection group. Echocardiography demonstrated less ventricular remodeling in cell nano-patch group, with a decrease in the left ventricular end-diastolic volume and left ventricular end-systolic volume compared with the control group. Additionally, left ventricular ejection fraction and fractional shortening were elevated after cell nano-patch treatment compared with the control group. Histopathological staining demonstrated that cardiac fibrosis and apoptosis were attenuated, while local neovascularization was promoted in the cell nano-patch group. Western blot analysis illustrated that the expression of biomarkers for myocardial fibrosis (TGF-β1, P-smad3 and Smad3) and ventricular remodeling (BNP, β-MHC: α-MHC ratio) were decreased in cell nano patch-treated hearts. This study suggests that CS/SF-modified nanofibrous patches promote the functional survival of engrafted AD-MSCs and restrain ventricular remodeling post-MI through attenuating myocardial fibrosis. STATEMENT OF SIGNIFICANCE: First, the nanofibrous patches fabricated from the electrospun cellulose nanofibers could mimic the natural extracellular matrix (ECM) of hearts to improve the microenvironment post-MI and provide three dimensional (3D) scaffolds for the engrafted AD-MSCs. Second, CS and SF which have exhibited excellent properties in previous tissue engineering research, such as nontoxicity, biodegradability, anti-inflammatory, strong hydrophilic nature, high cohesive strength, and intrinsic antibacterial properties further optimized the biocompatibility of the nanofibrous patches via LBL modification. Finally, the study revealed that beneficial microenvironment and biomimetic ECM improve the retention and viability of the engrafted AD-MSCs and the mechanical action of the cell nano-patches for the expanding ventricular post-MI leads to suppression of HF progression by inhibition of ventricular remodeling.
Collapse
|