1
|
Ghasemi M, Mehranfard N. Neuroprotective actions of norepinephrine in neurological diseases. Pflugers Arch 2024; 476:1703-1725. [PMID: 39136758 DOI: 10.1007/s00424-024-02999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Precise control of norepinephrine (NE) levels and NE-receptor interaction is crucial for proper function of the brain. Much evidence for this view comes from experimental studies that indicate an important role for NE in the pathophysiology and treatment of various conditions, including cognitive dysfunction, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and sleep disorders. NE provides neuroprotection against several types of insults in multiple ways. It abrogates oxidative stress, attenuates neuroinflammatory responses in neurons and glial cells, reduces neuronal and glial cell activity, promotes autophagy, and ameliorates apoptotic responses to a variety of insults. It is beneficial for the treatment of neurodegenerative diseases because it improves the generation of neurotrophic factors, promotes neuronal survival, and plays an important role in the regulation of adult neurogenesis. This review aims to present the evidence supporting a principal role for NE in neuroprotection, and molecular mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen Private Joint Stock Company, Shafa Street, Urmia, 5715793731, Iran.
| |
Collapse
|
2
|
Judd AS, Bawa B, Buck WR, Tao ZF, Li Y, Mitten MJ, Bruncko M, Catron N, Doherty G, Durbin KR, Enright B, Frey R, Haasch D, Haman S, Haight AR, Henriques TA, Holms J, Izeradjene K, Judge RA, Jenkins GJ, Kunzer A, Leverson JD, Martin RL, Mitra D, Mittelstadt S, Nelson L, Nimmer P, Palma J, Peterson R, Phillips DC, Ralston SL, Rosenberg SH, Shen X, Song X, Vaidya KR, Wang X, Wang J, Xiao Y, Zhang H, Zhang X, Blomme EA, Boghaert ER, Kalvass JC, Phillips A, Souers AJ. BCL-X L-targeting antibody-drug conjugates are active in preclinical models and mitigate on-mechanism toxicity of small-molecule inhibitors. SCIENCE ADVANCES 2024; 10:eado7120. [PMID: 39365864 PMCID: PMC11451551 DOI: 10.1126/sciadv.ado7120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma-extra large (BCL-XL) is associated with drug resistance and disease progression in numerous cancers. The compelling nature of this protein as a therapeutic target prompted efforts to develop selective small-molecule BCL-XL inhibitors. Although efficacious in preclinical models, we report herein that selective BCL-XL inhibitors cause severe mechanism-based cardiovascular toxicity in higher preclinical species. To overcome this liability, antibody-drug conjugates were constructed using altered BCL-XL-targeting warheads, unique linker technologies, and therapeutic antibodies. The epidermal growth factor receptor-targeting antibody-drug conjugate AM1-15 inhibited growth of tumor xenografts and did not cause cardiovascular toxicity nor dose-limiting thrombocytopenia in monkeys. While an unprecedented BCL-XL-mediated toxicity was uncovered in monkey kidneys upon repeat dosing of AM1-15, this toxicity was mitigated via further drug-linker modification to afford AM1-AAA (AM1-25). The AAA drug-linker has since been incorporated into mirzotamab clezutoclax, the first selective BCL-XL-targeting agent to enter human clinical trials.
Collapse
Affiliation(s)
- Andrew S. Judd
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Bhupinder Bawa
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Wayne R. Buck
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Zhi-Fu Tao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yingchun Li
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Milan Bruncko
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - George Doherty
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Brian Enright
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Robin Frey
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Deanna Haasch
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | - Gary J. Jenkins
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Aaron Kunzer
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Ruth L. Martin
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Diya Mitra
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Lorne Nelson
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Joann Palma
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | - Xiaoqiang Shen
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xiaohong Song
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Xilu Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Jin Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yu Xiao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Haichao Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xinxin Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Eric A. Blomme
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - John C. Kalvass
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Andrew Phillips
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
3
|
Won T, Song EJ, Kalinoski HM, Moslehi JJ, Čiháková D. Autoimmune Myocarditis, Old Dogs and New Tricks. Circ Res 2024; 134:1767-1790. [PMID: 38843292 DOI: 10.1161/circresaha.124.323816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign (T.W.)
| | - Evelyn J Song
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (D.Č)
| |
Collapse
|
4
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Vicenzetto C, Giordani AS, Menghi C, Baritussio A, Peloso Cattini MG, Pontara E, Bison E, Rizzo S, De Gaspari M, Basso C, Thiene G, Iliceto S, Marcolongo R, Caforio ALP. The Role of the Immune System in Pathobiology and Therapy of Myocarditis: A Review. Biomedicines 2024; 12:1156. [PMID: 38927363 PMCID: PMC11200507 DOI: 10.3390/biomedicines12061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the immune system in myocarditis onset and progression involves a range of complex cellular and molecular pathways. Both innate and adaptive immunity contribute to myocarditis pathogenesis, regardless of its infectious or non-infectious nature and across different histological and clinical subtypes. The heterogeneity of myocarditis etiologies and molecular effectors is one of the determinants of its clinical variability, manifesting as a spectrum of disease phenotype and progression. This spectrum ranges from a fulminant presentation with spontaneous recovery to a slowly progressing, refractory heart failure with ventricular dysfunction, to arrhythmic storm and sudden cardiac death. In this review, we first examine the updated definition and classification of myocarditis at clinical, biomolecular and histopathological levels. We then discuss recent insights on the role of specific immune cell populations in myocarditis pathogenesis, with particular emphasis on established or potential therapeutic applications. Besides the well-known immunosuppressive agents, whose efficacy has been already demonstrated in human clinical trials, we discuss the immunomodulatory effects of other drugs commonly used in clinical practice for myocarditis management. The immunological complexity of myocarditis, while presenting a challenge to simplistic understanding, also represents an opportunity for the development of different therapeutic approaches with promising results.
Collapse
Affiliation(s)
- Cristina Vicenzetto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Andrea Silvio Giordani
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Caterina Menghi
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Anna Baritussio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Maria Grazia Peloso Cattini
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elena Pontara
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elisa Bison
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Stefania Rizzo
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Monica De Gaspari
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Sabino Iliceto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Renzo Marcolongo
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Alida Linda Patrizia Caforio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| |
Collapse
|
6
|
Wang L, Sun T, Liu X, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocarditis: A multi-omics approach. Clin Chim Acta 2024; 554:117752. [PMID: 38184138 DOI: 10.1016/j.cca.2023.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Myocarditis, an inflammatory condition of weakened heart muscles often triggered by a variety of causes, that can result in heart failure and sudden death. Novel ways to enhance our understanding of myocarditis pathogenesis is available through newer modalities (omics). In this review, we examine the roles of various biomolecules and associated functional pathways across genomics, transcriptomics, proteomics, and metabolomics in the pathogenesis of myocarditis. Our analysis further explores the reproducibility and variability intrinsic to omics studies, underscoring the necessity and significance of employing a multi-omics approach to gain profound insights into myocarditis pathogenesis. This integrated strategy not only enhances our understanding of the disease, but also confirms the critical importance of a holistic multi-omics approach in disease analysis.
Collapse
Affiliation(s)
- Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Tao Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
7
|
Blum SM, Zlotoff DA, Smith NP, Kernin IJ, Ramesh S, Zubiri L, Caplin J, Samanta N, Martin SC, Tirard A, Sen P, Song Y, Barth J, Slowikowski K, Nasrallah M, Tantivit J, Manakongtreecheep K, Arnold BY, McGuire J, Pinto CJ, McLoughlin D, Jackson M, Chan P, Lawless A, Sharova T, Nieman LT, Gainor JF, Juric D, Mino-Kenudsen M, Sullivan RJ, Boland GM, Stone JR, Thomas MF, Neilan TG, Reynolds KL, Villani AC. Immune Responses in Checkpoint Myocarditis Across Heart, Blood, and Tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557794. [PMID: 37790460 PMCID: PMC10542127 DOI: 10.1101/2023.09.15.557794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Immune checkpoint inhibitors (ICIs) are widely used anti-cancer therapies that can cause morbid and potentially fatal immune-related adverse events (irAEs). ICI-related myocarditis (irMyocarditis) is uncommon but has the highest mortality of any irAE. The pathogenesis of irMyocarditis and its relationship to anti-tumor immunity remain poorly understood. We sought to define immune responses in heart, tumor, and blood during irMyocarditis and identify biomarkers of clinical severity by leveraging single-cell (sc)RNA-seq coupled with T cell receptor (TCR) sequencing, microscopy, and proteomics analysis of 28 irMyocarditis patients and 23 controls. Our analysis of 284,360 cells from heart and blood specimens identified cytotoxic T cells, inflammatory macrophages, conventional dendritic cells (cDCs), and fibroblasts enriched in irMyocarditis heart tissue. Additionally, potentially targetable, pro-inflammatory transcriptional programs were upregulated across multiple cell types. TCR clones enriched in heart and paired tumor tissue were largely non-overlapping, suggesting distinct T cell responses within these tissues. We also identify the presence of cardiac-expanded TCRs in a circulating, cycling CD8 T cell population as a novel peripheral biomarker of fatality. Collectively, these findings highlight critical biology driving irMyocarditis and putative biomarkers for therapeutic intervention.
Collapse
Affiliation(s)
- Steven M. Blum
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel A. Zlotoff
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Neal P. Smith
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Isabela J. Kernin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Swetha Ramesh
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Leyre Zubiri
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Joshua Caplin
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Nandini Samanta
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Sidney C. Martin
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Alice Tirard
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Pritha Sen
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Transplant and Immunocompromised Host Program, Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital
| | - Yuhui Song
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
| | - Jaimie Barth
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Kamil Slowikowski
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mazen Nasrallah
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, North Shore Physicians Group, Department of Medicine, Mass General Brigham Healthcare Center, Lynn, MA, USA
| | - Jessica Tantivit
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Kasidet Manakongtreecheep
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Benjamin Y. Arnold
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - John McGuire
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Christopher J. Pinto
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel McLoughlin
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Jackson
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - PuiYee Chan
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Clinical Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Aleigha Lawless
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Tatyana Sharova
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Linda T. Nieman
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
| | - Justin F. Gainor
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Dejan Juric
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mari Mino-Kenudsen
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Ryan J. Sullivan
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Genevieve M. Boland
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - James R. Stone
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Molly F. Thomas
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Tomas G. Neilan
- Harvard Medical School, Boston, MA, USA
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry L. Reynolds
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts General Hospital, Cancer Center, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Paredes-Vazquez JG, Rubio-Infante N, Lopez-de la Garza H, Brunck MEG, Guajardo-Lozano JA, Ramos MR, Vazquez-Garza E, Torre-Amione G, Garcia-Rivas G, Jerjes-Sanchez C. Soluble factors in COVID-19 mRNA vaccine-induced myocarditis causes cardiomyoblast hypertrophy and cell injury: a case report. Virol J 2023; 20:203. [PMID: 37661270 PMCID: PMC10476357 DOI: 10.1186/s12985-023-02120-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Inflammation affecting the heart and surrounding tissues is a clinical condition recently reported following COVID-19 mRNA vaccination. Assessing trends of these events related to immunization will improve vaccine safety surveillance and best practices for forthcoming vaccine campaigns. However, the causality is unknown, and the mechanisms associated with cardiac myocarditis are not understood. CASE PRESENTATION After the first dose, we reported an mRNA vaccine-induced perimyocarditis in a young patient with a history of recurrent myocardial inflammation episodes and progressive loss of cardiac performance. We tested this possible inflammatory cytokine-mediated cardiotoxicity after vaccination in the acute phase (ten days), and we found a significant elevation of MCP-1, IL-18, and IL-8 inflammatory mediators. Still, these cytokines decreased considerably at the recovery phase (42 days later). We used the cardiomyoblasts cell line to test the effect of serum on cell viability, observing that serum from the acute phase reduced the cell viability to 75%. We did not detect this toxicity in cells when we tested serum from the patient in the recovery phase. We also tested serum-induced hypertrophy, a phenomenon in myocarditis and heart failure. We found that acute phase-serum has hypertrophy effects, increasing 25% of the treated cardiac cells' surface and significantly increasing B-type natriuretic peptide. However, we did not observe the hypertrophic effect in the recovery phase or sera from healthy controls. CONCLUSION Our results opened the possibility of the inflammatory cytokines or serum soluble mediators as key factors for vaccine-associated myocarditis. In this regard, identifying anti-inflammatory molecules that reduce inflammatory cytokines could help avoid vaccine-induced myocardial inflammation.
Collapse
Affiliation(s)
| | - Nestor Rubio-Infante
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico
| | - Hector Lopez-de la Garza
- Tecnologico de Monterrey, Instituto de Cardiología y Medicina Vascular, Monterrey, Nuevo Leon, Mexico
| | - Marion E G Brunck
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico
| | | | - Martin R Ramos
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico
| | - Eduardo Vazquez-Garza
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Instituto de Cardiología y Medicina Vascular, Monterrey, Nuevo Leon, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico
| | - Gerardo Garcia-Rivas
- Tecnologico de Monterrey, Instituto de Cardiología y Medicina Vascular, Monterrey, Nuevo Leon, Mexico.
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico.
| | - Carlos Jerjes-Sanchez
- Tecnologico de Monterrey, Instituto de Cardiología y Medicina Vascular, Monterrey, Nuevo Leon, Mexico.
- Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, Nuevo Leon 3000, CP 64710, Mexico.
| |
Collapse
|
9
|
He W, Zhou L, Xu K, Li H, Wang JJ, Chen C, Wang D. Immunopathogenesis and immunomodulatory therapy for myocarditis. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2112-2137. [PMID: 37002488 PMCID: PMC10066028 DOI: 10.1007/s11427-022-2273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 04/03/2023]
Abstract
Myocarditis is an inflammatory cardiac disease characterized by the destruction of myocardial cells, infiltration of interstitial inflammatory cells, and fibrosis, and is becoming a major public health concern. The aetiology of myocarditis continues to broaden as new pathogens and drugs emerge. The relationship between immune checkpoint inhibitors, severe acute respiratory syndrome coronavirus 2, vaccines against coronavirus disease-2019, and myocarditis has attracted increased attention. Immunopathological processes play an important role in the different phases of myocarditis, affecting disease occurrence, development, and prognosis. Excessive immune activation can induce severe myocardial injury and lead to fulminant myocarditis, whereas chronic inflammation can lead to cardiac remodelling and inflammatory dilated cardiomyopathy. The use of immunosuppressive treatments, particularly cytotoxic agents, for myocarditis, remains controversial. While reasonable and effective immunomodulatory therapy is the general trend. This review focuses on the current understanding of the aetiology and immunopathogenesis of myocarditis and offers new perspectives on immunomodulatory therapies.
Collapse
Affiliation(s)
- Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ling Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Ke Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - James Jiqi Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - DaoWen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
10
|
Baltusnikiene A, Staneviciene I, Jansen E. Beneficial and adverse effects of vitamin E on the kidney. Front Physiol 2023; 14:1145216. [PMID: 37007997 PMCID: PMC10050743 DOI: 10.3389/fphys.2023.1145216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 03/17/2023] Open
Abstract
This article reviews the beneficial and adverse effects of high-dose vitamin E supplementation on the vitamin E status and renal function in human and rodent studies. The high doses of vitamin E, which can cause renal effects, were compared to upper limits of toxicity (UL) as established by various authorities worldwide. In recent mice studies with higher doses of vitamin E, several biomarkers of tissue toxicity and inflammation were found to be significantly elevated. In these biomarker studies, the severity of inflammation and the increased levels of the biomarkers are discussed together with the need to re-evaluate ULs, given the toxic effects of vitamin E on the kidney and emphasizing oxidative stress and inflammation. The controversy in the literature about vitamin E effects on the kidney is mainly caused by the dose-effects relations that do not give a clear view, neither in human nor animals studies. In addition, more recent studies on rodents with new biomarkers of oxidative stress and inflammation give new insights into possible mechanisms. In this review, the controversy is shown and an advice given on the vitamin E supplementation for renal health.
Collapse
Affiliation(s)
- Aldona Baltusnikiene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Staneviciene
- Department of Biochemistry, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Eugène Jansen
- Retired from Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| |
Collapse
|
11
|
Zirkenbach VA, Ignatz RM, Öttl R, Cehreli Z, Stroikova V, Kaya M, Lehmann LH, Preusch MR, Frey N, Kaya Z. Effect of SARS-CoV-2 mRNA-Vaccine on the Induction of Myocarditis in Different Murine Animal Models. Int J Mol Sci 2023; 24:ijms24055011. [PMID: 36902442 PMCID: PMC10002951 DOI: 10.3390/ijms24055011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
In the course of the SARS-CoV-2 pandemic, vaccination safety and risk factors of SARS-CoV-2 mRNA-vaccines were under consideration after case reports of vaccine-related side effects, such as myocarditis, which were mostly described in young men. However, there is almost no data on the risk and safety of vaccination, especially in patients who are already diagnosed with acute/chronic (autoimmune) myocarditis from other causes, such as viral infections, or as a side effect of medication and treatment. Thus, the risk and safety of these vaccines, in combination with other therapies that could induce myocarditis (e.g., immune checkpoint inhibitor (ICI) therapy), are still poorly assessable. Therefore, vaccine safety, with respect to worsening myocardial inflammation and myocardial function, was studied in an animal model of experimentally induced autoimmune myocarditis. Furthermore, it is known that ICI treatment (e.g., antibodies (abs) against PD-1, PD-L1, and CTLA-4, or a combination of those) plays an important role in the treatment of oncological patients. However, it is also known that treatment with ICIs can induce severe, life-threatening myocarditis in some patients. Genetically different A/J (most susceptible strain) and C57BL/6 (resistant strain) mice, with diverse susceptibilities for induction of experimental autoimmune myocarditis (EAM) at various age and gender, were vaccinated twice with SARS-CoV-2 mRNA-vaccine. In an additional A/J group, an autoimmune myocarditis was induced. In regard to ICIs, we tested the safety of SARS-CoV-2 vaccination in PD-1-/- mice alone, and in combination with CTLA-4 abs. Our results showed no adverse effects related to inflammation and heart function after mRNA-vaccination, independent of age, gender, and in different mouse strains susceptible for induction of experimental myocarditis. Moreover, there was no worsening effect on inflammation and cardiac function when EAM in susceptible mice was induced. However, in the experiments with vaccination and ICI treatment, we observed, in some mice, low elevation of cardiac troponins in sera, and low scores of myocardial inflammation. In sum, mRNA-vaccines are safe in a model of experimentally induced autoimmune myocarditis, but patients undergoing ICI therapy should be closely monitored when vaccinated.
Collapse
Affiliation(s)
| | - Rebecca M. Ignatz
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Renate Öttl
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Zeynep Cehreli
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Vera Stroikova
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mansur Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Lorenz H. Lehmann
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Michael R. Preusch
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ziya Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-5639617
| |
Collapse
|
12
|
Ebrahimzadeh F, Farhangi MA, Tausi AZ, Mahmoudinezhad M, Mesgari-Abbasi M, Jafarzadeh F. Vitamin D supplementation and cardiac tissue inflammation in obese rats. BMC Nutr 2022; 8:152. [PMID: 36575556 PMCID: PMC9793630 DOI: 10.1186/s40795-022-00652-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The current study was aimed to evaluate the effects of active form of vitamin D on TGF- β, NF-κB and MCP-1 in heart tissue of obese rats. METHODS Forty rats were allocated into groups of normal diet and high fat diet for sixteen weeks; then each group was divided into two groups that received either 500 IU/kg vitamin D or placebo for five weeks. Biochemical parameters were assessed by ELISA kits. RESULTS Vitamin D reduced TGF-β in obese rats supplemented with vitamin D compared with other groups (P = 0.03). Moreover, vitamin D reduced MCP-1 concentrations in the heart tissues of both vitamin D administered groups compared to placebo one (P = 0.002). NF-κB in the heart of HFD + vitamin D group was significantly lower (P = 0.03). Current study also showed that vitamin D improves glycemic status and reduce insulin resistance significantly in HFD group (P = 0.008). CONCLUSION Vitamin D was a potential anti- inflammatory mediator of cardiovascular disease and markers of glycemic status in obese rats. Further investigations are needed to better identify the therapeutic role of this vitamin in CVD and to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Farnoosh Ebrahimzadeh
- grid.411583.a0000 0001 2198 6209Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | - Mahdieh Abbasalizad Farhangi
- grid.412888.f0000 0001 2174 8913Department of Community Nutrition, Faculty of Nutrition, Tabriz University of Medical Sciences, Attar Neyshabouri Street, Tabriz, Iran
| | - Ayda Zahiri Tausi
- grid.444802.e0000 0004 0547 7393Razavi Research Center, Razavi Hospital, Imam Reza International University, Mashahd, Iran
| | - Mahsa Mahmoudinezhad
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Mesgari-Abbasi
- grid.412888.f0000 0001 2174 8913Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faria Jafarzadeh
- grid.464653.60000 0004 0459 3173Department of Internal Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| |
Collapse
|
13
|
Ribeiro RSDA, Demarque KC, Figueiredo Júnior I, Ferreira IMDESR, Valeriano JDP, Verícimo MA. Do Fetal Microchimeric Cells Influence Experimental Autoimmune Myocarditis? Fetal Pediatr Pathol 2022; 41:781-793. [PMID: 34678109 DOI: 10.1080/15513815.2021.1994067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: We investigated the presence and influence of fetal microchimerism in the cardiac tissue of mated female mice submitted to experimental autoimmune myocarditis. Materials and methods: Nulliparous BALB/c females and BALB/c females mated with either BALB/c males (syngeneic mating) or C57BL/6 males (allogeneic mating) were immunized with cardiac myosin peptide MyHC-α614-629 or kept as non-immunized controls. Immunization occurred 6-8 weeks after delivery and mice were assessed after 21 days. Results: Immunized mice of allogeneic mating had a lower production of anti-MyHC-α614-629 antibodies compared to immunized nulliparous mice. Immunized nulliparous females had an intense mononuclear inflammatory infiltrate in cardiac tissue, associated with fibroplasia, while mated females had a lower inflammatory reaction. An increase in the frequency of microchimeric fetal cells was observed in mice submitted to allogeneic mating following immunization. Conclusion: Allogeneic cells of fetal origin could contribute to mitigating the inflammatory response in experimental myocarditis.
Collapse
Affiliation(s)
- Roberto Stefan de Almeida Ribeiro
- Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,Graduate Program in Pathology, Federal Fluminense University, Niterói, Brazil
| | | | - Israel Figueiredo Júnior
- Maternal and Child Department, Antônio Pedro University Hospital, Federal Fluminense University, Niterói, Brazil
| | | | - Jessica do Prado Valeriano
- Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,Graduate Program in Pathology, Federal Fluminense University, Niterói, Brazil
| | - Maurício Afonso Verícimo
- Department of Immunobiology, Institute of Biology, Federal Fluminense University, Niterói, Brazil.,Graduate Program in Pathology, Federal Fluminense University, Niterói, Brazil
| |
Collapse
|
14
|
Zhang H, Yang K, Chen F, Liu Q, Ni J, Cao W, Hua Y, He F, Liu Z, Li L, Fan G. Role of the CCL2-CCR2 axis in cardiovascular disease: Pathogenesis and clinical implications. Front Immunol 2022; 13:975367. [PMID: 36110847 PMCID: PMC9470149 DOI: 10.3389/fimmu.2022.975367] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The CCL2-CCR2 axis is one of the major chemokine signaling pathways that has received special attention because of its function in the development and progression of cardiovascular disease. Numerous investigations have been performed over the past decades to explore the function of the CCL2-CCR2 signaling axis in cardiovascular disease. Laboratory data on the CCL2-CCR2 axis for cardiovascular disease have shown satisfactory outcomes, yet its clinical translation remains challenging. In this article, we describe the mechanisms of action of the CCL2-CCR2 axis in the development and evolution of cardiovascular diseases including heart failure, atherosclerosis and coronary atherosclerotic heart disease, hypertension and myocardial disease. Laboratory and clinical data on the use of the CCL2-CCR2 pathway as a targeted therapy for cardiovascular diseases are summarized. The potential of the CCL2-CCR2 axis in the treatment of cardiovascular diseases is explored.
Collapse
Affiliation(s)
- Haixia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hebei Key Laboratory of Integrated Traditional Chinese and Western Medicine for Diabetes and Its Complications, College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan, China
| | - Ke Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qianqian Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Weilong Cao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
| | - Zhihao Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China
- *Correspondence: Lan Li, ; Guanwei Fan,
| |
Collapse
|
15
|
Huang X, Li Z, Shen X, Nie N, Shen Y. IL-17 upregulates MCP-1 expression via Act1 / TRAF6 / TAK1 in experimental autoimmune myocarditis. Cytokine 2022; 152:155823. [DOI: 10.1016/j.cyto.2022.155823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
16
|
Yerra VG, Advani A. Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines 2022; 10:661. [PMID: 35327464 PMCID: PMC8945438 DOI: 10.3390/biomedicines10030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Even with recent advances in care, heart failure remains a major cause of morbidity and mortality, which urgently needs new treatments. One of the major antecedents of heart failure is pathological ventricular remodelling, the abnormal change in the size, shape, function or composition of the cardiac ventricles in response to load or injury. Accumulating immune cell subpopulations contribute to the change in cardiac cellular composition that occurs during ventricular remodelling, and these immune cells can facilitate heart failure development. Among cardiac immune cell subpopulations, macrophages that are recognized by their transcriptional or cell-surface expression of the chemokine receptor C-C chemokine receptor type 2 (CCR2), have emerged as playing an especially important role in adverse remodelling. Here, we assimilate the literature that has been generated over the past two decades describing the pathological roles that CCR2+ macrophages play in ventricular remodelling. The goal is to facilitate research and innovation efforts in heart failure therapeutics by drawing attention to the importance of studying the manner by which CCR2+ macrophages mediate their deleterious effects.
Collapse
Affiliation(s)
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
17
|
Duraisamy K, Singh K, Kumar M, Lefranc B, Bonnafé E, Treilhou M, Leprince J, Chow BKC. P17 induces chemotaxis and differentiation of monocytes via MRGPRX2-mediated mast cell-line activation. J Allergy Clin Immunol 2022; 149:275-291. [PMID: 34111449 DOI: 10.1016/j.jaci.2021.04.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 03/29/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND P17, a peptide isolated from Tetramorium bicarinatum ant venom, is known to induce an alternative phenotype of human monocyte-derived macrophages via activation of an unknown G protein-coupled receptor (GPCR). OBJECTIVE We sought to investigate the mechanism of action and the immunomodulatory effects of P17 mediated through MRGPRX2 (Mas-related G protein-coupled receptor X2). METHODS To identify the GPCR for P17, we screened 314 GPCRs. Upon identification of MRGPRX2, a battery of in silico, in vitro, ex vivo, and in vivo assays along with the receptor mutation studies were performed. In particular, to investigate the immunomodulatory actions, we used β-hexosaminidase release assay, cytokine releases, quantification of mRNA expression, cell migration and differentiation assays, immunohistochemical labeling, hematoxylin and eosin, and immunofluorescence staining. RESULTS P17 activated MRGPRX2 in a dose-dependent manner in β-arrestin recruitment assay. In LAD2 cells, P17 induced calcium and β-hexosaminidase release. Quercetin- and short hairpin RNA-mediated knockdown of MRGPRX2 reduced P17-evoked β-hexosaminidase release. In silico and in vitro mutagenesis studies showed that residue Lys8 of P17 formed a cation-π interaction with the Phe172 of MRGPRX2 and [Ala8]P17 lost its activity partially. P17 activated LAD2 cells to recruit THP-1 and human monocytes in Transwell migration assay, whereas MRGPRX2-impaired LAD2 cells cannot. In addition, P17-treated LAD2 cells stimulated differentiation of THP-1 and human monocytes, as indicated by the enhanced expression of macrophage markers cluster of differentiation 11b and TNF-α by quantitative RT-PCR. Immunohistochemical and immunofluorescent staining suggested monocyte recruitment in mice ears injected with P17. CONCLUSIONS Our data provide novel structural information regarding the interaction of P17 with MRGPRX2 and intracellular pathways for its immunomodulatory action.
Collapse
Affiliation(s)
- Karthi Duraisamy
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kailash Singh
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Benjamin Lefranc
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérôme Leprince
- INSERM U1239, PRIMACEN, IRIB, Normandy University, Rouen, France.
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Chen YL, Wang HT, Lin PT, Chuang JH, Yang MY. Macrophage Inflammatory Protein-1 Alpha, a Potential Biomarker for Predicting Left Atrial Remodeling in Patients With Atrial Fibrillation. Front Cardiovasc Med 2021; 8:784792. [PMID: 34957262 PMCID: PMC8695724 DOI: 10.3389/fcvm.2021.784792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Left atrial (LA) remodeling itself is an independent risk factor for ischemic stroke and mortality, with or without atrial fibrillation (AF). Macrophage inflammatory protein-1 alpha (MIP-1α) has been reported to be involved in the induction of autoimmune myocarditis and dilated cardiomyopathy. Little is known about whether MIP-1α can be used to predict LA remodeling, especially in patients with AF. Methods: We prospectively enrolled 78 patients who had received a cardiac implantable electronic device due to sick sinus syndrome in order to define AF accurately. AF was diagnosed clinically before enrollment, according to 12-lead electrocardiography (ECG) and 24-h Holter test in 54 (69%) patients. The serum cytokine levels and the mRNA expression levels of peripheral blood leukocytes were checked and echocardiographic study was performed on the same day within 1 week after the patients were enrolled into the study. The 12-lead ECG and 24-h Holter test were performed on the same day of the patients' enrollment, and the device interrogation was performed every 3 months after enrollment. The enrolled patients were clinically followed up for 1 year. Results: There was no difference in baseline characteristics, cytokine levels and mRNA expression between patients with and without AF. Larger LA volume was positively correlated with higher levels of MIP-1α (r = 0.461, p ≤ 0.001) and the atrial high-rate episodes (AHREs) burden (r = 0.593, p < 0.001), and negatively correlated with higher levels of transforming growth factor (TGF)-β1 (r = −0.271, p = 0.047) and TGF-β3 (r = −0.279, p = 0.041). The higher AHREs burden and MIP-1α level could predict LA volume independently. The mRNA expression of RORC was negatively associated with the MIP-1α level. Conclusions: This study showed that higher MIP-1α was significantly associated with LA remodeling and may have the potentials to predict LA remodeling in terms of a larger LA volume, and that circadian gene derangement might affect the expression of MIP-1α.
Collapse
Affiliation(s)
- Yung-Lung Chen
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ting Wang
- Emergency Department, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Pei-Ting Lin
- Section of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jiin-Haur Chuang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Division of Pediatric Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ming-Yu Yang
- College of Medicine, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Hosohata K. Biomarkers of high salt intake. Adv Clin Chem 2021; 104:71-106. [PMID: 34462058 DOI: 10.1016/bs.acc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
High salt intake is associated with hypertension, which is a leading modifiable risk factor for cardiovascular disease (CVD) and chronic kidney disease (CKD). International Guidelines recommend a large reduction in the consumption of sodium to reduce blood pressure, organ damage, and mortality. In its early stages, the symptoms of CKD are generally not apparent. CKD proceeds in a "silent" manner, necessitating the need for urinary biomarkers to detect kidney damage at an early stage. Since traditional renal biomarkers, such as serum creatinine, are not sufficiently sensitive, difficulties are associated with detecting kidney damage induced by a high salt intake, particularly in normotensive individuals. Several new biomarkers for renal tubular damage, such as neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), vanin-1, liver-type fatty acid-binding protein (L-FABP), and monocyte chemotactic protein-1 (MCP-1), have recently been identified. However, few studies have investigated early biomarkers for CKD progression associated with a high salt diet. This chapter provides insights into novel biomarkers for CKD in normo- and hypertensive individuals with a high salt intake. Recent studies using spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) fed a high salt diet identified urinary vanin-1 and NGAL as early biomarkers for renal tubular damage in SHR and WKY, whereas urinary KIM-1 was a useful biomarker for salt-induced renal injury in SHR only. Clinical studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka University of Pharmaceutical Sciences, Takatsuki, Osaka, Japan.
| |
Collapse
|
20
|
Khawaja A, Bromage DI. The innate immune response in myocarditis. Int J Biochem Cell Biol 2021; 134:105973. [PMID: 33831592 DOI: 10.1016/j.biocel.2021.105973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022]
Abstract
Acute myocarditis is an inflammatory condition of the heart characterised by cellular injury and the influx of leucocytes, including neutrophils, monocytes, macrophages and lymphocytes. While this response is vital for tissue repair, excessive scar deposition and maladaptive ventricular remodelling can result in a legacy of heart failure. It is increasingly recognised as a clinical phenomenon due, in part, to increased availability of cardiac magnetic resonance imaging in patients presenting with chest pain in the absence of significant coronary artery disease. Emerging epidemiological evidence has associated myocarditis with poor outcomes in the context of left ventricular impairment, and even when the left ventricle is preserved outcomes are less benign than once thought. Despite this, our understanding of the contribution of the inflammatory response to the pathophysiology of acute myocarditis lags behind that of acute myocardial infarction, which is the vanguard cardiovascular condition for inflammation research. We recently reviewed monocyte and macrophage phenotype and function in acute myocardial infarction, concluding that their plasticity and heterogeneity might account for conflicting evidence from attempts to target specific leucocyte subpopulations. Here, we revise our understanding of myocardial inflammation, which is predominantly derived from myocardial infarction research, review experimental evidence for the immune response in acute myocarditis, focusing on innate immunity, and discuss potential future directions for immunotherapy research in acute myocarditis.
Collapse
Affiliation(s)
- Abdullah Khawaja
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London, SE5 9NU, UK.
| |
Collapse
|
21
|
Singh K, Fang H, Davies G, Wright B, Lockstone H, Williams RO, Ciháková D, Knight JC, Bhattacharya S. Transcriptomic Analysis of Inflammatory Cardiomyopathy Identifies Molecular Signatures of Disease and Informs in silico Prediction of a Network-Based Rationale for Therapy. Front Immunol 2021; 12:640837. [PMID: 33746983 PMCID: PMC7973371 DOI: 10.3389/fimmu.2021.640837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammatory cardiomyopathy covers a group of diseases characterized by inflammation and dysfunction of the heart muscle. The immunosuppressive agents such as prednisolone, azathioprine and cyclosporine are modestly effective treatments, but a molecular rationale underpinning such therapy or the development of new therapeutic strategies is lacking. We aimed to develop a network-based approach to identify therapeutic targets for inflammatory cardiomyopathy from the evolving myocardial transcriptome in a mouse model of the disease. We performed bulk RNA sequencing of hearts at early, mid and late time points from mice with experimental autoimmune myocarditis. We identified a cascade of pathway-level events involving early activation of cytokine and chemokine-signaling pathways that precede leucocyte infiltration and are followed by innate immune, antigen-presentation, complement and cell-adhesion pathway activation. We integrated these pathway events into a network-like representation from which we further identified a 50-gene subnetwork that is predominantly induced during the course of autoimmune myocardial inflammation. We developed a combinatorial attack strategy where we quantify network tolerance to combinatorial node removal to determine target-specific therapeutic potential. We find that combinatorial attack of Traf2, Nfkb1, Rac1, and Vav1 disconnects 80% of nodes from the largest network component. Two of these nodes, Nfkb1 and Rac1, are directly targeted by prednisolone and azathioprine respectively, supporting the idea that the methodology developed here can identify valid therapeutic targets. Whereas Nfkb1 and Rac1 removal disconnects 56% of nodes, we show that additional removal of Btk and Pik3cd causes 72% node disconnection. In conclusion, transcriptome profiling, pathway integration, and network identification of autoimmune myocardial inflammation provide a molecular signature applicable to the diagnosis of inflammatory cardiomyopathy. Combinatorial attack provides a rationale for immunosuppressive therapy of inflammatory cardiomyopathy and provides an in silico prediction that the approved therapeutics, ibrutinib and idelalisib targeting Btk and Pik3cd respectively, could potentially be re-purposed as adjuncts to immunosuppression.
Collapse
Affiliation(s)
- Kamayani Singh
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Davies
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Wright
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Daniela Ciháková
- Division of Immunology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Abstract
Several members of the chemokine family are involved in regulation of fibrosis. This review manuscript discusses the role of the chemokines in the pathogenesis of myocardial fibrosis. The CC chemokine CCL2 exerts fibrogenic actions through recruitment and activation of monocytes and macrophages expressing its receptor, CCR2. Other CC chemokines may also contribute to fibrotic remodeling by recruiting subsets of fibrogenic macrophages. CXC chemokines containing the ELR motif may exert pro-fibrotic actions, through recruitment of activated neutrophils and subsequent formation of neutrophil extracellular traps (NETs), or via activation of fibrogenic monocytes. CXCL12 has also been suggested to exert fibrogenic actions through effects on fibroblasts and immune cells. In contrast, the CXCR3 ligand CXCL10 was found to reduce cardiac fibrosis, inhibiting fibroblast migration. Chemokines are critical links between inflammation and fibrosis in myocardial disease and may be promising therapeutic targets for patients with heart failure accompanied by prominent inflammation and fibrosis.
Collapse
Affiliation(s)
- Ruoshui Li
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY
| |
Collapse
|
23
|
Bockstahler M, Fischer A, Goetzke CC, Neumaier HL, Sauter M, Kespohl M, Müller AM, Meckes C, Salbach C, Schenk M, Heuser A, Landmesser U, Weiner J, Meder B, Lehmann L, Kratzer A, Klingel K, Katus HA, Kaya Z, Beling A. Heart-Specific Immune Responses in an Animal Model of Autoimmune-Related Myocarditis Mitigated by an Immunoproteasome Inhibitor and Genetic Ablation. Circulation 2020; 141:1885-1902. [DOI: 10.1161/circulationaha.119.043171] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background:
Immune checkpoint inhibitor (ICI) therapy is often accompanied by immune-related pathology, with an increasing occurrence of high-risk ICI-related myocarditis. Understanding the mechanisms involved in this side effect could enable the development of management strategies. In mouse models, immune checkpoints, such as PD-1 (programmed cell death protein 1), control the threshold of self-antigen responses directed against cardiac TnI (troponin I). We aimed to identify how the immunoproteasome, the main proteolytic machinery in immune cells harboring 3 distinct protease activities in the LMP2 (low-molecular-weight protein 2), LMP7 (low-molecular-weight protein 7), and MECL1 (multicatalytic endopeptidase complex subunit 1) subunit, affects TnI-directed autoimmune pathology of the heart.
Methods:
TnI-directed autoimmune myocarditis (TnI-AM), a CD4
+
T-cell–mediated disease, was induced in mice lacking all 3 immunoproteasome subunits (triple-ip
−/−
) or lacking either the gene encoding LMP2 and LMP7 by immunization with a cardiac TnI peptide. Alternatively, before induction of TnI-AM or after establishment of autoimmune myocarditis, mice were treated with the immunoproteasome inhibitor ONX 0914. Immune parameters defining heart-specific autoimmunity were investigated in experimental TnI-AM and in 2 cases of ICI-related myocarditis.
Results:
All immunoproteasome-deficient strains showed mitigated autoimmune-related cardiac pathology with less inflammation, lower proinflammatory and chemotactic cytokines, less interleukin-17 production, and reduced fibrosis formation. Protection from TnI-directed autoimmune heart pathology with improved cardiac function in LMP7
−/−
mice involved a changed balance between effector and regulatory CD4
+
T cells in the spleen, with CD4
+
T cells from LMP7
−
/−
mice showing a higher expression of inhibitory PD-1 molecules. Blocked immunoproteasome proteolysis, by treatment of TLR2 (Toll-like receptor 2)–engaged and TLR7 (Toll-like receptor 7)/TLR8 (Toll-like receptor 8)–engaged CD14
+
monocytes with ONX 0914, diminished proinflammatory cytokine responses, thereby reducing the boost for the expansion of self-reactive CD4
+
T cells. Correspondingly, in mice, ONX 0914 treatment reversed cardiac autoimmune pathology, preventing the induction and progression of TnI-AM when self-reactive CD4
+
T cells were primed. The autoimmune signature during experimental TnI-AM, with high immunoproteasome expression, immunoglobulin G deposition, interleukin-17 production in heart tissue, and TnI-directed humoral autoimmune responses, was also present in 2 cases of ICI-related myocarditis, demonstrating the activation of heart-specific autoimmune reactions by ICI therapy.
Conclusions:
By reversing heart-specific autoimmune responses, immunoproteasome inhibitors applied to a mouse model demonstrate their potential to aid in the management of autoimmune myocarditis in humans, possibly including patients with ICI-related heart-specific autoimmunity.
Collapse
Affiliation(s)
- Mariella Bockstahler
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
| | - Andrea Fischer
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
| | - Carl Christoph Goetzke
- Institute of Biochemistry (C.C.G., H.L.N., M.K., A.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.)
| | - Hannah Louise Neumaier
- Institute of Biochemistry (C.C.G., H.L.N., M.K., A.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
| | - Martina Sauter
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Germany (M.S., K.K.)
| | - Meike Kespohl
- Institute of Biochemistry (C.C.G., H.L.N., M.K., A.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.)
| | - Anna-Maria Müller
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
| | - Christin Meckes
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
| | - Christian Salbach
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, Switzerland (M.S.)
| | - Arnd Heuser
- Core Unit Pathophysiology (A.H.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Ulf Landmesser
- Medizinische Klinik für Kardiologie Campus Benjamin Franklin (U.L., A.K.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.)
| | - January Weiner
- Core Unit Bioinformatics (J.W.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Benjamin Meder
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Heidelberg/Mannheim, Heidelberg, Germany (B.M., L.L., H.A.K., Z.K.)
| | - Lorenz Lehmann
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Heidelberg/Mannheim, Heidelberg, Germany (B.M., L.L., H.A.K., Z.K.)
- Cardio-Oncology Unit, University Hospital of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany (L.L.)
| | - Adelheid Kratzer
- Medizinische Klinik für Kardiologie Campus Benjamin Franklin (U.L., A.K.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Germany (M.S., K.K.)
| | - Hugo A. Katus
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Heidelberg/Mannheim, Heidelberg, Germany (B.M., L.L., H.A.K., Z.K.)
| | - Ziya Kaya
- Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Universitätsklinikum Heidelberg, Germany (M.B., A.F., A.-M.M., C.M., C.S., B.M., L.L., H.A.K., Z.K.)
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Heidelberg/Mannheim, Heidelberg, Germany (B.M., L.L., H.A.K., Z.K.)
| | - Antje Beling
- Institute of Biochemistry (C.C.G., H.L.N., M.K., A.B.), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner side Berlin, Germany (C.C.G., M.K., U.L., A.K., A.B.)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Over the last decade, myocarditis has been increasingly recognized as common cause of sudden cardiac death in young adults and heart failure overall. The purpose of this review is to discuss hypothesis of development of non-infectious myocarditis, to provide a description of the immunopathogenesis and the most common mechanisms of autoimmunity in myocarditis, and to provide an update on therapeutic options. RECENT FINDINGS A new entity of myocarditis is immune checkpoint inhibitor (ICI) induced myocarditis. ICIs are used in advanced cancer to "disinhibit" the immune system and make it more aggressive in fighting cancer. This novel drug class has doubled life expectancy in metastatic melanoma and significantly increased progression free survival in advanced non-small-cell lung cancer, but comes with a risk of autoimmune diseases such as myocarditis resulting from an overly aggressive immune system. Myocarditis is an inflammatory disease of the heart with major public health impact. Thorough understanding of its immunopathogenesis is crucial for accurate diagnosis and effective treatment.
Collapse
|
25
|
Kespohl M, Bredow C, Klingel K, Voß M, Paeschke A, Zickler M, Poller W, Kaya Z, Eckstein J, Fechner H, Spranger J, Fähling M, Wirth EK, Radoshevich L, Thery F, Impens F, Berndt N, Knobeloch KP, Beling A. Protein modification with ISG15 blocks coxsackievirus pathology by antiviral and metabolic reprogramming. SCIENCE ADVANCES 2020; 6:eaay1109. [PMID: 32195343 PMCID: PMC7065878 DOI: 10.1126/sciadv.aay1109] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/13/2019] [Indexed: 05/10/2023]
Abstract
Protein modification with ISG15 (ISGylation) represents a major type I IFN-induced antimicrobial system. Common mechanisms of action and species-specific aspects of ISGylation, however, are still ill defined and controversial. We used a multiphasic coxsackievirus B3 (CV) infection model with a first wave resulting in hepatic injury of the liver, followed by a second wave culminating in cardiac damage. This study shows that ISGylation sets nonhematopoietic cells into a resistant state, being indispensable for CV control, which is accomplished by synergistic activity of ISG15 on antiviral IFIT1/3 proteins. Concurrent with altered energy demands, ISG15 also adapts liver metabolism during infection. Shotgun proteomics, in combination with metabolic network modeling, revealed that ISG15 increases the oxidative capacity and promotes gluconeogenesis in liver cells. Cells lacking the activity of the ISG15-specific protease USP18 exhibit increased resistance to clinically relevant CV strains, therefore suggesting that stabilizing ISGylation by inhibiting USP18 could be exploited for CV-associated human pathologies.
Collapse
Affiliation(s)
- Meike Kespohl
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany
| | - Clara Bredow
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Karin Klingel
- University of Tuebingen, Cardiopathology, Institute for Pathology and Neuropathology, Tuebingen, Germany
| | - Martin Voß
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Anna Paeschke
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Martin Zickler
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Wolfgang Poller
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Clinic for Cardiology, Campus Benjamin Franklin, Berlin, Germany
| | - Ziya Kaya
- Universitätsklinikum Heidelberg, Medizinische Klinik für Innere Medizin III: Kardiologie, Angiologie und Pneumologie, Heidelberg, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Heidelberg, Germany
| | - Johannes Eckstein
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Joachim Spranger
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Michael Fähling
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Vegetative Physiology, Berlin, Germany
| | - Eva Katrin Wirth
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Department of Endocrinology, Diabetes and Nutrition, Berlin, Germany
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Fabien Thery
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Nikolaus Berndt
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute for Computational and Imaging Science in Cardiovascular Medicine, Berlin, Germany
| | | | - Antje Beling
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany
- Corresponding author.
| |
Collapse
|
26
|
Bajpai G, Bredemeyer A, Li W, Zaitsev K, Koenig AL, Lokshina I, Mohan J, Ivey B, Hsiao HM, Weinheimer C, Kovacs A, Epelman S, Artyomov M, Kreisel D, Lavine KJ. Tissue Resident CCR2- and CCR2+ Cardiac Macrophages Differentially Orchestrate Monocyte Recruitment and Fate Specification Following Myocardial Injury. Circ Res 2019; 124:263-278. [PMID: 30582448 DOI: 10.1161/circresaha.118.314028] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Recent advancements have brought to light the origins, complexity, and functions of tissue-resident macrophages. However, in the context of tissue injury or disease, large numbers of monocytes infiltrate the heart and are thought to contribute to adverse remodeling and heart failure pathogenesis. Little is understood about the diversity of monocytes and monocyte-derived macrophages recruited to the heart after myocardial injury, including the mechanisms that regulate monocyte recruitment and fate specification. OBJECTIVE We sought to test the hypothesis that distinct subsets of tissue-resident CCR2- (C-C chemokine receptor 2) and CCR2+ macrophages orchestrate monocyte recruitment and fate specification after myocardial injury. METHODS AND RESULTS We reveal that in numerous mouse models of cardiomyocyte cell death (permanent myocardial infarction, reperfused myocardial infarction, and diphtheria toxin cardiomyocyte ablation), there is a shift in macrophage ontogeny whereby tissue-resident macrophages are predominately replaced by infiltrating monocytes and monocyte-derived macrophages. Using syngeneic cardiac transplantation to model ischemia-reperfusion injury and distinguish tissue-resident from recruited cell populations in combination with intravital 2-photon microscopy, we demonstrate that monocyte recruitment is differentially orchestrated by distinct subsets of tissue-resident cardiac macrophages. Tissue-resident CCR2+ macrophages promote monocyte recruitment through an MYD88 (myeloid differentiation primary response 88)-dependent mechanism that results in release of MCPs (monocyte chemoattractant proteins) and monocyte mobilization. In contrast, tissue-resident CCR2- macrophages inhibit monocyte recruitment. Using CD (cluster of differentiation) 169-DTR (diphtheria toxin receptor) and CCR2-DTR mice, we further show that selective depletion of either tissue-resident CCR2- or CCR2+ macrophages before myocardial infarction results in divergent effects on left ventricular function, myocardial remodeling, and monocyte recruitment. Finally, using single-cell RNA sequencing, we show that tissue-resident cardiac macrophages differentially instruct monocyte fate specification. CONCLUSIONS Collectively, these observations establish the mechanistic basis by which monocytes are initially recruited to the injured heart and provide new insights into the heterogeneity of monocyte-derived macrophages.
Collapse
Affiliation(s)
- Geetika Bajpai
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Andrea Bredemeyer
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Wenjun Li
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Konstantin Zaitsev
- Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Andrew L Koenig
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Inessa Lokshina
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Jayaram Mohan
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Brooke Ivey
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - His-Min Hsiao
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Carla Weinheimer
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Attila Kovacs
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Slava Epelman
- Toronto General Hospital Research Institute, Division of Cardiology, University Health Network, ON, Canada (S.E.)
| | - Maxim Artyomov
- Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Daniel Kreisel
- Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO
| | - Kory J Lavine
- From the Department of Medicine (G.B., A.B., A.L. Koenig, I.L., J.M., B.I., C.W., A. Kovacs, K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Surgery (W.L., H.-M.H., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Immunology and Pathology (K.Z., M.A., D.K., K.J.L.), Washington University School of Medicine, St. Louis, MO.,Department of Developmental Biology (K.J.L.), Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
27
|
Lavine KJ, Pinto AR, Epelman S, Kopecky BJ, Clemente-Casares X, Godwin J, Rosenthal N, Kovacic JC. The Macrophage in Cardiac Homeostasis and Disease: JACC Macrophage in CVD Series (Part 4). J Am Coll Cardiol 2019; 72:2213-2230. [PMID: 30360829 DOI: 10.1016/j.jacc.2018.08.2149] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 12/24/2022]
Abstract
Macrophages are integral components of cardiac tissue and exert profound effects on the healthy and diseased heart. Paradigm shifting studies using advanced molecular techniques have revealed significant complexity within these macrophage populations that reside in the heart. In this final of a 4-part review series covering the macrophage in cardiovascular disease, the authors review the origins, dynamics, cell surface markers, and respective functions of each cardiac macrophage subset identified to date, including in the specific scenarios of myocarditis and after myocardial infarction. Looking ahead, a deeper understanding of the diverse and often dichotomous functions of cardiac macrophages will be essential for the development of targeted therapies to mitigate injury and orchestrate recovery of the diseased heart. Moreover, as macrophages are critical for cardiac healing, they are an emerging focus for therapeutic strategies aimed at minimizing cardiomyocyte death, ameliorating pathological cardiac remodeling, and for treating heart failure and after myocardial infarction.
Collapse
Affiliation(s)
- Kory J Lavine
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri; Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander R Pinto
- Baker Heart and Diabetes Research Institute, Melbourne, Australia; Centre for Cardiovascular Biology and Disease Research, La Trobe University, Melbourne, Australia
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada; University of Toronto, Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Peter Munk Cardiac Centre, Toronto, Ontario, Canada
| | - Benjamin J Kopecky
- Division of Cardiovascular Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - James Godwin
- The Jackson Laboratory, Bar Harbor, Maine; Mt. Desert Island Biological Laboratory, Bar Harbor, Maine
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine; National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
28
|
Zhu HL, DU Q, Chen WL, Zuo XX, Li QZ, Liu SJ. [Altered serum cytokine expression profile in systemic sclerosis and its regulatory mechanisms]. JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:716-722. [PMID: 31420628 DOI: 10.19723/j.issn.1671-167x.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To analyze the expression profile of serum cytokines in patients with systemic sclerosis (SSc) and explore its possible regulatory mechanisms. METHODS Serum and DNA of peripheral blood mononuclear cells were collected from 30 SSc patients and 80 normal controls (NCs). According to the presence or absence of interstitial lung disease (ILD) in SSc, the patients were divided into SSc with ILD group and SSc without ILD group. According to the degree of skin involvement, the patients were divided into diffuse systemic scleroderma (dcSSc) group and limited systemic scleroderma (lcSSc) group. According to the presence of anti-topoisomerase-1 antibody (anti-Scl-70 antibody) in the serum of patients with SSc, they were divided into SSc Scl-70 (+) group and SSc Scl-70 (-) group. 27 cytokines in serum were detected by Luminex MAGPIX detection system and Bio-Plex Pro Human Cytokine 27-plex Assay kit: interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1ra), IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12P70, IL-13, IL-15, IL-17, basic fiber growth factor (BASIC FGF), eotaxin, granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), interferon-γ (IFN-γ), interferon-gamma induced protein 10(IP-10), monocyte chemotactic protein 1(MCP-1), macrophage inflammatory protein-1α (MIP-1α), macrophage inflammatory protein 1β(MIP-1β), platelet-derived growth factor BB (PDGF-BB), regulated on activation in normal T-cell expressed and secreted (RANTES), tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor(VEGF). Methylation sites were detected by Illumina 450K methylation chip. RESULTS Compared with NCs group, the expression of 12 cytokines (BASIC FGF, eotaxin, G-CSF, GM-CSF, IFN-γ, IL-1β, IL-1ra, IL-6, IP-10, MCP-1, TNF-α and RANTES) in the SSc group significantly increased (P<0.05), IL-5 was decreased expression in the SSc group (P<0.05), there was no significant difference in the expressions of the other 14 cytokines. Compared with lcSSc group, 9 cytokines (eotaxin, IL-5, MCP-1, IL-2, RANTES, IL17A, IL-8, MIP-1β and PDGF-BB) increased in dcSSc group, but there was no significant difference. Compared with SSc without ILD group, IL-15 increased in SSC with ILD group [18.2 (172.97) ng/L vs. 2.03(0.05) ng/L, P<0.05]. Compared with SSc Scl-70 (-) group, the expression of IP-10 decreased in SSc Scl-70 (+) group [1 030 (2 196.6) ng/L vs. 1 878 (2 964) ng/L, P<0.05]. The correlation analysis of serum cytokines with erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) showed that IL-6 was positively correlated with ESR (r =0.04, P= 0.017), MCP-1 (r=0.49, P=0.043) and MIP-1β (r=0.41, P=0.007) positively correlated with CRP. By analyzing the changes of methylation sites of cytokines, it was found that cg17744604 in IL-10 TSS1500 region, cg06111286 in IL-12P70 TSS200 region, cg07935264 in IL-1β TSS200 region, cg01467417 in IL-1ra TSS1500 region, cg03989987 in IL-1ra 5'UTR region and cg21099624 in VEGF TSS200 region were all hypomethylated. CONCLUSION There were different cytokines expression profiles in the serum of SSc patients, and the altered cytokines were correlected with the degree of skin damage and pulmonary fibrosis. Many cytokines were regulated by methylation.
Collapse
Affiliation(s)
- H L Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Q DU
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - W L Chen
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - X X Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Q Z Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - S J Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
29
|
Fischer A, Bockstahler M, Müller AM, Stroikova V, Leib C, Pfitzer G, Katus HA, Kaya Z. FN14 Signaling Plays a Pathogenic Role in a Mouse Model of Experimental Autoimmune Myocarditis. J Card Fail 2019; 25:674-685. [PMID: 31212034 DOI: 10.1016/j.cardfail.2019.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/26/2019] [Accepted: 06/11/2019] [Indexed: 01/23/2023]
Abstract
BACKGROUND The pathogenesis of inflammatory cardiomyopathy is affected by the activation of autoimmune-mediated cascades. To study these cascades, we developed an experimental model of troponin I (TnI)-induced autoimmune myocarditis (EAM). One factor playing a pivotal role in the context of autoimmune disorders is the receptor fibroblast growth factor-inducible 14 (FN14). Thus, the impact of FN14 in the development of autoimmune myocarditis was investigated. METHODS AND RESULTS TnI-immunization led to a significantly increased myocardial FN14 mRNA and protein expression in wild-type (wt) mice. To investigate the precise role of FN14 in EAM, FN14 knockout (ko) and wt littermates were immunized with TnI or control buffer. The animals were evaluated for cardiac parameters and indicators of myocardial injury. FN14 deficiency resulted in better cardiac performance, less myocardial inflammation, fibrosis, and cardiac damage. A lower myocardial mRNA expression of inflammatory cytokines and chemokines as well as their receptors could be demonstrated in TnI-immunized FN14ko compared to wt mice also immunized with TnI. Western blot analysis revealed a contribution of nuclear factor kappa-light-chain-enhancer of activated B cells to FN14-induced signaling cascades. CONCLUSIONS In the pathogenesis of autoimmune myocarditis, the inflammatory response to cardiac injury is attenuated in FN14ko mice. Thus, inhibition of FN14 in patients might represent a novel therapeutic strategy in the treatment of inflammatory cardiomyopathy.
Collapse
Affiliation(s)
- Andrea Fischer
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany
| | - Mariella Bockstahler
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; Cardiology, St. Claraspital, 4058 Basel, Switzerland
| | - Anna-Maria Müller
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Vera Stroikova
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Leib
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; Cardiology, St. Claraspital, 4058 Basel, Switzerland
| | - Gabriele Pfitzer
- Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Hugo A Katus
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ziya Kaya
- Department of Medicine III, University of Heidelberg, 69120 Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, University of Heidelberg, 69120 Heidelberg, Germany.
| |
Collapse
|
30
|
Anzai A, Mindur JE, Halle L, Sano S, Choi JL, He S, McAlpine CS, Chan CT, Kahles F, Valet C, Fenn AM, Nairz M, Rattik S, Iwamoto Y, Fairweather D, Walsh K, Libby P, Nahrendorf M, Swirski FK. Self-reactive CD4 + IL-3 + T cells amplify autoimmune inflammation in myocarditis by inciting monocyte chemotaxis. J Exp Med 2019; 216:369-383. [PMID: 30670465 PMCID: PMC6363430 DOI: 10.1084/jem.20180722] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
Acquisition of self-reactive effector CD4+ T cells is a major component of the autoimmune response that can occur during myocarditis, an inflammatory form of cardiomyopathy. Although the processes by which self-reactive T cells gain effector function have received considerable attention, how these T cells contribute to effector organ inflammation and damage is less clear. Here, we identified an IL-3-dependent amplification loop that exacerbates autoimmune inflammation. In experimental myocarditis, we show that effector organ-accumulating autoreactive IL-3+ CD4+ T cells stimulate IL-3R+ tissue macrophages to produce monocyte-attracting chemokines. The newly recruited monocytes differentiate into antigen-presenting cells that stimulate local IL-3+ CD4+ T cell proliferation, thereby amplifying organ inflammation. Consequently, Il3 -/- mice resist developing robust autoimmune inflammation and myocardial dysfunction, whereas therapeutic IL-3 targeting ameliorates disease. This study defines a mechanism that orchestrates inflammation in myocarditis, describes a previously unknown function for IL-3, and identifies IL-3 as a potential therapeutic target in patients with myocarditis.
Collapse
Affiliation(s)
- Atsushi Anzai
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - John E Mindur
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Lennard Halle
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Jennifer L Choi
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Shun He
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Cameron S McAlpine
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Christopher T Chan
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Florian Kahles
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Colin Valet
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Ashley M Fenn
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Manfred Nairz
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Sara Rattik
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Peter Libby
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA .,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
31
|
Manickam C, Shah SV, Lucar O, Ram DR, Reeves RK. Cytokine-Mediated Tissue Injury in Non-human Primate Models of Viral Infections. Front Immunol 2018; 9:2862. [PMID: 30568659 PMCID: PMC6290327 DOI: 10.3389/fimmu.2018.02862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Viral infections trigger robust secretion of interferons and other antiviral cytokines by infected and bystander cells, which in turn can tune the immune response and may lead to viral clearance or immune suppression. However, aberrant or unrestricted cytokine responses can damage host tissues, leading to organ dysfunction, and even death. To understand the cytokine milieu and immune responses in infected host tissues, non-human primate (NHP) models have emerged as important tools. NHP have been used for decades to study human infections and have played significant roles in the development of vaccines, drug therapies and other immune treatment modalities, aided by an ability to control disease parameters, and unrestricted tissue access. In addition to the genetic and physiological similarities with humans, NHP have conserved immunologic properties with over 90% amino acid similarity for most cytokines. For example, human-like symptomology and acute respiratory syndrome is found in cynomolgus macaques infected with highly pathogenic avian influenza virus, antibody enhanced dengue disease is common in neotropical primates, and in NHP models of viral hepatitis cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy studies in NHP are underway and will provide important insights for future human interventions. This review will provide a comprehensive outline of the cytokine-mediated exacerbation of disease and tissue damage in NHP models of viral infections and therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
Collapse
Affiliation(s)
- Cordelia Manickam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Spandan V. Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olivier Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniel R. Ram
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
32
|
Beling A, Kespohl M. Proteasomal Protein Degradation: Adaptation of Cellular Proteolysis With Impact on Virus-and Cytokine-Mediated Damage of Heart Tissue During Myocarditis. Front Immunol 2018; 9:2620. [PMID: 30546359 PMCID: PMC6279938 DOI: 10.3389/fimmu.2018.02620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/26/2022] Open
Abstract
Viral myocarditis is an inflammation of the heart muscle triggered by direct virus-induced cytolysis and immune response mechanisms with most severe consequences during early childhood. Acute and long-term manifestation of damaged heart tissue and disturbances of cardiac performance involve virus-triggered adverse activation of the immune response and both immunopathology, as well as, autoimmunity account for such immune-destructive processes. It is a matter of ongoing debate to what extent subclinical virus infection contributes to the debilitating sequela of the acute disease. In this review, we conceptualize the many functions of the proteasome in viral myocarditis and discuss the adaptation of this multi-catalytic protease complex together with its implications on the course of disease. Inhibition of proteasome function is already highly relevant as a strategy in treating various malignancies. However, cardiotoxicity and immune-related adverse effects have proven significant hurdles, representative of the target's wide-ranging functions. Thus, we further discuss the molecular details of proteasome-mediated activity of the immune response for virus-mediated inflammatory heart disease. We summarize how the spatiotemporal flexibility of the proteasome might be tackled for therapeutic purposes aiming to mitigate virus-mediated adverse activation of the immune response in the heart.
Collapse
Affiliation(s)
- Antje Beling
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Meike Kespohl
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Institute of Biochemistry, Berlin, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
33
|
Van der Borght K, Scott CL, Martens L, Sichien D, Van Isterdael G, Nindl V, Saeys Y, Boon L, Ludewig B, Gillebert TC, Lambrecht BN. Myocarditis Elicits Dendritic Cell and Monocyte Infiltration in the Heart and Self-Antigen Presentation by Conventional Type 2 Dendritic Cells. Front Immunol 2018; 9:2714. [PMID: 30524444 PMCID: PMC6258766 DOI: 10.3389/fimmu.2018.02714] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022] Open
Abstract
Autoimmune myocarditis often leads to dilated cardiomyopathy (DCM). Although T cell reactivity to cardiac self-antigen is common in the disease, it is unknown which antigen presenting cell (APC) triggers autoimmunity. Experimental autoimmune myocarditis (EAM) was induced by immunizing mice with α-myosin loaded bone marrow APCs cultured in GM-CSF. APCs found in such cultures include conventional type 2 CD11b+ cDCs (GM-cDC2s) and monocyte-derived cells (GM-MCs). However, only α-myosin loaded GM-cDC2s could induce EAM. We also studied antigen presenting capacity of endogenous type 1 CD24+ cDCs (cDC1s), cDC2s, and MCs for α-myosin-specific TCR-transgenic TCR-M CD4+ T cells. After EAM induction, all cardiac APCs significantly increased and cDCs migrated to the heart-draining mediastinal lymph node (LN). Primarily cDC2s presented α-myosin to TCR-M cells and induced Th1/Th17 differentiation. Loss of IRF4 in Irf4fl/fl.Cd11cCre mice reduced MHCII expression on GM-cDC2s in vitro and cDC2 migration in vivo. However, partly defective cDC2 functions in Irf4fl/fl.Cd11cCre mice did not suppress EAM. MCs were the largest APC subset in the inflamed heart and produced pro-inflammatory cytokines. Targeting APC populations could be exploited in the design of new therapies for cardiac autoimmunity.
Collapse
Affiliation(s)
- Katrien Van der Borght
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Charlotte L Scott
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Liesbet Martens
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Dorine Sichien
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Gert Van Isterdael
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Veronika Nindl
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yvan Saeys
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium
| | | | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Bart N Lambrecht
- Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
34
|
Heart macrophages and dendritic cells in sickness and in health: A tale of a complicated marriage. Cell Immunol 2018; 330:105-113. [PMID: 29650244 DOI: 10.1016/j.cellimm.2018.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
Heart disease is the major cause of death and it is broadly recognized that the immune system plays a central role in healthy and injured heart. Here, we focus on the contribution of various subsets of mononuclear phagocytes in the cardiac system. Macrophages and dendritic cells reside in the healthy myocardium to fulfill homeostatic functions and rapidly increase in numbers in diseases like myocardial ischemia and myocarditis to contribute to disease or resolve it. Recent experiments have revealed the extraordinary heterogeneity of cardiac mononuclear phagocytes that differ in origin, lifespan, phenotype and function. Although many studies described cardiac phagocytes in the mouse, subsets of cardiac mononuclear phagocytes can also be broadly found in the human heart, opening up the potential of selective targeting of these cells in a therapeutic setting. Before this goal can be achieved we need better understanding not only of the detrimental but also beneficial functions of these highly diverse cells in the heart.
Collapse
|
35
|
Hwang CJ, Park MH, Hwang JY, Kim JH, Yun NY, Oh SY, Song JK, Seo HO, Kim YB, Hwang DY, Oh KW, Han SB, Hong JT. CCR5 deficiency accelerates lipopolysaccharide-induced astrogliosis, amyloid-beta deposit and impaired memory function. Oncotarget 2017; 7:11984-99. [PMID: 26910914 PMCID: PMC4914263 DOI: 10.18632/oncotarget.7453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 02/05/2016] [Indexed: 11/25/2022] Open
Abstract
Chemokine receptors are implicated in inflammation and immune responses. Neuro-inflammation is associated with activation of astrocyte and amyloid-beta (Aβ) generations that lead to pathogenesis of Alzheimer disease (AD). Previous our study showed that deficiency of CC chemokine receptor 5 (CCR5) results in activation of astrocytes and Aβ deposit, and thus memory dysfunction through increase of CC chemokine receptor 2 (CCR2) expression. CCR5 knockout mice were used as an animal model with memory dysfunction. For the purpose LPS was injected i.p. daily (0.25 mg/kg/day). The memory dysfunctions were much higher in LPS-injected CCR5 knockout mice compared to CCR5 wild type mice as well as non-injected CCR5 knockout mice. Associated with severe memory dysfuction in LPS injected CCR5 knockout mice, LPS injection significant increase expression of inflammatory proteins, astrocyte activation, expressions of β-secretase as well as Aβ deposition in the brain of CCR5 knockout mice as compared with that of CCR5 wild type mice. In CCR5 knockout mice, CCR2 expressions were high and co-localized with GFAP which was significantly elevated by LPS. Expression of monocyte chemoattractant protein-1 (MCP-1) which ligands of CCR2 also increased by LPS injection, and increment of MCP-1 expression is much higher in CCR5 knockout mice. BV-2 cells treated with CCR5 antagonist, D-ala-peptide T-amide (DAPTA) and cultured astrocytes isolated from CCR5 knockout mice treated with LPS (1 μg/ml) and CCR2 antagonist, decreased the NF-ĸB activation and Aβ level. These findings suggest that the deficiency of CCR5 enhances response of LPS, which accelerates to neuro-inflammation and memory impairment.
Collapse
Affiliation(s)
- Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jae Yeon Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Hwan Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Na Young Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang Yeon Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Kyung Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyun Ok Seo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun-Bae Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dae Yeon Hwang
- College of Natural Resources and Life Science, Pusan National University, Pusan, Republic of Korea
| | - Ki-Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
36
|
Clemente-Casares X, Hosseinzadeh S, Barbu I, Dick SA, Macklin JA, Wang Y, Momen A, Kantores C, Aronoff L, Farno M, Lucas TM, Avery J, Zarrin-Khat D, Elsaesser HJ, Razani B, Lavine KJ, Husain M, Brooks DG, Robbins CS, Cybulsky M, Epelman S. A CD103 + Conventional Dendritic Cell Surveillance System Prevents Development of Overt Heart Failure during Subclinical Viral Myocarditis. Immunity 2017; 47:974-989.e8. [PMID: 29166591 DOI: 10.1016/j.immuni.2017.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 05/08/2017] [Accepted: 10/24/2017] [Indexed: 12/24/2022]
Abstract
Innate and adaptive immune cells modulate heart failure pathogenesis during viral myocarditis, yet their identities and functions remain poorly defined. We utilized a combination of genetic fate mapping, parabiotic, transcriptional, and functional analyses and demonstrated that the heart contained two major conventional dendritic cell (cDC) subsets, CD103+ and CD11b+, which differentially relied on local proliferation and precursor recruitment to maintain their tissue residency. Following viral infection of the myocardium, cDCs accumulated in the heart coincident with monocyte infiltration and loss of resident reparative embryonic-derived cardiac macrophages. cDC depletion abrogated antigen-specific CD8+ T cell proliferative expansion, transforming subclinical cardiac injury to overt heart failure. These effects were mediated by CD103+ cDCs, which are dependent on the transcription factor BATF3 for their development. Collectively, our findings identified resident cardiac cDC subsets, defined their origins, and revealed an essential role for CD103+ cDCs in antigen-specific T cell responses during subclinical viral myocarditis.
Collapse
Affiliation(s)
- Xavier Clemente-Casares
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada
| | - Siyavash Hosseinzadeh
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada
| | - Iulia Barbu
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Immunology, University of Toronto, Toronto ON, M5S 1A1, Canada
| | - Sarah A Dick
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada
| | - Jillian A Macklin
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada
| | - Yiming Wang
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada
| | - Abdul Momen
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada
| | - Laura Aronoff
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada
| | | | - Tiffany M Lucas
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joan Avery
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dorrin Zarrin-Khat
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Ted Rogers Centre for Heart Research, Toronto ON, M5G 1L7, Canada
| | - Heidi J Elsaesser
- Princess Margaret Cancer Center, Immune Therapy Program, UHN, Toronto ON, M5G 1L7, Canada
| | - Babak Razani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mansoor Husain
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada; Peter Munk Cardiac Centre, Toronto ON, M5G 1L7, Canada; Ted Rogers Centre for Heart Research, Toronto ON, M5G 1L7, Canada
| | - David G Brooks
- Department of Immunology, University of Toronto, Toronto ON, M5S 1A1, Canada; Princess Margaret Cancer Center, Immune Therapy Program, UHN, Toronto ON, M5G 1L7, Canada
| | - Clinton S Robbins
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada; Department of Immunology, University of Toronto, Toronto ON, M5S 1A1, Canada; Peter Munk Cardiac Centre, Toronto ON, M5G 1L7, Canada
| | - Myron Cybulsky
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto ON, M5G 1L7, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto ON, M5S 1A1, Canada; Department of Immunology, University of Toronto, Toronto ON, M5S 1A1, Canada; Peter Munk Cardiac Centre, Toronto ON, M5G 1L7, Canada; Ted Rogers Centre for Heart Research, Toronto ON, M5G 1L7, Canada.
| |
Collapse
|
37
|
Poon C, Chowdhuri S, Kuo CH, Fang Y, Alenghat FJ, Hyatt D, Kani K, Gross ME, Chung EJ. Protein Mimetic and Anticancer Properties of Monocyte-Targeting Peptide Amphiphile Micelles. ACS Biomater Sci Eng 2017; 3:3273-3282. [PMID: 29302619 DOI: 10.1021/acsbiomaterials.7b00600] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) stimulates the migration of monocytes to inflammatory sites, leading to the progression of many diseases. Recently, we described a monocyte-targeting peptide amphiphile micelle (MCP-1 PAM) incorporated with the chemokine receptor CCR2 binding motif of MCP-1, which has a high affinity for monocytes in atherosclerotic plaques. We further report here the biomimetic components of MCP-1 PAMs and the influence of the nanoparticle upon binding to monocytes. We report that MCP-1 PAMs have enhanced secondary structure compared to the MCP-1 peptide. As a result, MCP-1 PAMs displayed improved binding and chemoattractant properties to monocytes, which upregulated the inflammatory signaling pathways responsible for monocyte migration. Interestingly, when MCP-1 PAMs were incubated in the presence of prostate cancer cells in vitro, the particle displayed anticancer efficacy by reducing CCR2 expression. Given that monocytes play an important role in tumor cell migration and invasion, our results demonstrate that PAMs can improve the native biofunctional properties of the peptide and may be used as an effective inhibitor to prevent chemokine-receptor interactions that promote disease progression.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Sampreeti Chowdhuri
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| | - Cheng-Hsiang Kuo
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Yun Fang
- Section of Pulmonary and Critical Care, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Francis J Alenghat
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Danielle Hyatt
- Section of Cardiology, Department of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, Illinois 60637, United States
| | - Kian Kani
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90089, United States
| | - Mitchell E Gross
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, Los Angeles, California 90089, United States
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089, United States
| |
Collapse
|
38
|
Pernambuco AP, Fonseca ACS, Oliveira GLD, Faria PC, Silva RV, Meireles C, Arantes SE, Silva FC, Reis DD. Increased Levels of IL-17, IL-23, MIP-1α, MCP-1 and Global Leukocytes in Fibromyalgia Patients. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/24708593.2017.1357664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andrei Pereira Pernambuco
- CEPEP, Centro Universitário de Formiga, Formiga, Brazil,
- Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil and
- Universidade de Itaúna, Itaúna, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | - Débora d’Ávila Reis
- Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil and
| |
Collapse
|
39
|
Shen Y, Xie X, Li Z, Huang Y, Ma L, Shen X, Liu Y, Zhao Y. Interleukin-17-induced expression of monocyte chemoattractant protein-1 in cardiac myocytes requires nuclear factor κB through the phosphorylation of p65. Microbiol Immunol 2017; 61:280-286. [PMID: 28593659 DOI: 10.1111/1348-0421.12495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Yan Shen
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Xin Xie
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Zhuolun Li
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Yan Huang
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Li Ma
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Xinhe Shen
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Yanyue Liu
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| | - Yuxia Zhao
- Department of Clinical Laboratory; The First Affiliated Hospital of Zhengzhou University; No. 1 JianShe Road Zhengzhou 450052 China
| |
Collapse
|
40
|
Zhang C, Zhou G, Cai C, Li J, Chen F, Xie L, Wang W, Zhang Y, Lai X, Ma L. Human umbilical cord mesenchymal stem cells alleviate acute myocarditis by modulating endoplasmic reticulum stress and extracellular signal regulated 1/2-mediated apoptosis. Mol Med Rep 2017; 15:3515-3520. [PMID: 28440472 PMCID: PMC5436290 DOI: 10.3892/mmr.2017.6454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/02/2017] [Indexed: 02/05/2023] Open
Abstract
Acute myocarditis is a non-ischemic inflammatory disease of the myocardium, and there is currently no standard treatment. Mesenchymal stem cells (MSCs) can alleviate myosin‑induced myocarditis; however, the mechanism has not been clearly elucidated. In the present study, the authors investigated the ability of human umbilical cordMSCs (HuMSCs) to attenuate myocardial injury and dysfunction during the acute phase of experimental myocarditis. Male Lewis rats (aged 8 weeks) were injected with porcine myosin to induce myocarditis. Cultured HuMSCs (1x106 cells/rat) were intravenously injected 10 days following myosin injection. A total of 3 weeks following injection, this resulted in severe inflammation and significant deterioration of cardiac function. HuMSC transplantation attenuated infiltration of inflammatory cells and adverse cardiac remodeling, as well as reduced cardiomyocyte apoptosis. Furthermore, it was identified that HuMSC transplantation suppressed endoplasmic reticulum stress and extracellular signal‑regulated kinase (ERK)1/2 signaling in experimental autoimmune myocarditis (EAM). The reduced number of TUNEL‑positive apoptotic cells in myocardial sections from HuMSC‑treated EAM rats compared with control demonstrates HuMSCs' anti‑apoptotic function. Based on these data, the author suggested that treatment with HuMSCs inhibits myocardial apoptosis in EAM rats, ultimately protecting them from myocardial damage. The conclusion demonstrated that HuMSC transplantation attenuates myocardial injury and dysfunction in a rat model of acute myocarditis, potentially via regulation of ER stress, ERK1/2 signaling and induction of cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Changyi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Guichi Zhou
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Chanxin Cai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jindi Li
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Fen Chen
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
| | - Lichun Xie
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Yonggang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiulan Lai
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Dr Xiulan Lai, Department of Paediatrics, The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, Shenzhen, Guangdong 518000, P.R. China
- Maternal and Child Health Care Center of Pingshan, Shenzhen, Guangdong 518000, P.R. China
- Translational Medicine Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Lian Ma, Department of Paediatrics, Women's and Children's Hospital of Shenzhen University, 6 Longxing Road, Pingshan, Shenzhen, Guangdong 518000, P.R. China, E-mail:
| |
Collapse
|
41
|
Mottaghitalab F, Rastegari A, Farokhi M, Dinarvand R, Hosseinkhani H, Ou KL, Pack DW, Mao C, Dinarvand M, Fatahi Y, Atyabi F. Prospects of siRNA applications in regenerative medicine. Int J Pharm 2017; 524:312-329. [PMID: 28385649 DOI: 10.1016/j.ijpharm.2017.03.092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
Abstract
Small interfering RNA (siRNA) has established its reputation in the field of tissue engineering owing to its ability to silence the proteins that inhibit tissue regeneration. siRNA is capable of regulating cellular behavior during tissue regeneration processes. The concept of using siRNA technology in regenerative medicine derived from its ability to inhibit the expression of target genes involved in defective tissues and the possibility to induce the expression of tissue-inductive factors that improve the tissue regeneration process. To date, siRNA has been used as a suppressive biomolecule in different tissues, such as nervous tissue, bone, cartilage, heart, kidney, and liver. Moreover, various delivery systems have been applied in order to deliver siRNA to the target tissues. This review will provide an in-depth discussion on the development of siRNA and their delivery systems and mechanisms of action in different tissues.
Collapse
Affiliation(s)
- Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
| | - Keng-Liang Ou
- Research Center for Biomedical Devices and Prototyping Production, Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Daniel W Pack
- Department of Chemical & Materials Engineering and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meshkat Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Heymans S, Eriksson U, Lehtonen J, Cooper LT. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J Am Coll Cardiol 2016; 68:2348-2364. [PMID: 27884253 DOI: 10.1016/j.jacc.2016.09.937] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Myocarditis is a diverse group of heart-specific immune processes classified by clinical and histopathological manifestations. Up to 40% of dilated cardiomyopathy is associated with inflammation or viral infection. Recent experimental studies revealed complex regulatory roles for several microribonucleic acids and T-cell and macrophage subtypes. Although the prevalence of myocarditis remained stable between 1990 and 2013 at about 22 per 100,000 people, overall mortality from cardiomyopathy and myocarditis has decreased since 2005. The diagnostic and prognostic value of cardiac magnetic resonance has increased with new, higher-sensitivity sequences. Positron emission tomography has emerged as a useful tool for diagnosis of cardiac sarcoidosis. The sensitivity of endomyocardial biopsy may be increased, especially in suspected sarcoidosis, by the use of electrogram guidance to target regions of abnormal signal. Investigational treatments on the basis of mechanistic advances are entering clinical trials. Revised management recommendations regarding athletic participation after acute myocarditis have heightened the importance of early diagnosis.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Urs Eriksson
- GZO Regional Health Center, Wetzikon & Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Cardiovascular Department, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
43
|
Young LR, Gulleman PM, Short CW, Tanjore H, Sherrill T, Qi A, McBride AP, Zaynagetdinov R, Benjamin JT, Lawson WE, Novitskiy SV, Blackwell TS. Epithelial-macrophage interactions determine pulmonary fibrosis susceptibility in Hermansky-Pudlak syndrome. JCI Insight 2016; 1:e88947. [PMID: 27777976 DOI: 10.1172/jci.insight.88947] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Alveolar epithelial cell (AEC) dysfunction underlies the pathogenesis of pulmonary fibrosis in Hermansky-Pudlak syndrome (HPS) and other genetic syndromes associated with interstitial lung disease; however, mechanisms linking AEC dysfunction and fibrotic remodeling are incompletely understood. Since increased macrophage recruitment precedes pulmonary fibrosis in HPS, we investigated whether crosstalk between AECs and macrophages determines fibrotic susceptibility. We found that AECs from HPS mice produce excessive MCP-1, which was associated with increased macrophages in the lungs of unchallenged HPS mice. Blocking MCP-1/CCR2 signaling in HPS mice with genetic deficiency of CCR2 or targeted deletion of MCP-1 in AECs normalized macrophage recruitment, decreased AEC apoptosis, and reduced lung fibrosis in these mice following treatment with low-dose bleomycin. We observed increased TGF-β production by HPS macrophages, which was eliminated by CCR2 deletion. Selective deletion of TGF-β in myeloid cells or of TGF-β signaling in AECs through deletion of TGFBR2 protected HPS mice from AEC apoptosis and bleomycin-induced fibrosis. Together, these data reveal a feedback loop in which increased MCP-1 production by dysfunctional AECs results in recruitment and activation of lung macrophages that produce TGF-β, thus amplifying the fibrotic cascade through AEC apoptosis and stimulation of fibrotic remodeling.
Collapse
Affiliation(s)
- Lisa R Young
- Department of Pediatrics, Division of Pulmonary Medicine, and.,Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Chelsi W Short
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | - Harikrishna Tanjore
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor Sherrill
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Aidong Qi
- Department of Pediatrics, Division of Pulmonary Medicine, and
| | | | - Rinat Zaynagetdinov
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - John T Benjamin
- Department of Pediatrics, Division of Neonatology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - William E Lawson
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sergey V Novitskiy
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA.,Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Hinojar R, Nagel E, Puntmann VO. Advances in Cardiovascular MRI using Quantitative Tissue Characterisation Techniques: Focus on Myocarditis. Eur Cardiol 2016; 11:20-24. [PMID: 30310443 DOI: 10.15420/ecr.2016:18:2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue characterisation capabilities are continuing to evolve and proving to be valuable in the non-invasive diagnosis of clinically-heterogeneous manifestations of myocarditis. The authors investigate how cardiovascular magnetic resonance imaging offers an increasingly reliable alternative to invasive biopsy for clinically-stable patients, and how this tool - with further longitudinal study - will improve the overall understanding of the natural course of myocarditis.
Collapse
Affiliation(s)
- Rocio Hinojar
- Institute for experimental and translational cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany.,Department of Cardiology, University Hospital Ramón y Cajal, Alcala University, Madrid, Spain
| | - Eike Nagel
- Institute for experimental and translational cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Valentina O Puntmann
- Institute for experimental and translational cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany.,Department of Cardiology, Division of Internal Medicine III, Goethe University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
45
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
46
|
Thelemann C, Haller S, Blyszczuk P, Kania G, Rosa M, Eriksson U, Rotman S, Reith W, Acha-Orbea H. Absence of nonhematopoietic MHC class II expression protects mice from experimental autoimmune myocarditis. Eur J Immunol 2015; 46:656-64. [PMID: 26621778 DOI: 10.1002/eji.201545945] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/26/2015] [Accepted: 11/25/2015] [Indexed: 01/14/2023]
Abstract
Experimental autoimmune myocarditis (EAM) is a CD4(+) T-cell-mediated model of human inflammatory dilated cardiomyopathies. Heart-specific CD4(+) T-cell activation is dependent on autoantigens presented by MHC class II (MHCII) molecules expressed on professional APCs. In this study, we addressed the role of inflammation-induced MHCII expression by cardiac nonhematopoietic cells on EAM development. EAM was induced in susceptible mice lacking inducible expression of MHCII molecules on all nonhematopoietic cells (pIV-/- K14 class II transactivator (CIITA) transgenic (Tg) mice) by immunization with α-myosin heavy chain peptide in CFA. Lack of inducible nonhematopoietic MHCII expression in pIV-/- K14 CIITA Tg mice conferred EAM resistance. In contrast, cardiac pathology was induced in WT and heterozygous mice, and correlated with elevated cardiac endothelial MHCII expression. Control mice with myocarditis displayed an increase in infiltrating CD4(+) T cells and in expression of IFN-γ, which is the major driver of nonhematopoietic MHCII expression. Mechanistically, IFN-γ neutralization in WT mice shortly before disease onset resulted in reduced cardiac MHCII expression and pathology. These findings reveal a previously overlooked contribution of IFN-γ to induce endothelial MHCII expression in the heart and to progress cardiac pathology during myocarditis.
Collapse
Affiliation(s)
- Christoph Thelemann
- Department of Biochemistry, CIIL, University of Lausanne, Epalinges, Switzerland
| | - Sergio Haller
- Department of Biochemistry, CIIL, University of Lausanne, Epalinges, Switzerland
| | - Przemyslaw Blyszczuk
- Division of Cardioimmunology, Centre of Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Gabriela Kania
- Research of Systemic Autoimmune Diseases, Division of Rheumatology, University Hospital Zürich, Schlieren, Switzerland
| | - Muriel Rosa
- Department of Biochemistry, CIIL, University of Lausanne, Epalinges, Switzerland
| | - Urs Eriksson
- Division of Cardioimmunology, Centre of Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Samuel Rotman
- Institute of Pathology, CHUV, University of Lausanne, Lausanne, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Hans Acha-Orbea
- Department of Biochemistry, CIIL, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
47
|
Takamura C, Suzuki JI, Ogawa M, Watanabe R, Tada Y, Maejima Y, Akazawa H, Komuro I, Isobe M. Suppression of murine autoimmune myocarditis achieved with direct renin inhibition. J Cardiol 2015; 68:253-60. [PMID: 26475067 DOI: 10.1016/j.jjcc.2015.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/21/2015] [Accepted: 09/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The renin angiotensin system (RAS) plays an important role in the pathogenesis of cardiovascular diseases and inflammation. Myocarditis is an inflammatory disease of the heart, and the role of the RAS in its pathophysiology is unknown. Because the direct renin inhibitor, aliskiren, is thought to block RAS completely, we investigated the cardioprotective effect of aliskiren in mice with experimental autoimmune myocarditis (EAM). METHODS A cardiac α-myosin heavy chain peptide was injected in mice on days 0 and 7. Aliskiren 25mg/kg per day (n=10) or vehicle (n=10) was administered to EAM mice starting on day 0 and the animals were killed on day 21. RESULTS Aliskiren significantly prevented the progression of left ventricular wall thickening in EAM hearts compared to the vehicle-treated group. Histologically, the inflammatory cell infiltration and fibrosis area ratios in the aliskiren-treated group were lower than that in the vehicle-treated group. Immunohistochemistry revealed that aliskiren suppressed CD4 positive cell infiltration in EAM hearts compared to vehicle. Moreover, aliskiren decreased mRNA levels of interleukin (IL)-2, interferon-γ, tumor necrosis factor-α, and collagen 1. In vitro study showed that aliskiren inhibited T cell proliferation and IL-2 production induced by myosin stimulation. CONCLUSION Our results suggest that aliskiren ameliorates EAM by suppressing T-cell activation and inflammatory cytokines, and has potential as a treatment for myocarditis.
Collapse
Affiliation(s)
- Chisato Takamura
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan.
| | - Masahito Ogawa
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Tada
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Mitsuaki Isobe
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
48
|
Weinreuter M, Kreusser MM, Beckendorf J, Schreiter FC, Leuschner F, Lehmann LH, Hofmann KP, Rostosky JS, Diemert N, Xu C, Volz HC, Jungmann A, Nickel A, Sticht C, Gretz N, Maack C, Schneider MD, Gröne HJ, Müller OJ, Katus HA, Backs J. CaM Kinase II mediates maladaptive post-infarct remodeling and pro-inflammatory chemoattractant signaling but not acute myocardial ischemia/reperfusion injury. EMBO Mol Med 2015; 6:1231-45. [PMID: 25193973 PMCID: PMC4287929 DOI: 10.15252/emmm.201403848] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIδC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIδ-deficient mice, CaMKIIδ-deficient mice in which the splice variants CaMKIIδB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIδ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes.
Collapse
Affiliation(s)
- Martin Weinreuter
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Michael M Kreusser
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Jan Beckendorf
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Friederike C Schreiter
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Florian Leuschner
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Lorenz H Lehmann
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kai P Hofmann
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia S Rostosky
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nathalie Diemert
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Chang Xu
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hans Christian Volz
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Jungmann
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | | | - Carsten Sticht
- Medical Research Center, University of Heidelberg Medical Faculty Mannheim, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg Medical Faculty Mannheim, Mannheim, Germany
| | - Christoph Maack
- Department of Cardiology, Saarland University, Homburg, Germany
| | - Michael D Schneider
- British Heart Foundation Centre of Research Excellence, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, UK
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Oliver J Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Hugo A Katus
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany Department of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, University of Heidelberg, Heidelberg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
49
|
Zuern CS, Walker B, Sauter M, Schaub M, Chatterjee M, Mueller K, Rath D, Vogel S, Tegtmeyer R, Seizer P, Geisler T, Kandolf R, Lang F, Klingel K, Gawaz M, Borst O. Endomyocardial expression of SDF-1 predicts mortality in patients with suspected myocarditis. Clin Res Cardiol 2015; 104:1033-43. [DOI: 10.1007/s00392-015-0871-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/18/2015] [Indexed: 01/19/2023]
|
50
|
Proudfoot AEI, Bonvin P, Power CA. Targeting chemokines: Pathogens can, why can't we? Cytokine 2015; 74:259-67. [PMID: 25753743 DOI: 10.1016/j.cyto.2015.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Chemoattractant cytokines, or chemokines, are the largest sub-family of cytokines. About 50 distinct chemokines have been identified in humans. Their principal role is to stimulate the directional migration of leukocytes, which they achieve through activation of their receptors, following immobilization on cell surface glycosaminoglycans (GAGs). Chemokine receptors belong to the G protein-coupled 7-transmembrane receptor family, and hence their identification brought great promise to the pharmaceutical industry, since this receptor class is the target for a large percentage of marketed drugs. Unfortunately, the development of potent and efficacious inhibitors of chemokine receptors has not lived up to the early expectations. Several approaches to targeting this system will be described here, which have been instrumental in establishing paradigms in chemokine biology. Whilst drug discovery programs have not yet elucidated how to make successful drugs targeting the chemokine system, it is now known that certain parasites have evolved anti-chemokine strategies in order to remain undetected by their hosts. What can we learn from them?
Collapse
Affiliation(s)
- Amanda E I Proudfoot
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Pauline Bonvin
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Christine A Power
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève, Switzerland.
| |
Collapse
|