1
|
Aherrahrou R, Reinberger T, Hashmi S, Erdmann J. GWAS breakthroughs: mapping the journey from one locus to 393 significant coronary artery disease associations. Cardiovasc Res 2024; 120:1508-1530. [PMID: 39073758 DOI: 10.1093/cvr/cvae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/20/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Coronary artery disease (CAD) poses a substantial threat to global health, leading to significant morbidity and mortality worldwide. It has a significant genetic component that has been studied through genome-wide association studies (GWAS) over the past 17 years. These studies have made progress with larger sample sizes, diverse ancestral backgrounds, and the discovery of multiple genomic regions related to CAD risk. In this review, we provide a comprehensive overview of CAD GWAS, including information about the genetic makeup of the disease and the importance of ethnic diversity in these studies. We also discuss challenges of identifying causal genes and variants within GWAS loci with a focus on non-coding regions. Additionally, we highlight tissues and cell types relevant to CAD, and discuss clinical implications of GWAS findings including polygenic risk scores, sex-specific differences in CAD genetics, ethnical aspects of personalized interventions, and GWAS guided drug development.
Collapse
Affiliation(s)
- Rédouane Aherrahrou
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Reinberger
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, 74800 Karachi, Pakistan
| | - Jeanette Erdmann
- Institute for Cardiogenetics, University of Lübeck, Marie-Curie-Str. Haus 67/BMF, 23562 Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Institute for Cardiogenetics, Universität zu Lübeck, Partner Site Hamburg/Kiel/Lübeck, Germany
- University Heart Centre Lübeck, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
2
|
Suppressa P, Coppola C, Cocco V, O'Brien S. Long-term effectiveness and safety of lomitapide in patients with homozygous familial hypercholesterolemia: an observational case series. Orphanet J Rare Dis 2024; 19:370. [PMID: 39380044 PMCID: PMC11459886 DOI: 10.1186/s13023-024-03374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND We assessed long-term real-world effectiveness and safety of lomitapide in patients with homozygous familial hypercholesterolemia (HoFH). METHODS Retrospective case series of six patients with HoFH treated with lomitapide in an Italian clinic. Changes in low-density lipoprotein cholesterol (LDL-C) during lomitapide treatment were assessed. The effect on LDL-C of PCSK9 inhibitors, apheresis and lomitapide was evaluated. Additionally, high-density lipoprotein cholesterol (HDL-C), gastrointestinal tolerability, hepatic steatosis/elasticity, transaminases, and cardiovascular events and symptoms were assessed. RESULTS Median age at HoFH clinical and molecular diagnoses was 25 (range 2-49) and 40 (29-71) years, respectively. Five (83.3%) had prior cardiovascular events. One patient received apheresis, which was subsequently discontinued. All patients received PCSK9 inhibitors but discontinued due to minimal effectiveness. Median (range) age at lomitapide initiation was 44 (28-73) years, with a median 47 (18-85) months' treatment (mean dose 17.5 [5-40] mg/day). Mean (SD) baseline LDL-C was 263.2 (148.1) mg/dL, which decreased by 80% at nadir (52.8 [19.2] mg/dL) and 69% at last follow-up (81.3 [30.5] mg/dL). Four patients (66.7%) achieved LDL-C < 70 mg/dL sometime during follow-up, all of whom also achieved LDL-C < 55 mg/dL. Adverse events (AEs) were generally mild to moderate, hepatic steatosis was either absent or mild/moderate and hepatic elasticity remained normal in all but two patients (> 70 years old). All patients with reported cardiovascular symptoms had improvements in symptoms, and all patients reported stabilization or regression of intima-media thickness and atheromatous plaques. CONCLUSIONS These long-term, real-world data demonstrate that lomitapide substantially reduced LDL-C for up to seven years. Most patients achieved LDL-C goal at some point, consistent with published Phase III trial and real-world evidence data. No patient discontinued lomitapide treatment. Further long-term follow-up in a larger patient population will be important to determine cardiovascular and other outcomes.
Collapse
Affiliation(s)
- Patrizia Suppressa
- Dept. of Internal Medicine and Rare Diseases Centre "C. Frugoni", University Hospital of Bari, Piazza G. Cesare 11, Bari, 70121, Italy.
| | - Chiara Coppola
- Dept. of Internal Medicine and Rare Diseases Centre "C. Frugoni", University Hospital of Bari, Piazza G. Cesare 11, Bari, 70121, Italy
| | - Veronica Cocco
- Dept. of Internal Medicine and Rare Diseases Centre "C. Frugoni", University Hospital of Bari, Piazza G. Cesare 11, Bari, 70121, Italy
| | | |
Collapse
|
3
|
Li X, Zhang W, Shu Y, Huo R, Zheng C, Qi Q, Fu P, Sun J, Wang Y, Wang Y, Lu J, Zhao X, Yin G, Wang Q, Hong J. Biparatopic anti-PCSK9 antibody enhances the LDL-uptake in HepG2 cells. Sci Rep 2024; 14:15331. [PMID: 38961200 PMCID: PMC11222478 DOI: 10.1038/s41598-024-66290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target to reduce lipids. In 2020, we reported a chimeric camelid-human heavy chain antibody VHH-B11-Fc targeting PCSK9. Recently, it was verified that VHH-B11 binds one linear epitope in the PCSK9 hinge region. To enhance its druggability, we have developed a novel biparatopic B11-H2-Fc Ab herein. Thereinto, surface plasmon resonance (SPR) confirmed the epitope differences in binding-PCSK9 among VHH-B11, VHH-H2 and the approved Repatha. Additionally, SPR revealed the B11-H2-Fc exhibits an avidity of approximately 0.036 nM for PCSK9, representing a considerable increase compared to VHH-B11-Fc (~ 0.69 nM). Moreover, we found the Repatha and B11-H2-Fc exhibited > 95% PCSK9 inhibition efficiency compared to approximately 48% for the VHH-Fc at 7.4 nM (P < 0.0005). Further, we verified its biological activity using the human hepatoma cells G2 model, where the B11-H2-Fc exhibited almost 100% efficiency in PCSK9 inhibition at only 0.75 μM. The immunoblotting results of low-density lipoprotein cholesterol (LDL-c) uptake assay also demonstrated the excellent performance of B11-H2-Fc on recovering the LDL-c receptor (LDLR), as strong as the Repatha (P > 0.05). These findings provide the first evidence of the efficacy of a novel Ab targeting PCSK9 in the field of lipid-lowering drugs.
Collapse
Affiliation(s)
- Xinyang Li
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Wei Zhang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Yu Shu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Rui Huo
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Chengyang Zheng
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Qi Qi
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Pengfei Fu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Jie Sun
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Yuhuan Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Yan Wang
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Juxu Lu
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Xiangjie Zhao
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China
| | - Guoyou Yin
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Qingqing Wang
- Employment and Business Startup Service Center, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| | - Jun Hong
- College of Life Science and Engineering, Henan University of Urban Construction, Ping Dingshan, 467036, China.
| |
Collapse
|
4
|
Rosenson RS, Tate A, Mar P, Grushko O, Chen Q, Goonewardena SN. Inhibition of PCSK9 with evolocumab modulates lipoproteins and monocyte activation in high-risk ASCVD subjects. Atherosclerosis 2024; 392:117529. [PMID: 38583289 DOI: 10.1016/j.atherosclerosis.2024.117529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Mechanistic studies suggest that proprotein convertase subtilisin/kexin type 9 inhibitors can modulate inflammation. METHODS Double-blind, placebo-controlled trial randomized 41 ASCVD subjects with type 2 diabetes with microalbuminuria and LDL-C level >70 mg/dL on maximum tolerated statin therapy received subcutaneous evolocumab 420 mg every 4 weeks or matching placebo. The primary outcomes were change in circulating immune cell transcriptional response, lipoproteins and blood viscosity at 2 weeks and 12 weeks. Safety was assessed in all subjects who received at least one dose of assigned treatment and analyses were conducted in the intention-to-treat population. RESULTS All 41 randomized subjects completed the 2-week visit. Six subjects did not receive study medication consistently after the 2-week visit due to COVID-19 pandemic suspension of research activities. The groups were well-matched with respect to age, comorbidities, baseline LDL-C, white blood cell counts, and markers of systemic inflammation. Evolocumab reduced LDL-C by -68.8% (p < 0.0001) and -52.8% (p < 0.0001) at 2 and 12 weeks, respectively. There were no differences in blood viscosity at baseline nor at 2 and 12 weeks. RNA-seq was performed on peripheral blood mononuclear cells with and without TLR4 stimulation ("Stress" transcriptomics). "Stress" transcriptomics unmasked immune cell phenotypic differences between evolocumab and placebo groups at 2 and 12 weeks. CONCLUSIONS This trial is the first to demonstrate that PCSK9 mAB with evolocumab can modulate circulating immune cell properties and highlights the importance of "stress" profiling of circulating immune cells that more clearly define immune contributions to ASCVD.
Collapse
Affiliation(s)
- Robert S Rosenson
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States.
| | - Ashley Tate
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| | - Phyu Mar
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States
| | - Olga Grushko
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| | - Qinzhong Chen
- Metabolism and Lipids Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, United States
| | - Sascha N Goonewardena
- Taubman Medical Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, United States
| |
Collapse
|
5
|
Mohamed AA, Ray KK. Inclisiran and cardiovascular events: a comprehensive review of efficacy, safety, and future perspectives. Curr Opin Cardiol 2023; 38:527-532. [PMID: 37522763 DOI: 10.1097/hco.0000000000001074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
PURPOSE OF REVIEW This review aims to offer an up-to-date evaluation of Inclisiran's (a small interfering RNA treatment) ability to decrease low-density lipoprotein cholesterol (LDL-C), as well as its safety and potential effects on decreasing cardiovascular risk. RECENT FINDINGS Inclisiran significantly lowers LDL-C levels, as shown by phase III studies, by inhibiting hepatic synthesis of proprotein convertase subtilisin kexin 9 (PCSK-9), a protein implicated in the degradation of LDL receptors. Inclisiran has the benefit of subcutaneous injection twice a year, which may reduce patient nonadherence when compared with other LDL-C reducing therapies such as statins and ezetimibe, which require daily dosing. When added on top of statins, a greater proportion of patients achieved recommended cholesterol goals. It has also demonstrated a good safety profile with few adverse effects. SUMMARY Inclisiran is a promising treatment for lowering LDL-C levels in people at high risk of atherosclerotic cardiovascular disease. It is a practical and well tolerated option for those who struggle to stick to medication regimes because of its twice-yearly dosage schedule and a good safety profile. Although it has been demonstrated to be effective in decreasing LDL-C, further research is needed to determine its impact on reducing cardiovascular events. Nonetheless, Inclisiran is a significant advancement in lipid-lowering medication and could improve patient outcomes.
Collapse
Affiliation(s)
- Ahmed A Mohamed
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, UK
| | | |
Collapse
|
6
|
de Freitas RCC, Bortolin RH, Borges JB, de Oliveira VF, Dagli-Hernandez C, Marçal EDSR, Bastos GM, Gonçalves RM, Faludi AA, Silbiger VN, Luchessi AD, Hirata RDC, Hirata MH. LDLR and PCSK9 3´UTR variants and their putative effects on microRNA molecular interactions in familial hypercholesterolemia: a computational approach. Mol Biol Rep 2023; 50:9165-9177. [PMID: 37776414 DOI: 10.1007/s11033-023-08784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/25/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is caused by pathogenic variants in low-density lipoprotein (LDL) receptor (LDLR) or its associated genes, including apolipoprotein B (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and LDLR adaptor protein 1 (LDLRAP1). However, approximately 40% of the FH patients clinically diagnosed (based on FH phenotypes) may not carry a causal variant in a FH-related gene. Variants located at 3' untranslated region (UTR) of FH-related genes could elucidate mechanisms involved in FH pathogenesis. This study used a computational approach to assess the effects of 3'UTR variants in FH-related genes on miRNAs molecular interactions and to explore the association of these variants with molecular diagnosis of FH. METHODS AND RESULTS Exons and regulatory regions of FH-related genes were sequenced in 83 FH patients using an exon-target gene sequencing strategy. In silico prediction tools were used to study the effects of 3´UTR variants on interactions between miRNAs and target mRNAs. Pathogenic variants in FH-related genes (molecular diagnosis) were detected in 44.6% FH patients. Among 59 3'UTR variants identified, LDLR rs5742911 and PCSK9 rs17111557 were associated with molecular diagnosis of FH, whereas LDLR rs7258146 and rs7254521 and LDLRAP1 rs397860393 had an opposite effect (p < 0.05). 3´UTR variants in LDLR (rs5742911, rs7258146, rs7254521) and PCSK9 (rs17111557) disrupt interactions with several miRNAs, and more stable bindings were found with LDLR (miR-4435, miR-509-3 and miR-502) and PCSK9 (miR-4796). CONCLUSION LDLR and PCSK9 3´UTR variants disturb miRNA:mRNA interactions that could affect gene expression and are potentially associated with molecular diagnosis of FH.
Collapse
Affiliation(s)
- Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jessica Bassani Borges
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Elisangela da Silva Rodrigues Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Gisele Medeiros Bastos
- Department of Research, Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo, 01323-001, Brazil
| | | | - Andre Arpad Faludi
- Medical Division, Institute of Cardiology Dante Pazzanese, Sao Paulo, 04012-909, Brazil
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, Federal University of Rio Grande do Norte, Natal, 59012-570, Brazil
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal, 59078-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580. São Paulo, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
7
|
Burnett JR, Hooper AJ. MK-0616: an oral PCSK9 inhibitor for hypercholesterolemia treatment. Expert Opin Investig Drugs 2023; 32:873-878. [PMID: 37815341 DOI: 10.1080/13543784.2023.2267972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Atherosclerotic cardiovascular disease (ASCVD) is a leading cause of morbidity and mortality worldwide. Lowering LDL-cholesterol, by lifestyle modification or therapeutically, reduces the risk of ASCVD. Proprotein convertase subtilisin/kexin type 9 (PCSK9), a protein which binds to the LDL-receptor and induces degradation, is a clinically validated target to lower LDL-cholesterol. Injectable PCSK9 inhibitor therapies have demonstrated substantial reductions in LDL-cholesterol with associated decreased risk of ASCVD events. AREAS COVERED MK-0616 is an orally bioavailable, renally excreted, macrocyclic peptide inhibitor of PCSK9. The article provides an understanding of the chemistry and development, pharmacokinetic and pharmacodynamic characteristics of MK-0616 and insight into its clinical efficacy and safety. In clinical trials, MK-0616 produced dose-dependent reductions in LDL-cholesterol, non-HDL-cholesterol, and apolipoprotein (apo) B levels. Furthermore, MK-0616 modestly lowered lipoprotein (a) [Lp(a)]. EXPERT OPINION MK-0616 is a potent, oral macrocyclic peptide inhibitor of PCSK9 that is not only able to reduce LDL-cholesterol, non-HDL-cholesterol, and apoB, but can also lower Lp(a). Safety and tolerability studies reported to date are promising. MK-0616 may offer advantages over injectable anti-PCSK9 therapies in terms of ease of dosing, patient preference and cost. The results from phase III trials of MK-0616 on cardiovascular outcomes are awaited with interest.
Collapse
Affiliation(s)
- John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia
- Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia
| | - Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia
- School of Medicine, University of Western Australia, Perth, Western Australia
| |
Collapse
|
8
|
Oza PP, Kashfi K. The evolving landscape of PCSK9 inhibition in cancer. Eur J Pharmacol 2023; 949:175721. [PMID: 37059376 PMCID: PMC10229316 DOI: 10.1016/j.ejphar.2023.175721] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Cancer is a disease with a significant global burden in terms of premature mortality, loss of productivity, healthcare expenditures, and impact on mental health. Recent decades have seen numerous advances in cancer research and treatment options. Recently, a new role of cholesterol-lowering PCSK9 inhibitor therapy has come to light in the context of cancer. PCSK9 is an enzyme that induces the degradation of low-density lipoprotein receptors (LDLRs), which are responsible for clearing cholesterol from the serum. Thus, PCSK9 inhibition is currently used to treat hypercholesterolemia, as it can upregulate LDLRs and enable cholesterol reduction through these receptors. The cholesterol-lowering effects of PCSK9 inhibitors have been suggested as a potential mechanism to combat cancer, as cancer cells have been found to increasingly rely on cholesterol for their growth needs. Additionally, PCSK9 inhibition has demonstrated the potential to induce cancer cell apoptosis through several pathways, increase the efficacy of a class of existing anticancer therapies, and boost the host immune response to cancer. A role in managing cancer- or cancer treatment-related development of dyslipidemia and life-threatening sepsis has also been suggested. This review examines the current evidence regarding the effects of PCSK9 inhibition in the context of different cancers and cancer-associated complications.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
9
|
Gill PK, Hegele RA. Low cholesterol states: clinical implications and management. Expert Rev Endocrinol Metab 2023; 18:241-253. [PMID: 37089071 DOI: 10.1080/17446651.2023.2204932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Hypocholesterolemia results from genetic - both monogenic and polygenic - and non-genetic causes and can sometimes be a source of clinical concern. We review etiologies and sequelae of hypocholesterolemia and therapeutics inspired from genetic hypocholesterolemia. AREAS COVERED Monogenic hypocholesterolemia disorders caused by the complete absence of apolipoprotein (apo) B-containing lipoproteins (abetalipoproteinemia and homozygous hypobetalipoproteinemia) or an isolated absence of apo B-48 lipoproteinemia (chylomicron retention disease) lead to clinical sequelae. These include gastrointestinal disturbances and severe vitamin deficiencies that affect multiple body systems, i.e. neurological, musculoskeletal, ophthalmological, and hematological. Monogenic hypocholesterolemia disorders with reduced but not absent levels of apo B lipoproteins have a milder clinical presentation and patients are protected against atherosclerotic cardiovascular disease. Patients with heterozygous hypobetalipoproteinemia have somewhat increased risk of hepatic disease, while patients with PCSK9 deficiency, ANGPTL3 deficiency, and polygenic hypocholesterolemia typically have anunremarkable clinical presentation. EXPERT OPINION In patients with severe monogenic hypocholesterolemia, early initiation of high-dose vitamin therapy and a low-fat diet are essential for optimal prognosis. The molecular basis of monogenic hypocholesterolemia has inspired novel therapeutics to help patients with the opposite phenotype - i.e. elevated apo B-containing lipoproteins. In particular, inhibitors of PCSK9 and ANGPTL3 show important clinical impact.
Collapse
Affiliation(s)
- Praneet K Gill
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Robert A Hegele
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
10
|
Spagnuolo CM, Hegele RA. Recent advances in treating hypertriglyceridemia in patients at high risk of cardiovascular disease with apolipoprotein C-III inhibitors. Expert Opin Pharmacother 2023; 24:1013-1020. [PMID: 37114828 DOI: 10.1080/14656566.2023.2206015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Mild-to-moderate hypertriglyceridemia (HTG) is commonly encountered and is associated with atherosclerotic cardiovascular disease (ASCVD). Elevated plasma triglyceride (TG) levels reflect high levels of triglyceride-rich lipoproteins, against which lipid-lowering therapies that reduce low-density lipoprotein cholesterol are relatively ineffective. Apolipoprotein (apo) C-III is a new pharmacological target to reduce triglycerides and potentially also cardiovascular disease risk. AREAS COVERED Here, we evaluate current lipid-lowering therapies and their effect on TG levels; genetic, pre-clinical, cellular, molecular biology, and translational studies that emphasize the importance of apo C-III in the metabolism of TG-rich lipoproteins and ASCVD risk; and clinical trials of pharmacotherapies that reduce TG levels via apo C-III inhibition. The PubMed database was searched using terms: apolipoprotein C-III, ARO-APOC3, atherosclerotic cardiovascular disease, olezarsen, triglycerides, and volanesorsen; study types: clinical trials, systematic reviews, and meta-analyses; and time criterion 2005 to present. EXPERT OPINION Apo C-III inhibition is a promising treatment approach for adults with mild-to-moderate HTG and either established atherosclerotic cardiovascular disease or its risk factors. Biologic agents such as volanesorsen, olezarsen, and ARO-APOC3 significantly reduce plasma levels of apo C-III and TG, although data on cardiovascular outcomes are lacking. Volanesorsen is associated with thrombocytopenia in patients with severe HTG, but other agents appear to be better tolerated. Clinical trials with long-term follow-up of cardiovascular outcomes will establish the validity of apo C-III inhibition.
Collapse
Affiliation(s)
- Catherine M Spagnuolo
- Depatment of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Robert A Hegele
- Depatment of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Vascular Biology Research Group, Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
11
|
Goonewardena SN, Rosenson RS. PCSK9: The Nexus of Lipoprotein Metabolism and Inflammation in COVID-19. J Am Coll Cardiol 2023; 81:235-236. [PMID: 36653091 PMCID: PMC9842103 DOI: 10.1016/j.jacc.2022.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 01/18/2023]
Affiliation(s)
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Since the discovery of PCSK9 in 2003, this proprotein convertase was shown to target specific receptors for degradation in endosomes/lysosomes, including LDLR and other family members and hence to enhance the levels of circulating LDL-cholesterol (LDLc). Accordingly, inhibitors of PCSK9, including monoclonal antibodies blocking its circulating activity and siRNA silencers of its hepatic expression, are now used in clinics worldwide to treat hypercholesterolemia patients effectively and safely in combination with statins and/or ezetimibe. These powerful treatments reduce the incidence of atherosclerosis by at least 20%. Since 2008, novel targets of PCSK9 began to be defined, thereby expanding its roles beyond LDLc regulation into the realm of inflammation, pathogen infections and cellular proliferation in various cancers and associated metastases. RECENT FINDINGS Some pathogens such as dengue virus exploit the ability of PCSK9 to target the LDLR for degradation to enhance their ability to infect cells. Aside from increasing the degradation of the LDLR and its family members VLDLR, ApoER2 and LRP1, circulating PCSK9 also reduces the levels of other receptors such as CD36 (implicated in fatty acid uptake), oxidized LDLR receptor (that clears oxidized LDLc) as well as major histocompatibility class-I (MHC-I) receptors (implicated in the immune response to antigens). Thus, these novel targets provided links between PCSK9 and inflammation/atherosclerosis, viral infections and cancer/metastasis. The functional activities of PCSK9, accelerated the development of novel therapies to inhibit PCSK9 functions, including small molecular inhibitors, long-term vaccines, and possibly CRISPR-based silencing of hepatic expression of PCSK9. The future of inhibitors/silencers of PCSK9 function or expression looks bright, as these are expected to provide a modern armamentarium to treat various pathologies beyond hypercholesterolemia and its effects on atherosclerosis.
Collapse
Affiliation(s)
- Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada.
| | - Damien Garçon
- Laboratory of Biochemical Neuroendocrinology, Montreal Clinical Research Institute (IRCM, affiliated to the University of Montreal), 110 Pine Ave West, Montreal, QC, H2W 1R7, Canada
| |
Collapse
|
13
|
Guidance for the diagnosis and treatment of hypolipidemia disorders. J Clin Lipidol 2022; 16:797-812. [DOI: 10.1016/j.jacl.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
|
14
|
Li L, Zhong S, Li R, Liang N, Zhang L, Xia S, Xu X, Chen X, Chen S, Tao Y, Yin H. Aldehyde dehydrogenase 2 and PARP1 interaction modulates hepatic HDL biogenesis by LXRα-mediated ABCA1 expression. JCI Insight 2022; 7:155869. [PMID: 35393951 PMCID: PMC9057588 DOI: 10.1172/jci.insight.155869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
HDL cholesterol (HDL-C) predicts risk of cardiovascular disease (CVD), but the factors regulating HDL are incompletely understood. Emerging data link CVD risk to decreased HDL-C in 8% of the world population and 40% of East Asians who carry an SNP of aldehyde dehydrogenase 2 (ALDH2) rs671, responsible for alcohol flushing syndrome; however, the underlying mechanisms remain unknown. We found significantly decreased HDL-C with increased hepatosteatosis in ALDH2-KO (AKO), ALDH2/LDLR-double KO (ALKO), and ALDH2 rs671-knock-in (KI) mice after consumption of a Western diet. Metabolomics identified ADP-ribose as the most significantly increased metabolites in the ALKO mouse liver. Moreover, ALDH2 interacted with poly(ADP-ribose) polymerase 1 (PARP1) and attenuated PARP1 nuclear translocation to downregulate poly(ADP-ribosyl)ation of liver X receptor α (LXRα), leading to an upregulation of ATP-binding cassette transporter A1 (ABCA1) and HDL biogenesis. Conversely, AKO or ALKO mice exhibited lower HDL-C with ABCA1 downregulation due to increased nuclear PARP1 and upregulation of LXRα poly(ADP-ribosyl)ation. Consistently, PARP1 inhibition rescued ALDH2 deficiency-induced fatty liver and elevated HDL-C in AKO mice. Interestingly, KI mouse or human liver tissues showed ABCA1 downregulation with increased nuclear PARP1 and LXRα poly(ADP-ribosyl)ation. Our study uncovered a key role of ALDH2 in HDL biogenesis through the LXRα/PARP1/ABCA1 axis, highlighting a potential therapeutic strategy in CVD.
Collapse
Affiliation(s)
- Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Rui Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shen Xia
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yongzhen Tao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of the Chinese Academy of Sciences (UCAS), Chinese Academy of Sciences (CAS), Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, China
| |
Collapse
|
15
|
Gao Y, Zhang B, Yang J. Evinacumab for the treatment of homozygous familial hypercholesterolemia. Expert Rev Clin Pharmacol 2022; 15:139-145. [PMID: 35220876 DOI: 10.1080/17512433.2022.2047934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yanli Gao
- Department of Clinical Pharmacy, Linyi Central Hospital, Linyi, Shandong, China
| | - Baoqi Zhang
- Department of Surgery, Linyi Central Hospital, Linyi, Shandong, China
| | - Junyi Yang
- Department of Clinical Pharmacy, Linyi Central Hospital, Linyi, Shandong, China
| |
Collapse
|
16
|
Goonewardena SN, Rosenson RS. The Enigma of PCSK9 Regulation: Leveraging Therapeutics Towards Mechanistic Understanding. J Am Coll Cardiol 2021; 78:1450-1452. [PMID: 34593127 DOI: 10.1016/j.jacc.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Affiliation(s)
| | - Robert S Rosenson
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R Kravis Center for Cardiovascular Health, Mount Sinai Icahn School of Medicine, New York, New York, USA
| |
Collapse
|
17
|
D'Erasmo L, Gallo A, Cefalù AB, Di Costanzo A, Saheb S, Giammanco A, Averna M, Buonaiuto A, Iannuzzo G, Fortunato G, Puja A, Montalcini T, Pavanello C, Calabresi L, Vigna GB, Bucci M, Bonomo K, Nota F, Sampietro T, Sbrana F, Suppressa P, Sabbà C, Fimiani F, Cesaro A, Calabrò P, Palmisano S, D'Addato S, Pisciotta L, Bertolini S, Bittar R, Kalmykova O, Béliard S, Carrié A, Arca M, Bruckert E. Long-term efficacy of lipoprotein apheresis and lomitapide in the treatment of homozygous familial hypercholesterolemia (HoFH): a cross-national retrospective survey. Orphanet J Rare Dis 2021; 16:381. [PMID: 34496902 PMCID: PMC8427960 DOI: 10.1186/s13023-021-01999-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/24/2021] [Indexed: 01/23/2023] Open
Abstract
Background Homozygous familial hypercholesterolemia (HoFH) is a rare life-threatening condition that represents a therapeutic challenge. The vast majority of HoFH patients fail to achieve LDL-C targets when treated with the standard protocol, which associates maximally tolerated dose of lipid-lowering medications with lipoprotein apheresis (LA). Lomitapide is an emerging therapy in HoFH, but its place in the treatment algorithm is disputed because a comparison of its long-term efficacy versus LA in reducing LDL-C burden is not available. We assessed changes in long-term LDL-C burden and goals achievement in two independent HoFH patients’ cohorts, one treated with lomitapide in Italy (n = 30) and the other with LA in France (n = 29). Results The two cohorts differed significantly for genotype (p = 0.004), baseline lipid profile (p < 0.001), age of treatment initiation (p < 0.001), occurrence of cardiovascular disease (p = 0.003) as well as follow-up duration (p < 0.001). The adjunct of lomitapide to conventional lipid-lowering therapies determined an additional 58.0% reduction of last visit LDL-C levels, compared to 37.1% when LA was added (padj = 0.004).
Yearly on-treatment LDL-C < 70 mg/dl and < 55 mg/dl goals were only achieved in 45.5% and 13.5% of HoFH patients treated with lomitapide. The long-term exposure to LDL-C burden was found to be higher in LA than in Lomitapide cohort (13,236.1 ± 5492.1 vs. 11,656.6 ± 4730.9 mg/dL-year respectively, padj = 0.002). A trend towards fewer total cardiovascular events was observed in the Lomitapide than in the LA cohort. Conclusions In comparison with LA, lomitapide appears to provide a better control of LDL-C in HoFH. Further studies are needed to confirm this data and establish whether this translates into a reduction of cardiovascular risk. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01999-8.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy. .,Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.
| | - Antonio Gallo
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, INSERM 1146, - CNRS 7371, Laboratoire d'imagerie Biomédicale, Paris, France
| | - Angelo Baldassare Cefalù
- Dipartimento di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Università Degli Studi Di Palermo, Palermo, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Samir Saheb
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Antonina Giammanco
- Dipartimento di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Università Degli Studi Di Palermo, Palermo, Italy
| | - Maurizio Averna
- Dipartimento di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), Università Degli Studi Di Palermo, Palermo, Italy
| | - Alessio Buonaiuto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Advanced Biotechnology, Naples, Italy
| | - Arturo Puja
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Tiziana Montalcini
- Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano, Milan, Italy
| | | | - Marco Bucci
- Dipartimento di Medicina e Scienze Dell'Invecchiamento, Università Degli Studi "G. d'annunzio" di Chieti, Pescara, Italy
| | - Katia Bonomo
- Metabolic Disease and Diabetes Unit, AOU San Luigi Gonzaga, Orbassano', Turin, Italy
| | - Fabio Nota
- Metabolic Disease and Diabetes Unit, AOU San Luigi Gonzaga, Orbassano', Turin, Italy
| | - Tiziana Sampietro
- Lipoapheresis Unit-Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Via Moruzzi 1, Pisa, Italy
| | - Francesco Sbrana
- Lipoapheresis Unit-Reference Center for Diagnosis and Treatment of Inherited Dyslipidemias, Fondazione Toscana "Gabriele Monasterio", Via Moruzzi 1, Pisa, Italy
| | - Patrizia Suppressa
- Department of Internal Medicine and Rare Disease Centre "C.Frugoni", University Hospital of Bari "A. Moro", Piazza G. Cesare 11, Bari, Italy
| | - Carlo Sabbà
- Department of Internal Medicine and Rare Disease Centre "C.Frugoni", University Hospital of Bari "A. Moro", Piazza G. Cesare 11, Bari, Italy
| | - Fabio Fimiani
- Division of Clinical Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", A.O.R.N. Sant' Anna e San Sebastiano, 81100, Caserta, Italy
| | - Arturo Cesaro
- Division of Clinical Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", A.O.R.N. Sant' Anna e San Sebastiano, 81100, Caserta, Italy
| | - Paolo Calabrò
- Division of Clinical Cardiology, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", A.O.R.N. Sant' Anna e San Sebastiano, 81100, Caserta, Italy
| | - Silvia Palmisano
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy
| | - Sergio D'Addato
- Hypertension and Atherosclerosis Research Group, Medical and Surgical Sciences Department, Sant'Orsola-Malpighi University Hospital, Via Albertoni 15, 40138, Bologna, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS-Polyclinic Hospital San Martino, Genoa, Italy
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS-Polyclinic Hospital San Martino, Genoa, Italy
| | - Randa Bittar
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Department of Metabolic Biochemistry, Assistance Publique, Hôpitaux de Paris, Hôpital de La Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Olga Kalmykova
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| | - Sophie Béliard
- Aix Marseille University, INSERM, INRA, C2VN, Marseille, France.,Department of Nutrition, Metabolic Diseases, Endocrinology, La Conception Hospital, Marseille, France
| | - Alain Carrié
- Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, APHP, Department of Biochemistry, Obesity and Dyslipidemia Genetics Unit, Hôpital de La Pitié, Sorbonne University, Paris, France
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, Rome, Italy
| | - Eric Bruckert
- Department of Endocrinology and Cardiovascular Disease Prevention, Assistance Publique-Hôpitaux de Paris, La Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France
| |
Collapse
|
18
|
Kamaruddin NN, Hajri NA, Andriani Y, Abdul Manan AF, Tengku Muhammad TS, Mohamad H. Acanthaster planci Inhibits PCSK9 and Lowers Cholesterol Levels in Rats. Molecules 2021; 26:5094. [PMID: 34443682 PMCID: PMC8398678 DOI: 10.3390/molecules26165094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases which in turn, lead to the highest number of mortalities globally. This pathophysiological condition is developed due to a constant elevated level of plasma cholesterols. Statin is currently the widely used treatment in reducing the level of cholesterols, however, it may cause adverse side effects. Therefore, there is an urgent need to search for new alternative treatment. PCSK9 is an enzyme responsible in directing LDL-receptor (LDL-R)/LDL-cholesterols (LDL-C) complex to lysosomal degradation, preventing the receptor from recycling back to the surface of liver cells. Therefore, PCSK9 offers a potential target to search for small molecule inhibitors which inhibit the function of this enzyme. In this study, a marine invertebrate Acanthaster planci, was used to investigate its potential in inhibiting PCSK9 and lowering the levels of cholesterols. Cytotoxicity activity of A. planci on human liver HepG2 cells was carried out using the MTS assay. It was found that methanolic extract and fractions did not exhibit cytotoxicity effect on HepG2 cell line with IC50 values of more than 30 µg/mL. A compound deoxythymidine also did not exert any cytotoxicity activity with IC50 value of more than 4 µg/mL. Transient transfection and luciferase assay were conducted to determine the effects of A. planci on the transcriptional activity of PCSK9 promoter. Methanolic extract and Fraction 2 (EF2) produced the lowest reduction in PCSK9 promoter activity to 70 and 20% of control at 12.5 and 6.25 μg/mL, respectively. In addition, deoxythymidine also decreased PCSK9 promoter activity to the lowest level of 60% control at 3.13 μM. An in vivo study using Sprague Dawley rats demonstrated that 50 and 100 mg/kg of A. planci methanolic extract reduced the total cholesterols and LDL-C levels to almost similar levels of untreated controls. The level of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) showed that the administration of the extract did not produce any toxicity effect and cause any damage to rat liver. The results strongly indicate that A. planci produced a significant inhibitory activity on PCSK9 gene expression in HepG2 cells which may be responsible for inducing the uptake of cholesterols by liver, thus, reducing the circulating levels of total cholesterols and LDL-C. Interestingly, A. planci also did show any adverse hepato-cytotoxicity and toxic effects on liver. Thus, this study strongly suggests that A. planci has a vast potential to be further developed as a new class of therapeutic agent in lowering the blood cholesterols and reducing the progression of atherosclerosis.
Collapse
Affiliation(s)
| | | | | | | | - Tengku Sifzizul Tengku Muhammad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (N.N.K.); (N.A.H.); (Y.A.); (A.F.A.M.)
| |
Collapse
|
19
|
Kessler T, Schunkert H. Coronary Artery Disease Genetics Enlightened by Genome-Wide Association Studies. JACC Basic Transl Sci 2021; 6:610-623. [PMID: 34368511 PMCID: PMC8326228 DOI: 10.1016/j.jacbts.2021.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Many cardiovascular diseases are facilitated by strong inheritance. For example, large-scale genetic studies identified hundreds of genomic loci that affect the risk of coronary artery disease. At each of these loci, common variants are associated with disease risk with robust statistical evidence but individually small effect sizes. Only a minority of candidate genes found at these loci are involved in the pathophysiology of traditional risk factors, but experimental research is making progress in identifying novel, and, in part, unexpected mechanisms. Targets identified by genome-wide association studies have already led to the development of novel treatments, specifically in lipid metabolism. This review summarizes recent genetic and experimental findings in this field. In addition, the development and possible clinical usefulness of polygenic risk scores in risk prediction and individualization of treatment, particularly in lipid metabolism, are discussed.
Collapse
Affiliation(s)
- Thorsten Kessler
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| | - Heribert Schunkert
- German Heart Centre Munich, Department of Cardiology, Technical University of Munich, Munich, Germany.,German Centre for Cardiovascular Research (DZHK e.V.), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia is a genetic disorder of defective clearance and subsequent increase in serum LDL cholesterol (LDL-C) with a resultant increased risk of premature atherosclerotic cardiovascular disease. Despite treatment with traditional lipid-lowering therapies (LLT), most patients with familial hypercholesterolemia are unable to achieve target LDL-C. We review current and future novel therapeutic options available for familial hypercholesterolemia. RECENT FINDINGS The use of proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are effective in lowering LDL-C in patients with familial hypercholesterolemia, with a reduction in LDL-C of 60% in heterozygous familial hypercholesterolemia (HeFH) and up to 35% in homozygous familial hypercholesterolemia (HoFH). Inclisiran, another novel agent, is a small-interfering ribonucleic acid that reduces hepatic production of PCSK9 to provide a prolonged and sustained reduction in LDL-C of nearly 50% in HeFH. However, both agents require LDL receptor (LDLR) activity. Evinacumab, a novel monoclonal antibody against angiopoetin-like 3 (ANGPTL3), reduces LDL-C by 50% independent of LDLR activity. SUMMARY Achieving a target LDL-C in familial hypercholesterolemia can be challenging with standard LLT; however, novel therapeutic modalities show remarkable reductions in LDL-C allowing nearly all patients with HeFH and a significant proportion of patients with HoFH to achieve acceptable LDL-C levels.
Collapse
Affiliation(s)
- Farzahna Mohamed
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
21
|
Moorman AJ, Dean LS, Yang E, Drezner JA. Cardiovascular Risk Assessment in the Older Athlete. Sports Health 2021; 13:622-629. [PMID: 33733939 DOI: 10.1177/19417381211004877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CONTEXT Limited data are available to guide cardiovascular screening in adult or masters athletes (≥35 years old). This review provides recommendations and the rationale for the cardiovascular risk assessment of older athletes. EVIDENCE ACQUISITION Review of available clinical guidelines, original investigations, and additional searches across PubMed for articles relevant to cardiovascular screening, risk assessment, and prevention in adult athletes (1990-2020). STUDY DESIGN Clinical review. LEVEL OF EVIDENCE Level 3. RESULTS Atherosclerotic coronary artery disease (CAD) is the leading cause of exercise-induced acute coronary syndromes, myocardial infarction, and sudden cardiac death in older athletes. Approximately 50% of adult patients who experience acute coronary syndromes and sudden cardiac arrest do not have prodromal symptoms of myocardial ischemia. The risk of atherosclerotic cardiovascular disease (ASCVD) can be estimated by using existing risk calculators. ASCVD 10-year risk is stratified into 3 categories: low-risk (≤10%), intermediate-risk (between 10% and 20%), and high-risk (≥20%). Coronary artery calcium (CAC) scoring with noncontrast computed tomography provides a noninvasive measure of subclinical CAD. Evidence supports a significant association between elevated CAC and the risk of future cardiovascular events, independent of traditional risk factors or symptoms. Statin therapy is recommended for primary prevention if 10-year ASCVD risk is ≥10% (intermediate- or high-risk patients) or if the Agatston score is >100 or >75th percentile for age and sex. Routine stress testing in asymptomatic, low-risk patients is not recommended. CONCLUSION We propose a comprehensive risk assessment for older athletes that combines conventional and novel risk factors for ASCVD, a 12-lead resting electrocardiogram, and a CAC score. Available risk calculators provide a 10-year estimate of ASCVD risk allowing for risk stratification and targeted management strategies. CAC scoring can refine risk estimates to improve the selection of patients for initiation or avoidance of pharmacological therapy.
Collapse
Affiliation(s)
- Alec J Moorman
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Larry S Dean
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Eugene Yang
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, Washington
| | - Jonathan A Drezner
- Department of Family Medicine, Sports Medicine Section and UW Medicine Center for Sports Cardiology, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Rosenson RS. Existing and emerging therapies for the treatment of familial hypercholesterolemia. J Lipid Res 2021; 62:100060. [PMID: 33716107 PMCID: PMC8065289 DOI: 10.1016/j.jlr.2021.100060] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Familial hypercholesterolemia (FH), an autosomal dominant disorder of LDL metabolism that is characterized by elevated LDL-cholesterol, is commonly encountered in patients with atherosclerotic coronary heart disease. Combinations of cholesterol-lowering therapies are often used to lower LDL-cholesterol in patients with FH; however, current treatment goals for LDL-cholesterol are rarely achieved in patients with homozygous FH (HoFH) and are difficult to achieve in patients with heterozygous FH (HeFH). Therapies that lower LDL-cholesterol through LDL receptor-mediated mechanisms have thus far been largely ineffective in patients with HoFH, particularly in those with negligible (<2%) LDL receptor activity. Among patients with HeFH who were at very high risk for atherosclerotic cardiovascular disease events, combined therapy consisting of a high dose of high-intensity statin, ezetimibe, and proprotein convertase subtilisin Kexin type 9 inhibitor failed to lower LDL-cholesterol to minimal acceptable goals in more than 50%. This article provides a framework for the use of available and emerging treatments that lower LDL-cholesterol in adult patients with HoFH and HeFH. A framework is provided for the use of angiopoietin-like protein 3 inhibitors in the treatment of HoFH and HeFH.
Collapse
Affiliation(s)
- Robert S Rosenson
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health. Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Zhong S, Li L, Liang N, Zhang L, Xu X, Chen S, Yin H. Acetaldehyde Dehydrogenase 2 regulates HMG-CoA reductase stability and cholesterol synthesis in the liver. Redox Biol 2021; 41:101919. [PMID: 33740503 PMCID: PMC7995661 DOI: 10.1016/j.redox.2021.101919] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
HMG-CoA reductase (HMGCR) is the rate-limiting enzyme in cholesterol biosynthesis and the target for cholesterol-lowering therapy. Acetaldehyde dehydrogenase 2 (ALDH2) is primarily responsible for detoxifying ethanol-derived acetaldehyde and endogenous lipid aldehydes derived from lipid peroxidation. Epidemiological and Genome Wide Association Studies (GWAS) have linked an inactive ALDH2 rs671 variant, responsible for alcohol flush in nearly 8% world population and 40% of Asians, with cholesterol levels and higher risk of cardiovascular disease (CVD) but the underlying mechanism remains elusive. Here we find that the cholesterol levels in the serum and liver of ALDH2 knockout (AKO) and ALDH2 rs671 knock-in (AKI) mice are significantly increased, consistent with the increase of intermediates in the cholesterol biosynthetic pathways. Mechanistically, mitochondrial ALDH2 translocates to the endoplasmic reticulum to promote the formation of GP78/Insig1/HMGCR complex to increase HMGCR degradation through ubiquitination. Conversely, ALDH2 mutant or ALDH2 deficiency in AKI or AKO mice stabilizes HMGCR, resulting in enhanced cholesterol synthesis, which can be reversed by Lovastatin. Moreover, ALDH2-regulated cholesterol synthesis is linked to the formation of mitochondria-associated endoplasmic reticulum membranes (MAMs). Together, our study has identified that ALDH2 is a novel regulator of cholesterol synthesis, which may play an important role in CVD.
Collapse
Affiliation(s)
- Shanshan Zhong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Shiting Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
| |
Collapse
|
24
|
Chen X, Li X, Xu X, Li L, Liang N, Zhang L, Lv J, Wu YC, Yin H. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic Res 2021; 55:405-415. [PMID: 33455488 DOI: 10.1080/10715762.2021.1876856] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD), including heart attack, stroke, heart failure, arrhythmia, and other congenital heart diseases remain the leading cause of morbidity and mortality worldwide. The leading cause of deaths in CVD is attributed to myocardial infarction due to the rupture of atherosclerotic plaque. Atherosclerosis refers a condition when restricted or even blockage of blood flow occurs due to the narrowing of blood vessels as a result of the buildup of plaques composed of oxidized lipids. It is well-established that free radical oxidation of polyunsaturated fatty acids (PUFAs) in lipoproteins or cell membranes, termed lipid peroxidation (LPO), plays a significant role in atherosclerosis. LPO products are involved in immune responses and cell deaths in this process, in which previous evidence supports the role of programmed cell death (apoptosis) and necrosis. Ferroptosis is a newly identified form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels, which exhibits distinct features from apoptosis, necrosis and autophagy in morphology, biochemistry and genetics. Emerging evidence appears to demonstrate that ferroptosis is also involved in CVD. In this review, we summarize the recent progress on ferroptosis in CVD and atherosclerosis, highlighting the role of free radical LPO. The evidence underlying the ferroptosis and challenges in the field will also be critically discussed.
Collapse
Affiliation(s)
- Xin Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xuan Li
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Luxiao Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ningning Liang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Lili Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jingwen Lv
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Yun-Cheng Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
25
|
Taskinen MR, Björnson E, Kahri J, Söderlund S, Matikainen N, Porthan K, Ainola M, Hakkarainen A, Lundbom N, Fermanelli V, Fuchs J, Thorsell A, Kronenberg F, Andersson L, Adiels M, Packard CJ, Borén J. Effects of Evolocumab on the Postprandial Kinetics of Apo (Apolipoprotein) B100- and B48-Containing Lipoproteins in Subjects With Type 2 Diabetes. Arterioscler Thromb Vasc Biol 2020; 41:962-975. [PMID: 33356392 DOI: 10.1161/atvbaha.120.315446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Increased risk of atherosclerotic cardiovascular disease in subjects with type 2 diabetes is linked to elevated levels of triglyceride-rich lipoproteins and their remnants. The metabolic effects of PCSK9 (proprotein convertase subtilisin/kexin 9) inhibitors on this dyslipidemia were investigated using stable-isotope-labeled tracers. Approach and Results: Triglyceride transport and the metabolism of apos (apolipoproteins) B48, B100, C-III, and E after a fat-rich meal were investigated before and on evolocumab treatment in 13 subjects with type 2 diabetes. Kinetic parameters were determined for the following: apoB48 in chylomicrons; triglyceride in VLDL1 (very low-density lipoprotein) and VLDL2; and apoB100 in VLDL1, VLDL2, IDL (intermediate-density lipoprotein), and LDL (low-density lipoprotein). Evolocumab did not alter the kinetics of apoB48 in chylomicrons or apoB100 or triglyceride in VLDL1. In contrast, the fractional catabolic rates of VLDL2-apoB100 and VLDL2-triglyceride were both increased by about 45%, which led to a 28% fall in the VLDL2 plasma level. LDL-apoB100 was markedly reduced by evolocumab, which was linked to metabolic heterogeneity in this fraction. Evolocumab increased clearance of the more rapidly metabolized LDL by 61% and decreased production of the more slowly cleared LDL by 75%. ApoC-III kinetics were not altered by evolocumab, but the apoE fractional catabolic rates increased by 45% and the apoE plasma level fell by 33%. The apoE fractional catabolic rates was associated with the decrease in VLDL2- and IDL-apoB100 concentrations. CONCLUSIONS Evolocumab had only minor effects on lipoproteins that are involved in triglyceride transport (chylomicrons and VLDL1) but, in contrast, had a profound impact on lipoproteins that carry cholesterol (VLDL2, IDL, LDL). Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02948777.
Collapse
Affiliation(s)
- Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden
| | - Juhani Kahri
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Sanni Söderlund
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland.,Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland
| | - Niina Matikainen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland.,Department of Endocrinology, Abdominal Center (S.S., N.M.), Helsinki University Hospital, Finland
| | - Kimmo Porthan
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Mari Ainola
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine (M.-R.T., J.K., S.S., N.M., K.P., M. Ainola), University of Helsinki, Finland
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland (A.H.)
| | - Nina Lundbom
- Department of Radiology, HUS Medical Imaging Center, Helsinki University Hospital (A.H., N.L.), University of Helsinki, Finland
| | | | - Johannes Fuchs
- Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility (J.F., A.T.), University of Gothenburg, Sweden
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Austria (F.K.)
| | - Linda Andersson
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden
| | - Martin Adiels
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden.,Department of Biostatistics, School of Public Health and Community Medicine (M. Adiels), University of Gothenburg, Sweden
| | - Chris J Packard
- Isnstitute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (C.J.P.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine (E.B., L.A., M. Adiels, J.B.), University of Gothenburg, Sweden.,Department of Cardiology, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden (J.B.)
| |
Collapse
|
26
|
Rosenson RS, Burgess LJ, Ebenbichler CF, Baum SJ, Stroes ESG, Ali S, Khilla N, Hamlin R, Pordy R, Dong Y, Son V, Gaudet D. Evinacumab in Patients with Refractory Hypercholesterolemia. N Engl J Med 2020; 383:2307-2319. [PMID: 33196153 DOI: 10.1056/nejmoa2031049] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with refractory hypercholesterolemia, who have high low-density lipoprotein (LDL) cholesterol levels despite treatment with lipid-lowering therapies at maximum tolerated doses, have an increased risk of atherosclerosis. In such patients, the efficacy and safety of subcutaneous and intravenous evinacumab, a fully human monoclonal antibody against angiopoietin-like 3, are not known. METHODS In this double-blind, placebo-controlled, phase 2 trial, we enrolled patients with or without heterozygous familial hypercholesterolemia who had refractory hypercholesterolemia, with a screening LDL cholesterol level of 70 mg per deciliter or higher with atherosclerosis or of 100 mg per deciliter or higher without atherosclerosis. Patients were randomly assigned to receive subcutaneous or intravenous evinacumab or placebo. The primary end point was the percent change from baseline in the LDL cholesterol level at week 16 with evinacumab as compared with placebo. RESULTS In total, 272 patients were randomly assigned to the following groups: subcutaneous evinacumab at a dose of 450 mg weekly (40 patients), 300 mg weekly (43 patients), or 300 mg every 2 weeks (39 patients) or placebo (41 patients); or intravenous evinacumab at a dose of 15 mg per kilogram of body weight every 4 weeks (39 patients) or 5 mg per kilogram every 4 weeks (36 patients) or placebo (34 patients). At week 16, the differences in the least-squares mean change from baseline in the LDL cholesterol level between the groups assigned to receive subcutaneous evinacumab at a dose of 450 mg weekly, 300 mg weekly, and 300 mg every 2 weeks and the placebo group were -56.0, -52.9, and -38.5 percentage points, respectively (P<0.001 for all comparisons). The differences between the groups assigned to receive intravenous evinacumab at a dose of 15 mg per kilogram and 5 mg per kilogram and the placebo group were -50.5 percentage points (P<0.001) and -24.2 percentage points, respectively. The incidence of serious adverse events during the treatment period ranged from 3 to 16% across trial groups. CONCLUSIONS In patients with refractory hypercholesterolemia, the use of evinacumab significantly reduced the LDL cholesterol level, by more than 50% at the maximum dose. (Funded by Regeneron Pharmaceuticals; ClinicalTrials.gov number, NCT03175367.).
Collapse
MESH Headings
- Adult
- Angiopoietin-Like Protein 3
- Angiopoietin-like Proteins/antagonists & inhibitors
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Anticholesteremic Agents/administration & dosage
- Anticholesteremic Agents/adverse effects
- Anticholesteremic Agents/therapeutic use
- Cholesterol, LDL/blood
- Double-Blind Method
- Drug Administration Schedule
- Drug Resistance
- Female
- Humans
- Hyperlipoproteinemia Type II/drug therapy
- Infusions, Intravenous
- Injections, Subcutaneous
- Male
- Middle Aged
Collapse
Affiliation(s)
- Robert S Rosenson
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Lesley J Burgess
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Christoph F Ebenbichler
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Seth J Baum
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Erik S G Stroes
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Shazia Ali
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Nagwa Khilla
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Robert Hamlin
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Robert Pordy
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Yuping Dong
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Vladimir Son
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| | - Daniel Gaudet
- From the Icahn School of Medicine at Mount Sinai, New York (R.S.R.), and Regeneron Pharmaceuticals, Tarrytown (S.A., N.K., R.H., R.P., Y.D., V.S.) - both in New York; TREAD Research, Cardiology Unit, Department of Internal Medicine and Tygerberg Hospital, Parow, South Africa (L.J.B.); the Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria (C.F.E.); Excel Medical Clinical Trials, Department of Integrated Medical Sciences, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton (S.J.B.); the Department of Vascular Medicine, Academic Medical Center, Amsterdam (E.S.G.S.); and the Clinical Lipidology and Rare Lipid Disorders Unit, Department of Medicine, Université de Montréal Community Gene Medicine Center, Montreal, and ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC - both in Canada (D.G.)
| |
Collapse
|
27
|
D'Erasmo L, Commodari D, Di Costanzo A, Minicocci I, Polito L, Ceci F, Montali A, Maranghi M, Arca M. Evolving trend in the management of heterozygous familial hypercholesterolemia in Italy: A retrospective, single center, observational study. Nutr Metab Cardiovasc Dis 2020; 30:2027-2035. [PMID: 32830020 DOI: 10.1016/j.numecd.2020.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/12/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS The effective reduction of LDL-C in patients with heterozygous familial hypercholesterolemia (HeFH) is crucial to reduce their increased cardiovascular risk. Diagnostic and therapeutic (PCSK9 inhibitors) tools to manage HeFH improved in recent years. However, the impact of these progresses in ameliorating the contemporary real-world care of these patients remains to be determined. Aim of this study was to assess the evolution of treatments and LDL-C control in a cohort of HeFH patients in Italy. METHODS AND RESULTS Four hundred six clinically diagnosed HeFH followed in a single, tertiary lipid centre were included in this survey. Data on lipid levels and medications were collected at baseline and during a median 3-year follow-up. At baseline, 19.8% of patients were receiving conventional high-potency lipid lowering therapies (LLT) and this percentage increased up to 50.8% at last visit. The knowledge of results of molecular diagnosis was associated with a significant increase in treatment intensity and LDL-C lowering. Nevertheless, the new LDL-C target (<70 mg/dl) was achieved only in 3.6% of HeFH patients under conventional LLTs and this proportion remained low (2.9%) also in those exposed to maximal conventional LLT. In 51 patients prescribed with PCSK9 inhibitors, 64.6% and 62.1% reached LDL-C<70 mg/dl at 3- and 12-month follow-up, respectively. CONCLUSIONS Although treatments of HeFH improved over time, LDL-C target achievement with conventional LLT remains poor, mainly among women. The use of molecular diagnosis and even more the prescription of PCSK9i may improve LDL-C control in these patients.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy; Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital, Paris, France.
| | - Daniela Commodari
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Luca Polito
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine, Università degli Studi di Roma, Sapienza, Rome, Italy
| | - Anna Montali
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Università degli studi di Roma, Sapienza, Rome, Italy
| |
Collapse
|
28
|
Singh C, Valero DJ, Nisar J, Trujillo Ramirez JI, Kothari KK, Isola S, San Hernandez AM, Gordon DK. Statins Versus Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors- Are We Doing Better? A Systematic Review on Treatment Disparity. Cureus 2020; 12:e10965. [PMID: 33209524 PMCID: PMC7667606 DOI: 10.7759/cureus.10965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Coronary artery disease (CAD) is a significant contributor to mortality in America. A common risk factor of CAD is hyperlipidemia. Treatment guidelines of hyperlipidemia are well established. Statins are the cornerstone of treating hyperlipidemia. New medications such as proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9 inhibitors) have also illustrated significant results in treating hyperlipidemia. While multiple studies exemplify the disparities in statin and PCSK9 inhibitors utilization to reduce CAD mortality and risk factors, there are no systematic reviews to validate these disparities. We conducted a search on PubMed, including Medline and PubMed Central, and Google Scholar. For this analysis, we selected articles published between 2000 and 2020 and those that fit the inclusion and exclusion criteria. Based on the type of study, we performed appropriate quality assessments and deleted studies with a score of less than seven or with a high risk of biases. The search strategy resulted in 322 studies. After inclusion and exclusion criteria were applied, we included 20 articles in the analysis of this review. This systematic review demonstrates that non-white races and women were less likely to receive the correct, clinically indicated, therapy for hyperlipidemia. A multi-faceted approach is required to solve this inequality in healthcare.
Collapse
Affiliation(s)
- Chetana Singh
- Primary Care, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Danel J Valero
- Anesthesia, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Javariya Nisar
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jose I Trujillo Ramirez
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Karisma K Kothari
- Medicine, Xavier University School of Medicine, Oranjestad, ABW.,Primary Care, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Sasank Isola
- Psychiatry, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aleyda M San Hernandez
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Domonick K Gordon
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA.,Internal Medicine, Scarborough General Hospital, Scarborough, TTO
| |
Collapse
|
29
|
Gliozzi M, Musolino V, Bosco F, Scicchitano M, Scarano F, Nucera S, Zito MC, Ruga S, Carresi C, Macrì R, Guarnieri L, Maiuolo J, Tavernese A, Coppoletta AR, Nicita C, Mollace R, Palma E, Muscoli C, Belzung C, Mollace V. Cholesterol homeostasis: Researching a dialogue between the brain and peripheral tissues. Pharmacol Res 2020; 163:105215. [PMID: 33007421 DOI: 10.1016/j.phrs.2020.105215] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023]
Abstract
Cholesterol homeostasis is a highly regulated process in human body because of its several functions underlying the biology of cell membranes, the synthesis of all steroid hormones and bile acids and the need of trafficking lipids destined to cell metabolism. In particular, it has been recognized that peripheral and central nervous system cholesterol metabolism are separated by the blood brain barrier and are regulated independently; indeed, peripherally, it depends on the balance between dietary intake and hepatic synthesis on one hand and its degradation on the other, whereas in central nervous system it is synthetized de novo to ensure brain physiology. In view of this complex metabolism and its relevant functions in mammalian, impaired levels of cholesterol can induce severe cellular dysfunction leading to metabolic, cardiovascular and neurodegenerative diseases. The aim of this review is to clarify the role of cholesterol homeostasis in health and disease highlighting new intriguing aspects of the cross talk between its central and peripheral metabolism.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Francesca Bosco
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Federica Scarano
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Saverio Nucera
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Stefano Ruga
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Cristina Carresi
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Roberta Macrì
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Annamaria Tavernese
- Division of Cardiology, University Hospital Policlinico Tor Vergata, Rome, Italy.
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Caterina Nicita
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Rocco Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Ernesto Palma
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy.
| | - Carolina Muscoli
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| | | | - Vincenzo Mollace
- Institute of Research for Food Safety & Health (IRC-FSH) - Department of Health Sciences, University "Magna Graecia" of Catanzaro, Catanzaro, Italy; IRCCS San Raffaele Pisana, Via di Valcannuta, Rome, Italy.
| |
Collapse
|
30
|
Implementation of Cholesterol-Lowering Therapy to Reduce Cardiovascular Risk in Persons Living with HIV. Cardiovasc Drugs Ther 2020; 36:173-186. [PMID: 32979175 DOI: 10.1007/s10557-020-07085-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2020] [Indexed: 10/23/2022]
Abstract
The widespread availability of highly effective antiretroviral therapies has reduced mortality from opportunistic infections in persons living with HIV (PLHIV), resulting in an increase in atherosclerotic cardiovascular disease (ASCVD) and other chronic illnesses (Samji et al. 2013). Although there has been a decline in morbidity and mortality from ASCVD in the past several decades, contemporary studies continue to report higher rates of cardiovascular events (Rosenson et al. 2020). HIV has been identified as a risk enhancer for ASCVD by multiple professional guideline writing committees (Grundy Scott et al. 2019, Mach et al. 2020); however, the utilization of cholesterol-lowering therapies in PLHIV remains low (Rosenson et al. 2018). Moreover, the use of statin therapy in PLHIV is complicated by drug-drug interactions that may either elevate or lower the blood statin concentrations resulting in increased toxicity or reduced efficacy respectively. Other comorbidities commonly associated with HIV present other challenges for the use of cholesterol-lowering therapies. This review will summarize the data on lipoprotein-associated ASCVD risk in PLHIV and discuss the challenges with effective treatment. Finally, we present a clinical algorithm to optimize cardiovascular risk reduction in this high-risk population.
Collapse
|
31
|
Lin PH, Duann P. Dyslipidemia in Kidney Disorders: Perspectives on Mitochondria Homeostasis and Therapeutic Opportunities. Front Physiol 2020; 11:1050. [PMID: 33013450 PMCID: PMC7494972 DOI: 10.3389/fphys.2020.01050] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
To excrete body nitrogen waste and regulate electrolyte and fluid balance, the kidney has developed into an energy factory with only second to the heart in mitochondrial content in the body to meet the high-energy demand and regulate homeostasis. Energy supply from the renal mitochondria majorly depends on lipid metabolism, with programed enzyme systems in fatty acid β-oxidation and Krebs cycle. Renal mitochondria integrate several metabolic pathways, including AMPK/PGC-1α, PPARs, and CD36 signaling to maintain energy homeostasis for dynamic and static requirements. The pathobiology of several kidney disorders, including diabetic nephropathy, acute and chronic kidney injuries, has been primarily linked to impaired mitochondrial bioenergetics. Such homeostatic disruption in turn stimulates a pathological adaptation, with mitochondrial enzyme system reprograming possibly leading to dyslipidemia. However, this alteration, while rescuing oncotic pressure deficit secondary to albuminuria and dissipating edematous disorder, also imposes an ominous lipotoxic consequence. Reprograming of lipid metabolism in kidney injury is essential to preserve the integrity of kidney mitochondria, thereby preventing massive collateral damage including excessive autophagy and chronic inflammation. Here, we review dyslipidemia in kidney disorders and the most recent advances on targeting mitochondrial energy metabolism as a therapeutic strategy to restrict renal lipotoxicity, achieve salutary anti-edematous effects, and restore mitochondrial homeostasis.
Collapse
Affiliation(s)
- Pei-Hui Lin
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Pu Duann
- Research and Development, Salem Veteran Affairs Medical Center, Salem, VA, United States
| |
Collapse
|
32
|
Kaddoura R, Orabi B, Salam AM. Efficacy and safety of PCSK9 monoclonal antibodies: an evidence-based review and update. J Drug Assess 2020; 9:129-144. [PMID: 32939318 PMCID: PMC7470150 DOI: 10.1080/21556660.2020.1801452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Treatment of dyslipidemia lowers cardiovascular (CV) risk. Although statin use is a cornerstone therapy, many patients are not achieving their risk-specific low-density lipoprotein cholesterol (LDL-C) goals. The proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies have been extensively studied as lipid-lowering therapy (LLT). Herein, we present an updated evidence-based review of the efficacy and safety of PCSK9 monoclonal antibodies in the treatment of familial and non-familial hypercholesterolemia. Methods PubMed database was searched to review Phase III studies on PCSK9 monoclonal antibodies. Then, the US National Institutes of Health Registry and the WHO International Clinical Trial Registry Platform were searched to identify and present the ongoing research. Results PCSK9 monoclonal antibodies were investigated for the treatment of dyslipidemia, as a single therapeutic agent or as an add-on therapy to the traditional LLT. They proved effective and safe in the treatment of familial and non-familial hypercholesterolemia, and in the prevention of adverse CV events. Conclusions The use of PCSK9 monoclonal antibodies in the treatment of dyslipidemia is currently recommended to achieve risk-specific LDL-C goal to reduce adverse CV events. Future results of the ongoing research might expand their clinical generalizability to broader patient populations.
Collapse
Affiliation(s)
- Rasha Kaddoura
- Hamad Medical Corporation, Heart Hospital Pharmacy, Doha, Ad Dawhah, Qatar
| | - Bassant Orabi
- Hamad Medical Corporation, Heart Hospital Pharmacy, Doha, Ad Dawhah, Qatar
| | - Amar M Salam
- Department of Cardiology, Hamad Medical Corporation, Al-khor Hospital, Doha, Ad Dawhah, Qatar
| |
Collapse
|
33
|
Abstract
Despite progress in both primary and secondary prevention, cardiovascular diseases (CVD) are still the largest group of ailments contributing to morbidity and mortality worldwide. Atherosclerotic changes, the primary pathological substrate for CVD, are closely related to hypercholesterolemia. Therefore, the treatment of hypercholesterolemia is a key therapeutic strategy for CVD management. Statins, as the gold standard in the treatment of hypercholesterolemia, have shown enhanced cardiac outcomes in many randomized clinical trials. However, often despite the maximum allowed and tolerated dosage of statins, we are not able to reach the target cholesterol levels, and thus patients persist at an increased cardiovascular risk. Recently, most of the large clinical studies in the field of preventive cardiology have focused on proprotein convertase subtilisin kexin type 9 (PCSK9) and its activity regulation. PCSK9 plays an essential role in the metabolism of LDL particles by inhibiting LDL receptor recirculation to the cell surface. Recent studies have shown that inhibition of PCSK9 by the administration of monoclonal antibodies is capable of significantly reducing LDL levels (up to an additional 60%) as well as reducing the incidence of CVD. However, this treatment procedure of administering the anti-PCSK9 antibodies, most frequently two times a month, has its limitations in terms of time, patient adherence, and nevertheless cost. Administration of active vaccination instead of passive immunization with anti-PCSK9 antibodies may be an effective way of controlling blood cholesterol levels. However, clinical data, as well as human testing, are still inadequate. This work aims to provide an overview of PCSK9 vaccines and their potential clinical benefit.
Collapse
|
34
|
Affiliation(s)
- Junyi Yang
- Department of Pharmaceutical, Central Hospital of Linyi City, Yishui, Shandong, China
| |
Collapse
|
35
|
Watts GF, Chan DC, Pang J, Ma L, Ying Q, Aggarwal S, Marcovina SM, Barrett PHR. PCSK9 Inhibition with alirocumab increases the catabolism of lipoprotein(a) particles in statin-treated patients with elevated lipoprotein(a). Metabolism 2020; 107:154221. [PMID: 32240727 DOI: 10.1016/j.metabol.2020.154221] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) particle containing apolipoprotein(a) (apo(a)) covalently linked to apolipoprotein B-100 (apoB). Statin-treated patients with elevated Lp(a) have an increased risk of atherosclerotic cardiovascular disease (ASCVD). Recent trials show that proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition decreases Lp(a) and cardiovascular events, particularly in high risk patients with elevated Lp(a). We investigated the kinetic mechanism whereby alirocumab, a PCSK9 inhibitor, lowers Lp(a) in statin-treated patients with high Lp(a) and ASCVD. METHODS The effects of 12-week alirocumab treatment (150 mg every 2 weeks) on apo(a) kinetics were studied in 21 patients with elevated Lp(a) concentration (>0.5 g/L). Apo(a) fractional catabolic rate (FCR) and production rate (PR) were determined using intravenous D3-leucine administration, mass spectrometry and compartmental modelling. All patients were on long-term statin treatment. RESULTS Alirocumab significantly decreased plasma concentrations of total cholesterol (-39%), LDL-cholesterol (-67%), apoB (-56%), apo(a) (-25%) and Lp(a) (-22%) (P< 0.001 for all). Alirocumab also significantly lowered plasma apo(a) pool size (-26%, P <0.001) and increased the FCR of apo(a) (+28%, P< 0.001), but did not alter apo(a) PR, which remained significantly higher relative to a reference group of patients on statins with normal Lp(a) (P< 0.001). CONCLUSIONS In statin-treated patients, alirocumab lowers elevated plasma Lp(a) concentrations by accelerating the catabolism of Lp(a) particles. This may be consequent on marked upregulation of hepatic receptors (principally for LDL) and/or reduced competition between Lp(a) and LDL particles for these receptors; the mechanism could contribute to the benefit of PCSK9 inhibition with alirocumab on cardiovascular outcomes.
Collapse
Affiliation(s)
- Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia.
| | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Louis Ma
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Qidi Ying
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | | | - Santica M Marcovina
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology, and Nutrition, Seattle, USA; Department of Medicine, University of Washington, Seattle, USA
| | - P Hugh R Barrett
- Faculty of Medicine and Health, University of New England, Armidale, Australia
| |
Collapse
|
36
|
Affiliation(s)
- Amit V Khera
- Center for Genomic Medicine and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston (A.V.K.).,Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA (A.V.K.).,Department of Medicine, Harvard Medical School, Boston, MA (A.V.K.)
| | - Robert A Hegele
- Departments of Medicine and Biochemistry and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Canada (R.A.H.)
| |
Collapse
|
37
|
Koenig W. Persistent inflammatory residual risk despite aggressive cholesterol-lowering therapy: further evidence fuelling the dual target concept. Eur Heart J 2020; 41:2962-2964. [DOI: 10.1093/eurheartj/ehaa186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| |
Collapse
|
38
|
Binder CJ, Borén J, Catapano AL, Dallinga-Thie G, Kronenberg F, Mallat Z, Negrini S, Raggi P, von Eckardstein A. The year 2019 in Atherosclerosis. Atherosclerosis 2020; 299:67-75. [PMID: 32248950 DOI: 10.1016/j.atherosclerosis.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Geesje Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
39
|
Kaddoura R, Orabi B, Salam AM. PCSK9 Monoclonal Antibodies: An Overview. Heart Views 2020; 21:97-103. [PMID: 33014302 PMCID: PMC7507904 DOI: 10.4103/heartviews.heartviews_20_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/24/2022] Open
Abstract
PCSK9 monoclonal antibodies are novel lipid-lowering therapy that have been extensively studied in patients with hypercholesterolemia either as monotherapy or as an add-on to other LLTs. PCSK9 monoclonal antibodies have significantly reduced the low-density lipoprotein cholesterol (LDL-C) plasma level resulting in a better LDL-C goal attainment. The commercially available PCSK9 monoclonal antibodies, alirocumab and evolocumab, have demonstrated reductions in major adverse cardiovascular events such as myocardial infarction, stroke, unstable angina, and the need for coronary revascularization but not mortality. PCSK9 monoclonal antibodies have demonstrated a favorable safety profile. The most reported side effects are mild injection site with no causal relationship proven between the inhibition of PCSK9 and neurocognitive or glycemic adverse events. In this overview, the efficacy and safety of PCSK9 monoclonal antibodies in the treatment of primary and familial hypercholesterolemia will be discussed.
Collapse
Affiliation(s)
- Rasha Kaddoura
- Pharmacy Department, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Bassant Orabi
- Pharmacy Department, Heart Hospital, Hamad Medical Corporation, Doha, Qatar
| | - Amar M Salam
- Department of Cardiology, Al Khor Hospital, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
40
|
Boccara F, Kumar PN, Caramelli B, Calmy A, López JAG, Bray S, Cyrille M, Rosenson RS. Evolocumab in HIV-Infected Patients With Dyslipidemia: Primary Results of the Randomized, Double-Blind BEIJERINCK Study. J Am Coll Cardiol 2020; 75:2570-2584. [PMID: 32234462 DOI: 10.1016/j.jacc.2020.03.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND People living with human immunodeficiency virus (PLHIV) are at increased risk of atherosclerotic cardiovascular disease (ASCVD) and are prone to statin-related adverse events from drug-drug interactions with certain antiretroviral regimens. OBJECTIVES This study sought to evaluate the efficacy and safety of evolocumab in dyslipidemic PLHIV. METHODS BEIJERINCK (EvolocumaB Effect on LDL-C Lowering in SubJEcts with Human Immunodeficiency VirRus and INcreased Cardiovascular RisK) is a randomized, double-blind, multinational trial comparing monthly subcutaneous evolocumab 420 mg with placebo in PLHIV with hypercholesterolemia/mixed dyslipidemia taking maximally-tolerated statin therapy. The primary endpoint was the percent change (baseline to week 24) in low-density lipoprotein cholesterol (LDL-C); secondary endpoints included achievement of LDL-C <70 mg/dl and percent change in other plasma lipid and lipoprotein levels. Treatment-emergent adverse events were also examined. RESULTS A total of 464 patients were analyzed (mean age of 56.4 years, 82.5% male, mean duration with HIV of 17.4 years). ASCVD was documented in 35.6% of patients, and statin intolerance/contraindications to statin use were present in 20.7% of patients. Evolocumab reduced LDL-C by 56.9% (95% confidence interval: 61.6% to 52.3%) from baseline to week 24 versus placebo. An LDL-C level of <70 mg/dl was achieved in 73.3% of patients in the evolocumab group versus 7.9% in the placebo group. Evolocumab also significantly reduced other atherogenic lipid levels, including non-high-density lipoprotein cholesterol, apolipoprotein B, and lipoprotein(a) (all p < 0.0001). Evolocumab was well tolerated, and treatment-emergent adverse events patient incidence was similar among evolocumab and placebo groups. CONCLUSIONS Evolocumab was safe and significantly reduced lipid levels in dyslipidemic PLHIV on maximally-tolerated statin therapy. Evolocumab is an effective therapy for lowering atherogenic lipoproteins in PLHIV with high cardiovascular risk. (Safety, Tolerability & Efficacy on LDL-C of Evolocumab in Subjects With HIV & Hyperlipidemia/Mixed Dyslipidemia; NCT02833844).
Collapse
Affiliation(s)
- Franck Boccara
- AP-HP, Hôpitaux de l'Est Parisien, Hôpital Saint-Antoine, Department of Cardiology, Sorbonne Université-INSERM UMR S_938, Centre de Recherche Saint-Antoine, Paris, France.
| | - Princy N Kumar
- Division of Infectious Diseases and Travel Medicine, Georgetown University School of Medicine, Washington, DC
| | - Bruno Caramelli
- Interdisciplinary Medicine in Cardiology Unit, InCor, University of São Paulo, São Paulo, Brazil
| | - Alexandra Calmy
- HIV/AIDS Unit, Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - Sarah Bray
- Global Development, Amgen Inc., Thousand Oaks, California
| | | | - Robert S Rosenson
- Cardiometabolics Unit, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
41
|
Evolocumab treatment in patients with HIV and hypercholesterolemia/mixed dyslipidemia: BEIJERINCK study design and baseline characteristics. Am Heart J 2020; 220:203-212. [PMID: 31841795 DOI: 10.1016/j.ahj.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/10/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND People living with human immunodeficiency virus (PLHIV) are at higher risk of atherosclerotic cardiovascular disease (ASCVD) due to traditional and HIV- or antiretroviral treatment (ART)-related risk factors. The use of high-intensity statin therapy is often limited by comorbidities and drug-drug interactions with ART. Herein, we present the design and baseline characteristics of the BEIJERINCK study, which will assess the safety and efficacy of evolocumab in PLHIV and hypercholesterolemia/mixed dyslipidemia. METHODS Randomized, double-blind, placebo-controlled, multinational trial that investigates monthly subcutaneous evolocumab 420 mg versus placebo in PLHIV with hypercholesterolemia/mixed dyslipidemia who are treated with maximally-tolerated statin therapy. The primary outcome is the baseline to week 24 percent change in low density lipoprotein cholesterol (LDL-C). Secondary outcomes include achievement of LDL-C < 70 mg/dL and percent change in other plasma lipid and lipoprotein levels. Safety will also be examined. RESULTS This study enrolled and dosed 464 patients who had a mean age of 56.4 years and were mostly male (82.5%). Mean duration with HIV was 17.4 years, and, by design, HIV viral load at screening was ≤50 copies/mL. ASCVD was documented in 35.6% of patients. Mean LDL-C of enrolled patients at baseline was 133.3 mg/dL. Statin use was prevalent (79.3% overall) with 74.6% receiving moderate or high-intensity statins. In total, 20.7% of patients did not receive statins due to intolerance/contraindications. CONCLUSIONS The BEIJERINCK study is the first clinical trial to examine the lipid-lowering efficacy and safety of a fully human PCSK9 monoclonal antibody inhibitor in a moderate/high cardiovascular risk population of PLHIV.
Collapse
|
42
|
Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat Rev Cardiol 2020; 17:360-377. [DOI: 10.1038/s41569-019-0325-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
|
43
|
Weitz JI, Fazio S. Overview of Therapeutic Approaches for Cholesterol Lowering and Attenuation of Thrombosis for Prevention of Atherothrombosis. Circ Res 2019; 124:351-353. [PMID: 30702992 DOI: 10.1161/circresaha.118.314576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jeffrey I Weitz
- From the Department of Medicine, Department of Biochemistry and Biomedical Sciences, McMaster University, and the Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada (J.I.W.)
| | - Sergio Fazio
- Knight Cardiovascular Institute, Center for Preventive Cardiology, Oregon Health and Science University, Portland (S.F.)
| |
Collapse
|
44
|
Brandts J, Müller-Wieland D. PCSK9 Inhibition: New Treatment Options and Perspectives to Lower Atherogenic Lipoprotein Particles and Cardiovascular Risk. Curr Atheroscler Rep 2019; 21:40. [PMID: 31350672 DOI: 10.1007/s11883-019-0802-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To summarize latest clinical studies and to put them into perspectives for clinical relevant subgroups and new therapeutic options. RECENT FINDINGS Have investigated PCSK9 inhibitors in patients with very high cardiovascular risk and insufficient LDL cholesterol lowering under current maximal tolerated lipid-lowering therapy, patients with statin intolerance, or genetic forms of familiar hypercholesterolemia, and patients on LDL apheresis. Purpose of recent cardiovascular endpoint trials has proven cardiovascular benefit of this new approach. PCSK9 inhibition with fully humanized antibodies has proven to be effective, safe, and well-tolerated in reducing cardiovascular risk by LDL cholesterol lowering. Therefore, research interests are to elucidate additional roles and effects of PCSK9 modulation on inflammation and cellular processes of the atherosclerotic plaque and to develop alternative therapeutic strategies addressing PCSK9 as a proven and therefore promising drug target.
Collapse
Affiliation(s)
- Julia Brandts
- Department of Medicine I, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Dirk Müller-Wieland
- Department of Medicine I, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|