1
|
Li T, Gao N, Du J, Zhao L, Yang S, Zhang Y, Zhu J, Hu H, Qiao Z, Cui W, Pan L. CD8 cell-derived granzyme B may be a predictor for coronary artery involvement and MACE in Takayasu arteritis patients. Clin Exp Immunol 2025; 219:uxae095. [PMID: 39432677 PMCID: PMC11773806 DOI: 10.1093/cei/uxae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/31/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Coronary artery involvement (CAI) is a special but not rare manifestation of Takayasu arteritis (TAK). Granzyme B (GzmB) is a multifunctional protease associated with the immune system and coronary artery disease. However, its role in patients with TAK and CAI remains unclear. This study investigates the role of GzmB+ cell subsets in TAK. The study included 105 TAK patients and 58 healthy controls. The percentages of different GzmB+ cells in blood samples were analyzed by flow cytometry. We found that age, age at onset, body mass index, disease duration month, hypertension, and hyperlipidemia were significantly different between TAK patients with and without CAI (P = 0.000, P = 0.038, P = 0.003, P = 0.031, P = 0.039, P = 0.000). The proportions of CD3+CD8+cells (P = 0.001) and CD3+CD4+cells (P = 0.000) in GzmB+ cells were significantly increased, while the proportion of CD3-CD56+cells (P = 0.001) in GzmB+ cells was decreased in TAK patients. The proportions of three types of GzmB+ subsets in lymphocytes (CD3+CD4+GzmB+, CD3+CD8+GzmB+, CD3+CD56+ GzmB+) were higher in TAK patients with CAI compared with those without CAI (P = 0.021, P = 0.007, P = 0.007). The increased proportion of CD3+CD8+GzmB+cells/lymphocytes was an independent risk factor for coronary involvement in TAK (OR = 4.990 [1.766-14.098], P = 0.002). Additionally, patients with a high CD3+CD8+GzmB+cells/lymphocytes ratio had a higher major adverse cardiovascular events rate than those with a low ratio in TAK (P = 0.019). Our results indicate that CD8 cell-derived Gzm B may be a predictor for CAI and major adverse cardiovascular events in TAK patients. Targeting CD3+CD8+GzmB+ lymphocytes or using GzmB inhibitors could be a potential therapeutic approach for the treatment of CAI in TAK.
Collapse
Affiliation(s)
- Taotao Li
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Na Gao
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Juan Du
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Limin Zhao
- Beijing Institute of Heart, Lung and Vessel disease, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Shiyu Yang
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Yaxin Zhang
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Junming Zhu
- Department of cardiovascular surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Haiou Hu
- Department of cardiovascular surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Zhiyu Qiao
- Department of cardiovascular surgery, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Wei Cui
- Beijing Institute of Heart, Lung and Vessel disease, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| | - Lili Pan
- Department of Rheumatology and Immunology, Capital Medical University Affiliated Anzhen Hospital, Beijing, China
| |
Collapse
|
2
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Bawamia B, Gupta A, Omari M, Farag M, Spyridopoulos I, Alkhalil M. Eosinopenia in patients with acute myocardial infarction- longitudinal imaging insights from the CAPRI study. J Thromb Thrombolysis 2025; 58:136-144. [PMID: 39306654 DOI: 10.1007/s11239-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/27/2025]
Abstract
Eosinophils are recruited to the heart during acute myocardial infarction (MI) and are considered part of the inflammatory response associated with adverse clinical outcomes. We assessed the impact of eosinopenia on cardiac imaging biomarkers in patients presenting with ST-segment elevation MI. This is a post-hoc analysis of the Evaluating the effectiveness of intravenous Ciclosporin on reducing reperfusion injury in pAtients undergoing PRImary percutaneous coronary intervention (CAPRI) trial. Patients underwent cardiac MRI within 1 week and 12 weeks and low eosinophil was defined as less than 40 cells/ml. The study included 52 patients and 38% had low eosinophil. Ciclosporin administration was comparable between patients with low versus normal eosinophils. The ischaemia time was significantly longer in low eosinophil patients [262 (205-325) vs. 138 (102-195) minutes, P < 0.001]. At 12 weeks, patients with eosinopenia had larger infarct size [9.8% (5.7-18.4) vs. 7.4% (1.9-10.2), P = 0.045], larger left ventricle (LV) end systolic volume (89 ± 28 vs. 68 ± 23, P = 0.02), and lower LV ejection fraction (EF) (49 ± 9 vs. 58 ± 7, P < 0.001). After adjustments for significant predictors, including ischaemia time, low eosinophil count was an independent predictor of worse LVEF at 12 weeks [-5.78, 95% CI (-11.22 to -0.34), P = 0.038] but not infarct size [1.83, 95% CI (-2.77 to 6.43), P = 0.43]. Patients with low eosinophil count had larger infarct size and LV volumes and worse adverse remodeling compared to those with normal eosinophil count. At 12 weeks, eosinopenia was an independent predictor of worse LVEF but not infarct size.
Collapse
Affiliation(s)
- Bilal Bawamia
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Ashish Gupta
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Muntaser Omari
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Mohamed Farag
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
| | - Ioakim Spyridopoulos
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Mohammad Alkhalil
- Department of Cardiothoracic Services, Freeman Hospital, Freeman Road, Newcastle-upon-Tyne, NE7 7DN, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|
4
|
Yang Y, Wu A, Deng AN, Liu H, Lan Q, Mazhar M, Xue JY, Chen MT, Luo G, Liu MN. Macrophages after myocardial infarction: Mechanisms for repairing and potential as therapeutic approaches. Int Immunopharmacol 2024; 143:113562. [PMID: 39536484 DOI: 10.1016/j.intimp.2024.113562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Macrophages - one of the crucial immune cells, are recruited to the cardiac tissue by chemokines, cytokines and upregulated endothelial adhesion molecules after myocardial infarction (MI). During the course of inflammation in the cardiac tissue, necrotic cells and matrix debris is phagocytosed by M1 macrophages. During the resolution phase of cardiac inflammation, M2 macrophages promote cardiac recovery. Suppression or over expression of both the M1 and M2 macrophage subtypes significantly affect the reparation of infarction. Stem cells therapy, cytokine regulation and immune cells therapy are considered as effective interventions to regulate the phenotypic transformation of cardiac macrophages after MI. Intervention with macrophages in the myocardium has shown unique advantages. In this review, the mechanisms and role of macrophages in the development of MI are elaborated in detail, the promising therapeutic methods for regulating macrophage phenotypes, their limitations and possible future research directions are discussed.
Collapse
Affiliation(s)
- You Yang
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ai Wu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Ni Deng
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Hao Liu
- Department of Pediatrics, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Qi Lan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Maryam Mazhar
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jin-Yi Xue
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming-Tai Chen
- Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China.
| | - Gang Luo
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| | - Meng-Nan Liu
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
5
|
Gong G, Chen X, Zhang X, Yin J, Wan W. Potential therapeutic effects of IL28RA inhibition on acute myocardial infarction through phosphorylated JAK1/STAT1 signaling pathways. Sci Rep 2024; 14:30576. [PMID: 39706854 DOI: 10.1038/s41598-024-83668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
While current coronary intervention therapies and surgical bypass procedures are widely utilized, the treatment of acute myocardial infarction (AMI) in the elderly continues to pose significant challenges. Following AMI, the body's immune system is activated, resulting in the release of inflammatory mediators that exacerbate myocardial damage. Interleukin 28A (IL28A) and interleukin 28B (IL28B) may play a role in immune regulation post-AMI by specifically binding to interleukin 28 receptor alpha (IL28RA). However, the precise underlying mechanisms remain incompletely understood. This study aims to investigate the levels of IL28A and IL28B following AMI, as well as the protective effects of inhibiting IL28RA expression in the context of AMI and its potential mechanisms. We analyzed serum samples from 55 patients with AMI and 41 control individuals using ELISA to evaluate the levels of IL28A and IL28B, as well as to assess their correlation with the clinical parameters of the patients. Additionally, we established a mouse model of AMI and employed intramyocardial injection of lentivirus to knock down IL28RA in the myocardium. Echocardiography was utilized to compare structural and functional changes, while HE staining was conducted to analyze the infarct area and assess changes in myocardial tissue and cell morphology. The expressions of IL28A, IL28B, IL28RA, and JAK1/STAT1 pathway-related proteins in the infarct area were compared through immunofluorescence and Western blot analysis. Finally, TUNEL staining and the BAX/Bcl2 ratio were utilized to evaluate cardiomyocyte apoptosis. The study demonstrated that serum IL28A levels in patients with AMI were significantly elevated compared to those in normal controls, whereas IL28B levels were significantly reduced. Additionally, both IL28A and IL28B levels exhibit a linear relationship with high-density lipoprotein (HDL) and body mass index (BMI). In a mouse model, cardiac function deteriorated and ventricular structural changes were observed 14 days post-myocardial infarction relative to controls. The expressions of IL28A and IL28RA were significantly upregulated in the myocardium of the infarcted area, while IL28B levels showed no significant variation. Additionally, the ratios of p-JAK1/JAK1 and p-STAT1/STAT1 were significantly increased, accompanied by a notable rise in apoptotic cells within the myocardial infarction area. Importantly, the knockdown of IL28RA expression in the infarcted region effectively mitigated these alterations. These results suggest that IL28A but not IL28B contributes to the process post-AMI and may induce cardiomyocyte apoptosis through the JAK1/STAT1 pathway in conjunction with IL28RA.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xiangxuan Chen
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Xinghu Zhang
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical College of Medicine, Kangda College, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
- Department of Orthopedics, Jiangning Clinical College of Medicine, Jiangsu Institute of Health Vocational College, Nanjing, 211100, Jiangsu, China.
| | - Wenhui Wan
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
6
|
Ji H, Luo Z, Ye L, He Y, Hao M, Yang Y, Tao X, Tong G, Zhou L. Prognostic significance of C-reactive protein-albumin-lymphocyte (CALLY) index after primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. Int Immunopharmacol 2024; 141:112860. [PMID: 39142002 DOI: 10.1016/j.intimp.2024.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND In this study, the relationship between C-reactive protein-albumin-lymphocyte (CALLY) index, a novel composite indicator based on inflammation and nutrition, and major adverse cardiovascular events (MACEs) was investigated in patients with ST-segment elevation myocardial infarction (STEMI). MATERIALS AND METHODS This retrospective study included 438 patients with STEMI who were treated at a single center between January 2017 and December 2020. The CALLY index was calculated for each patient on admission. The predictive value of the CALLY index for short- and long-term MACEs was evaluated using the area under the curve (AUC) analysis, and the corresponding AUC values were calculated. Clinical characteristics were analyzed after categorizing the population based on the optimal cut-off value of the CALLY index. Multivariate Cox regression analysis was used to determine factors independently associated with MACEs, while logistic regression analysis was used to identify factors independently associated with the severity of coronary artery lesions. Kaplan-Meier estimation and log-rank test were used to assess event-free survival rates among different CALLY index groups. Additionally, Spearman's correlation test was used to determine the association between the CALLY index and the Gensini score. RESULTS The AUC for predicting short-term MACEs in STEMI patients using the CALLY index was 0.758, while the AUC for predicting long-term MACEs was 0.740. Similarly, the AUC values were 0.815 and 0.819, respectively, when evaluating the short- and long-term mortality rates using the CALLY index. Multivariable Cox regression analysis revealed that a high CALLY index (threshold of 1.50) independently reduced the risk of short-term MACEs in patients with STEMI (hazard ratio [HR] = 0.274, 95 % confidence interval [CI] = 0.121-0.621, P=0.002). Multivariable Cox regression also demonstrated that a high CALLY index (threshold > 0.91) independently reduced the occurrence of long-term MACEs during follow-up in STEMI patients (HR=0.439, 95 % CI=0.292-0.659, P<0.001). Furthermore, multivariate logistic regression analysis revealed that a high CALLY index (threshold > 1.13) independently reduced the risk of severe coronary artery lesions in patients with STEMI (odds ratio = 0.299 [95 % CI=184-0.485], P<0.001). A positive correlation was observed between the CALLY index and the Gensini score (P<0.001). CONCLUSION The CALLY index is a novel, convenient, and valuable prognostic indicator exhibiting a protective effect against both short- and long-term MACEs in patients with STEMI, emphasizing the significance of inflammation/nutrition in this patient population.
Collapse
Affiliation(s)
- Hao Ji
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310053, China
| | - Zan Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310053, China
| | - Lu Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province 310053, China
| | - Ying He
- Cardiac Ultrasound Center, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Shangcheng District, Hangzhou, Zhejiang Province 310000, China
| | - Mengyao Hao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32 West 7th Avenue, Dongli District, Tianjin 300308, China
| | - Yang Yang
- Department of Geriatric Respiratory, Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, No 108 Benteng Avenue, Gulou District, Xuzhou, Jiangsu Province 221007, China
| | - Xingyu Tao
- Department of Geriatric Respiratory, Xuzhou New Health Hospital, North Hospital of Xuzhou Cancer Hospital, No 108 Benteng Avenue, Gulou District, Xuzhou, Jiangsu Province 221007, China
| | - Guoxin Tong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261, Huansha Road, Hangzhou 310006, China.
| | - Liang Zhou
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, No. 261, Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
7
|
Zheng ZQ, Cai DH, Song YF. Identification of immune feature genes and intercellular profiles in diabetic cardiomyopathy. World J Diabetes 2024; 15:2093-2110. [PMID: 39493556 PMCID: PMC11525719 DOI: 10.4239/wjd.v15.i10.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role. The immunological molecular mechanisms underlying DCM are poorly understood. AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes (IFGs). METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing (RNA-seq) datasets. Single-sample gene set enrichment analysis (ssGSEA) facilitated the analysis of immune cell infiltration. Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort. Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques. Additionally, single-cell RNA-seq data provided deeper insights into cellular profiles and interactions. RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes. Four IFGs showed good diagnostic and prognostic values in the validation cohort: Proenkephalin (Penk) and retinol binding protein 7 (Rbp7), which were highly expressed, and glucagon receptor and inhibin subunit alpha, which were expressed at low levels in DCM patients (all area under the curves > 0.9). SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells. High expression of Penk (P < 0.0001) and Rbp7 (P = 0.001) was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro. Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM, especially between mesenchymal cells and macrophages. CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers, and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
Collapse
Affiliation(s)
- Ze-Qun Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
- Department of Cardiology, Clinical Research Center, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Di-Hui Cai
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| | - Yong-Fei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, Zhejiang Province, China
| |
Collapse
|
8
|
Huo L, Zhao W, Ji X, Chen K, Liu T. The Combination Effect of the Red Blood Cell Distribution Width and Prognostic Nutrition Index on the Prognosis in Patients Undergoing PCI. Nutrients 2024; 16:3176. [PMID: 39339776 PMCID: PMC11434894 DOI: 10.3390/nu16183176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Inflammation and malnutrition are related to adverse clinical outcomes in patients with coronary artery disease (CAD). However, it is unclear whether there is a relationship between the PNI (prognostic nutritional index) and RDW (red blood cell distribution width) regarding the impact on the prognosis in patients with CAD undergoing percutaneous coronary intervention (PCI). METHODS A total of 5605 consecutive CAD patients undergoing PCI were selected retrospectively. The patients were stratified into four groups according to the PNI [high PNI (H-PNI) and low PNI (L-PNI)] and RDW [high RDW (H-RDW) and low RDW (L-RDW)]. The cutoff values of RDW and PNI were calculated using receiver-operating characteristic curve analysis. The primary endpoint was 1-year all-cause mortality (ACM). The secondary endpoint was major adverse cardiac cerebrovascular events (MACCEs), the composite of cardiac death (CD), the recurrence of MI, target lesion revascularization (TLR), and stroke. A Cox proportional hazards model was used to evaluate the association between the PNI, RDW, and clinical endpoints. RESULTS During 1-year follow-up, 235 (4.19%) patients died. In multivariate regression analysis, the L-PNI/H-RDW group was found to have the highest risk of 1-year ACM [hazard ratio (HR) = 8.85, 95% confidence interval (CI): 5.96-13.15, p = 0.020] with the H-PNI/L-RDW group as a reference, followed by the L-PNI/L-RDW (HR = 3.96, 95% CI: 2.60-6.00, p < 0.001) and H-RDW/H-PNI groups (HR = 3.00, 95% CI: 1.99-4.50, p < 0.001). Nomograms were developed to predict the probability of 1-year ACM and MACCEs. CONCLUSIONS CAD patients with L-PNI and H-RDW experienced the worst prognosis. The combination of PNI and RDW was a strong predictor of 1-year ACM. The coexistence of PNI and RDW appears to have a synergistic effect, providing further information for the risk stratification of CAD patients.
Collapse
Affiliation(s)
- Likun Huo
- Department of Emergency, Tianjin Huanhu Hospital, Tianjin 300222, China
- Tianjin Key Laboratory of Ions and Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Wenjuan Zhao
- Department of Emergency, Tianjin Huanhu Hospital, Tianjin 300222, China
| | - Xiang Ji
- Department of Emergency, Tianjin Huanhu Hospital, Tianjin 300222, China
| | - Kangyin Chen
- Tianjin Key Laboratory of Ions and Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Tong Liu
- Tianjin Key Laboratory of Ions and Molecular Function of Cardiovascular Diseases, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
9
|
Moreno A, Alarcón-Zapata P, Guzmán-Gútierrez E, Radojkovic C, Contreras H, Nova-Lampeti E, A Zúñiga F, Rodriguez-Alvárez L, Escudero C, Lagos P, Aguayo C. Changes in the Release of Endothelial Extracellular Vesicles CD144+, CCR6+, and CXCR3+ in Individuals with Acute Myocardial Infarction. Biomedicines 2024; 12:2119. [PMID: 39335632 PMCID: PMC11430588 DOI: 10.3390/biomedicines12092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Acute myocardial infarction (AMI) results from vulnerable plaque rupture, causing ischemic cardiomyocyte necrosis and intense inflammation. Paradoxically, this inflammation releases factors that aid heart repair. Recent findings suggest a role for extracellular vesicles (EVs) in intercellular communication during post-AMI cardiac repair. However, EVs' tissue origin and chemokine profile in the blood of patients with AMI remains unclear. This study characterized the tissue origin and chemokine receptor profile of EVs in the coronary and peripheral blood of patients with AMI. The results reveal that vesicles isolated from coronary and peripheral blood plasma are enriched in tetraspanin (CD9) and express CD81+, CD90+, and CD144+. The vesicle size ranged between 145 and 162 nm, with the control group exhibiting smaller vesicles (D10) than the AMI group. Furthermore, all vesicles expressed CCR6 and CXCR3, whereas a small percentage expressed CCR4. In addition, a decrease in CXCR3 and CCR6 expression was observed in coronary and peripheral AMI blood vesicles compared with the control; however, no difference was found between AMI coronary and AMI peripheral blood vesicles. In conclusion, our study demonstrates, for the first time, changes in the number of extracellular vesicles expressing CD144+, CXCR3, and CCR6 in the peripheral circulation of patients with AMI. Extracellular vesicles present in the circulation of patients with AMI hold excellent promise as a potential diagnostic tool.
Collapse
Affiliation(s)
- Alexa Moreno
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
- Clinical Laboratory Program, Faculty of Health Sciences, State University of Southern Manabí, Jipijapa 130402, Ecuador
| | - Pedro Alarcón-Zapata
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Enrique Guzmán-Gútierrez
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Héctor Contreras
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Estefanía Nova-Lampeti
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Felipe A Zúñiga
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Llerenty Rodriguez-Alvárez
- Department of Animal Science, Faculty of Veterinary Sciences, University of Concepcion, Chillán 3780000, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bio-Bio, Chillán 3780000, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3780000, Chile
| | - Paola Lagos
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepcion, P.O. Box 237, Concepción 4030000, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán 3780000, Chile
| |
Collapse
|
10
|
Giannino G, Nocera L, Andolfatto M, Braia V, Giacobbe F, Bruno F, Saglietto A, Angelini F, De Filippo O, D'Ascenzo F, De Ferrari GM, Dusi V. Vagal nerve stimulation in myocardial ischemia/reperfusion injury: from bench to bedside. Bioelectron Med 2024; 10:22. [PMID: 39267134 PMCID: PMC11395864 DOI: 10.1186/s42234-024-00153-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/31/2024] [Indexed: 09/14/2024] Open
Abstract
The identification of acute cardioprotective strategies against myocardial ischemia/reperfusion (I/R) injury that can be applied in the catheterization room is currently an unmet clinical need and several interventions evaluated in the past at the pre-clinical level have failed in translation. Autonomic imbalance, sustained by an abnormal afferent signalling, is a key component of I/R injury. Accordingly, there is a strong rationale for neuromodulation strategies, aimed at reducing sympathetic activity and/or increasing vagal tone, in this setting. In this review we focus on cervical vagal nerve stimulation (cVNS) and on transcutaneous auricular vagus nerve stimulation (taVNS); the latest has the potential to overcome several of the issues of invasive cVNS, including the possibility of being used in an acute setting, while retaining its beneficial effects. First, we discuss the pathophysiology of I/R injury, that is mostly a consequence of the overproduction of reactive oxygen species. Second, we describe the functional anatomy of the parasympathetic branch of the autonomic nervous system and the most relevant principles of bioelectronic medicine applied to electrical vagal modulation, with a particular focus on taVNS. Then, we provide a detailed and comprehensive summary of the most relevant pre-clinical studies of invasive and non-invasive VNS that support its strong cardioprotective effect whenever there is an acute or chronic cardiac injury and specifically in the setting of myocardial I/R injury. The potential benefit in the emerging field of post cardiac arrest syndrome (PCAS) is also mentioned. Indeed, electrical cVNS has a strong anti-adrenergic, anti-inflammatory, antioxidants, anti-apoptotic and pro-angiogenic effect; most of the involved molecular pathways were already directly confirmed to take place at the cardiac level for taVNS. Pre-clinical data clearly show that the sooner VNS is applied, the better the outcome, with the possibility of a marked infarct size reduction and almost complete left ventricular reverse remodelling when VNS is applied immediately before and during reperfusion. Finally, we describe in detail the limited but very promising clinical experience of taVNS in I/R injury available so far.
Collapse
Affiliation(s)
- Giuseppe Giannino
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Lorenzo Nocera
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Maria Andolfatto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Valentina Braia
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Federico Giacobbe
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Francesco Bruno
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Andrea Saglietto
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Filippo Angelini
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Ovidio De Filippo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Fabrizio D'Ascenzo
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Gaetano Maria De Ferrari
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy
| | - Veronica Dusi
- Cardiology, Department of Medical Sciences, University of Turin, Torino, Italy.
- Division of Cardiology, Cardiovascular and Thoracic Department, 'Città della Salute e della Scienza' Hospital, Corso Bramante 88, Turin, 10126, Italy.
| |
Collapse
|
11
|
Kologrivova I, Kercheva M, Panteleev O, Ryabov V. The Role of Inflammation in the Pathogenesis of Cardiogenic Shock Secondary to Acute Myocardial Infarction: A Narrative Review. Biomedicines 2024; 12:2073. [PMID: 39335587 PMCID: PMC11428626 DOI: 10.3390/biomedicines12092073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiogenic shock (CS) is one of the most serious complications of myocardial infarction (MI) with a high mortality rate. The timely and effective prevention and early suppression of this adverse event may influence the prognosis and outcome in patients with MI complicated by CS (MI CS). Despite the use of existing pharmaco-invasive options for maintaining an optimal pumping function of the heart in patients with MI CS, its mortality remains high, prompting the search for new approaches to pathogenetic therapy. This review considers the role of the systemic inflammatory response in the pathogenesis of MI CS. The primary processes involved in its initiation are described, including the progression from the onset of MI to the generalization of the inflammatory response and the development of multiple organ dysfunction. The approaches to anti-inflammatory therapy in patients with CS are discussed, and further promising research directions are outlined. In this review, we updated and summarized information on the inflammatory component of MI CS pathogenesis with a particular focus on its foundational aspects. This will facilitate the identification of specific inflammatory phenotypes and endotypes in MI CS and the development of targeted therapeutic strategies for this MI complication.
Collapse
Affiliation(s)
- Irina Kologrivova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
| | - Maria Kercheva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Oleg Panteleev
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| | - Vyacheslav Ryabov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111A Kievskaya, Tomsk 634012, Russia; (O.P.); (V.R.)
- Cardiology Division, Siberian State Medical University, 2 Moscovsky Trakt, Tomsk 634055, Russia
| |
Collapse
|
12
|
Bayer AL, Zambrano MA, Smolgovsky S, Robbe ZL, Ariza A, Kaur K, Sawden M, Avery A, London C, Asnani A, Alcaide P. Cytotoxic T cells drive doxorubicin-induced cardiac fibrosis and systolic dysfunction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:970-986. [PMID: 39196030 DOI: 10.1038/s44161-024-00507-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 08/29/2024]
Abstract
Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.
Collapse
Grants
- NIH K08 HL145019 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL162200 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL159907A U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH R01 HL163172 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Springboard Tier 1 Tufts University
- HL144477 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 906361 American Heart Association (American Heart Association, Inc.)
- 3R01HL144477-04S1 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL144477 NHLBI NIH HHS
- 906561 American Heart Association (American Heart Association, Inc.)
- HL165725 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NIH U01CA272268 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
| | | | | | | | - Abul Ariza
- CardioVascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kuljeet Kaur
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Machlan Sawden
- Department of Immunology, Tufts University, Boston, MA, USA
| | - Anne Avery
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, USA
| | - Cheryl London
- Department of Immunology, Tufts University, Boston, MA, USA
- Cummings School of Veterinary Medicine, Tufts University, Boston, MA, USA
| | - Aarti Asnani
- CardioVascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University, Boston, MA, USA.
| |
Collapse
|
13
|
Li D, Gao S. The interplay between T lymphocytes and macrophages in myocardial ischemia/reperfusion injury. Mol Cell Biochem 2024; 479:1925-1936. [PMID: 37540399 DOI: 10.1007/s11010-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Acute myocardial infarction is one of the most important causes of death in the world, causing a huge health and economic burden to the world. It is still a ticklish problem how to effectively prevent reperfusion injury while recovering the blood flow of ischemic myocardium. During the process of myocardial ischemia/reperfusion injury (MI/RI), the modulation of immune cells plays an important role. Monocyte/macrophage, neutrophils and endothelial cells initiate the inflammatory response and induce the release of various inflammatory cytokines, resulting in increased vascular permeability, tissue edema and damage. Meanwhile, T cells were recruited to impaired myocardium and release pro-inflammatory and anti-inflammatory cytokines. T cells and macrophages play important roles in keeping cardiac homeostasis and orchestrate tissue repair. T cells differentiation and macrophages polarization precisely regulates the tissue microenvironment in MI/RI, and shows cross action, but the mechanism is unclear. To identify potential intervention targets and propose ideas for treatment and prevention of MI/RI, this review explores the crosstalk between T lymphocytes and macrophages in MI/RI.
Collapse
Affiliation(s)
- Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 314 An Shan Xi Road, Nan Kai District, Tianjin, 300193, China.
- Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
14
|
Ramos-Regalado L, Alcover S, Badimon L, Vilahur G. The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment. Cells 2024; 13:1125. [PMID: 38994977 PMCID: PMC11240659 DOI: 10.3390/cells13131125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient's metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner.
Collapse
Affiliation(s)
- Lisaidy Ramos-Regalado
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sebastià Alcover
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lina Badimon
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain (S.A.)
- Ciber CV, Institute Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
16
|
Liu H, Zhao F, Yin J, Liu T, Liu B. Prognostic significance of the aspartate aminotransferase to lymphocyte ratio index in patients with acute myocardial infarction. Immun Inflamm Dis 2024; 12:e1306. [PMID: 38888385 PMCID: PMC11184641 DOI: 10.1002/iid3.1306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND This study aimed to investigate the clinical value and prognostic significance of the alanine aspartate aminotransferase-to-lymphocyte ratio index (ALRI) in patients diagnosed with acute myocardial infarction (AMI). METHODS Clinical indices of patients with AMI were collected from the Medical Information Mark for Intensive Care (MIMIC) III database and Wuhan Sixth Hospital. Cox regression analysis was used to explore whether ALRI was a risk factor for a worse prognosis in patients with AMI, and a nomogram including ALRI was created to estimate its predictive performance for 28-day mortality. RESULTS Based on clinical data from the MIMIC-III database, we found that a high ALRI was closely associated with a variety of clinical parameters. It was an important risk factor for 28-day survival in patients with AMI (HR = 5.816). ALRI had a high predictive power for worse 28-day survival in patients with AMI (area under the curve [AUC] = 0.754). Additionally, we used clinical data from the Wuhan Sixth Hospital to verify the predictive power of ALRI in patients with AMI, and a high level of ALRI remained an independent risk factor for worse survival in patients with AMI (HR = 4.969). The AMI nomogram, including ALRI, displayed a good predictive performance for 28-day mortality in both the MIMIC-III (AUC = 0.826) and Wuhan Sixth Hospital cohorts (AUC = 0.795). CONCLUSION The ALRI is closely related to the survival outcomes of patients with newly diagnosed AMI, indicating that it could serve as a novel biomarker for risk stratification such patients.
Collapse
Affiliation(s)
- Huidi Liu
- Department of Cardiology, Wuhan Sixth HospitalAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Fan Zhao
- Department of Cardiology, Wuhan Sixth HospitalAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Jun Yin
- Department of Cardiology, Wuhan Sixth HospitalAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Taimin Liu
- Department of Cardiology, Wuhan Sixth HospitalAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| | - Bo Liu
- Department of Cardiology, Wuhan Sixth HospitalAffiliated Hospital of Jianghan UniversityWuhanHubeiChina
| |
Collapse
|
17
|
Liu X, Dong M, Li T, Wang J. Correlation of circulating fibroblast growth factor 21 levels with inflammatory factors and the degree of coronary artery stenosis in patients with acute myocardial infarction. Cytokine 2024; 178:156591. [PMID: 38554500 DOI: 10.1016/j.cyto.2024.156591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a secreted protein that plays an important role in atherosclerosis and pathological cardiac remodeling. However, the correlation between FGF21 and the degree of coronary artery stenosis and its potential role in acute myocardial infarction (AMI) remain unclear. We examined whether changes in FGF21 levels in AMI correlate with the degree of coronary artery stenosis and the levels of inflammatory factors, and preliminarily investigated the effects of FGF21 on inflammatory factor levels and myocardial injury in rats with AMI. METHODS Serum levels of FGF21 and inflammatory factors in the AMI group and control group were measured, and the correlation between FGF21 and clinical indicators and inflammatory factors was analyzed. The effects of FGF21 on cardiac function and inflammatory response were evaluated through echocardiography and measurement of inflammatory factors. RESULTS Multivariate logistic regression analysis showed that neutrophil percentage (NEUT%, odds ratio [OR]: 1.232; 95 % confidence interval [CI]: 1.028-1.477; p = 0.024) and FGF21 levels (OR: 2.063; 95 % CI: 1.187-3.586; p = 0.01) had independent effects on AMI. Spearman's rank correlation test showed that FGF21 levels were positively correlated with leukocyte count, NEUT%, neutrophil count, neutrophil to lymphocyte ratio, C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and Gensini scores (p < 0.01), but negatively correlated with lymphocyte count (p < 0.01). FGF21 levels in myocardial tissues and serum levels of FGF21, IL-6, TNF-a, and MCP-1 were significantly higher in AMI rats than in the sham-operated group (p < 0.01). After overexpression of FGF21, serum levels of IL-6, TNF-a, and MCP-1 in rats were significantly decreased (p < 0.01), and cardiac function improved significantly. CONCLUSIONS FGF21 levels were independently associated with AMI and may be related to the severity of coronary artery stenosis. Overexpression of FGF21 reduced serum inflammatory factor levels and improved cardiac function in AMI rats.
Collapse
Affiliation(s)
- Xu Liu
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Mengying Dong
- Departments of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Tianyi Li
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
18
|
Wu C, Chen Y, Wang Y, Xu C, Cai Y, Zhang R, Peng F, Wang S. The m 6A methylation enzyme METTL14 regulates myocardial ischemia/reperfusion injury through the Akt/mTOR signaling pathway. Mol Cell Biochem 2024; 479:1391-1400. [PMID: 37436654 DOI: 10.1007/s11010-023-04808-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023]
Abstract
Herein, we investigated the role of the m6A methylation enzyme METTL14 in regulating myocardial ischemia/reperfusion injury (IR/I) through the Akt/mTOR signaling pathway and related biological mechanisms. Enzyme-linked immunosorbent assay (ELISA) and fluorescence quantitative polymerase chain reaction (qPCR) were performed to detect the m6A mRNA and METTL3, METTL14, WTAP, and KIAA1429 levels in a mouse myocardial IR/I model. An oxygen-glucose deprivation/reperfusion (OGD/R) model was constructed by transfecting neonatal rat cardiomyocytes (NRCM) with METTL14-knockdown lentivirus. METTL14, Bax, and cleaved-caspase3 mRNA expression levels were detected using fluorescence qPCR. Apoptosis was detected using TUNEL staining. After the IR/I surgery following the adeno-associated virus injection, the METTL14 mRNA and apoptosis-related BAX/BCL2 protein expression was detected using fluorescence qPCR and western blotting, respectively. Degree of cell necrosis was detected using an LDH assay. The oxidative stress response of the myocardial tissue was detected, and IL-6 and IL-1β serum levels were detected using ELISAs. The mice injected with METTL14-knockdown AAV9 adeno-associated virus underwent IR/I surgery after the injection of an Akt/mTOR pathway inhibitor (MK2206) into the myocardial layer. Elevated mRNA m6A modification and m6A methyltransferase METTL14 levels were observed in the IR/I-injured mouse heart tissues. METTL14 knockdown significantly inhibited the OGD/R- and IR/I-induced apoptosis and necrosis in cardiac myocytes, inhibited IR/I-induced oxidative stress and inflammatory factor secretion, and activated the Akt/ mTOR pathway in vitro and in vivo. Akt/mTOR pathway inhibition significantly attenuated the alleviating effect of METTL14 knockdown on myocardial IR/I injury-induced apoptosis. Knocking down m6A methylase METTL14 inhibits IR/I-induced myocardial apoptosis and necrosis, inhibits myocardial oxidative stress and secretion of inflammatory cytokines, and activates the Akt/mTOR signaling pathway. Hence, METTL14 regulated myocardial apoptosis and necrosis in mice with IR/I through the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Chunchun Wu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China
| | - Youfang Chen
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, 362000, Fujian, China
| | - Yaoguo Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China
| | - Chaoxiang Xu
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China
| | - Yinlian Cai
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China
| | - Rongcheng Zhang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China
| | - Fangzhan Peng
- Department of Emergency Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shengnan Wang
- Department of Cardiology, The Second Affiliated Hospital of Fujian Medical University, No. 42 Zhongshan North Road, Licheng Distict, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
19
|
Michel L, Ferdinandy P, Rassaf T. Cellular Alterations in Immune Checkpoint Inhibitor Therapy-Related Cardiac Dysfunction. Curr Heart Fail Rep 2024; 21:214-223. [PMID: 38430308 PMCID: PMC11090976 DOI: 10.1007/s11897-024-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
PURPOSE OF REVIEW Immune checkpoint inhibitor (ICI) therapy has emerged as a pivotal advancement in cancer treatment, but the widespread adoption has given rise to a growing number of reports detailing significant cardiovascular toxicity. This review concentrates on elucidating the mechanisms behind ICI-related cardiovascular complications, emphasizing preclinical and mechanistic data. RECENT FINDINGS Accumulating evidence indicates a more significant role of immune checkpoints in maintaining cardiac integrity than previously understood, and new key scientific data are available to improve our understanding of ICI-related cardiovascular toxicity, including hidden cardiotoxicity. New avenues for innovative concepts are hypothesized, and opportunities to leverage the knowledge from ICI-therapy for pioneering approaches in related scientific domains can be derived from the latest scientific projects. Cardiotoxicity from ICI therapy is a paramount challenge for cardio-oncology. Understanding the underlying effects builds the foundation for tailored cardioprotective approaches in the growing collective at risk for severe cardiovascular complications.
Collapse
Affiliation(s)
- Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
20
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
21
|
Gladow N, Hollmann C, Weirather J, Ding X, Burkard M, Uehlein S, Bharti R, Förstner K, Kerkau T, Beyersdorf N, Frantz S, Ramos G, Hofmann U. Role of CD4 + T-cells for regulating splenic myelopoiesis and monocyte differentiation after experimental myocardial infarction. Basic Res Cardiol 2024; 119:261-275. [PMID: 38436707 PMCID: PMC11008073 DOI: 10.1007/s00395-024-01035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/10/2024] [Accepted: 01/27/2024] [Indexed: 03/05/2024]
Abstract
Myocardial infarction (MI) induces the generation of proinflammatory Ly6Chigh monocytes in the spleen and the recruitment of these cells to the myocardium. CD4+ Foxp3+ CD25+ T-cells (Tregs) promote the healing process after myocardial infarction by engendering a pro-healing differentiation state in myocardial monocyte-derived macrophages. We aimed to study the effects of CD4+ T-cells on splenic myelopoiesis and monocyte differentiation. We instigated MI in mice and found that MI-induced splenic myelopoiesis is abrogated in CD4+ T-cell deficient animals. Conventional CD4+ T-cells promoted myelopoiesis in vitro by cell-cell-contact and paracrine mechanisms, including interferon-gamma (IFN-γ) signalling. Depletion of regulatory T-cells enhanced myelopoiesis in vivo, as evidenced by increases in progenitor cell numbers and proliferative activity in the spleen 5 days after MI. The frequency of CD4+ T-cells-producing factors that promote myelopoiesis increased within the spleen of Treg-depleted mice. Moreover, depletion of Tregs caused a proinflammatory bias in splenic Ly6Chigh monocytes, which showed predominantly upregulated expression of IFN-γ responsive genes after MI. Our results indicate that conventional CD4+ T-cells promote and Tregs attenuate splenic myelopoiesis and proinflammatory differentiation of monocytes.
Collapse
Affiliation(s)
- Nadine Gladow
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany.
- Comprehensive Heart Failure Centre, University Clinic Würzburg, Würzburg, Germany.
| | - Claudia Hollmann
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | - Xin Ding
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre, University Clinic Würzburg, Würzburg, Germany
| | - Matthias Burkard
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany
| | - Sabrina Uehlein
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Richa Bharti
- TUM Campus, Straubing for Biotechnology and Sustainability, Weihenstephan-Triesdorf University of Applied Sciences, Straubing, Germany
| | - Konrad Förstner
- ZB MED-Information Centre for Life Sciences, Cologne, Germany
- Faculty of Information Science and Communication Studies, Cologne University of Applied Sciences, Cologne, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre, University Clinic Würzburg, Würzburg, Germany
| | - Gustavo Ramos
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre, University Clinic Würzburg, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I, University Clinic Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre, University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
22
|
Cao S, Liu Y, Ye J, Wang Y, Wang Z, Li C, Jin T, Wu J, Zong G. The value of D-dimer to lymphocyte ratio in predicting clinical outcomes after percutaneous coronary intervention in ST-segment elevation myocardial infarction patients: A retrospective study. Int Immunopharmacol 2024; 128:111556. [PMID: 38241843 DOI: 10.1016/j.intimp.2024.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND D-dimer to lymphocyte ratio (DLR) is a novel composite metric. This study investigated the association between DLR and major adverse cardiovascular events (MACEs) in patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention. MATERIALS AND METHODS This retrospective study included 683 STEMI cases treated between January 2018 and June 2021 at a single center. DLR was calculated for each patient. Receiver operating characteristic curves assessed the predictive value of in-hospital and long-term MACEs, with calculated AUC. Based on the optimal DLR cutoff value, the population was categorized into groups for clinical characteristic analysis. Multivariate logistic and COX regression analyses determined factors independently associated with MACEs. Kaplan-Meier estimation method and log-rank tests assessed event-free survival among different DLR groups. Spearman's test explored the correlation between DLR and Gensini score. RESULTS DLR demonstrated an AUC of 0.792 for predicting in-hospital MACEs and 0.708 for long-term MACEs in patients with STEMI. Multivariate logistic regression analysis revealed that a high DLR (cutoff value, 0.47) independently increased the risk of MACEs during hospitalization in patients with STEMI (P = 0.003; odds ratio: 3.015; 95 % CI: 1.438-6.321). Multivariate COX regression showed that a high DLR (cutoff value, 0.34) independently predicted MACEs during long-term follow-up in patients with STEMI (P = 0.011; hazard ratio: 1.724; 95 % CI: 1.135-2.619). Furthermore, DLR exhibited a positive correlation with the Gensini score (P < 0.001). CONCLUSIONS DLR is a valuable predictor for MACEs occurrence in patients with STEMI during hospitalization and long-term follow-up after PCI.
Collapse
Affiliation(s)
- Shaoqing Cao
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Yehong Liu
- Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Jiangping Ye
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Yuqin Wang
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Zhangyu Wang
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Chengsi Li
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Tianhui Jin
- Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Jiayu Wu
- Neurology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China
| | - Gangjun Zong
- Wuxi Clinical College of Anhui Medical University, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Anhui medical university fifth clinical medical college, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China; Department of Cardiology, The 904th Hospital of Joint Logistic Support Force of PLA, No.101 Xingyuan North Road, Beidajie Street, Liangxi District, Wuxi, Jiangsu Province, 214000, China.
| |
Collapse
|
23
|
Liao W, Wen Y, Zeng C, Yang S, Duan Y, He C, Liu Z. Integrative analyses and validation of ferroptosis-related genes and mechanisms associated with cerebrovascular and cardiovascular ischemic diseases. BMC Genomics 2023; 24:731. [PMID: 38049739 PMCID: PMC10694919 DOI: 10.1186/s12864-023-09829-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND There has been a gradual increase in the occurrence of cardiovascular and cerebrovascular ischemic diseases, particularly as comorbidities. Yet, the mechanisms underlying these diseases remain unclear. Ferroptosis has emerged as a potential contributor to cardio-cerebral ischemic processes. Therefore, this study investigated the shared biological mechanisms between the two processes, as well as the role of ferroptosis genes in cardio-cerebral ischemic damage, by constructing co-expression modules for myocardial ischemia (MI) and ischemic stroke (IS) and a network of protein-protein interactions, mRNA-miRNA, mRNA-transcription factors (TFs), mRNA-RNA-binding proteins (RBPs), and mRNA-drug interactions. RESULTS The study identified seven key genes, specifically ACSL1, TLR4, ADIPOR1, G0S2, PDK4, HP, PTGS2, and subjected them to functional enrichment analysis during ischemia. The predicted miRNAs were found to interact with 35 hub genes, and interactions were observed between 11 hub genes and 30 TF transcription factors. Additionally, 10 RBPs corresponding to 16 hub genes and 163 molecular compounds corresponding to 30 hub genes were identified. This study also clarified the levels of immune infiltration between MI and IS and different subtypes. Finally, we identified four hub genes, including TLR4, by using a diagnostic model constructed by Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis; ADIPOR1, G0S2, and HP were shown to have diagnostic value for the co-pathogenesis of MI and cerebral ischemia by both validation test data and RT-qPCR assay. CONCLUSIONS To the best our knowledge, this study is the first to utilize multiple algorithms to comprehensively analyze the biological processes of MI and IS from various perspectives. The four hub genes, TLR4, ADIPOR1, G0S2, and HP, have proven valuable in offering insights for the investigation of shared injury pathways in cardio-cerebral injuries. Therefore, these genes may serve as diagnostic markers for cardio-cerebral ischemic diseases.
Collapse
Affiliation(s)
- Wei Liao
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuehui Wen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan Zeng
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunming He
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| | - Ziyou Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
24
|
He J, Song C, Zhang R, Yuan S, Li J, Dou K. Discordance Between Neutrophil to Lymphocyte Ratio and High Sensitivity C-Reactive Protein to Predict Clinical Events in Patients with Stable Coronary Artery Disease: A Large-Scale Cohort Study. J Inflamm Res 2023; 16:5439-5450. [PMID: 38026249 PMCID: PMC10674642 DOI: 10.2147/jir.s428734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Neutrophil to lymphocyte ratio (NLR), a novel inflammatory biomarker, has been shown to positively predict prognosis independent of high-sensitivity C-reactive protein (hsCRP) in patients with coronary artery disease (CAD). This study aimed to use discordance analysis to evaluate the effectiveness of NLR and hsCRP to predict adverse events in patients with stable CAD. Patients and Methods This observational cohort study included 7827 consecutive CAD patients at Fuwai Hospital from March 2011 to April 2017. Discordant NLR with hsCRP was defined by the highest quartiles and medians. The primary endpoint was major adverse cardiovascular and cerebrovascular events (MACCEs), including cardiovascular death, non-fatal myocardial infarction, non-fatal stroke, and unplanned revascularization. Results During a median 36-month follow-up, 624 (8.0%) MACCEs occurred. Compared with the lowest NLR quartile, a significantly higher risk of MACCEs was observed in the highest NLR quartile after adjusting for confounding factors (hazard ratio [HR], 1.36; 95% confidence interval [CI], 1.09-1.71). High NLR and low hsCRP discordance were also associated with an increased risk of MACCEs in the fully adjusted model (HR, 1.39; 95% CI, 1.05-1.84). Conclusion This study demonstrated that discordantly elevated NLR levels were associated with a greater risk of adverse clinical events in patients with stable CAD, suggesting the potential clinical significance of NLR as a goal of inflammatory risk management.
Collapse
Affiliation(s)
- Jining He
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Chenxi Song
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Rui Zhang
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| | - Sheng Yuan
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Jianjun Li
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
| | - Kefei Dou
- Cardiometabolic Medicine Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- State Key Laboratory of Cardiovascular Disease, Beijing, People’s Republic of China
- National Clinical Research Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
25
|
Yang Y, Johnson J, Troupes CD, Feldsott EA, Kraus L, Megill E, Bian Z, Asangwe N, Kino T, Eaton DM, Wang T, Wagner M, Ma L, Bryan C, Wallner M, Kubo H, Berretta RM, Khan M, Wang H, Kishore R, Houser SR, Mohsin S. miR-182/183-Rasa1 axis induced macrophage polarization and redox regulation promotes repair after ischemic cardiac injury. Redox Biol 2023; 67:102909. [PMID: 37801856 PMCID: PMC10570148 DOI: 10.1016/j.redox.2023.102909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Few therapies have produced significant improvement in cardiac structure and function after ischemic cardiac injury (ICI). Our possible explanation is activation of local inflammatory responses negatively impact the cardiac repair process following ischemic injury. Factors that can alter immune response, including significantly altered cytokine levels in plasma and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI is a valid strategy for reducing infarct size and damage after myocardial injury. Our previous studies showed that cortical bone stem cells (CBSCs) possess reparative effects after ICI. In our current study, we have identified that the beneficial effects of CBSCs appear to be mediated by miRNA in their extracellular vesicles (CBSC-EV). Our studies showed that CBSC-EV treated animals demonstrated reduced scar size, attenuated structural remodeling, and improved cardiac function versus saline treated animals. These effects were linked to the alteration of immune response, with significantly altered cytokine levels in plasma, and polarization of macrophages and T cells towards a pro-reparative phenotype in the myocardium post-MI. Our detailed in vitro studies demonstrated that CBSC-EV are enriched in miR-182/183 that mediates the pro-reparative polarization and metabolic reprogramming in macrophages, including enhanced OXPHOS rate and reduced ROS, via Ras p21 protein activator 1 (RASA1) axis under Lipopolysaccharides (LPS) stimulation. In summary, CBSC-EV deliver unique molecular cargoes, such as enriched miR-182/183, that modulate the immune response after ICI by regulating macrophage polarization and metabolic reprogramming to enhance repair.
Collapse
Affiliation(s)
- Yijun Yang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Jaslyn Johnson
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Constantine D Troupes
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Eric A Feldsott
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lindsay Kraus
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Emily Megill
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Zilin Bian
- Tandon School of Engineering, New York University, NY, United States
| | - Ngefor Asangwe
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tabito Kino
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Deborah M Eaton
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Tao Wang
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Marcus Wagner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Lena Ma
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Christopher Bryan
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Markus Wallner
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States; Division of Cardiology, Medical University of Graz, 8036, Graz, Austria
| | - Hajime Kubo
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Remus M Berretta
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Mohsin Khan
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research (CMDR), Temple University Lewis Katz School of Medicine, PA, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University Lewis Katz School of Medicine, PA, United States
| | - Steven R Houser
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States
| | - Sadia Mohsin
- Cardiovascular Research Center (CVRC), Temple University Lewis Katz School of Medicine, PA, United States.
| |
Collapse
|
26
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
27
|
Miquelestorena-Standley E, da Silva AVV, Monnier M, Chadet S, Piollet M, Héraud A, Lemoine R, Bochaton T, Derumeaux G, Roger S, Ivanes F, Angoulvant D. Human peripheral blood mononuclear cells display a temporal evolving inflammatory profile after myocardial infarction and modify myocardial fibroblasts phenotype. Sci Rep 2023; 13:16745. [PMID: 37798364 PMCID: PMC10556078 DOI: 10.1038/s41598-023-44036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Pathophysiological response after acute myocardial infarction (AMI) is described as a three-stage model involving temporal phenotypic modifications of both immune cells and fibroblasts: a primary inflammatory phase, followed by a reparative phase and a fibrous scar maturation phase. Purinergic receptors, particularly the P2Y11 receptor, have been reported to be involved in the regulation of inflammation after ischemia and could act for the resolution of inflammation after AMI. For the first time, we characterized the immuno-inflammatory and P2Y11 expression profiles of peripheral blood mononuclear cells (PBMC) from AMI patients and analyzed the consequences of presenting these cells to cardiac fibroblasts in vitro. PBMC from 178 patients were collected at various times after reperfused ST-segment elevation AMI, from H0 to M12. Expression level of P2RY11 and genes involved in tolerogenic profile of dendritic cells and T cell polarization were evaluated by RT-PCR. P2Y11 protein expression was assessed by flow cytometry. PBMC and human cardiac fibroblasts (HCF) were cocultured and α-SMA/vimentin ratio was analyzed by flow cytometry. Within the first 48 h after AMI, expression levels of HMOX1, STAT3 and CD4 increased while IDO1 and TBX21/GATA3 ratio decreased. Concomitantly, the expression of P2RY11 increased in both T and B cells. In vitro, PBMC collected at H48 after AMI induced an increase in α-SMA/vimentin ratio in HCF. Our results suggest that human PBMC display an evolving inflammatory profile with reparative characteristics the first two days after AMI and secrete soluble mediators leading to the fibroblastic proteins modification, thus participating to myocardial fibrosis.
Collapse
Affiliation(s)
- Elodie Miquelestorena-Standley
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France.
- Service d'Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France.
| | - Ana Valéria Vinhais da Silva
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marina Monnier
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Stéphanie Chadet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Marie Piollet
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Audrey Héraud
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Roxane Lemoine
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Thomas Bochaton
- Service de Cardiologie, Hospices Civils de Lyon, Lyon, France
| | - Geneviève Derumeaux
- Service de Physiologie, Hôpital Henri Mondor, AP-HP, Université Paris-Est Créteil, INSERM U955, Créteil, France
| | - Sébastien Roger
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
| | - Fabrice Ivanes
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| | - Denis Angoulvant
- EA 4245 Transplantation, Immunologie, Inflammation, Faculté de Médecine, Université de Tours, 10 boulevard tonnele, 37032, Tours Cedex 1, France
- Service de Cardiologie, CHRU de Tours, Tours, France
| |
Collapse
|
28
|
Sur M, Rasquinha MT, Arumugam R, Massilamany C, Gangaplara A, Mone K, Lasrado N, Yalaka B, Doiphode A, Gurumurthy C, Steffen D, Reddy J. Transgenic Mice Expressing Functional TCRs Specific to Cardiac Myhc-α 334-352 on Both CD4 and CD8 T Cells Are Resistant to the Development of Myocarditis on C57BL/6 Genetic Background. Cells 2023; 12:2346. [PMID: 37830560 PMCID: PMC10571761 DOI: 10.3390/cells12192346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334-352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334-352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334-352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon-γ and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically.
Collapse
Affiliation(s)
- Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- CRISPR Therapeutics, Boston, MA 02127, USA
| | - Arunkumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Miltenyi Biotec, Gaithersburg, MD 20878, USA
| | - Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Bharathi Yalaka
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Aakash Doiphode
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Department of Animal Genetics and Breeding, Krantisinh Nana Patil College of Veterinary Science, Shirwal 412801, Maharashtra, India
| | - Channabasavaiah Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| |
Collapse
|
29
|
Naseroleslami M, Mousavi Niri N, Hosseinian SB, Aboutaleb N. DNAzyme loaded nano-niosomes attenuate myocardial ischemia/reperfusion injury by targeting apoptosis, inflammation in a NF-κB dependent mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2127-2136. [PMID: 36941384 DOI: 10.1007/s00210-023-02467-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although DNAzymes have been found to reduce injury after myocardial ischemia/reperfusion (MI/R), their efficiency have been limited due to rapid degradation in vivo. Thus, this study was conducted to extend their half-life by encapsulation into nano‑niosomes and examine their cardioprotective effects in a rat model of myocardial infarction (MI). In order to synthesize nano‑niosomes, surface active agent film hydration method was used. Characterization of nano‑niosomes was performed using the atomic force microscopy (AFM). In order to establish MI/R model in rats, left anterior descending coronary artery (LAD) was ligated for 30 min. A single dose (150µL) of drug formulations was injected into the infarcted region. The cardiac function was evaluated using echocardiography. The expression of pro-inflammatory cytokines, apoptotic factors, and nuclear factor-κB (NF-κB) were evaluated using Western blot and immunohistochemistry, respectively. Particle size of only nano-niosomes was in the range of 60-90 nm, while a shift to 70-110 nm was seen after DNAzyme encapsulation. MI rats treated with DNAzyme‑loaded nano‑niosomes could markedly reduce Bax, caspase3, TNF-α, IL-1β, and NF-κB as well as increase Bcl-2 compared to only MI/R group. Collectively, our finding show that nano‑niosomes can be considered excellent drug delivery platforms to extend half-life and stability of DNAzyme, when it is used to reduce myocardial I/R injury.
Collapse
Affiliation(s)
- Maryam Naseroleslami
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Neda Mousavi Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyede Bahar Hosseinian
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Wang K, Zhu K, Zhu Z, Shao F, Qian R, Wang C, Dong H, Li Y, Gao Z, Zhao J. Triptolide with hepatotoxicity and nephrotoxicity used in local delivery treatment of myocardial infarction by thermosensitive hydrogel. J Nanobiotechnology 2023; 21:227. [PMID: 37461079 DOI: 10.1186/s12951-023-01980-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023] Open
Abstract
Myocardial infarction (MI) resulting from coronary artery occlusion is the leading global cause of cardiovascular disability and mortality. Anti-inflammatory treatment plays an important role in MI treatment. Triptolide (TPL), as a Chinese medicine monomer, has a variety of biological functions, including anti-inflammatory, anti-tumor, and immunoregulation. However, it has been proved that TPL is poorly water soluble, and has clear hepatotoxicity and nephrotoxicity, which seriously limits its clinical application. Herein, we designed a long-acting hydrogel platform (TPL@PLGA@F127) for MI treatment by intramyocardial injection. First, we found that the inflammatory response and immune regulation might be the main mechanisms of TPL against MI by network pharmacology. Subsequently, we prepared the hydrogel platform (TPL@PLGA@F127) and tested its effects and toxicity on normal organs in the early stage of MI (3 days after MI-operation). The results showed that TPL@PLGA@F127 could not only promote "repair" macrophages polarization (to M2 macrophage) by day 3 after MI, but also has a long-lasting anti-inflammatory effect in the later stage of MI (28 days after MI-operation). Additionally, we proved that TPL@PLGA@F127 could attenuate the toxicity of TPL by releasing it more slowly and stably. Finally, we observed the long-term effects of TPL@PLGA@F127 on MI and found that it could improve cardiac function, depress the myocardial fibrosis and protect the cardiomyocytes. In summary, this study indicated that TPL@PLGA@F127 could not only enhance the therapeutic effects of TPL on MI, but also attenuate the hepatotoxicity and nephrotoxicity, which established a strong foundation for the clinical application of TPL for MI.
Collapse
Affiliation(s)
- Kun Wang
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Ke Zhu
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ziyang Zhu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People's Hospital of Zigong, Zigong, 643099, Sichuan, China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chenyang Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
| | - Haiqing Dong
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yongyong Li
- The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Zairong Gao
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Hubei Key Laboratory of Molecular Imaging, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
31
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
32
|
Han Y, Guo R, Feng Z, Wang H, Li Y, Zou J, Wang Y. Associations of systemic inflammation markers with myocardial enzymes in pediatric adenotonsillar hypertrophy: A cross-sectional study. Heliyon 2023; 9:e17719. [PMID: 37483768 PMCID: PMC10359822 DOI: 10.1016/j.heliyon.2023.e17719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Objective The present study aimed to investigate the relationship between systemic inflammation markers and myocardial enzymes in children with adenotonsillar hypertrophy (ATH). Methods The levels of myocardial enzymes were detected and the systemic inflammatory biomarkers including neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and systemic immune inflammation index (SII) were calculated. Regression analyses were performed and a prediction model for screening myocardial injury was established by receiver operating characteristic (ROC) curve. Results Finally, a total of 804 children with ATH were included. After adjusting for age, BMI, fasting blood glucose and lipid profiles, both NLR and SII were significantly associated with CK-MB (p = 0.041 and 0.034, respectively) and LDH (p = 0.002 and 0.001, respectively), and PLR was associated with CK-MB (p = 0.008). In addition, NLR, SII were independently associated with hyper-LDH [OR = 1.447, 95%CI (1.063, 1.968); OR = 1.001, 95%CI (1.000, 1.002), respectively] and the associations were more significant in girls. A prediction model for hyper-LDH based on SII was developed with the area under the ROC curve of 0.715 (0.682, 0.746). Conclusion Systemic inflammation markers were only independently associated with serum hyper-LDH in children with ATH, especially in girls. Further investigation was needed to determine the relationship between systemic inflammation with myocardial enzymes in ATH children.
Collapse
Affiliation(s)
- Yingying Han
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Ruixiang Guo
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Ziyu Feng
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haipeng Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, China
| | - Yanzhong Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Juanjuan Zou
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Yan Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| |
Collapse
|
33
|
Zhang M, Li J, Hua C, Niu J, Liu P, Zhong G. Exploring an immune cells-related molecule in STEMI by bioinformatics analysis. BMC Med Genomics 2023; 16:151. [PMID: 37391746 PMCID: PMC10311814 DOI: 10.1186/s12920-023-01579-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/11/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND ST-elevated myocardial infarction (STEMI) is the leading cause of mortality worldwide. The mortality rate of heart attacks has decreased due to various preventive factors and the development of early diagnostic resuscitation measures, but the long-term prognosis remains poor. The present study aimed to identify novel serum biomarkers in STEMI patients and explored a possible new mechanism of STEMI from an immune molecular angle with bioinformatics analysis. METHODS Gene expression profiles were obtained from Gene Expression Omnibus (GEO) database. Differential gene analysis, machine learning algorithms, gene set enrichment analysis, and immune cell infiltration analysis were conducted using R software. RESULTS We identified 146 DEGs (differentially expressed genes) in the integrated dataset between the STEMI and CAD (coronary artery disease) groups. Immune infiltration analysis indicated that eleven cell types were differentially infiltrated. Through correlation analysis, we further screened 25 DEGs that showed a high correlation with monocytes and neutrophils. Afterwards, five genes consistently selected by all three machine learning algorithms were considered candidate genes. Finally, we identified a hub gene (ADM) as a biomarker of STEMI. AUC curves showed that ADM had more than 80% high accuracy in all datasets. CONCLUSIONS In this study, we explored a potentially new mechanism of STEMI from an immune molecular perspective, which might provide insights into the pathogenesis of STEMI. ADM positively correlated with monocytes and neutrophils, suggesting its potential role in the immune response during STEMI. Additionally, we validated the diagnostic performance of ADM in two external datasets, which could help to develop new diagnostic tools or therapeutic strategies.
Collapse
Affiliation(s)
- Min Zhang
- Department of Research Ward, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiaxing Li
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Cuncun Hua
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiayin Niu
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Pengfei Liu
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangzhen Zhong
- Department of Research Ward, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Hou J, Liang WY, Xiong S, Long P, Yue T, Wen X, Wang T, Deng H. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Sci Rep 2023; 13:10258. [PMID: 37355664 PMCID: PMC10290640 DOI: 10.1038/s41598-023-37378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tianchen Wang
- Alfred E. Mann Department of Biomedical Engineering, University of South California, Los Angeles, CA, USA
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
35
|
Liu Y, Ji X, Zhou Z, Zhang J, Zhang J. Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention. Microvasc Res 2023:104565. [PMID: 37307911 DOI: 10.1016/j.mvr.2023.104565] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Cardiovascular diseases are one of the leading causes of mortality in developed countries. Among cardiovascular disorders, myocardial infarction remains a life-threatening problem predisposing to the development and progression of ischemic heart failure. Ischemia/reperfusion (I/R) injury is a critical cause of myocardial injury. In recent decades, many efforts have been made to find the molecular and cellular mechanisms underlying the development of myocardial I/R injury and post-ischemic remodeling. Some of these mechanisms are mitochondrial dysfunction, metabolic alterations, inflammation, high production of ROS, and autophagy deregulation. Despite continuous efforts, myocardial I/R injury remains a major challenge in medical treatments of thrombolytic therapy, heart disease, primary percutaneous coronary intervention, and coronary arterial bypass grafting. The development of effective therapeutic strategies to reduce or prevent myocardial I/R injury is of great clinical significance.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Xiang Ji
- Department of Integrative, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Zhou Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jingwen Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Juan Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China; First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China.
| |
Collapse
|
36
|
Liao W, He C, Yang S, Zhou M, Zeng C, Luo M, Yu J, Hu S, Duan Y, Liu Z. Bioinformatics and experimental analyses of glutamate receptor and its targets genes in myocardial and cerebral ischemia. BMC Genomics 2023; 24:300. [PMID: 37268894 DOI: 10.1186/s12864-023-09408-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND There is a mutual hemodynamic and pathophysiological basis between the heart and brain. Glutamate (GLU) signaling plays an important role in the process of myocardial ischemia (MI) and ischemic stroke (IS). To further explore the common protective mechanism after cardiac and cerebral ischemic injuries, the relationship between GLU receptor-related genes and MI and IS were analyzed. RESULTS A total of 25 crosstalk genes were identified, which were mainly enriched in the Toll-like receptor signaling pathway, Th17 cell differentiation, and other signaling pathways. Protein-protein interaction analysis suggested that the top six genes with the most interactions with shared genes were IL6, TLR4, IL1B, SRC, TLR2, and CCL2. Immune infiltration analysis suggested that immune cells such as myeloid-derived suppressor cells and monocytes were highly expressed in the MI and IS data. Memory B cells and Th17 cells were expressed at low levels in the MI and IS data; molecular interaction network construction suggested that genes such as JUN, FOS, and PPARA were shared genes and transcription factors; FCGR2A was a shared gene of MI and IS as well as an immune gene. Least absolute shrinkage and selection operator logistic regression analysis identified nine hub genes: IL1B, FOS, JUN, FCGR2A, IL6, AKT1, DRD4, GLUD2, and SRC. Receiver operating characteristic analysis revealed that the area under the curve of these hub genes was > 65% in MI and IS for all seven genes except IL6 and DRD4. Furthermore, clinical blood samples and cellular models showed that the expression of relevant hub genes was consistent with the bioinformatics analysis. CONCLUSIONS In this study, we found that the GLU receptor-related genes IL1B, FOS, JUN, FCGR2A, and SRC were expressed in MI and IS with the same trend, which can be used to predict the occurrence of cardiac and cerebral ischemic diseases and provide reliable biomarkers to further explore the co-protective mechanism after cardiac and cerebral ischemic injury.
Collapse
Affiliation(s)
- Wei Liao
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chunming He
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shaochun Yang
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Man Zhou
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Chuan Zeng
- Gannan Medical University, Ganzhou, Jiangxi, China
| | - Muyun Luo
- Department of Neurosurgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junjian Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shuo Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yanyu Duan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Ziyou Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
- Department of Cardiac Surgery, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
- Heart Medical Centre, First Affiliated of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
37
|
Astuti SD, Pertiwi WI, Wahyuningsih SPA, Permatasari PAD, Nurdin DZI, Syahrom A. Effectiveness of ozone-laser photodynamic combination therapy for healing wounds infected with methicillin-resistant Staphylococcus aureus in mice. Vet World 2023; 16:1176-1184. [PMID: 37576764 PMCID: PMC10420723 DOI: 10.14202/vetworld.2023.1176-1184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim According to 2013 data from the Ministry of Health of the Republic of Indonesia, there were 8.2% more wounds than typical in Indonesia; 25.4% were open wounds, 70.9% were abrasions and bruises, and 23.2% were lacerations. A wound is defined as damage or loss of body tissue. This study aimed to determine the effectiveness of wound healing using red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone. Materials and Methods One hundred and twelve mice were given incision wounds and infected with methicillin-resistant Staphylococcus aureus (MRSA). The study used a factorial design with two factors: The type of therapy (n = 7) and irradiation time (days 1, 2, 4, and 6). The mice were divided into seven therapy groups: Control group with NaCl, control with Sofra-tulle® treatment, red-laser therapy (650 nm, 3.5 J/cm2), blue-laser therapy (405 nm, 3.5 J/cm2), ozone therapy, red-laser therapy (650 nm, 3.5 J/cm2) with ozone, and blue-laser therapy (405 nm, 3.5 J/cm2) with ozone. This therapy was performed using irradiation perpendicular to the wound area. The photosensitizer used was curcumin 10 mg/mL, which was applied to the wound area before exposure to a laser and ozone. The ozone concentration was 0.011 mg/L with a flow time of 80 s. The test parameters were the number of collagens, bacterial colonies, lymphocytes, monocytes, and wound length measurement to determine their acceleration effects on wound healing. Data were analyzed by a two-way (factorial) analysis of variance test. Results Acceleration of wound healing was significantly different between treatments with a laser or a laser-ozone combination and treatment using 95% sodium chloride (NaCl) and Sofra-tulle®. On day 6, the blue-laser with ozone treatment group had efficiently increased the number of bacteria and reduced the wound length, and the red-laser treatment with ozone increased the amount of collagen. In addition, the red-laser also reduced the number of lymphocytes and monocytes, which can have an impact on accelerating wound healing. Blue-laser therapy was very effective for increasing the number of epithelia. Conclusion The blue- and red-laser combined with ozone treatments effectively accelerated the healing of incisional wounds infected with MRSA bacteria.
Collapse
Affiliation(s)
- Suryani Dyah Astuti
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Wahyu Intan Pertiwi
- Department of Physics, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | | | | | | | - Ardiansyah Syahrom
- Department of Applied Mechanics and Design, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, 81310, Malaysia
| |
Collapse
|
38
|
Yin X, Yin X, Pan X, Zhang J, Fan X, Li J, Zhai X, Jiang L, Hao P, Wang J, Chen Y. Post-myocardial infarction fibrosis: Pathophysiology, examination, and intervention. Front Pharmacol 2023; 14:1070973. [PMID: 37056987 PMCID: PMC10086160 DOI: 10.3389/fphar.2023.1070973] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cardiac fibrosis plays an indispensable role in cardiac tissue homeostasis and repair after myocardial infarction (MI). The cardiac fibroblast-to-myofibroblast differentiation and extracellular matrix collagen deposition are the hallmarks of cardiac fibrosis, which are modulated by multiple signaling pathways and various types of cells in time-dependent manners. Our understanding of the development of cardiac fibrosis after MI has evolved in basic and clinical researches, and the regulation of fibrotic remodeling may facilitate novel diagnostic and therapeutic strategies, and finally improve outcomes. Here, we aim to elaborate pathophysiology, examination and intervention of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Xiaoying Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinxin Yin
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xin Pan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jingyu Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xinhui Fan
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaxin Li
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoxuan Zhai
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lijun Jiang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Panpan Hao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Jiali Wang
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
39
|
Rolland L, Jopling C. The multifaceted nature of endogenous cardiac regeneration. Front Cardiovasc Med 2023; 10:1138485. [PMID: 36998973 PMCID: PMC10043193 DOI: 10.3389/fcvm.2023.1138485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.
Collapse
|
40
|
Inui H, Nishida M, Ichii M, Nakaoka H, Asaji M, Ide S, Saito S, Saga A, Omatsu T, Tanaka K, Kanno K, Chang J, Zhu Y, Okada T, Okuzaki D, Matsui T, Ohama T, Koseki M, Morii E, Hosen N, Yamashita S, Sakata Y. XCR1 + conventional dendritic cell-induced CD4 + T helper 1 cell activation exacerbates cardiac remodeling after ischemic myocardial injury. J Mol Cell Cardiol 2023; 176:68-83. [PMID: 36739942 DOI: 10.1016/j.yjmcc.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023]
Abstract
Cardiac remodeling has no established therapies targeting inflammation. CD4+ T-cell subsets have been reported to play significant roles in healing process after ischemic myocardial injury, but their detailed mechanisms of activation remain unknown. To explore immune reactions during cardiac remodeling, we applied a non-surgical model of coronary heart disease (CHD) induced by a high-fat diet (HFD-CHD) in SR-BI-/-/ApoeR61h/h mice. Flow cytometry analyses throughout the period of progressive cardiac dysfunction revealed that CD4+ T Helper 1 (Th1) cells were predominantly activated in T-cell subsets. Probucol was reported to attenuate cardiac dysfunction after coronary artery ligation model (ligation-MI) in rats. To determine whether probucol suppress cardiac remodeling after HFD-CHD, we treated SR-BI-/-/ApoeR61h/h mice with probucol. We found treatment with probucol in HFD-CHD mice reduced cardiac dysfunction, with attenuated activation of Th1 cells. RNA-seq analyses revealed that probucol suppressed the expression of CXCR3, a Th1-related chemokine receptor, in the heart. XCR1+ cDC1 cells, which highly expresses the CXCR3 ligands CXCL9 and CXCL10, were predominantly activated after HFD-CHD. XCR1+ cDC1 lineage skewing of pre-DC progenitors was observed in bone marrow, with subsequent systemic expansion of XCR1+ cDC1 cells after HFD-CHD. Activation of CXCR3+ Th1 cell and XCR1+ cDC1 cells was also observed in ligation-MI. Notably, post-MI depletion of XCR1+ cDC1 cells suppressed CXCR3+ Th1 cell activation and prevented cardiac dysfunction. In patient autopsy samples, CXCR3+ Th1 and XCR1+ cDC1 cells infiltrated the infarcted area. In this study, we identified a critical role of XCR1+ cDC1-activated CXCR3+ Th1 cells in ischemic cardiac remodeling.
Collapse
Affiliation(s)
- Hiroyasu Inui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Health and Counseling Center, Osaka University, Suita, Japan.
| | - Michiko Ichii
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Masumi Asaji
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Seiko Ide
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Health and Counseling Center, Osaka University, Suita, Japan
| | - Shigeyoshi Saito
- Division of Health Sciences, Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayami Saga
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takashi Omatsu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Katsunao Tanaka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Jiuyang Chang
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Takahiro Matsui
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan; Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Suita, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan; Laboratory of Cellular Immunotherapy, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | | | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
41
|
Peng Q, Nowocin A, Ratnasothy K, Smith RA, Smyth LA, Lechler RI, Dorling A, Lombardi G. Inhibition of thrombin on endothelium enhances recruitment of regulatory T cells during IRI and when combined with adoptive Treg transfer, significantly protects against acute tissue injury and prolongs allograft survival. Front Immunol 2023; 13:980462. [PMID: 36793549 PMCID: PMC9924086 DOI: 10.3389/fimmu.2022.980462] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 01/31/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) amplifies T cell alloimmune responses after transplantation with thrombin playing a key pro-inflammatory role. To explore the influence of thrombin on regulatory T cell recruitment and efficacy we used a well-established model of IRI in the native murine kidney. Administration of the cytotopic thrombin inhibitor PTL060 inhibited IRI, and by skewing expression of chemokines (reducing CCL2 and CCL3 but increasing CCL17 and CCL22) increased the infiltration of M2 macrophages and Tregs. When PTL060 was combined with infusion of additional Tregs, these effects were further amplified. To test the benefits of thrombin inhibition in a transplant model, BALB/c hearts were transplanted into B6 mice with or without perfusion with PTL060 in combination with Tregs. Thrombin inhibition or Treg infusion alone led to small increments in allograft survival. However, the combined therapy led to modest graft prolongation by the same mechanisms as in renal IRI; graft survival was accompanied by increased numbers of Tregs and anti-inflammatory macrophages, and reduced expression of pro-inflammatory cytokines. While the grafts succumbed to rejection associated with the emergence of alloantibody, these data suggest that thrombin inhibition within the transplant vasculature enhances the efficacy of Treg infusion, a therapy that is currently entering the clinic to promote transplant tolerance.
Collapse
Affiliation(s)
- Qi Peng
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Anna Nowocin
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Kulachelvy Ratnasothy
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Richard A. Smith
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Lesley A. Smyth
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom,School of Health, Sport and Bioscience, University of East London, London, United Kingdom
| | - Robert I. Lechler
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Anthony Dorling
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom
| | - Giovanna Lombardi
- Centre for Nephrology, Urology and Transplantation, School of Immunology and Mucosal Biology, King’s College London, London, United Kingdom,*Correspondence: Giovanna Lombardi,
| |
Collapse
|
42
|
Feng Q, Li Q, Zhou H, Sun L, Lin C, Jin Y, Wang D, Guo G. The role of major immune cells in myocardial infarction. Front Immunol 2023; 13:1084460. [PMID: 36741418 PMCID: PMC9892933 DOI: 10.3389/fimmu.2022.1084460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
Myocardial infarction (MI) is a cardiovascular disease (CVD) with high morbidity and mortality worldwide, often leading to adverse cardiac remodeling and heart failure, which is a serious threat to human life and health. The immune system makes an important contribution to the maintenance of normal cardiac function. In the disease process of MI, necrotic cardiomyocytes release signals that activate nonspecific immunity and trigger the action of specific immunity. Complex immune cells play an important role in all stages of MI progression by removing necrotic cardiomyocytes and tissue and promoting the healing of damaged tissue cells. With the development of biomaterials, cardiac patches have become an emerging method of repairing MI, and the development of engineered cardiac patches through the construction of multiple animal models of MI can help treat MI. This review introduces immune cells involved in the development of MI, summarizes the commonly used animal models of MI and the newly developed cardiac patch, so as to provide scientific reference for the accurate diagnosis and effective treatment of MI.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China,Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Liqun Sun
- Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China,*Correspondence: Gongliang Guo,
| | - Gongliang Guo
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China,*Correspondence: Gongliang Guo,
| |
Collapse
|
43
|
T-Cell Mineralocorticoid Receptor Deficiency Attenuates Pathologic Ventricular Remodelling After Myocardial Infarction. Can J Cardiol 2023; 39:593-604. [PMID: 36669686 DOI: 10.1016/j.cjca.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mineralocorticoid receptor (MR) antagonists have been widely used to treat heart failure (HF). Studies have shown that MR in T cells plays important roles in hypertension and myocardial hypertrophy. However, the function of T-cell MR in myocardial infarction (MI) has not been elucidated. METHODS In this study, we used T-cell MR knockout (TMRKO) mouse to investigate the effects of T-cell MR deficiency on MI and to explore the underlying mechanisms. Echocardiography and tissue staining were used to assess cardiac function, fibrosis, and myocardial apoptosis after MI. Flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect immune cell infiltration and inflammation. RESULTS T-cell MR deficiency significantly improved cardiac function, promoted myocardial repair, and inhibited myocardial apoptosis, fibrosis, and inflammation after MI. Luminex assays revealed that TMRKO mice had significantly lower levels of interferon-gamma (IFN-γ) and interleukin-6 (IL-6) in serum and infarcted myocardium than littermate control mice. In cultured splenic T cells, MR deficiency suppressed IL-6 expression, whereas MR overexpression enhanced IL-6 expression. Chromatin immunoprecipitation (ChIP) assay demonstrated that MR bound to the MR response element on the promoter of IL-6 gene. Finally, T-cell MR deficiency significantly suppressed accumulation of macrophages in infarcted myocardium and differentiation of proinflammatory macrophages, thereby alleviating the consequences of MI. CONCLUSIONS T-cell MR deficiency improved pathologic ventricular remodelling after MI, likely through inhibition of accumulation and differentiation of proinflammatory macrophages. At the molecular level, MR may work through IFN-γ and IL-6 in T cells to exert functions in MI.
Collapse
|
44
|
Humeres C, Venugopal H, Frangogiannis NG. The Role of Mechanosensitive Signaling Cascades in Repair and Fibrotic Remodeling of the Infarcted Heart. CARDIAC AND VASCULAR BIOLOGY 2023:61-100. [DOI: 10.1007/978-3-031-23965-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Chalise U, Becirovic‐Agic M, Lindsey ML. The cardiac wound healing response to myocardial infarction. WIREs Mech Dis 2023; 15:e1584. [PMID: 36634913 PMCID: PMC10077990 DOI: 10.1002/wsbm.1584] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023]
Abstract
Myocardial infarction (MI) is defined as evidence of myocardial necrosis consistent with prolonged ischemia. In response to MI, the myocardium undergoes a series of wound healing events that initiate inflammation and shift to anti-inflammation before transitioning to tissue repair that culminates in scar formation to replace the region of the necrotic myocardium. The overall response to MI is determined by two major steps, the first of which is the secretion of proteases by infiltrating leukocytes to breakdown extracellular matrix (ECM) components, a necessary step to remove necrotic cardiomyocytes. The second step is the generation of new ECM that comprises the scar; and this step is governed by the cardiac fibroblasts as the major source of new ECM synthesis. The leukocyte component resides in the middle of the two-step process, contributing to both sides as the leukocytes transition from pro-inflammatory to anti-inflammatory and reparative cell phenotypes. The balance between the two steps determines the final quantity and quality of scar formed, which in turn contributes to chronic outcomes following MI, including the progression to heart failure. This review will summarize our current knowledge regarding the cardiac wound healing response to MI, primarily focused on experimental models of MI in mice. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Mediha Becirovic‐Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular ResearchUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Research ServiceNebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| |
Collapse
|
46
|
Song BY, Chen C, Xu WH, Cong BL, Guo ZY, Zhao ZH, Cui L, Zhang YH. Gender Differences in the Correlations Between Immune Cells and Organ Damage Indexes of Acute Myocardial Infarction Patients. Vasc Health Risk Manag 2022; 18:839-850. [DOI: 10.2147/vhrm.s374157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
|
47
|
Beydoun N, Feinstein MJ. Heart Failure in Chronic Infectious and Inflammatory Conditions: Mechanistic Insights from Clinical Heterogeneity. Curr Heart Fail Rep 2022; 19:267-278. [PMID: 35838874 PMCID: PMC9283814 DOI: 10.1007/s11897-022-00560-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW The balance between inflammation and its resolution plays an important and increasingly appreciated role in heart failure (HF) pathogenesis. In humans, different chronic inflammatory conditions and immune-inflammatory responses to infection can lead to diverse HF manifestations. Reviewing the phenotypic and mechanistic diversity of these HF presentations offers useful clinical and scientific insights. RECENT FINDINGS HF risk is increased in patients with chronic inflammatory and autoimmune disorders and relates to disease severity. Inflammatory condition-specific HF manifestations exist and underlying pathophysiologic causes may differ across conditions. Although inflammatory disease-specific presentations of HF differ, chronic excess in inflammation and auto-inflammation relative to resolution of this inflammation is a common underlying contributor to HF. Further studies are needed to phenotypically refine inflammatory condition-specific HF pathophysiologies and prognoses, as well as potential targets for intervention.
Collapse
Affiliation(s)
- Nour Beydoun
- Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Feinstein
- Division of Cardiology, Department of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Pathology, Northwestern University, Chicago, IL, USA.
- Department of Preventive Medicine, Northwestern University, Chicago, IL, USA.
- Northwestern University Feinberg School of Medicine, 300 E. Superior St, Tarry 3-703, Chicago, IL, 60611, USA.
| |
Collapse
|
48
|
Bone marrow-derived naïve B lymphocytes improve heart function after myocardial infarction: a novel cardioprotective mechanism for empagliflozin. Basic Res Cardiol 2022; 117:47. [PMID: 36171393 DOI: 10.1007/s00395-022-00956-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 09/20/2022] [Indexed: 01/31/2023]
Abstract
The role of adaptive immunity in myocardial recovery post myocardial infarction (MI), particularly the immune response by B lymphocytes, remains elusive. Bone marrow immune microenvironment in response to MI is remotely regulated by the hypothalamic pituitary adrenal (HPA) axis. We utilized the cardioprotective actions of SGLT2 inhibitor to identify and characterize bone marrow B cell subsets that respond to myocardial injury. Initially, we preformed ligation of left anterior descendant (LAD) coronary artery in male C57BL/6J mice to monitor the dynamic changes of immune cells across tissues. Mechanistic insights from mouse models demonstrated arrest of bone marrow B cell maturation and function 24 h post MI. A secondary MI model (twice MIs) in mice was established for the first time to evaluate the dosage-dependent cardioprotection of empagliflozin (EMPA). Single-cell RNA-Seq further demonstrated that EMPA restored bone marrow naïve B cell (B220+CD19+CD43-IgM+IgD+) counts and function. Additionally, we recruited 14 acute MI patients with single LAD disease, and profiled B cells post percutaneous coronary intervention (PCI) (compared to 18 matched no-MI controls). We revealed a positive correlation of increased B cell counts with enhanced ejection fraction in MI patients with PCI while lymphopenia was associated with patients with heart failure. Mechanistically, MI triggers the release of glucocorticoids from neuroendocrine system, inducing NHE1-mediated autophagic death of bone marrow B cells while repressing B cell progenitor proliferation and differentiation. Infusion of B cells derived from bone marrow significantly improved cardiac function and diminished infarct size post MI. These findings provide new mechanistic insights into regulation of adaptive immune response post MI, and support targeting bone marrow B cell development for improved ventricular remodeling and reduced heart failure after MI.
Collapse
|
49
|
Identification of potential biomarkers and immune-related pathways related to immune infiltration in patients with acute myocardial infarction. Transpl Immunol 2022; 74:101652. [PMID: 35764238 DOI: 10.1016/j.trim.2022.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/08/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Acute myocardial infarction (AMI), a medical condition caused by the ischemic necrosis of cardiac tissues, is due to sudden occlusion of the coronary arteries in patients including transplant recipients. It is the leading reason for death and disability worldwide. This study aimed to search potential biomarkers related to the progression of AMI and identify the related immune-related pathways, as also examine their association with the immune cell infiltration and diagnostic value for AMI. METHODS Datasets of gene microarray were extracted from (www.ncbi.nlm.nih.gov/geo) the Gene Expression Omnibus (GEO) database and AMI-related biomarkers were obtained by differential expression analysis and weighted correlation network analysis (WGCNA). Subsequently, the support vector machine-recursive feature elimination (SVM-RFE) and the least absolute shrinkage and selection operator (LASSO) regression analyses were used to mine AIM-related hub markers. For the assessment of the diagnostic value of these markers for AMI, the receiver operator characteristic (ROC) curves were plotted. Additionally, the single-sample gene set enrichment analysis (ssGSEA) was performed to determine the immune cell infiltration. RESULTS A total of 1273 differentially expressed genes (DEGs) were obtained. Nine co-expression modules were obtained after WGCNA. Among them, the brown-colored module was identified as the hub for AMI (correlation [cor] = 0.73, P = 1.1e-87), and intersected with the DEGs yielded a total of 88 shared genes. Subsequently, five hub genes were obtained from the analysis of the LASSO regression and SVM-RFE algorithm. Ultimately, using the ROC curves, the diagnostic values of these genes for AMI were confirmed. The five hub genes were also found to be significantly associated with the infiltration levels of multiple immune cells. Moreover, the DEGs were mainly enriched in the inflammatory and immune-related gene sets evidenced by the functional enrichment analysis. CONCLUSION The five hub genes may serve as potential markers for AMI diagnosis and the findings have implications for further investigations on the molecular mechanisms underlying AMI.
Collapse
|
50
|
Matboli M, Hasanin AH, Hamady S, Khairy E, Mohamed RH, Aboul-Ela YM, Raafat MH, Elsebay SAG, Emam HY, Shamekh RS, Agwa SHA. Anti-inflammatory effect of trans-anethol in a rat model of myocardial ischemia-reperfusion injury. Biomed Pharmacother 2022; 150:113070. [PMID: 35658236 DOI: 10.1016/j.biopha.2022.113070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial ischemia‑reperfusion injury (MI/R) is considered a main risk factor for global cardiac mortality and morbidity, for which no effective treatment exists. Both inflammation and epigenetic regulation play a pivotal role in the early stage of MI/R. The present study aimed at investigating the prospective anti-inflammatory role of trans-anethole (TNA) in targeting MI/R and its related mechanism in upregulating the expression of the inflammatory and cardiac-related gene (VAV3), and its epigenetic regulators (lncRNA-JRKL-AS1 and miR-1298) that were retrieved from in-silico data analysis in an ischemia/reperfusion (I/R) rat model. MATERIALS & METHODS TNA was administered in 3 doses (50, 100, and 200 mg/kg), 15 min prior to coronary ligation in male Wistar rats. The left ventricular end-diastolic pressure and dP/dtmax were assessed. Histopathological, biochemical, and molecular analyses were performed to assess the effects of TNA pre-treatment on the I/R rats model. RESULTS TNA alleviated the I/R-induced cardiac injury pathologically and improved the cardiac function tests and enzymes. At the molecular level, TNA upregulated the expression level of the retrieved RNA-based panel (VAV3 mRNA/miR-1298/lncRNA JRKL-AS1). At the protein level, TNA decreased the cardiac content of the pro-inflammatory cytokine TNF-α. CONCLUSION TNA has demonstrated a potential ability to alleviate the cardiac injury and attenuate the inflammatory response following ischemia-reperfusion in the rat model through modulation of the expression of RNA panel (VAV3 mRNA/miR-1298/lncRNA JRKL-AS1) and TNF- α protein.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Reham Hussein Mohamed
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Yasmin M Aboul-Ela
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mona Hussien Raafat
- Histology and Cell Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Hossam Y Emam
- Anatomy Department, Faculty of Medicine, Cairo University, Egypt.
| | | | - Sara H A Agwa
- Clinical Pathology and Molecular Genomics Unit, Faculty of Medicine, Medical Ain Shams Research Institute (MASRI), Ain Shams University, Cairo, Egypt.
| |
Collapse
|