1
|
Zeng M, Huang L, Zheng X, Weng L, Weng CF. Barium Chloride-Induced Cardiac Arrhythmia Mouse Model Exerts an Experimental Arrhythmia for Pharmacological Investigations. Life (Basel) 2024; 14:1047. [PMID: 39202788 PMCID: PMC11355614 DOI: 10.3390/life14081047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
AIM Cardiac arrhythmias are among the most important pathologies that cause sudden death. The exploration of new therapeutic options against arrhythmias with low undesirable effects is of paramount importance. METHODS However, the convenient and typical animal model for screening the potential lead compound becomes a very critical modality, particularly in anti-arrhythmia. In this study, mice were intraperitoneally (i.p.) injected with BaCl2, CaCl2, and adrenaline to induce arrhythmia, and simultaneously compared with BaCl2-induced rats. RESULTS Electrocardiogram (ECG) showed that the majority of mice repeatedly developed ventricular bigeminy, ventricular tachycardia (VT), and ventricular fibrillation (VF) after BaCl2-injection as seen in rats. The ECG of mice developed ventricular bigeminy and VT after CaCl2 and AT after adrenaline i.p. injection. Additionally, acute cardiac arrhythmia after BaCl2 i.p. injection could be reverted by drugs (lidocaine and amiodarone) administration. Additionally, the different routes of administration for various chemical-induced arrhythmia in both mice and rats were also retrieved from PubMed and summarized. Comparing this approach with previous studies after the literature review reveals that arrhythmia of BaCl2-induced i.p. mice is compatible with the induction of other routes. CONCLUSIONS This study brings an alternative experimental model to investigate antiarrhythmic theories and provides a promising approach to discovering new interventions for acute arrhythmias.
Collapse
Affiliation(s)
- Mengting Zeng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Liyue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Xiaohui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Lebin Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.Z.); (L.H.); (X.Z.); (L.W.)
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- LEADTEK Research, Inc., New Taipei City 235603, Taiwan
| |
Collapse
|
2
|
Palmer JA, Rosenthal N, Teichmann SA, Litvinukova M. Revisiting Cardiac Biology in the Era of Single Cell and Spatial Omics. Circ Res 2024; 134:1681-1702. [PMID: 38843288 PMCID: PMC11149945 DOI: 10.1161/circresaha.124.323672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Throughout our lifetime, each beat of the heart requires the coordinated action of multiple cardiac cell types. Understanding cardiac cell biology, its intricate microenvironments, and the mechanisms that govern their function in health and disease are crucial to designing novel therapeutical and behavioral interventions. Recent advances in single-cell and spatial omics technologies have significantly propelled this understanding, offering novel insights into the cellular diversity and function and the complex interactions of cardiac tissue. This review provides a comprehensive overview of the cellular landscape of the heart, bridging the gap between suspension-based and emerging in situ approaches, focusing on the experimental and computational challenges, comparative analyses of mouse and human cardiac systems, and the rising contextualization of cardiac cells within their niches. As we explore the heart at this unprecedented resolution, integrating insights from both mouse and human studies will pave the way for novel diagnostic tools and therapeutic interventions, ultimately improving outcomes for patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Jack A. Palmer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
| | - Nadia Rosenthal
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME (N.R.)
- National Heart and Lung Institute, Imperial College London, United Kingdom (N.R.)
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom (J.A.P., S.A.T.)
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus (J.A.P., S.A.T.), University of Cambridge, United Kingdom
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory (S.A.T.), University of Cambridge, United Kingdom
| | - Monika Litvinukova
- University Hospital Würzburg, Germany (M.L.)
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, Germany (M.L.)
- Helmholtz Pioneer Campus, Helmholtz Munich, Germany (M.L.)
| |
Collapse
|
3
|
Chen J, Qin H, Hao J, Wang Q, Chen S, Yang G, Li M, Zhu X, Wang D, Chen H, Cui C, Chen M. Cardiac-specific overexpression of CREM-IbΔC-X via CRISPR/Cas9 in mice presents a new model of atrial cardiomyopathy with spontaneous atrial fibrillation. Transl Res 2024; 267:54-66. [PMID: 38199433 DOI: 10.1016/j.trsl.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Atrial cardiomyopathy (ACM) forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. However, generating stable animal models that accurately replicate the entire progression of atrial lesions, particularly the onset of AF, presents significant challenges. In the present study, we found that the isoform of CRE-binding protein modulator (CREM-IbΔC-X), which is involved in the regulation of cardiac development and atrial rhythm, was highly expressed in atrial biopsies from patients with AF. Building upon this finding, we employed CRISPR/Cas9 technology to create a mouse model with cardiac-specific overexpression of CREM-IbΔC-X (referred to as CS-CREM mice). This animal model effectively illustrated the development of ACM through electrophysiological and structural remodelings over time. Proteomics and Chip-qPCR analysis of atrial samples revealed significant upregulation of cell-matrix adhesion and extracellular matrix structural components, alongside significant downregulation of genes related to atrial functions in the CS-CREM mice. Furthermore, the corresponding responses to anti-arrhythmia drugs, i.e., amiodarone and propafenone, suggested that CS-CREM mice could serve as an ideal in vivo model for drug testing. Our study introduced a novel ACM model with spontaneous AF by cardiac-specifically overexpressing CREM-IbΔC-X in mice, providing valuable insights into the mechanisms and therapeutic targets of ACM.
Collapse
Affiliation(s)
- Jiuzhou Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Huiyuan Qin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Jingzhe Hao
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Qing Wang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Shaojie Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Gang Yang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Mingfang Li
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Xiyu Zhu
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Dongjin Wang
- Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China.
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China.
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
4
|
Zhao S, Hulsurkar MM, Lahiri SK, Aguilar-Sanchez Y, Munivez E, Müller FU, Jain A, Malovannaya A, Yiu CHK, Reilly S, Wehrens XHT. Atrial proteomic profiling reveals a switch towards profibrotic gene expression program in CREM-IbΔC-X mice with persistent atrial fibrillation. J Mol Cell Cardiol 2024; 190:1-12. [PMID: 38514002 DOI: 10.1016/j.yjmcc.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/19/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. PURPOSE To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. METHODS Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. RESULTS A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and structural based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns reminiscent of those seen in humans with persistent AF. CONCLUSIONS This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.
Collapse
Affiliation(s)
- Shuai Zhao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA; Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chi Him Kendrick Yiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA; Center for Space Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
5
|
Khawajakhail R, Khan RU, Gondal MUR, Toru HK, Malik M, Iqbal A, Malik J, Faraz M, Awais M. Advancements in gene therapy approaches for atrial fibrillation: Targeted delivery, mechanistic insights and future prospects. Curr Probl Cardiol 2024; 49:102431. [PMID: 38309546 DOI: 10.1016/j.cpcardiol.2024.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Atrial fibrillation (AF) remains a complex and challenging arrhythmia to treat, necessitating innovative therapeutic strategies. This review explores the evolving landscape of gene therapy for AF, focusing on targeted delivery methods, mechanistic insights, and future prospects. Direct myocardial injection, reversible electroporation, and gene painting techniques are discussed as effective means of delivering therapeutic genes, emphasizing their potential to modulate both structural and electrical aspects of the AF substrate. The importance of identifying precise targets for gene therapy, particularly in the context of AF-associated genetic, structural, and electrical abnormalities, is highlighted. Current studies employing animal models, such as mice and large animals, provide valuable insights into the efficacy and limitations of gene therapy approaches. The significance of imaging methods for detecting atrial fibrosis and guiding targeted gene delivery is underscored. Activation mapping techniques offer a nuanced understanding of AF-specific mechanisms, enabling tailored gene therapy interventions. Future prospects include the integration of advanced imaging, activation mapping, and percutaneous catheter-based techniques to refine transendocardial gene delivery, with potential applications in both ventricular and atrial contexts. As gene therapy for AF progresses, bridging the translational gap between preclinical models and clinical applications is imperative for the successful implementation of these promising approaches.
Collapse
Affiliation(s)
| | | | | | - Hamza Khan Toru
- Department of Medicine, King's Mill Hospital, Nottinghamshire, United Kingdom
| | - Maria Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Arham Iqbal
- Department of Medicine, Dow International Medical College, Karachi, Pakistan
| | - Jahanzeb Malik
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Maria Faraz
- Department of Cardiovascular Medicine, Cardiovascular Analytics Group, Islamabad, Pakistan
| | - Muhammad Awais
- Department of Cardiology, Islamic International Medical College, Rawalpindi, Pakistan.
| |
Collapse
|
6
|
Gong Q, LE X, Yu P, Zhuang L. Therapeutic advances in atrial fibrillation based on animal models. J Zhejiang Univ Sci B 2024; 25:135-152. [PMID: 38303497 PMCID: PMC10835209 DOI: 10.1631/jzus.b2300285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/14/2023] [Indexed: 02/03/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia among humans, with its incidence increasing significantly with age. Despite the high frequency of AF in clinical practice, its etiology and management remain elusive. To develop effective treatment strategies, it is imperative to comprehend the underlying mechanisms of AF; therefore, the establishment of animal models of AF is vital to explore its pathogenesis. While spontaneous AF is rare in most animal species, several large animal models, particularly those of pigs, dogs, and horses, have proven as invaluable in recent years in advancing our knowledge of AF pathogenesis and developing novel therapeutic options. This review aims to provide a comprehensive discussion of various animal models of AF, with an emphasis on the unique features of each model and its utility in AF research and treatment. The data summarized in this review provide valuable insights into the mechanisms of AF and can be used to evaluate the efficacy and safety of novel therapeutic interventions.
Collapse
Affiliation(s)
- Qian Gong
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xuan LE
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Pengcheng Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Lenan Zhuang
- Institute of Genetics and Reproduction, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.
| |
Collapse
|
7
|
Navarro-Garcia JA, Bruns F, Moore OM, Tekook MA, Dobrev D, Miyake CY, Wehrens XH. In Vivo Cardiac Electrophysiology in Mice: Determination of Atrial and Ventricular Arrhythmic Substrates. Curr Protoc 2024; 4:e994. [PMID: 38372479 PMCID: PMC10883620 DOI: 10.1002/cpz1.994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Cardiac arrhythmias are a common cardiac condition that might lead to fatal outcomes. A better understanding of the molecular and cellular basis of arrhythmia mechanisms is necessary for the development of better treatment modalities. To aid these efforts, various mouse models have been developed for studying cardiac arrhythmias. Both genetic and surgical mouse models are commonly used to assess the incidence and mechanisms of arrhythmias. Since spontaneous arrhythmias are uncommon in healthy young mice, intracardiac programmed electrical stimulation (PES) can be performed to assess the susceptibility to pacing-induced arrhythmias and uncover the possible presence of a proarrhythmogenic substrate. This procedure is performed by positioning an octopolar catheter inside the right atrium and ventricle of the heart through the right jugular vein. PES can provide insights into atrial and ventricular electrical activity and reveal whether atrial and/or ventricular arrhythmias are present or can be induced. Here, we explain detailed procedures used to perform this technique, possible troubleshooting scenarios, and methods to interpret the results obtained. © 2024 Wiley Periodicals LLC. Basic Protocol: Programmed electrical stimulation in mice.
Collapse
Affiliation(s)
- Jose Alberto Navarro-Garcia
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, USA
| | - Florian Bruns
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Oliver M. Moore
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, USA
| | - Marcel A. Tekook
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal
| | - Christina Y. Miyake
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine, Houston, US
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, USA
- Department of Medicine, Division of Cardiology, Baylor College of Medicine, Houston, US
- Department of Neuroscience, Baylor College of Medicine, Houston, US
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine, Houston, US
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Zhao S, Hulsurkar MM, Lahiri SK, Aguilar-Sanchez Y, Munivez E, Müller FU, Jain A, Malovannaya A, Yiu K, Reilly S, Wehrens XH. Atrial Proteomic Profiling Reveals a Switch Towards Profibrotic Gene Expression Program in CREM-IbΔC-X Mice with Persistent Atrial Fibrillation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.575097. [PMID: 38260363 PMCID: PMC10802622 DOI: 10.1101/2024.01.10.575097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background Overexpression of the CREM (cAMP response element-binding modulator) isoform CREM-IbΔC-X in transgenic mice (CREM-Tg) causes the age-dependent development of spontaneous AF. Purpose To identify key proteome signatures and biological processes accompanying the development of persistent AF through integrated proteomics and bioinformatics analysis. Methods Atrial tissue samples from three CREM-Tg mice and three wild-type littermates were subjected to unbiased mass spectrometry-based quantitative proteomics, differential expression and pathway enrichment analysis, and protein-protein interaction (PPI) network analysis. Results A total of 98 differentially expressed proteins were identified. Gene ontology analysis revealed enrichment for biological processes regulating actin cytoskeleton organization and extracellular matrix (ECM) dynamics. Changes in ITGAV, FBLN5, and LCP1 were identified as being relevant to atrial fibrosis and remodeling based on expression changes, co-expression patterns, and PPI network analysis. Comparative analysis with previously published datasets revealed a shift in protein expression patterns from ion-channel and metabolic regulators in young CREM-Tg mice to profibrotic remodeling factors in older CREM-Tg mice. Furthermore, older CREM-Tg mice exhibited protein expression patterns that resembled those of humans with persistent AF. Conclusions This study uncovered distinct temporal changes in atrial protein expression patterns with age in CREM-Tg mice consistent with the progressive evolution of AF. Future studies into the role of the key differentially abundant proteins identified in this study in AF progression may open new therapeutic avenues to control atrial fibrosis and substrate development in AF.
Collapse
Affiliation(s)
- Shuai Zhao
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Satadru K. Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuriana Aguilar-Sanchez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Frank Ulrich Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kendrick Yiu
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, NIHR Oxford BRC, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (in Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, USA
| |
Collapse
|
9
|
Luo L, Li Y, Bao Z, Zhu D, Chen G, Li W, Xiao Y, Wang Z, Zhang Y, Liu H, Chen Y, Liao Y, Cheng K, Li Z. Pericardial Delivery of SDF-1α Puerarin Hydrogel Promotes Heart Repair and Electrical Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302686. [PMID: 37665792 DOI: 10.1002/adma.202302686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Indexed: 09/06/2023]
Abstract
The stromal-derived factor 1α/chemokine receptor 4 (SDF-1α/CXCR4) axis contributes to myocardial protection after myocardial infarction (MI) by recruiting endogenous stem cells into the ischemic tissue. However, excessive inflammatory macrophages are also recruited simultaneously, aggravating myocardial damage. More seriously, the increased inflammation contributes to abnormal cardiomyocyte electrical coupling, leading to inhomogeneities in ventricular conduction and retarded conduction velocity. It is highly desirable to selectively recruit the stem cells but block the inflammation. In this work, SDF-1α-encapsulated Puerarin (PUE) hydrogel (SDF-1α@PUE) is capable of enhancing endogenous stem cell homing and simultaneously polarizing the recruited monocyte/macrophages into a repairing phenotype. Flow cytometry analysis of the treated heart tissue shows that endogenous bone marrow mesenchymal stem cells, hemopoietic stem cells, and immune cells are recruited while SDF-1α@PUE efficiently polarizes the recruited monocytes/macrophages into the M2 type. These macrophages influence the preservation of connexin 43 (Cx43) expression which modulates intercellular coupling and improves electrical conduction. Furthermore, by taking advantage of the improved "soil", the recruited stem cells mediate an improved cardiac function by preventing deterioration, promoting neovascular architecture, and reducing infarct size. These findings demonstrate a promising therapeutic platform for MI that not only facilitates heart regeneration but also reduces the risk of cardiac arrhythmias.
Collapse
Affiliation(s)
- Li Luo
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yuetong Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
| | - Ziwei Bao
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Guoqin Chen
- Cardiology Department of Panyu Central Hospital and Cardiovascular Disease Institute of Panyu District, Guangzhou, 511400, P. R. China
| | - Weirun Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Yingxian Xiao
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| | - Zhenzhen Wang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC, 27606, USA
| | - Yixin Zhang
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Huifang Liu
- College of Pharmaceutical Science, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, 071002, China
| | - Yanmei Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Liao
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, 10032, USA
| | - Zhenhua Li
- The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong, 523059, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangzhou, 510515, China
| |
Collapse
|
10
|
Grandi E, Navedo MF, Saucerman JJ, Bers DM, Chiamvimonvat N, Dixon RE, Dobrev D, Gomez AM, Harraz OF, Hegyi B, Jones DK, Krogh-Madsen T, Murfee WL, Nystoriak MA, Posnack NG, Ripplinger CM, Veeraraghavan R, Weinberg S. Diversity of cells and signals in the cardiovascular system. J Physiol 2023; 601:2547-2592. [PMID: 36744541 PMCID: PMC10313794 DOI: 10.1113/jp284011] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
This white paper is the outcome of the seventh UC Davis Cardiovascular Research Symposium on Systems Approach to Understanding Cardiovascular Disease and Arrhythmia. This biannual meeting aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The theme of the 2022 Symposium was 'Cell Diversity in the Cardiovascular System, cell-autonomous and cell-cell signalling'. Experts in the field contributed their experimental and mathematical modelling perspectives and discussed emerging questions, controversies, and challenges in examining cell and signal diversity, co-ordination and interrelationships involved in cardiovascular function. This paper originates from the topics of formal presentations and informal discussions from the Symposium, which aimed to develop a holistic view of how the multiple cell types in the cardiovascular system integrate to influence cardiovascular function, disease progression and therapeutic strategies. The first section describes the major cell types (e.g. cardiomyocytes, vascular smooth muscle and endothelial cells, fibroblasts, neurons, immune cells, etc.) and the signals involved in cardiovascular function. The second section emphasizes the complexity at the subcellular, cellular and system levels in the context of cardiovascular development, ageing and disease. Finally, the third section surveys the technological innovations that allow the interrogation of this diversity and advancing our understanding of the integrated cardiovascular function and dysfunction.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Manuel F. Navedo
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Jeffrey J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis, Davis, CA, USA
- Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Rose E. Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Ana M. Gomez
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, INSERM, Université Paris-Saclay, Orsay, France
| | - Osama F. Harraz
- Department of Pharmacology, Larner College of Medicine, and Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, VT, USA
| | - Bence Hegyi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - David K. Jones
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Trine Krogh-Madsen
- Department of Physiology & Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Matthew A. Nystoriak
- Department of Medicine, Division of Environmental Medicine, Center for Cardiometabolic Science, University of Louisville, Louisville, KY, 40202, USA
| | - Nikki G. Posnack
- Department of Pediatrics, Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
- Sheikh Zayed Institute for Pediatric and Surgical Innovation, Children’s National Heart Institute, Children’s National Hospital, Washington, DC, USA
| | | | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| | - Seth Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University – Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
11
|
Calvet C, Seebeck P. What to consider for ECG in mice-with special emphasis on telemetry. Mamm Genome 2023; 34:166-179. [PMID: 36749381 PMCID: PMC10290603 DOI: 10.1007/s00335-023-09977-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
Genetically or surgically altered mice are commonly used as models of human cardiovascular diseases. Electrocardiography (ECG) is the gold standard to assess cardiac electrophysiology as well as to identify cardiac phenotypes and responses to pharmacological and surgical interventions. A variety of methods are used for mouse ECG acquisition under diverse conditions, making it difficult to compare different results. Non-invasive techniques allow only short-term data acquisition and are prone to stress or anesthesia related changes in cardiac activity. Telemetry offers continuous long-term acquisition of ECG data in conscious freely moving mice in their home cage environment. Additionally, it allows acquiring data 24/7 during different activities, can be combined with different challenges and most telemetry systems collect additional physiological parameters simultaneously. However, telemetry transmitters require surgical implantation, the equipment for data acquisition is relatively expensive and analysis of the vast number of ECG data is challenging and time-consuming. This review highlights the limits of non-invasive methods with respect to telemetry. In particular, primary screening using non-invasive methods can give a first hint; however, subtle cardiac phenotypes might be masked or compensated due to anesthesia and stress during these procedures. In addition, we detail the key differences between the mouse and human ECG. It is crucial to consider these differences when analyzing ECG data in order to properly translate the insights gained from murine models to human conditions.
Collapse
Affiliation(s)
- Charlotte Calvet
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | - Petra Seebeck
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
13
|
Liao Y, Xiang Y, Zheng M, Wang J. DeepMiceTL: a deep transfer learning based prediction of mice cardiac conduction diseases using early electrocardiograms. Brief Bioinform 2023; 24:bbad109. [PMID: 36935112 PMCID: PMC10422927 DOI: 10.1093/bib/bbad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
Cardiac conduction disease is a major cause of morbidity and mortality worldwide. There is considerable clinical significance and an emerging need of early detection of these diseases for preventive treatment success before more severe arrhythmias occur. However, developing such early screening tools is challenging due to the lack of early electrocardiograms (ECGs) before symptoms occur in patients. Mouse models are widely used in cardiac arrhythmia research. The goal of this paper is to develop deep learning models to predict cardiac conduction diseases in mice using their early ECGs. We hypothesize that mutant mice present subtle abnormalities in their early ECGs before severe arrhythmias present. These subtle patterns can be detected by deep learning though they are hard to be identified by human eyes. We propose a deep transfer learning model, DeepMiceTL, which leverages knowledge from human ECGs to learn mouse ECG patterns. We further apply the Bayesian optimization and $k$-fold cross validation methods to tune the hyperparameters of the DeepMiceTL. Our results show that DeepMiceTL achieves a promising performance (F1-score: 83.8%, accuracy: 84.8%) in predicting the occurrence of cardiac conduction diseases using early mouse ECGs. This study is among the first efforts that use state-of-the-art deep transfer learning to identify ECG patterns during the early course of cardiac conduction disease in mice. Our approach not only could help in cardiac conduction disease research in mice, but also suggest a feasibility for early clinical diagnosis of human cardiac conduction diseases and other types of cardiac arrythmias using deep transfer learning in the future.
Collapse
Affiliation(s)
- Ying Liao
- Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Yisha Xiang
- Department of Industrial Engineering, University of Houston, Houston, Texas, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
14
|
Huffman WJ, Musselman ED, Pelot NA, Grill WM. Measuring and modeling the effects of vagus nerve stimulation on heart rate and laryngeal muscles. Bioelectron Med 2023; 9:3. [PMID: 36797733 PMCID: PMC9936668 DOI: 10.1186/s42234-023-00107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Reduced heart rate (HR) during vagus nerve stimulation (VNS) is associated with therapy for heart failure, but stimulation frequency and amplitude are limited by patient tolerance. An understanding of physiological responses to parameter adjustments would allow differential control of therapeutic and side effects. To investigate selective modulation of the physiological responses to VNS, we quantified the effects and interactions of parameter selection on two physiological outcomes: one related to therapy (reduced HR) and one related to side effects (laryngeal muscle EMG). METHODS We applied a broad range of stimulation parameters (mean pulse rates (MPR), intra-burst frequencies, and amplitudes) to the vagus nerve of anesthetized mice. We leveraged the in vivo recordings to parameterize and validate computational models of HR and laryngeal muscle activity across amplitudes and temporal patterns of VNS. We constructed a finite element model of excitation of fibers within the mouse cervical vagus nerve. RESULTS HR decreased with increased amplitude, increased MPR, and decreased intra-burst frequency. EMG increased with increased MPR. Preferential HR effects over laryngeal EMG effects required combined adjustments of amplitude and MPR. The model of HR responses highlighted contributions of ganglionic filtering to VNS-evoked changes in HR at high stimulation frequencies. Overlap in activation thresholds between small and large modeled fibers was consistent with the overlap in dynamic ranges of related physiological measures (HR and EMG). CONCLUSION The present study provides insights into physiological responses to VNS required for informed parameter adjustment to modulate selectively therapeutic effects and side effects.
Collapse
Affiliation(s)
- William J. Huffman
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Eric D. Musselman
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Nicole A. Pelot
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
| | - Warren M. Grill
- Department of Biomedical Engineering, Duke University, Fitzpatrick CIEMAS, Box 90281, Room 1427, 101 Science Drive, Durham, NC 27708-0281 USA
- Department of Electrical and Computer Engineering, Duke University, Durham, USA
- Department of Neurobiology Engineering, Duke University, Durham, USA
- Department of Neurosurgery Engineering, Duke University, Durham, USA
| |
Collapse
|
15
|
Walls GM, O'Kane R, Ghita M, Kuburas R, McGarry CK, Cole AJ, Jain S, Butterworth KT. Murine models of radiation cardiotoxicity: A systematic review and recommendations for future studies. Radiother Oncol 2022; 173:19-31. [PMID: 35533784 DOI: 10.1016/j.radonc.2022.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE The effects of radiation on the heart are dependent on dose, fractionation, overall treatment time, and pre-existing cardiovascular pathology. Murine models have played a central role in improving our understanding of the radiation response of the heart yet a wide range of exposure parameters have been used. We evaluated the study design of published murine cardiac irradiation experiments to assess gaps in the literature and to suggest guidance for the harmonisation of future study reporting. METHODS AND MATERIALS A systematic review of mouse/rat studies published 1981-2021 that examined the effect of radiation on the heart was performed. The protocol was published on PROSPERO (CRD42021238921) and the findings were reported in accordance with the PRISMA guidance. Risk of bias was assessed using the SYRCLE checklist. RESULTS 159 relevant full-text original articles were reviewed. The heart only was the target volume in 67% of the studies and simulation details were unavailable for 44% studies. Dosimetry methods were reported in 31% studies. The pulmonary effects of whole and partial heart irradiation were reported in 13% studies. Seventy-eight unique dose-fractionation schedules were evaluated. Large heterogeneity was observed in the endpoints measured, and the reporting standards were highly variable. CONCLUSIONS Current murine models of radiation cardiotoxicity cover a wide range of irradiation configurations and latency periods. There is a lack of evidence describing clinically relevant dose-fractionations, circulating biomarkers and radioprotectants. Recommendations for the consistent reporting of methods and results of in vivo cardiac irradiation studies are made to increase their suitability for informing the design of clinical studies.
Collapse
Affiliation(s)
- Gerard M Walls
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland.
| | - Reagan O'Kane
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Mihaela Ghita
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Refik Kuburas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| | - Conor K McGarry
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Aidan J Cole
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Suneil Jain
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland; Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, Lisburn Road, Belfast, Northern Ireland
| | - Karl T Butterworth
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Lisburn Road, Belfast, Northern Ireland
| |
Collapse
|
16
|
Schroder EA, Burgess DE, Johnson SR, Ono M, Seward T, Elayi CS, Esser KA, Delisle BP. Timing of food intake in mice unmasks a role for the cardiomyocyte circadian clock mechanism in limiting QT-interval prolongation. Chronobiol Int 2022; 39:525-534. [PMID: 34875962 PMCID: PMC8989643 DOI: 10.1080/07420528.2021.2011307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cardiac electrophysiological studies demonstrate that restricting the feeding of mice to the light cycle (time restricted feeding or TRF) causes a pronounced change in heart rate and ventricular repolarization as measured by the RR- and QT-interval, respectively. TRF slows heart rate and shifts the peak (acrophase) of the day/night rhythms in the RR- and QT-intervals from the light to the dark cycle. This study tested the hypothesis that these changes in cardiac electrophysiology are driven by the cardiomyocyte circadian clock mechanism. We determined the impact that TRF had on RR- and QT-intervals in control mice or mice that had the cardiomyocyte circadian clock mechanism disrupted by inducing the deletion of Bmal1 in adult cardiomyocytes (iCSΔBmal1-/- mice). In control and iCSΔBmal1-/- mice, TRF increased the RR-intervals measured during the dark cycle and shifted the acrophase of the day/night rhythm in the RR-interval from the light to the dark cycle. Compared to control mice, TRF caused a larger prolongation of the QT-interval measured from iCSΔBmal1-/- mice during the dark cycle. The larger QT-interval prolongation in the iCSΔBmal1-/- mice caused an increased mean and amplitude in the day/night rhythm of the QT-interval. There was not a difference in the TRF-induced shift in the day/night rhythm of the QT-interval measured from control or iCSΔBmal1-/- mice. We conclude that the cardiomyocyte circadian clock does not drive the changes in heart rate or ventricular repolarization with TRF. However, TRF unmasks an important role for the cardiomyocyte circadian clock to prevent excessive QT-interval prolongation, especially at slow heart rates.
Collapse
Affiliation(s)
- Elizabeth A. Schroder
- Department of Physiology University of Kentucky, Lexington, KY, USA,Internal Medicine, Pulmonary, University of Kentucky, Lexington, KY, USA
| | - Don E. Burgess
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | | | - Makoto Ono
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | - Tanya Seward
- Department of Physiology University of Kentucky, Lexington, KY, USA
| | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Brian P. Delisle
- Department of Physiology University of Kentucky, Lexington, KY, USA
| |
Collapse
|
17
|
Ni L, Lahiri SK, Nie J, Pan X, Abu-Taha I, Reynolds JO, Campbell HM, Wang H, Kamler M, Schmitz W, Müller FU, Li N, Wei X, Wang DW, Dobrev D, Wehrens XHT. Genetic inhibition of Nuclear Factor of Activated T-cell c2 (NFATc2) prevents atrial fibrillation in CREM transgenic mice. Cardiovasc Res 2021; 118:2805-2818. [PMID: 34648001 PMCID: PMC9586567 DOI: 10.1093/cvr/cvab325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Abnormal intracellular calcium handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signaling pathway contributes to atrial remodeling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models. METHODS AND RESULTS Expression levels of NFATc1-c4 isoforms were assessed by quantitative reverse transcription-polymerase chain reaction in right atrial appendages from patients with chronic AF. NFATc1 and NFATc2 mRNA levels were elevated in chronic AF (cAF) patients compared with those in sinus rhythm (SR). Western blotting revealed increased cytosolic and nuclear levels of NFATc2 in AF patients. Similar findings were obtained in CREM-IbΔC-X transgenic (CREM) mice, a model of progressive AF. Telemetry ECG recordings revealed age-dependent spontaneous AF in CREM mice, which was prevented by NFATc2 knockout in CREM: NFATc2-/- mice. Programmed electrical stimulation revealed that CREM: NFATc2-/- mice lacked an AF substrate. Morphometric analysis and histology revealed increased atrial weight and atrial fibrosis in CREM mice compared with WT controls, which was reversed in CREM: NFATc2-/- mice. Confocal microscopy showed an increased Ca2+ spark frequency despite a reduced sarcoplasmic reticulum (SR) Ca2+ load in CREM mice compared with controls, whereas these abnormalities were normalized in CREM: NFATc2-/- mice. Western blotting revealed that genetic inhibition of Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of S2814 on RyR2 in CREM: RyR2-S2814A mice suppressed NFATc2 activation observed in CREM mice, suggesting that NFATc2 is activated by excessive SR Ca2+ leak via RyR2. Finally, chromatin immunoprecipitation sequencing from AF patients identified Ras And EF-Hand Domain-Containing Protein (RASEF) as a direct target of NFATc2 mediated transcription. CONCLUSION Our findings reveal activation of the NFAT signaling pathway in patients of Chinese and European descent. NFATc2 knockout prevents the progression of AF in the CREM mouse model. TRANSLATIONAL PERSPECTIVE Atrial fibrillation (AF) is a progressive disease characterized by electrical and structural remodeling which promotes atrial arrhythmias. This study provides evidence for increased 'nuclear factor of activated T-cell' (NFAT) signaling in patients with chronic AF. Studies in the CREM transgenic model of progressive AF revealed that the NFATc2 isoform mediates atrial remodeling associated with AF substrate development. Chromatin immunoprecipitation sequencing of atrial biopsies from AF patients identified 'Ras And EF-Hand Domain-Containing Protein' (RASEF) as a downstream target of NFATc2-mediated transcription, suggesting that targeting these factors might be beneficial for curtailing AF progression.
Collapse
Affiliation(s)
- Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Satadru K Lahiri
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaolu Pan
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Julia O Reynolds
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hannah M Campbell
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Haihao Wang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Markus Kamler
- Cardiac Surgery II Essen-Huttrop, University Hospital, West German Heart Center, University of Essen, Germany
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University of Münster, Germany
| | | | - Na Li
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Institute of Pharmacology and Toxicology, University of Münster, Germany
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
18
|
Yoo S, Geist GE, Pfenniger A, Rottmann M, Arora R. Recent advances in gene therapy for atrial fibrillation. J Cardiovasc Electrophysiol 2021; 32:2854-2864. [PMID: 34053133 PMCID: PMC9281901 DOI: 10.1111/jce.15116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Atrial fibrillation (AF) is the most common heart rhythm disorder in adults and a major cause of stroke. Unfortunately, current treatments for AF are suboptimal as they are not targeting the molecular mechanisms underlying AF. In this regard, gene therapy is emerging as a promising approach for mechanism-based treatment of AF. In this review, we summarize recent advances and challenges in gene therapy for this important cardiovascular disease.
Collapse
Affiliation(s)
- Shin Yoo
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gail Elizabeth Geist
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pfenniger
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Markus Rottmann
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rishi Arora
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University-Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
19
|
Krishnan A, Chilton E, Raman J, Saxena P, McFarlane C, Trollope AF, Kinobe R, Chilton L. Are Interactions between Epicardial Adipose Tissue, Cardiac Fibroblasts and Cardiac Myocytes Instrumental in Atrial Fibrosis and Atrial Fibrillation? Cells 2021; 10:2501. [PMID: 34572150 PMCID: PMC8467050 DOI: 10.3390/cells10092501] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Atrial fibrillation is very common among the elderly and/or obese. While myocardial fibrosis is associated with atrial fibrillation, the exact mechanisms within atrial myocytes and surrounding non-myocytes are not fully understood. This review considers the potential roles of myocardial fibroblasts and myofibroblasts in fibrosis and modulating myocyte electrophysiology through electrotonic interactions. Coupling with (myo)fibroblasts in vitro and in silico prolonged myocyte action potential duration and caused resting depolarization; an optogenetic study has verified in vivo that fibroblasts depolarized when coupled myocytes produced action potentials. This review also introduces another non-myocyte which may modulate both myocardial (myo)fibroblasts and myocytes: epicardial adipose tissue. Epicardial adipocytes are in intimate contact with myocytes and (myo)fibroblasts and may infiltrate the myocardium. Adipocytes secrete numerous adipokines which modulate (myo)fibroblast and myocyte physiology. These adipokines are protective in healthy hearts, preventing inflammation and fibrosis. However, adipokines secreted from adipocytes may switch to pro-inflammatory and pro-fibrotic, associated with reactive oxygen species generation. Pro-fibrotic adipokines stimulate myofibroblast differentiation, causing pronounced fibrosis in the epicardial adipose tissue and the myocardium. Adipose tissue also influences myocyte electrophysiology, via the adipokines and/or through electrotonic interactions. Deeper understanding of the interactions between myocytes and non-myocytes is important to understand and manage atrial fibrillation.
Collapse
Affiliation(s)
- Anirudh Krishnan
- College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Emily Chilton
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Jaishankar Raman
- Austin & St Vincent’s Hospitals, Melbourne University, Melbourne, VIC 3010, Australia;
- Applied Artificial Intelligence Institute, Deakin University, Melbourne, VIC 3217, Australia
- Department of Surgery, Oregon Health and Science University, Portland, OR 97239, USA
- School of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, Townsville University Hospital, Townsville, QLD 4814, Australia;
| | - Craig McFarlane
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Alexandra F. Trollope
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Medicine and Dentistry, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Lisa Chilton
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
20
|
Hulsurkar MM, Lahiri SK, Moore O, Moreira LM, Abu-Taha I, Kamler M, Dobrev D, Nattel S, Reilly S, Wehrens XH. Atrial-Specific LKB1 Knockdown Represents a Novel Mouse Model of Atrial Cardiomyopathy With Spontaneous Atrial Fibrillation. Circulation 2021; 144:909-912. [PMID: 34516304 PMCID: PMC8442761 DOI: 10.1161/circulationaha.121.055373] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mohit M. Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K. Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Oliver Moore
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Lucia M Moreira
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Issam Abu-Taha
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery Huttrop, University Duisburg-Essen, Germany
| | - Dobromir Dobrev
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Physiology, Montreal Heart Institute/University of Montreal, Montreal, QC, Canada
| | - Stanley Nattel
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Department of Pharmacology and Physiology, Montreal Heart Institute/University of Montreal, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- IHU LIRYC and Foundation Bordeaux Université, Bordeaux, France
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Correspondence to: Svetlana Reilly, MD, PhD, Oxford University, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK, Tel +44-1865-234-646, ; Xander HT Wehrens, MD, PhD, Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA, Tel +1-713-798-4261,
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Correspondence to: Svetlana Reilly, MD, PhD, Oxford University, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK, Tel +44-1865-234-646, ; Xander HT Wehrens, MD, PhD, Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX 77030, USA, Tel +1-713-798-4261,
| |
Collapse
|
21
|
Dörner MF, Boknik P, Köpp F, Buchwalow IB, Neumann J, Gergs U. Mechanisms of Systolic Cardiac Dysfunction in PP2A, PP5 and PP2AxPP5 Double Transgenic Mice. Int J Mol Sci 2021; 22:ijms22179448. [PMID: 34502355 PMCID: PMC8431312 DOI: 10.3390/ijms22179448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated transgenic mice with cardiac muscle cell-specific overexpression of PP2Acα (PP2A) and PP5 (PP5). For further studies we crossbred PP2A and PP5 mice to obtain PP2AxPP5 double transgenic mice (PP2AxPP5, DT) and compared them with littermate wild-type mice (WT) serving as a control. The mortality of DT mice was greatly enhanced vs. other genotypes. Cardiac fibrosis was noted histologically and mRNA levels of collagen 1α, collagen 3α and fibronectin 1 were augmented in DT. DT and PP2A mice exhibited an increase in relative heart weight. The ejection fraction (EF) was reduced in PP2A and DT but while the EF of PP2A was nearly normalized after β-adrenergic stimulation by isoproterenol, it was almost unchanged in DT. Moreover, left atrial preparations from DT were less sensitive to isoproterenol treatment both under normoxic conditions and after hypoxia. In addition, levels of the hypertrophy markers atrial natriuretic peptide and B-type natriuretic peptide as well as the inflammation markers interleukin 6 and nuclear factor kappa B were increased in DT. PP2A enzyme activity was enhanced in PP2A vs. WT but similar to DT. This was accompanied by a reduced phosphorylation state of phospholamban at serine-16. Fittingly, the relaxation times in left atria from DT were prolonged. In summary, cardiac co-overexpression of PP2A and PP5 were detrimental to animal survival and cardiac function, and the mechanism may involve dephosphorylation of important regulatory proteins but also fibrosis and inflammation.
Collapse
Affiliation(s)
- Mara-Francine Dörner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Mibe GmbH Arzneimittel, D-06796 Brehna, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, D-48149 Münster, Germany;
| | - Friedrich Köpp
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Igor B. Buchwalow
- Institute for Hematopathology, Fangdieckstr. 75a, D-22547 Hamburg, Germany;
| | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, D-06097 Halle, Germany; (M.-F.D.); (F.K.); (J.N.)
- Correspondence: ; Tel.: +49-345-557-4093
| |
Collapse
|
22
|
Marian AJ, Asatryan B, Wehrens XHT. Genetic basis and molecular biology of cardiac arrhythmias in cardiomyopathies. Cardiovasc Res 2021; 116:1600-1619. [PMID: 32348453 DOI: 10.1093/cvr/cvaa116] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are common, often the first, and sometimes the life-threatening manifestations of hereditary cardiomyopathies. Pathogenic variants in several genes known to cause hereditary cardiac arrhythmias have also been identified in the sporadic cases and small families with cardiomyopathies. These findings suggest a shared genetic aetiology of a subset of hereditary cardiomyopathies and cardiac arrhythmias. The concept of a shared genetic aetiology is in accord with the complex and exquisite interplays that exist between the ion currents and cardiac mechanical function. However, neither the causal role of cardiac arrhythmias genes in cardiomyopathies is well established nor the causal role of cardiomyopathy genes in arrhythmias. On the contrary, secondary changes in ion currents, such as post-translational modifications, are common and contributors to the pathogenesis of arrhythmias in cardiomyopathies through altering biophysical and functional properties of the ion channels. Moreover, structural changes, such as cardiac hypertrophy, dilatation, and fibrosis provide a pro-arrhythmic substrate in hereditary cardiomyopathies. Genetic basis and molecular biology of cardiac arrhythmias in hereditary cardiomyopathies are discussed.
Collapse
Affiliation(s)
- Ali J Marian
- Department of Medicine, Center for Cardiovascular Genetics, Institute of Molecular Medicine, University of Texas Health Sciences Center at Houston, 6770 Bertner Street, Suite C900A, Houston, TX 77030, USA
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xander H T Wehrens
- Department of Biophysics and Molecular Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
23
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland.,Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology-UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.,Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy.,Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Schroder EA, Wayland JL, Samuels KM, Shah SF, Burgess DE, Seward T, Elayi CS, Esser KA, Delisle BP. Cardiomyocyte Deletion of Bmal1 Exacerbates QT- and RR-Interval Prolongation in Scn5a +/ΔKPQ Mice. Front Physiol 2021; 12:681011. [PMID: 34248669 PMCID: PMC8265216 DOI: 10.3389/fphys.2021.681011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms are generated by cell autonomous circadian clocks that perform a ubiquitous cellular time-keeping function and cell type-specific functions important for normal physiology. Studies show inducing the deletion of the core circadian clock transcription factor Bmal1 in adult mouse cardiomyocytes disrupts cardiac circadian clock function, cardiac ion channel expression, slows heart rate, and prolongs the QT-interval at slow heart rates. This study determined how inducing the deletion of Bmal1 in adult cardiomyocytes impacted the in vivo electrophysiological phenotype of a knock-in mouse model for the arrhythmogenic long QT syndrome (Scn5a+/ΔKPQ). Electrocardiographic telemetry showed inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation increased the QT-interval at RR-intervals that were ≥130 ms. Inducing the deletion of Bmal1 in the cardiomyocytes of mice with or without the ΔKPQ-Scn5a mutation also increased the day/night rhythm-adjusted mean in the RR-interval, but it did not change the period, phase or amplitude. Compared to mice without the ΔKPQ-Scn5a mutation, mice with the ΔKPQ-Scn5a mutation had reduced heart rate variability (HRV) during the peak of the day/night rhythm in the RR-interval. Inducing the deletion of Bmal1 in cardiomyocytes did not affect HRV in mice without the ΔKPQ-Scn5a mutation, but it did increase HRV in mice with the ΔKPQ-Scn5a mutation. The data demonstrate that deleting Bmal1 in cardiomyocytes exacerbates QT- and RR-interval prolongation in mice with the ΔKPQ-Scn5a mutation.
Collapse
Affiliation(s)
- Elizabeth A Schroder
- Department of Physiology, University of Kentucky, Lexington, KY, United States.,Internal Medicine and Pulmonary, University of Kentucky, Lexington, KY, United States
| | - Jennifer L Wayland
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Kaitlyn M Samuels
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Syed F Shah
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Tanya Seward
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
25
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
26
|
Karch SB, Fineschi V, Francia P, Scopetti M, Padovano M, Manetti F, Santurro A, Frati P, Volpe M. Role of induced pluripotent stem cells in diagnostic cardiology. World J Stem Cells 2021; 13:331-341. [PMID: 34136069 PMCID: PMC8176845 DOI: 10.4252/wjsc.v13.i5.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine, including cardiology. The introduction of induced pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells for most purposes, thus eliminating all ethical controversies. Since then, many new avenues have been opened in cardiology research, not only in approaches to tissue replacement but also in the design and testing of antiarrhythmic drugs. This methodology has advanced to the point where induced human cardiomyocyte cell lines can now also be obtained from commercial sources or tissue banks. Initial studies with readily available iPSCs have generally confirmed that their behavioral characteristics accurately predict the behavior of beating cardiomyocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias and heart disease in general, accelerating the development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The focus on producing cardiomyocytes that can be used to replace damaged heart tissue has somewhat diverted interest in a host of other applications. This manuscript is intended to provide non-specialists with a brief introduction and overview of the research carried out in the field of heart rhythm disorders.
Collapse
Affiliation(s)
- Steven B Karch
- School of Medicine, University of Nevada, Las Vegas, NV 89102, United States
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Pietro Francia
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, St. Andrea Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Department SAIMLAL, Sapienza University of Roma, Rome 00185, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Department SAIMLAL, Sapienza University of Roma, Rome 00185, Italy
| | - Massimo Volpe
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, St. Andrea Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00197, Italy
| |
Collapse
|
27
|
Nattel S, Sager PT, Hüser J, Heijman J, Dobrev D. Why translation from basic discoveries to clinical applications is so difficult for atrial fibrillation and possible approaches to improving it. Cardiovasc Res 2021; 117:1616-1631. [PMID: 33769493 DOI: 10.1093/cvr/cvab093] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained clinical arrhythmia, with a lifetime incidence of up to 37%, and is a major contributor to population morbidity and mortality. Important components of AF management include control of cardiac rhythm, rate, and thromboembolic risk. In this narrative review article, we focus on rhythm-control therapy. The available therapies for cardiac rhythm control include antiarrhythmic drugs and catheter-based ablation procedures; both of these are presently neither optimally effective nor safe. In order to develop improved treatment options, it is necessary to use preclinical models, both to identify novel mechanism-based therapeutic targets and to test the effects of putative therapies before initiating clinical trials. Extensive research over the past 30 years has provided many insights into AF mechanisms that can be used to design new rhythm-maintenance approaches. However, it has proven very difficult to translate these mechanistic discoveries into clinically applicable safe and effective new therapies. The aim of this article is to explore the challenges that underlie this phenomenon. We begin by considering the basic problem of AF, including its clinical importance, the current therapeutic landscape, the drug development pipeline, and the notion of upstream therapy. We then discuss the currently available preclinical models of AF and their limitations, and move on to regulatory hurdles and considerations and then review industry concerns and strategies. Finally, we evaluate potential paths forward, attempting to derive insights from the developmental history of currently used approaches and suggesting possible paths for the future. While the introduction of successful conceptually innovative new treatments for AF control is proving extremely difficult, one significant breakthrough is likely to revolutionize both AF management and the therapeutic development landscape.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.,IHU LIYRC Institute, Bordeaux, France.,Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Philip T Sager
- Department of Medicine, Cardiovascuar Research Institute, Stanford University, Palo Alto, CA, USA
| | - Jörg Hüser
- Research and Development, Preclinical Research, Cardiovascular Diseases, Bayer AG, Wuppertal, Germany
| | - Jordi Heijman
- Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.,Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Dobromir Dobrev
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montreal, Canada.,Faculty of Medicine, Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
| |
Collapse
|
28
|
Saljic A, Jespersen T, Buhl R. Anti-arrhythmic investigations in large animal models of atrial fibrillation. Br J Pharmacol 2021; 179:838-858. [PMID: 33624840 DOI: 10.1111/bph.15417] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) constitutes an increasing health problem in the aging population. Animal models reflecting human phenotypes are needed to understand the mechanisms of AF, as well as to test new pharmacological interventions. In recent years, a number of large animal models, primarily pigs, goats, dog and horses have been used in AF research. These animals can to a certain extent recapitulate the human pathophysiological characteristics and serve as valuable tools in investigating new pharmacological interventions for treating AF. This review focuses on anti-arrhythmic investigations in large animals. Initially, spontaneous AF in small and large mammals is discussed. This is followed by a short presentation of frequently used methods for inducing short- and long-term AF. The major focus of the review is on anti-arrhythmic compounds either frequently used in the human clinic (ranolazine, flecainide, vernakalant and amiodarone) or being promising new AF medicine candidates (IK,Ach , ISK,Ca and IK2P blockers).
Collapse
Affiliation(s)
- Arnela Saljic
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Jespersen
- Laboratory of Cardiac Physiology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Taastrup, Denmark
| |
Collapse
|
29
|
Saadeh K, Fazmin IT. Mitochondrial Dysfunction Increases Arrhythmic Triggers and Substrates; Potential Anti-arrhythmic Pharmacological Targets. Front Cardiovasc Med 2021; 8:646932. [PMID: 33659284 PMCID: PMC7917191 DOI: 10.3389/fcvm.2021.646932] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
Incidence of cardiac arrhythmias increases significantly with age. In order to effectively stratify arrhythmic risk in the aging population it is crucial to elucidate the relevant underlying molecular mechanisms. The changes underlying age-related electrophysiological disruption appear to be closely associated with mitochondrial dysfunction. Thus, the present review examines the mechanisms by which age-related mitochondrial dysfunction promotes arrhythmic triggers and substrate. Namely, via alterations in plasmalemmal ionic currents (both sodium and potassium), gap junctions, cellular Ca2+ homeostasis, and cardiac fibrosis. Stratification of patients' mitochondrial function status permits application of appropriate anti-arrhythmic therapies. Here, we discuss novel potential anti-arrhythmic pharmacological interventions that specifically target upstream mitochondrial function and hence ameliorates the need for therapies targeting downstream changes which have constituted traditional antiarrhythmic therapy.
Collapse
Affiliation(s)
- Khalil Saadeh
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Ibrahim Talal Fazmin
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.,Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| |
Collapse
|
30
|
Bollmann P, Werner F, Jaron M, Bruns TA, Wache H, Runte J, Boknik P, Kirchhefer U, Müller FU, Buchwalow IB, Rothemund S, Neumann J, Gergs U. Initial Characterization of Stressed Transgenic Mice With Cardiomyocyte-Specific Overexpression of Protein Phosphatase 2C. Front Pharmacol 2021; 11:591773. [PMID: 33597873 PMCID: PMC7883593 DOI: 10.3389/fphar.2020.591773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
As part of our ongoing studies on the potential pathophysiological role of serine/threonine phosphatases (PP) in the mammalian heart, we have generated mice with cardiac-specific overexpression of PP2Cβ (PP2C-TG) and compared them with littermate wild type mice (WT) serving as a control. Cardiac fibrosis was noted histologically in PP2C-TG. Collagen 1a, interleukin-6 and the natriuretic peptides ANP and BNP were augmented in PP2C-TG vs. WT (p < 0.05). Left atrial preparations from PP2C-TG were less resistant to hypoxia than atria from WT. PP2C-TG maintained cardiac function after the injection of lipopolysaccharide (LPS, a model of sepsis) and chronic isoproterenol treatment (a model of heart failure) better than WT. Crossbreeding of PP2C-TG mice with PP2A-TG mice (a genetic model of heart failure) resulted in double transgenic (DT) mice that exhibited a pronounced increase of heart weight in contrast to the mild hypertrophy noted in the mono-transgenic mice. The ejection fraction was reduced in PP2C-TG and in PP2A-TG mice compared with WT, but the reduction was the highest in DT compared with WT. PP2A enzyme activity was enhanced in PP2A-TG and DT mice compared with WT and PP2C-TG mice. In summary, cardiac overexpression of PP2Cβ and co-overexpression of both the catalytic subunit of PP2A and PP2Cβ were detrimental to cardiac function. PP2Cβ overexpression made cardiac preparations less resistant to hypoxia than WT, leading to fibrosis, but PP2Cβ overexpression led to better adaptation to some stressors, such as LPS or chronic β-adrenergic stimulation. Hence, the effect of PP2Cβ is context sensitive.
Collapse
Affiliation(s)
- Paula Bollmann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Franziska Werner
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marko Jaron
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Tom A Bruns
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Hartmut Wache
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Jochen Runte
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Peter Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - Frank U Müller
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | | | | | - Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
31
|
Delisle BP, Stumpf JL, Wayland JL, Johnson SR, Ono M, Hall D, Burgess DE, Schroder EA. Circadian clocks regulate cardiac arrhythmia susceptibility, repolarization, and ion channels. Curr Opin Pharmacol 2020; 57:13-20. [PMID: 33181392 DOI: 10.1016/j.coph.2020.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - John L Stumpf
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Jennifer L Wayland
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Sidney R Johnson
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Makoto Ono
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Dalton Hall
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States
| | - Don E Burgess
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Science and Health, Asbury University, One Macklem Drive, Wilmore, KY 40390, United States
| | - Elizabeth A Schroder
- Department of Physiology, University of Kentucky, 800 Rose Street, MS508, Lexington, KY 40536-0298, United States; Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Kentucky, 740 S. Limestone Street, L543, Lexington, KY 40536-0284, United States.
| |
Collapse
|
32
|
Soucy JR, Bindas AJ, Brady R, Torregrosa T, Denoncourt CM, Hosic S, Dai G, Koppes AN, Koppes RA. Reconfigurable Microphysiological Systems for Modeling Innervation and Multitissue Interactions. ADVANCED BIOSYSTEMS 2020; 4:e2000133. [PMID: 32755004 PMCID: PMC8136149 DOI: 10.1002/adbi.202000133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/05/2020] [Indexed: 12/11/2022]
Abstract
Tissue-engineered models continue to experience challenges in delivering structural specificity, nutrient delivery, and heterogenous cellular components, especially for organ-systems that require functional inputs/outputs and have high metabolic requirements, such as the heart. While soft lithography has provided a means to recapitulate complex architectures in the dish, it is plagued with a number of prohibitive shortcomings. Here, concepts from microfluidics, tissue engineering, and layer-by-layer fabrication are applied to develop reconfigurable, inexpensive microphysiological systems that facilitate discrete, 3D cell compartmentalization, and improved nutrient transport. This fabrication technique includes the use of the meniscus pinning effect, photocrosslinkable hydrogels, and a commercially available laser engraver to cut flow paths. The approach is low cost and robust in capabilities to design complex, multilayered systems with the inclusion of instrumentation for real-time manipulation or measures of cell function. In a demonstration of the technology, the hierarchal 3D microenvironment of the cardiac sympathetic nervous system is replicated. Beat rate and neurite ingrowth are assessed on-chip and quantification demonstrates that sympathetic-cardiac coculture increases spontaneous beat rate, while drug-induced increases in beating lead to greater sympathetic innervation. Importantly, these methods may be applied to other organ-systems and have promise for future applications in drug screening, discovery, and personal medicine.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Adam J Bindas
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ryan Brady
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tess Torregrosa
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Cailey M Denoncourt
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Sanjin Hosic
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
33
|
Cesarovic N, Lipiski M, Falk V, Emmert MY. Cardiac electrophysiology: purpose tailored animal models for complex conditions. Eur Heart J 2020; 41:2037. [PMID: 32413897 DOI: 10.1093/eurheartj/ehaa328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Nikola Cesarovic
- Division of Surgical Research, University Hospital Zürich, University Zürich, Switzerland.,Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Germany.,Department of Health Sciences, ETH Zürich, Translational Cardiovascular Technologies, Switzerland
| | - Miriam Lipiski
- Division of Surgical Research, University Hospital Zürich, University Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Germany.,Department of Health Sciences, ETH Zürich, Translational Cardiovascular Technologies, Switzerland.,Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Germany
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Institute Berlin, Germany.,Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
34
|
Alves QL, Silva DF. D-Limonene: A Promising Molecule with Bradycardic and Antiarrhythmic Potential. Arq Bras Cardiol 2019; 113:933-934. [PMID: 31800718 PMCID: PMC7020961 DOI: 10.5935/abc.20190233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Quiara Lovatti Alves
- Laboratório de Fisiologia e Farmacologia Cardiovascular - Instituto de Ciências da Saúde - Universidade Federal da Bahia, Salvador, BA - Brazil
| | - Darizy Flávia Silva
- Laboratório de Fisiologia e Farmacologia Cardiovascular - Instituto de Ciências da Saúde - Universidade Federal da Bahia, Salvador, BA - Brazil
| |
Collapse
|
35
|
Ni L, Scott L, Campbell HM, Pan X, Alsina KM, Reynolds J, Philippen LE, Hulsurkar M, Lagor WR, Li N, Wehrens XHT. Atrial-Specific Gene Delivery Using an Adeno-Associated Viral Vector. Circ Res 2019; 124:256-262. [PMID: 30582449 DOI: 10.1161/circresaha.118.313811] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Somatic overexpression in mice using an adeno-associated virus (AAV) as gene transfer vectors has become a valuable tool to analyze the roles of specific genes in cardiac diseases. The lack of atrial-specific AAV vector has been a major obstacle for studies into the pathogenesis of atrial diseases. Moreover, gene therapy studies for atrial fibrillation would benefit from atrial-specific vectors. Atrial natriuretic factor (ANF) promoter drives gene expression specifically in atrial cardiomyocytes. OBJECTIVE To establish the platform of atrial specific in vivo gene delivery by AAV-ANF. METHODS AND RESULTS We constructed AAV vectors based on serotype 9 (AAV9) that are driven by the atrial-specific ANF promoter. Hearts from mice injected with AAV9-ANF-GFP (green fluorescent protein) exhibited strong and atrial-specific GFP expression without notable GFP in ventricular tissue. In contrast, similar vectors containing a cardiac troponin T promoter (AAV9-TNT4-GFP) showed GFP expression in all 4 chambers of the heart, while AAV9 with an enhanced chicken β-actin promoter (AAV-enCB-GFP) caused ubiquitous GFP expression. Next, we used Rosa26mT/mG (membrane-targeted tandem dimer Tomato/membrane-targeted GFP), a double-fluorescent Cre reporter mouse that expresses membrane-targeted tandem dimer Tomato before Cre-mediated excision, and membrane-targeted GFP after excision. AAV9-ANF-Cre led to highly efficient LoxP recombination in membrane-targeted tandem dimer Tomato/membrane-targeted green fluorescent protein mice with high specificity for the atria. We measured the frequency of transduced cardiomyocytes in atria by detecting Cre-dependent GFP expression from the Rosa26mT/mG allele. AAV9 dose was positively correlated with the number of GFP-positive atrial cardiomyocytes. Finally, we assessed whether the AAV9-ANF-Cre vector could be used to induce atrial-specific gene knockdown in proof-of-principle experiments using conditional JPH2 (junctophilin-2) knockdown mice. Four weeks after AAV9-ANF-Cre injection, a strong reduction in atrial expression of JPH2 protein was observed. Furthermore, there was evidence for abnormal Ca2+ handling in atrial myocytes isolated from mice with atrial-restricted JPH2 deficiency. CONCLUSIONS AAV9-ANF vectors produce efficient, dose-dependent, and atrial-specific gene expression following a single-dose systemic delivery in mice. This vector is a novel reagent for both mechanistic and gene therapy studies on atrial diseases.
Collapse
Affiliation(s)
- Li Ni
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.N.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (L.N.)
| | - Larry Scott
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Hannah M Campbell
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Xiaolu Pan
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Katherina M Alsina
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Julia Reynolds
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Leonne E Philippen
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Mohit Hulsurkar
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - William R Lagor
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
| | - Na Li
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Medicine (Section of Cardiovascular Research) (N.L.), Baylor College of Medicine, Houston, TX
| | - Xander H T Wehrens
- From the Cardiovascular Research Institute (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Molecular Physiology and Biophysics (L.N., L.S., H.M.C., X.P., K.M.A., J.R., L.E.P., M.H., W.R.L., N.L., X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Medicine (Cardiology) (X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (X.H.T.W.), Baylor College of Medicine, Houston, TX
- Department of Neuroscience (X.H.T.W.), Baylor College of Medicine, Houston, TX
- Center for Space Medicine (X.H.T.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
36
|
Maass AH. Atrial-Specific Gene Transfer. Circ Res 2019; 124:180-182. [DOI: 10.1161/circresaha.118.314394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alexander H. Maass
- From the Department of Cardiology, University Medical Center Groningen, University of Groningen, the Netherlands
| |
Collapse
|