1
|
Ao X, Ji G, Zhang B, Ding W, Wang J, Liu Y, Xue J. Role of apoptosis repressor with caspase recruitment domain in human health and chronic diseases. Ann Med 2024; 56:2409958. [PMID: 39351758 PMCID: PMC11445919 DOI: 10.1080/07853890.2024.2409958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly potent and multifunctional suppressor of various types of programmed cell death (PCD) (e.g. apoptosis, necroptosis, and pyroptosis) and plays a key role in determining cell fate. Under physiological conditions, ARC is predominantly expressed in terminally differentiated cells, such as cardiomyocytes and skeletal muscle cells. Its expression and activity are tightly controlled by a complicated system consisting of transcription factor (TF), non-coding RNA (ncRNA), and post-translational modification (PTM). ARC dysregulation has been shown to be closely associated with many chronic diseases, including cardiovascular disease, cancer, diabetes, and neurodegenerative disease. However, the detailed mechanisms of ARC involved in the progression of these diseases remain unclear to a large extent. In this review, we mainly focus on the regulatory mechanisms of ARC expression and activity and its role in PCD. We also discuss the underlying mechanisms of ARC in health and disease and highlight the potential implications of ARC in the clinical treatment of patients with chronic diseases. This information may assist in developing ARC-based therapeutic strategies for patients with chronic diseases and expand researchers' understanding of ARC.
Collapse
Affiliation(s)
- Xiang Ao
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Guoqiang Ji
- Clinical Laboratory, Linqu People's Hospital, Linqu, Shandong, P.R. China
| | - Bingqiang Zhang
- Institute for Restore Biotechnology, Qingdao Restore Biotechnology Co., Ltd, Qingdao, Shandong, P.R. China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao Restore Biotechnology Co., Ltd, Qingdao, P.R. China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, P.R. China
| | - Ying Liu
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, P.R. China
| | - Junqiang Xue
- Department of Rehabilitation Medicine, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
2
|
Pei X, Tian M, Wang Y, Xin Y, Jiang J, Wang Y, Gong Y. Advances in the knowledge on the role of apoptosis repressor with caspase recruitment domain in hemorrhagic stroke. JOURNAL OF INTENSIVE MEDICINE 2023; 3:138-143. [PMID: 37188117 PMCID: PMC10175730 DOI: 10.1016/j.jointm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/03/2022] [Accepted: 11/23/2022] [Indexed: 05/17/2023]
Abstract
The apoptosis repressor with caspase recruitment domain (ARC) plays a critical role in extrinsic apoptosis initiation via death receptor ligands, physiological stress, infection response in a tissue-dependent manner, endoplasmic reticulum (ER) stress, genotoxic drugs, ionizing radiation, oxidative stress, and hypoxia. Recent studies have suggested that regulating apoptosis-related pathways can improve outcomes for patients with neurological diseases, such as hemorrhagic stroke. ARC expression is significantly correlated with acute cerebral hemorrhage. However, the mechanism by which it mediates the anti-apoptosis pathway remains poorly known. Here, we discuss the function of ARC in hemorrhagic stroke and argue that it could serve as an effective target for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Xu Pei
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yao Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yuewen Xin
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Junliang Jiang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yunyun Wang
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Ye Gong
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- Corresponding author: Ye Gong, Department of Critical Care Medicine, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai 200040, China.
| |
Collapse
|
3
|
A double-edged sword: role of apoptosis repressor with caspase recruitment domain (ARC) in tumorigenesis and ischaemia/reperfusion (I/R) injury. Apoptosis 2023; 28:313-325. [PMID: 36652128 DOI: 10.1007/s10495-022-01802-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/19/2023]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) acts as a potent and multifunctional inhibitor of apoptosis, which is mainly expressed in postmitotic cells, including cardiomyocytes. ARC is special for its N-terminal caspase recruitment domain and caspase recruitment domain. Due to the powerful inhibition of apoptosis, ARC is mainly reported to act as a cardioprotective factor during ischaemia‒reperfusion (I/R) injury, preventing cardiomyocytes from being devastated by various catastrophes, including oxidative stress, calcium overload, and mitochondrial dysfunction in the circulatory system. However, recent studies have found that ARC also plays a potential regulatory role in tumorigenesis especially in colorectal cancer and renal cell carcinomas, through multiple apoptosis-associated pathways, which remains to be explored in further studies. Therefore, ARC regulates the body and maintains the balance of physiological activities with its interesting duplex. This review summarizes the current research progress of ARC in the field of tumorigenesis and ischaemia/reperfusion injury, to provide overall research status and new possibilities for researchers.
Collapse
|
4
|
Patil P, Doshi G. Deciphering the Role of Pyroptosis Impact on Cardiovascular Diseases. Curr Drug Targets 2023; 24:1166-1183. [PMID: 38164730 DOI: 10.2174/0113894501267496231102114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 01/03/2024]
Abstract
Pyroptosis has become a noteworthy area of focus in recent years due to its association with inflammatory diseases. Pyroptosis is a type of programmed cell death accompanied by an inflammatory response, and the discovery of the gasdermin family has expanded the study of pyroptosis. The primary characteristics of pyroptosis include cell expansion, membrane penetration, and the ejection of cell contents. In healthy physiology, pyroptosis is an essential part of the host's defence against pathogen infection. Excessive Pyroptosis, however, can lead to unchecked and persistent inflammatory responses, including the emergence of inflammatory diseases. More precisely, gasdermin family members have a role in the creation of membrane holes during pyroptosis, which leads to cell lysis. It is also related to how pro-inflammatory intracellular substances, including IL-1, IL-18, and High mobility group box 1 (HMGB1), are used. Two different signalling pathways, one of which is regulated by caspase-1 and the other by caspase-4/5/11, are the primary causes of pyroptosis. Cardiovascular diseases are often associated with cell death and acute or chronic inflammation, making this area of research particularly relevant. In this review, we first systematically summarize recent findings related to Pyroptosis, exploring its characteristics and the signalling pathway mechanisms, as well as various treatment strategies based on its modulation that has emerged from the studies. Some of these strategies are currently undergoing clinical trials. Additionally, the article elaborates on the scientific evidence indicating the role of Pyroptosis in various cardiovascular diseases. As a whole, this should shed insight into future paths and present innovative ideas for employing Pyroptosis as a strong disease-fighting weapon.
Collapse
Affiliation(s)
- Poonam Patil
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, VLM Road, Vile Parle (w), Mumbai, 400056, India
| |
Collapse
|
5
|
Huang B, Deng W, Chen P, Mao Q, Chen H, Zhuo Z, Huang Z, Chen K, Huang J, Luo Y. Development and validation of a novel ubiquitination-related gene prognostic signature based on tumor microenvironment for colon cancer. Transl Cancer Res 2022; 11:3724-3740. [PMID: 36388031 PMCID: PMC9641125 DOI: 10.21037/tcr-22-607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2024]
Abstract
BACKGROUND Colon cancer (CC) is one of the most common cancers with high morbidity globally. Ubiquitination is involved in the characterization of multiple biological processes, and some ubiquitinated enzymes are associated with the prognosis of CC. However, the prognostic model associated with ubiquitination-related genes (URGs) for CC is unavailable. METHODS Gene expression data, somatic mutations, transcriptome profiles, microsatellite instability status (MSI) status, and clinical information for CC were obtained from The Cancer Genome Atlas (TCGA) dataset. Seven URGs were used for establishing a prognostic prediction model, which was constructed and validated in GSE17538. Besides, genomic variance analysis (GSVA) was used to explore further the differences in biological pathway activation status between the high-risk and low-risk groups. Finally, the single-sample gene set enrichment analysis (ssGSEA) and ESTIMATE algorithm analysis were used to characterize the cellular infiltration in the microenvironment. RESULTS A seven-URG prognostic signature was established, based on which patients in the training and test groups could be divided into high-risk and low-risk groups. The results demonstrated that the model has a solid ability to predict the prognosis of CC patients. CONCLUSIONS We established a prognostic prediction model for CC based on ubiquitination. Then we analyzed the genetic characteristics associated with ubiquitination and the tumor microenvironment (TME) cell infiltration in CC. These results are worthy of exploring new clinical treatment strategies for CC.
Collapse
Affiliation(s)
- Baoyi Huang
- Department of Clinical Medicine, The Second Clinical College of Guangzhou Medical University, Guangzhou, China
| | - Weiping Deng
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Pengfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiuxian Mao
- Prenatal Diagnostic Department, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zewei Zhuo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zena Huang
- Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Kequan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiayu Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Huizhou Municipal Central People’s Hospital, Huizhou, China
| | - Yujun Luo
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
6
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
7
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Cerveanu-Hogas A, Mares RG, Simionescu M, Schiopu A, Antohe F. Short-Term Blockade of Pro-Inflammatory Alarmin S100A9 Favorably Modulates Left Ventricle Proteome and Related Signaling Pathways Involved in Post-Myocardial Infarction Recovery. Int J Mol Sci 2022; 23:ijms23095289. [PMID: 35563680 PMCID: PMC9103348 DOI: 10.3390/ijms23095289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023] Open
Abstract
Prognosis after myocardial infarction (MI) varies greatly depending on the extent of damaged area and the management of biological processes during recovery. Reportedly, the inhibition of the pro-inflammatory S100A9 reduces myocardial damage after MI. We hypothesize that a S100A9 blockade induces changes of major signaling pathways implicated in post-MI healing. Mass spectrometry-based proteomics and gene analyses of infarcted mice left ventricle were performed. The S100A9 blocker (ABR-23890) was given for 3 days after coronary ligation. At 3 and 7 days post-MI, ventricle samples were analyzed versus control and Sham-operated mice. Blockade of S100A9 modulated the expressed proteins involved in five biological processes: leukocyte cell–cell adhesion, regulation of the muscle cell apoptotic process, regulation of the intrinsic apoptotic signaling pathway, sarcomere organization and cardiac muscle hypertrophy. The blocker induced regulation of 36 proteins interacting with or targeted by the cellular tumor antigen p53, prevented myocardial compensatory hypertrophy, and reduced cardiac markers of post-ischemic stress. The blockade effect was prominent at day 7 post-MI when the quantitative features of the ventricle proteome were closer to controls. Blockade of S100A9 restores key biological processes altered post-MI. These processes could be valuable new pharmacological targets for the treatment of ischemic heart. Mass spectrometry data are available via ProteomeXchange with identifier PXD033683.
Collapse
Affiliation(s)
- Raluca Maria Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Viorel-Iulian Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Razvan Gheorghita Mares
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
| | - Maya Simionescu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Alexandru Schiopu
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
- Correspondence: ; Tel.: +40-213-192-737
| |
Collapse
|
8
|
Wen L, He T, Yu AX, Sun S, Li X, Wei J, Song R, Yan X, Li R, Ren X, Wang Y, Liu X, Dong Y, Fu X, She G. Breviscapine: A Review on its Phytochemistry, Pharmacokinetics and Therapeutic Effects. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1369-1397. [PMID: 34263720 DOI: 10.1142/s0192415x21500646] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Breviscapine is one of the extracts of several flavonoids of Erigeron breviscapus. Scutellarin is the main active component of breviscapine, and the qualitative or quantitative criteria as well. Scutellarin and its analogs share a similar skeleton of the flavonoids. Breviscapine has been widely used in the treatment of cerebral infarction and its sequelae, cerebral thrombus, coronary heart disease (CHD), and angina pectoris. Breviscapine has a broad spectrum of pharmacological activities, such as increasing blood flow, improving microcirculation, dilating blood vessels, decreasing blood viscosity, promoting fibrinolysis, inhibiting platelet aggregation, and thrombosis formation, etc. In addition, breviscapine and its analogs have significant value for drug research and development because of the superiority of those significant bioactivities. Furthermore, an increasing number of pharmacokinetic studies have explored the mechanism of scutellarin and its analogs. To provide a comprehensive understanding of the current research on breviscapine, scutellarin, and the analogs, the structural features, distribution situation, preparation method, content determination method, clinical applications, pharmacological action as well as pharmacokinetics are summarized in the present review.
Collapse
Affiliation(s)
- Luan Wen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ting He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - AXiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Siqi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ruiwen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| | - Xueyan Fu
- School of Pharmacy, Ningxia Medical University, Ningxia 750004, P. R. China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia 750004, P. R. China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, P. R. China
| |
Collapse
|
9
|
Upregulation of microRNA-532 enhances cardiomyocyte apoptosis in the diabetic heart. Apoptosis 2021; 25:388-399. [PMID: 32418060 DOI: 10.1007/s10495-020-01609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes has a strong association with the development of cardiovascular disease, which is grouped as diabetic heart disease (DHD). DHD is associated with the progressive loss of cardiovascular cells through the alteration of molecular signalling pathways associated with cell death. In this study, we sought to determine whether diabetes induces dysregulation of miR-532 and if this is associated with accentuated apoptosis. RT-PCR analysis showed a significant increase in miR-532 expression in the right atrial appendage tissue of type 2 diabetic patients undergoing coronary artery bypass graft surgery. This was associated with marked downregulation of its anti-apoptotic target protein apoptosis repressor with caspase recruitment domain (ARC) and increased TUNEL positive cardiomyocytes. Further analysis showed a positive correlation between apoptosis and miR-532 levels. Time-course experiments in a mouse model of type 2 diabetes showed that diabetes-induced activation of miR-532 occurs in the later stage of the disease. Importantly, the upregulation of miR-532 preceded the activation of pro-apoptotic caspase-3/7 activity. Finally, inhibition of miR-532 activity in high glucose cultured human cardiomyocytes prevented the downregulation of ARC and attenuated apoptotic cell death. Diabetes induced activation of miR-532 plays a critical role in accelerating cardiomyocytes apoptosis. Therefore, miR-532 may serve as a promising therapeutic agent to overcome the diabetes-induced loss of cardiomyocytes.
Collapse
|
10
|
Liu C, Li N, Dai G, Cavdar O, Fang H. A narrative review of circular RNAs as potential biomarkers and therapeutic targets for cardiovascular diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:578. [PMID: 33987276 PMCID: PMC8105802 DOI: 10.21037/atm-20-7929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Circular RNAs (circRNAs), a novel class of non-coding RNA, are produced by back-splicing and were initially considered to be by-products of splicing. In recent years, computational technology and experimental evidence have revealed the tremendous amounts and potential physiological or pathological functions of this novel non-coding RNA species. At present, the roles of circRNAs in neurological diseases, immune diseases, and cancers have come to light. In addition, increasing studies have identified the expression profiles of circRNA in cardiovascular diseases (CVDs) and revealed the involvement of circRNAs in the pathogenesis of CVDs which are the leading cause of mortality and morbidity worldwide, and result in substantial health and financial burden. Despite current improvements in diagnostic and therapeutic approaches, survival and prognosis of CVDs patients remain relatively poor. Due to the involvements of circRNAs in CVDs and their outstanding characteristics of high stability, conservation, and tissue- or developmental-specificity, circRNA-based biomarkers or gene therapy may be effective approaches to reduce CVDs burden. In the review, we systematically summarized the formation mechanisms, functional models, and research approaches of circRNAs, and several circRNAs involved in CVDs. Finally, we proposed that developing circRNAs as biomarkers or circRNA-based therapeutic strategies based on biological or physical materials may be promising to diagnose or treat CVDs in the future.
Collapse
Affiliation(s)
- Chi Liu
- Department of Geriatrics Center, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Li
- Department of Geriatrics Center, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Guifeng Dai
- Department of Geriatrics Center, Jing’an District Central Hospital of Shanghai, Fudan University, Shanghai, China
| | - Omer Cavdar
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hong Fang
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|
12
|
Zhang J, Zheng X, Wang P, Wang J, Ding W. Role of apoptosis repressor with caspase recruitment domain (ARC) in cell death and cardiovascular disease. Apoptosis 2021; 26:24-37. [PMID: 33604728 DOI: 10.1007/s10495-020-01653-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 10/22/2022]
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a highly effective and multifunctional inhibitor of apoptosis that is mainly expressed in postmitotic cells such as cardiomyocytes and skeletal muscle cells. ARC contains a C-terminal region rich in proline and glutamic acid residues and an N-terminal caspase recruitment domain (CARD). The CARD is originally described as a protein-binding motif that interacts with caspase through a CARD-CARD interaction. Initially, the inhibitory effect of ARC was only found in apoptosis, however, it was later found that ARC also played a regulatory role in other types of cell death. As a powerful cardioprotective factor, ARC can protect the heart by inhibiting the death of cardiomyocytes in various ways. ARC can reduce the cardiomyocyte apoptotic response to various stresses and injuries, including extrinsic apoptosis induced by death receptor ligands, cellular Ca2+ homeostasis and the dysregulation of endoplasmic reticulum (ER) stress, oxidative stress and hypoxia. In addition, changes in ARC transcription and translation levels in the heart can cause a series of physiological and pathological changes, and ARC can also perform corresponding functions through interactions with other molecules. Although there has been much research on ARC, the functional redundancy among proteins shows that ARC still has much research value. This review summarizes the molecular characteristics of ARC, its roles in the various death modes in cardiomyocytes and the roles of ARC in cardiac pathophysiology. This article also describes the potential therapeutic effect and research prospects of ARC.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Xianxin Zheng
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Peiyan Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.
| | - Wei Ding
- Department of Comprehensive Internal Medicine, Affiliated Hospital, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
13
|
Zhang MW, Shen YJ, Shi J, Yu JG. MiR-223-3p in Cardiovascular Diseases: A Biomarker and Potential Therapeutic Target. Front Cardiovasc Med 2021; 7:610561. [PMID: 33553260 PMCID: PMC7854547 DOI: 10.3389/fcvm.2020.610561] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases, involving vasculopathy, cardiac dysfunction, or circulatory disturbance, have become the major cause of death globally and brought heavy social burdens. The complexity and diversity of the pathogenic factors add difficulties to diagnosis and treatment, as well as lead to poor prognosis of these diseases. MicroRNAs are short non-coding RNAs to modulate gene expression through directly binding to the 3′-untranslated regions of mRNAs of target genes and thereby to downregulate the protein levels post-transcriptionally. The multiple regulatory effects of microRNAs have been investigated extensively in cardiovascular diseases. MiR-223-3p, expressed in multiple cells such as macrophages, platelets, hepatocytes, and cardiomyocytes to modulate their cellular activities through targeting a variety of genes, is involved in the pathological progression of many cardiovascular diseases. It participates in regulation of several crucial signaling pathways such as phosphatidylinositol 3-kinase/protein kinase B, insulin-like growth factor 1, nuclear factor kappa B, mitogen-activated protein kinase, NOD-like receptor family pyrin domain containing 3 inflammasome, and ribosomal protein S6 kinase B1/hypoxia inducible factor 1 α pathways to affect cell proliferation, migration, apoptosis, hypertrophy, and polarization, as well as electrophysiology, resulting in dysfunction of cardiovascular system. Here, in this review, we will discuss the role of miR-223-3p in cardiovascular diseases, involving its verified targets, influenced signaling pathways, and regulation of cell function. In addition, the potential of miR-223-3p as therapeutic target and biomarker for diagnosis and prediction of cardiovascular diseases will be further discussed, providing clues for clinicians.
Collapse
Affiliation(s)
- Meng-Wan Zhang
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Shen
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Shi
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jian-Guang Yu
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Liu M, Yu T, Li M, Fang X, Hou B, Liu G, Wang J. Apoptosis repressor with caspase recruitment domain promotes cell proliferation and phenotypic modulation through 14-3-3ε/YAP signaling in vascular smooth muscle cells. J Mol Cell Cardiol 2020; 147:35-48. [PMID: 32771410 DOI: 10.1016/j.yjmcc.2020.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/19/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
AIMS In response to vascular injury, vascular smooth muscle cells (VSMC) may change from a contractile phenotype to a proliferative phenotype and consequently become conducive to neointima formation. Apoptosis repressor with caspase recruitment domain (ARC) was initially discovered as an endogenous apoptosis inhibitor, but whether ARC plays a role in VSMCs and whether it can participate in the regulation of atherosclerosis are unknown. METHODS AND RESULTS Protein and mRNA levels of ARC in tissues and cells were detected by western blot and quantitative real-time PCR. Immunofluorescence staining was used to detect the protein location, and immunohistochemistry was used to detect protein expression in tissues. VSMC proliferation was analysed using Cell Counting Kit-8 (CCK-8) and EdU assays, while migration was assessed by Transwell assay. Mechanistically, the direct binding between two proteins was verified by immunoprecipitation. We found that ARC expression was stimulated in VSMCs during cell proliferation. Our results also showed that ARC promoted cell proliferation and induced phenotypic modulation of VSMCs in vitro and vivo. Mechanistic studies demonstrated that ARC increased the nuclear localization of Yes associated protein (YAP) by binding to 14-3-3ε and that ARC played a role in promoting cell proliferation and phenotypic modulation. Additionally, the transcription factor p53 negatively regulated ARC expression at the transcriptional level during cell proliferation and phenotypic modulation. CONCLUSIONS Our findings define a novel role for ARC in the phenotypic transition of proliferating VSMCs, which may provide a new strategy for regulating neointimal formation.
Collapse
Affiliation(s)
- Mengxin Liu
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute for Translational Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Mengyang Li
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Xinyu Fang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China; Institute for Translational Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Bo Hou
- Department of Cardiology, The affiliated hospital of Qingdao university, Qingdao, Shandong Province, China
| | - Gaoli Liu
- Department of Cardiac surgery, The affiliated hospital of Qingdao university, Qingdao, Shandong Province, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
15
|
Xie F, Mei Z, Wang X, Zhang T, Zhao Y, Wang S, Qian L. Loss of nuclear ARC contributes to the development of cardiac hypertrophy in rats. Acta Physiol (Oxf) 2020; 228:e13337. [PMID: 31257698 DOI: 10.1111/apha.13337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 06/22/2019] [Indexed: 12/30/2022]
Abstract
AIM Cardiac hypertrophy and myocardial apoptosis are two major factors in heart failure. As a classical regulator of apoptosis, apoptosis repressor with caspase recruitment domain (ARC) has recently also been found to have a protective effect against hypertrophy. However, the mechanism underlying this effect is still not fully understood. METHODS In the present study, we established animal and cellular models to monitor the changes in total and nuclear ARC during cardiac hypertrophic processes. The preventive effects of nuclear ARC in cellular hypertrophy were verified by ARC regulation and nuclear export inhibition. To further explore the mechanism for nuclear ARC superficially, we analysed proteins that interact with ARC in the nucleus via Co-IP and mass spectrometry. RESULTS The expression of total ARC in hypertrophic myocardial tissue and H9C2 cells remained invariant, while the level of nuclear ARC decreased dramatically. By altering the content of ARC in H9C2 cells, we found that both nuclear ARC transfection and nuclear ARC export blockade attenuated norepinephrine or angiotensin II-induced hypertrophy, while ARC knockdown had an inverse effect. Co-IP data showed that ARC interacted with prohibitin (PHB) in the nucleus and might participate in maintaining the level of PHB in cells. CONCLUSIONS These findings suggest a novel mechanism for ARC in cardiac hypertrophy prevention and also indicate that the anti-hypertrophic roles of ARC are probably associated with its localization in nucleus, which imply the nuclear ARC as a potential therapeutic target for cardiac hypertrophy.
Collapse
Affiliation(s)
- Fang Xie
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| | - Zhu‐Song Mei
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| | - Xue Wang
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| | - Tao Zhang
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
- Shandong University of Traditional Chinese Medicine Jinan P.R. China
| | - Yun Zhao
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| | - Shi‐Da Wang
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| | - Ling‐Jia Qian
- Department of Military Cognitive and Stress Medicine, Institute of Military Cognitive and Brain Sciences Academy of Military Medical Sciences Beijing P.R. China
| |
Collapse
|
16
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019; 18:5691-5698. [PMID: 31788041 PMCID: PMC6865693 DOI: 10.3892/ol.2019.10981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China.,School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
17
|
Yu Z, Li Q, An Y, Chen X, Liu Z, Li Z, Gao J, Aung LHH, Li P. Role of apoptosis repressor with caspase recruitment domain (ARC) in cancer. Oncol Lett 2019. [PMID: 31788041 DOI: 10.3892/ol.2019.10981/abstract] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC) is a potent inhibitor of apoptosis. Under physiological conditions, ARC is abundantly expressed in terminally differentiated cells, including cardiomyocytes, skeletal muscles and neurons. ARC serves a key role in determining cell fate, and abnormal ARC expression has been demonstrated to be associated with abnormal cell growth. Previous studies have revealed that ARC was upregulated in several different types of solid tumor, where it suppressed tumor cell apoptosis. Furthermore, the increased expression levels of ARC in cancer cells contributed to the development of therapeutic resistance and adverse clinical outcomes in patients with leukemia. However, the exact role of ARC, as well as the underlying molecular mechanisms involved, remain poorly understood. The present review summarizes the characteristics of ARC and its cytoprotective role under different conditions and describes the potential ARC as a new target for cancer therapy.
Collapse
Affiliation(s)
- Zhongjie Yu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Qi Li
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiatian Chen
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Ziqian Liu
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhe Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jinning Gao
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Lynn Htet Htet Aung
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Peifeng Li
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
18
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 609] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
19
|
Li Q, Yang J, Zhang J, Liu XW, Yang CJ, Fan ZX, Wang HB, Yang Y, Zheng T, Yang J. Inhibition of microRNA-327 ameliorates ischemia/reperfusion injury-induced cardiomyocytes apoptosis through targeting apoptosis repressor with caspase recruitment domain. J Cell Physiol 2019; 235:3753-3767. [PMID: 31587299 DOI: 10.1002/jcp.29270] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022]
Abstract
Apoptosis is the major cause of cardiomyocyte death in myocardial ischemia/reperfusion injury (MI/RI). Increasing evidence suggests that microRNAs (miRNAs) can contribute to the regulation of cardiomyocytes apoptosis by posttranscriptional modulation of gene expression networks. However, the effects of miR-327 in regulating MI/RI-induced cardiomyocytes apoptosis have not been extensively investigated. This study was performed to test whether miR-327 participate in cardiomyocytes apoptosis both in vitro and in vivo, and reveal the potential molecular mechanism of miR-327 regulated MI/RI through targeting apoptosis repressor with caspase recruitment domain (ARC). Sprague-Dawley (SD) rats were subjected to MI/RI by left anterior descending coronary artery occlusion for 30 min and reperfusion for 3 hr. H9c2 cells were exposed to hypoxia for 4 hr and reoxygenation for 12 hr to mimic I/R injury. miRNA-327 recombinant adenovirus vectors were transfected into H9c2 cells for 48 hr and rats for 72 hr before H/R and MI/RI treatment, respectively. The apoptosis rate, downstream molecules of apoptotic pathway, and the target reaction between miRNA-327 and ARC were evaluated. Our results showed that miR-327 was upregulated and ARC was downregulated in the myocardial tissues of MI/RI rats and in H9c2 cells with H/R treatment. Inhibition of miR-327 decreased the expression levels of proapoptotic proteins Fas, FasL, caspase-8, Bax, cleaved caspase-9, cleaved caspase-3, and the release of cytochrome-C, as well as increasing the expression levels of antiapoptotic protein Bcl-2 via negative regulation of ARC both in vivo or vitro. In contrast, overexpression miR-327 showed the reverse effect. Moreover, the results of luciferase reporter assay indicated miR-327 targets ARC directly at the posttranscriptional level. Taken together, inhibition of miR-327 could attenuate cardiomyocyte apoptosis and alleviate I/R-induced myocardial injury via targeting ARC, which offers a new therapeutic strategy for MI/RI.
Collapse
Affiliation(s)
- Qi Li
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jun Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| | - Jing Zhang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Xiao-Wen Liu
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Chao-Jun Yang
- Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Zhi-Xing Fan
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
| | - Hui-Bo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ying Yang
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Tao Zheng
- Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China.,Central Laboratory, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Institute of Cardiovascular Diseases, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
20
|
Reduced Hippocampal Neurogenesis in Mice Deficient in Apoptosis Repressor with Caspase Recruitment Domain (ARC). Neuroscience 2019; 416:20-29. [PMID: 31356897 DOI: 10.1016/j.neuroscience.2019.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 01/17/2023]
Abstract
In the adult hippocampal dentate gyrus (DG), the majority of newly generated cells are eliminated by apoptotic mechanisms. The apoptosis repressor with caspase recruitment domain (ARC), encoded by the Nol3 gene, is a potent and multifunctional death repressor that inhibits both death receptor and mitochondrial apoptotic signaling. The aim of the present study was to parse the role of ARC in the development of new granule cell neurons. Nol3 gene expression as revealed by in situ hybridization is present in the entire dentate granule cell layer. Moreover, a comparison of Nol3 expression between FACS-sorted Sox2-positive neural stem cells and Doublecortin (DCX)-positive immature neurons demonstrates upregulation of Nol3 during neurogenesis. Using ARC-deficient mice, we show that proliferation and survival of BrdU birth-dated cells are strongly reduced in the absence of ARC while neuronal-glial fate choice is not affected. Both the number of DCX-positive cells and the number of calretinin (CR)-positive immature postmitotic neurons are reduced in the hippocampus of ARC-/- mice. ARC knockout is not associated with increased numbers of microglia or with microglia activation. However, hippocampal brain-derived neurotrophic factor (BDNF) protein content is significantly increased in ARC-/- mice, possibly representing a compensatory response. Collectively, our results suggest that ARC plays a critical cell-autonomous role in preventing cell death during adult granule cell neogenesis.
Collapse
|
21
|
Expression alterations of apoptosis repressor with caspase recruitment domain in Aβ25–35-induced hippocampal neurotoxicity. Neuroreport 2019; 30:1-7. [DOI: 10.1097/wnr.0000000000001150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Zhaolin Z, Guohua L, Shiyuan W, Zuo W. Role of pyroptosis in cardiovascular disease. Cell Prolif 2018; 52:e12563. [PMID: 30525268 PMCID: PMC6496801 DOI: 10.1111/cpr.12563] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/06/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cardiac function is determined by the dynamic equilibrium of various cell types and the extracellular matrix that composes the heart. Cardiovascular diseases (CVDs), especially atherosclerosis and myocardial infarction, are often accompanied by cell death and acute/chronic inflammatory reactions. Caspase‐dependent pyroptosis is characterized by the activation of pathways leading to the activation of NOD‐like receptors, especially the NLRP3 inflammasome and its downstream effector inflammatory factors interleukin (IL)‐1β and IL‐18. Many studies in the past decade have investigated the role of pyroptosis in CVDs. The findings of these studies have led to the development of therapeutic approaches based on the regulation of pyroptosis, and some of these approaches are in clinical trials. This review summarizes the molecular mechanisms, regulation and cellular effects of pyroptosis briefly and then discusses the current pyroptosis studies in CVD research.
Collapse
Affiliation(s)
- Zeng Zhaolin
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Li Guohua
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Wu Shiyuan
- Yueyang Maternal and Child Health Hospital, Yueyang, China
| | - Wang Zuo
- Yueyang Maternal and Child Health Hospital, Yueyang, China.,Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| |
Collapse
|
23
|
Vorobej K, Mitchell AS, Smith IC, Donath S, Russell Tupling A, Quadrilatero J. The effect of ARC ablation on skeletal muscle morphology, function, and apoptotic signaling during aging. Exp Gerontol 2017; 101:69-79. [PMID: 29056555 DOI: 10.1016/j.exger.2017.10.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/24/2022]
Abstract
Augmented apoptotic signaling can result in degradation of skeletal muscle proteins and loss of myonuclei, ultimately contributing to muscle atrophy and contractile dysfunction. Apoptosis repressor with caspase recruitment domain (ARC) is an anti-apoptotic protein highly expressed in skeletal muscle. Here we examined the role of ARC on age-related skeletal muscle apoptosis and wasting by utilizing an ARC-deficient mouse model. Aged mice displayed a number of morphological, phenotypic, and contractile alterations in both soleus and plantaris muscle with aging. Although no differences were found in proteolytic enzyme activity, ARC protein decreased while several anti-apoptotic proteins (e.g., BCL2, BCLXL, HSP70, and XIAP) and the release of mitochondrial housed protein (i.e., SMAC, AIF) increased in aged muscle. Importantly, ARC KO mice had low muscle weights and fewer fibers in soleus, with 2-year-old ARC KO mice displaying lower mitochondrial BCL2 protein along with augmented release of CYTC and SMAC in red/oxidative muscle. Overall, these results indicate that aged skeletal muscle undergoes atrophy as well as contractile and fiber type composition alterations despite an increase in anti-apoptotic protein expression. Although some mitochondrial-specific apoptotic alterations occurred in skeletal muscle due to ARC ablation over the lifespan, our data suggest that ARC may not have a large influence during skeletal muscle aging.
Collapse
Affiliation(s)
- Kira Vorobej
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ian C Smith
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefan Donath
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany; Center for Stroke Research Berlin, Charite-University Medicine, Berlin, Germany; Department of Cardiology and Nephrology, HELIOS Clinics GmbH, Berlin, Germany
| | - A Russell Tupling
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
| |
Collapse
|
24
|
Gomes CPC, Spencer H, Ford KL, Michel LYM, Baker AH, Emanueli C, Balligand JL, Devaux Y. The Function and Therapeutic Potential of Long Non-coding RNAs in Cardiovascular Development and Disease. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 8:494-507. [PMID: 28918050 PMCID: PMC5565632 DOI: 10.1016/j.omtn.2017.07.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 02/09/2023]
Abstract
The popularization of genome-wide analyses and RNA sequencing led to the discovery that a large part of the human genome, while effectively transcribed, does not encode proteins. Long non-coding RNAs have emerged as critical regulators of gene expression in both normal and disease states. Studies of long non-coding RNAs expressed in the heart, in combination with gene association studies, revealed that these molecules are regulated during cardiovascular development and disease. Some long non-coding RNAs have been functionally implicated in cardiac pathophysiology and constitute potential therapeutic targets. Here, we review the current knowledge of the function of long non-coding RNAs in the cardiovascular system, with an emphasis on cardiovascular development and biology, focusing on hypertension, coronary artery disease, myocardial infarction, ischemia, and heart failure. We discuss potential therapeutic implications and the challenges of long non-coding RNA research, with directions for future research and translational focus.
Collapse
Affiliation(s)
- Clarissa P C Gomes
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg
| | - Helen Spencer
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Kerrie L Ford
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK
| | - Lauriane Y M Michel
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol BS8 1TH, UK; National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jean-Luc Balligand
- Unité de Pharmacologie et de Thérapeutique, Institut de Recherche Experimentale et Clinique, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Yvan Devaux
- Cardiovascular Research Unit, Luxembourg Institute of Health, 1526 Luxembourg, Luxembourg.
| | | |
Collapse
|
25
|
Interaction of ARC and Daxx: A Novel Endogenous Target to Preserve Motor Function and Cell Loss after Focal Brain Ischemia in Mice. J Neurosci 2017; 36:8132-48. [PMID: 27488634 DOI: 10.1523/jneurosci.4428-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The aim of this study was to explore the signaling and neuroprotective effect of transactivator of transcription (TAT) protein transduction of the apoptosis repressor with CARD (ARC) in in vitro and in vivo models of cerebral ischemia in mice. In mice, transient focal cerebral ischemia reduced endogenous ARC protein in neurons in the ischemic striatum at early reperfusion time points, and in primary neuronal cultures, RNA interference resulted in greater neuronal susceptibility to oxygen glucose deprivation (OGD). TAT.ARC protein delivery led to a dose-dependent better survival after OGD. Infarct sizes 72 h after 60 min middle cerebral artery occlusion (MCAo) were on average 30 ± 8% (mean ± SD; p = 0.005; T2-weighted MRI) smaller in TAT.ARC-treated mice (1 μg intraventricularly during MCAo) compared with controls. TAT.ARC-treated mice showed better performance in the pole test compared with TAT.β-Gal-treated controls. Importantly, post-stroke treatment (3 h after MCAo) was still effective in affording reduced lesion volume by 20 ± 7% (mean ± SD; p < 0.05) and better functional outcome compared with controls. Delayed treatment in mice subjected to 30 min MCAo led to sustained neuroprotection and functional behavior benefits for at least 28 d. Functionally, TAT.ARC treatment inhibited DAXX-ASK1-JNK signaling in the ischemic brain. ARC interacts with DAXX in a CARD-dependent manner to block DAXX trafficking and ASK1-JNK activation. Our work identifies for the first time ARC-DAXX binding to block ASK1-JNK activation as an ARC-specific endogenous mechanism that interferes with neuronal cell death and ischemic brain injury. Delayed delivery of TAT.ARC may present a promising target for stroke therapy. SIGNIFICANCE STATEMENT Up to now, the only successful pharmacological target of human ischemic stroke is thrombolysis. Neuroprotective pharmacological strategies are needed to accompany therapies aiming to achieve reperfusion. We describe that apoptosis repressor with CARD (ARC) interacts and inhibits DAXX and proximal signals of cell death. In a murine stroke model mimicking human malignant infarction in the territory of the middle cerebral artery, TAT.ARC salvages brain tissue when given during occlusion or 3 h delayed with sustained functional benefits (28 d). This is a promising novel therapeutic approach because it appears to be effective in a model producing severe injury by interfering with an array of proximal signals and effectors of the ischemic cascade, upstream of JNK, caspases, and BIM and BAX activation.
Collapse
|
26
|
Circular RNAs in Cardiovascular Disease: An Overview. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135781. [PMID: 28210621 PMCID: PMC5292166 DOI: 10.1155/2017/5135781] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/13/2016] [Indexed: 01/16/2023]
Abstract
Circular RNA (circRNA), a novel type of endogenous noncoding RNA (ncRNA), has become a research hotspot in recent years. CircRNAs are abundant and stably exist in creatures, and they are found with covalently closed loop structures in which they are quite different from linear RNAs. Nowadays, an increasing number of scientists have demonstrated that circRNAs may have played an essential role in the regulation of gene expression, especially acting as miRNA sponges, and have described the potential mechanisms of several circRNAs in diseases, hinting at their clinical therapeutic values. In this review, the authors summarized the current understandings of the biogenesis and properties of circRNAs and their functions and role as biomarkers in cardiovascular diseases.
Collapse
|
27
|
Kankeu C, Clarke K, Passante E, Huber HJ. Doxorubicin-induced chronic dilated cardiomyopathy-the apoptosis hypothesis revisited. J Mol Med (Berl) 2016; 95:239-248. [PMID: 27933370 DOI: 10.1007/s00109-016-1494-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/17/2016] [Accepted: 11/25/2016] [Indexed: 01/08/2023]
Abstract
The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10-20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DCM.
Collapse
Affiliation(s)
- Cynthia Kankeu
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Kylie Clarke
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Egle Passante
- School of Pharmacy and Biomedical Sciences, Univ. of Central Lancashire, Preston, UK
| | - Heinrich J Huber
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium. .,Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland.
| |
Collapse
|
28
|
Magarin M, Pohl T, Lill A, Schulz H, Blaschke F, Heuser A, Thierfelder L, Donath S, Drenckhahn JD. Embryonic cardiomyocytes can orchestrate various cell protective mechanisms to survive mitochondrial stress. J Mol Cell Cardiol 2016; 97:1-14. [PMID: 27106802 DOI: 10.1016/j.yjmcc.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/15/2016] [Indexed: 02/06/2023]
Abstract
Whereas adult cardiomyocytes are highly susceptible to stress, cardiomyocytes in the prenatal heart appear to be rather resistant. To investigate how embryonic cardiomyocytes respond to metabolic stress in vivo, we utilized tissue mosaicism for mitochondrial dysfunction in 13.5dpc mouse hearts. The latter is based on inactivation of the X-linked gene encoding Holocytochrome c synthase (Hccs), which is essential for mitochondrial respiration. In heterozygous heart conditional Hccs knockout females (cHccs(+/-)) random X chromosomal inactivation results in a mosaic of healthy and HCCS deficient cells in the myocardium. Microarray RNA expression analyses identified genes involved in unfolded protein response (UPR) and programmed cell death as differentially expressed in cHccs(+/-) versus control embryonic hearts. Activation of the UPR is localized to HCCS deficient cardiomyocytes but does not involve ER stress pathways, suggesting that it is caused by defective mitochondria. Consistently, mitochondrial chaperones, such as HSP10 and HSP60, but not ER chaperones are induced in defective cells. Mitochondrial dysfunction can result in oxidative stress, but no evidence for excessive ROS (reactive oxygen species) production was observed in cHccs(+/-) hearts. Instead, the antioxidative proteins SOD2 and PRDX3 are induced, suggesting that ROS detoxification prevents oxidative damage in HCCS deficient cardiomyocytes. Mitochondrial dysfunction and unrestricted UPR can induce cell death, and we detected the initiation of upstream events of both intrinsic as well as extrinsic apoptosis in cHccs(+/-) hearts. Cell death is not executed, however, suggesting the activation of antiapoptotic mechanisms. Whereas most apoptosis inhibitors are either unchanged or downregulated in HCCS deficient cardiomyocytes, Bcl-2 and ARC (apoptosis repressor with caspase recruitment domain) are induced. Given that ARC can inhibit both apoptotic pathways as well as necrosis and attenuates UPR, we generated cHccs(+/-) embryos on an Arc knockout background (cHccs(+/-),Arc(-/-)). Surprisingly, the absence of ARC does not induce cell death in embryonic or postnatal HCCS deficient cardiomyocytes and adult cHccs(+/-),Arc(-/-) mice exhibit normal cardiac morphology and function. Taken together, our data demonstrate an impressive plasticity of embryonic cardiomyocytes to respond to metabolic stress, the loss of which might be involved in the high susceptibility of postnatal cardiomyocytes to cell death.
Collapse
Affiliation(s)
| | - Toni Pohl
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Anette Lill
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Herbert Schulz
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Florian Blaschke
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Charité Universitätsmedizin Berlin, Campus Virchow Klinikum, Medizinische Klinik mit Schwerpunkt Kardiologie, Berlin, Germany
| | - Arnd Heuser
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Stefan Donath
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Jörg-Detlef Drenckhahn
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Department of Pediatric Cardiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
29
|
Wang K, Long B, Liu F, Wang JX, Liu CY, Zhao B, Zhou LY, Sun T, Wang M, Yu T, Gong Y, Liu J, Dong YH, Li N, Li PF. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37:2602-11. [PMID: 26802132 DOI: 10.1093/eurheartj/ehv713] [Citation(s) in RCA: 694] [Impact Index Per Article: 77.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Sustained cardiac hypertrophy accompanied by maladaptive cardiac remodelling represents an early event in the clinical course leading to heart failure. Maladaptive hypertrophy is considered to be a therapeutic target for heart failure. However, the molecular mechanisms that regulate cardiac hypertrophy are largely unknown. METHODS AND RESULTS Here we show that a circular RNA (circRNA), which we term heart-related circRNA (HRCR), acts as an endogenous miR-223 sponge to inhibit cardiac hypertrophy and heart failure. miR-223 transgenic mice developed cardiac hypertrophy and heart failure, whereas miR-223-deficient mice were protected from hypertrophic stimuli, indicating that miR-223 acts as a positive regulator of cardiac hypertrophy. We identified ARC as a miR-223 downstream target to mediate the function of miR-223 in cardiac hypertrophy. Apoptosis repressor with CARD domain transgenic mice showed reduced hypertrophic responses. Further, we found that a circRNA HRCR functions as an endogenous miR-223 sponge to sequester and inhibit miR-223 activity, which resulted in the increase of ARC expression. Heart-related circRNA directly bound to miR-223 in cytoplasm and enforced expression of HRCR in cardiomyocytes and in mice both exhibited attenuated hypertrophic responses. CONCLUSIONS These findings disclose a novel regulatory pathway that is composed of HRCR, miR-223, and ARC. Modulation of their levels provides an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Long
- Laboratory of Molecular Medicine, Central Research Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Jian-Xun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bing Zhao
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Lu-Yu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Teng Sun
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Man Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Tao Yu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying Gong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Jia Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan-Han Dong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Na Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
30
|
Mitchell AS, Smith IC, Gamu D, Donath S, Tupling AR, Quadrilatero J. Functional, morphological, and apoptotic alterations in skeletal muscle of ARC deficient mice. Apoptosis 2015; 20:310-26. [PMID: 25596718 DOI: 10.1007/s10495-014-1078-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Apoptotic signaling plays an important role in the development and maintenance of healthy skeletal muscle. However, dysregulation of apoptotic signals in skeletal muscle is associated with atrophy and loss of function. Apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein that is highly expressed in skeletal muscle; however, its role in this tissue has yet to be elucidated. To investigate whether ARC deficiency has morphological, functional, and apoptotic consequences, skeletal muscle from 18 week-old wild-type and ARC knockout (KO) mice was studied. In red muscle (soleus), we found lower maximum tetanic force, as well as a shift towards a greater proportion of type II fibers in ARC KO mice. Furthermore, the soleus of ARC KO mice exhibited lower total, as well as fiber type-specific cross sectional area in type I and IIA fibers. Interestingly, these changes in ARC KO mice corresponded with increased DNA fragmentation, albeit independent of caspase or calpain activation. However, cytosolic fractions of red muscle from ARC KO mice had higher apoptosis inducing factor content, suggesting increased mitochondrial-mediated, caspase-independent apoptotic signaling. This was confirmed in isolated mitochondrial preparations, as mitochondria from skeletal muscle of ARC KO mice were more susceptible to calcium stress. Interestingly, white muscle from ARC KO mice showed no signs of altered apoptotic signaling or detrimental morphological differences. Results from this study suggest that even under basal conditions ARC influences muscle apoptotic signaling, phenotype, and function, particularly in slow and/or oxidative muscle.
Collapse
Affiliation(s)
- Andrew S Mitchell
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Crystal structure of caspase recruiting domain (CARD) of apoptosis repressor with CARD (ARC) and its implication in inhibition of apoptosis. Sci Rep 2015; 5:9847. [PMID: 26038885 PMCID: PMC4453921 DOI: 10.1038/srep09847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/23/2015] [Indexed: 01/19/2023] Open
Abstract
Apoptosis repressor with caspase recruiting domain (ARC) is a multifunctional inhibitor of apoptosis that is unusually over-expressed or activated in various cancers and in the state of the pulmonary hypertension. Therefore, ARC might be an optimal target for therapeutic intervention. Human ARC is composed of two distinct domains, N-terminal caspase recruiting domain (CARD) and C-terminal P/E (proline and glutamic acid) rich domain. ARC inhibits the extrinsic apoptosis pathway by interfering with DISC formation. ARC CARD directly interacts with the death domains (DDs) of Fas and FADD, as well as with the death effector domains (DEDs) of procaspase-8. Here, we report the first crystal structure of the CARD domain of ARC at a resolution of 2.4 Å. Our structure was a dimer with novel homo-dimerization interfaces that might be critical to its inhibitory function. Interestingly, ARC did not exhibit a typical death domain fold. The sixth helix (H6), which was detected at the typical death domain fold, was not detected in the structure of ARC, indicating that H6 may be dispensable for the function of the death domain superfamily.
Collapse
|
32
|
MicroRNA-532-3p regulates mitochondrial fission through targeting apoptosis repressor with caspase recruitment domain in doxorubicin cardiotoxicity. Cell Death Dis 2015; 6:e1677. [PMID: 25766316 PMCID: PMC4385919 DOI: 10.1038/cddis.2015.41] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/28/2022]
Abstract
Doxorubicin (DOX) is a wide-spectrum antitumor drug, but its clinical application is limited by its cardiotoxicity. However, the mechanisms underlying DOX-induced cardiomyopathy remain mostly unclear. Here we observed that apoptosis repressor with caspase recruitment domain (ARC) was downregulated in mouse heart and cardiomyocytes upon DOX treatment. Furthermore, enforced expression of ARC attenuated DOX-induced cardiomyocyte mitochondrial fission and apoptosis. ARC transgenic mice demonstrated reduced cardiotoxicity upon DOX administration. DOX-induced mitochondrial fission required the activity of dynamin-related protein 1 (Drp1). In elucidating the molecular mechanism by which ARC was downregulated upon DOX treatment, miR-532-3p was found to directly target ARC and participated in DOX-induced mitochondrial fission and apoptosis. MiR-532-3p was not involved in DOX-induced apoptosis in cancer cells. Taken together, these findings provide novel evidence that miR-532-3p and ARC constitute an antiapoptotic pathway that regulates DOX cardiotoxicity. Therefore, the development of new therapeutic strategies based on ARC and miR-532-3p is promising for overcoming the cardiotoxicity of chemotherapy for cancer therapy.
Collapse
|
33
|
Li X, Du N, Zhang Q, Li J, Chen X, Liu X, Hu Y, Qin W, Shen N, Xu C, Fang Z, Wei Y, Wang R, Du Z, Zhang Y, Lu Y. MicroRNA-30d regulates cardiomyocyte pyroptosis by directly targeting foxo3a in diabetic cardiomyopathy. Cell Death Dis 2014; 5:e1479. [PMID: 25341033 PMCID: PMC4237254 DOI: 10.1038/cddis.2014.430] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 08/27/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
Diabetic cardiomyopathy is a common cardiac condition in patients with diabetes mellitus, which can result in cardiac hypertrophy and subsequent heart failure, associated with pyroptosis, the pro-inflammatory programmed cell death. MicroRNAs (miRNAs), small endogenous non-coding RNAs, have been shown to be involved in diabetic cardiomyopathy. However, whether miRNAs regulate pyroptosis in diabetic cardiomyopathy remains unknown. Our study revealed that mir-30d expression was substantially increased in streptozotocin (STZ)-induced diabetic rats and in high-glucose-treated cardiomyocytes as well. Upregulation of mir-30d promoted cardiomyocyte pyroptosis in diabetic cardiomyopathy; conversely, knockdown of mir-30d attenuated it. In an effort to understand the signaling mechanisms underlying the pro-pyroptotic property of mir-30d, we found that forced expression of mir-30d upregulated caspase-1 and pro-inflammatory cytokines IL-1β and IL-18. Moreover, mir-30d directly repressed foxo3a expression and its downstream protein, apoptosis repressor with caspase recruitment domain (ARC). Furthermore, silencing ARC by siRNA mimicked the action of mir-30d: upregulating caspase-1 and inducing pyroptosis. These findings promoted us to propose a new signaling pathway leading to cardiomyocyte pyroptosis under hyperglycemic conditions: mir-30d↑→foxo3a↓→ ARC↓→caspase-1↑→IL-1β, IL-18↑→pyroptosis↑. Therefore, mir-30d may be a promising therapeutic target for the management of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- X Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - N Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Q Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - J Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - X Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - X Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Y Hu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - W Qin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - N Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - C Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Z Fang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China
| | - Y Wei
- Department of General Surgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - R Wang
- Department of Geriatrics, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Z Du
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Clinical Pharmacy, The Second Affiliated Hospital, Harbin Medical University, Harbin 150081, China
| | - Y Zhang
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China
| | - Y Lu
- 1] Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin 150081, China [2] Institute of Cardiovascular Research, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
34
|
Abstract
As noted in the separate introduction to this special topic section, episodic and electrical disorders can appear quite different clinically and yet share many overlapping features, including attack precipitants, therapeutic responses, natural history, and the types of genes that cause many of the genetic forms (i.e., ion channel genes). Thus, as we mapped and attempted to clone genes causing other episodic disorders, ion channels were always outstanding candidates when they mapped to the critical region of linkage in such a family. However, some of these disorders do not result from mutations in channels. This realization has opened up large and exciting new areas for the pathogenesis of these disorders. In some cases, the mutations occur in genes of unknown function or without understanding of molecular pathogenesis. Recently, emerging insights into a fascinating group of episodic movement disorders, the paroxysmal dyskinesias, and study of the causative genes and proteins are leading to the emerging concept of episodic electric disorders resulting from synaptic dysfunction. Much work remains to be done, but the field is evolving rapidly. As it does, we have come to realize that the molecular pathogenesis of electrical and episodic disorders is more complex than a scenario in which such disorders are simply due to mutations in the primary determinants of membrane excitability (channels).
Collapse
|
35
|
Feng J, Meng C, Xing D. Aβ induces PUMA activation: a new mechanism for Aβ-mediated neuronal apoptosis. Neurobiol Aging 2014; 36:789-800. [PMID: 25457551 DOI: 10.1016/j.neurobiolaging.2014.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/02/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
p53 upregulated modulator of apoptosis (PUMA) is a promising tumor therapy target because it elicits apoptosis and profound sensitivity to radiation and chemotherapy. However, inhibition of PUMA may be beneficial for curbing excessive apoptosis associated with neurodegenerative disorders. Alzheimer's disease (AD) is a representative neurodegenerative disease in which amyloid-β (Aβ) deposition causes neurotoxicity. The regulation of PUMA during Aβ-induced neuronal apoptosis remains poorly understood. Here, we reported that PUMA expression was significantly increased in the hippocampus of transgenic mice models of AD and hippocampal neurons in response to Aβ. PUMA knockdown protected the neurons against Aβ-induced apoptosis. Furthermore, besides p53, PUMA transactivation was also regulated by forkhead box O3a through p53-independent manner following Aβ treatment. Notably, PUMA contributed to neuronal apoptosis through competitive binding of apoptosis repressor with caspase recruitment domain to activate caspase-8 that cleaved Bid into tBid to accelerate Bax mitochondrial translocation, revealing a novel pathway of Bax activation by PUMA to mediate Aβ-induced neuronal apoptosis. Together, we demonstrated that PUMA activation involved in Aβ-induced apoptosis, representing a drug target to antagonize AD progression.
Collapse
Affiliation(s)
- Jie Feng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengbo Meng
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
36
|
Li J, Li C, Zhang D, Shi D, Qi M, Feng J, Yuan T, Xu X, Liang D, Xu L, Zhang H, Liu Y, Chen J, Ye J, Jiang W, Cui Y, Zhang Y, Peng L, Zhou Z, Chen YH. SNX13 reduction mediates heart failure through degradative sorting of apoptosis repressor with caspase recruitment domain. Nat Commun 2014; 5:5177. [PMID: 25295779 DOI: 10.1038/ncomms6177] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/08/2014] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) is associated with complicated molecular remodelling within cardiomyocytes; however, the mechanisms underlying this process remain unclear. Here we show that sorting nexin-13 (SNX13), a member of both the sorting nexin and the regulator of G protein signalling (RGS) protein families, is a potent mediator of HF. Decreased levels of SNX13 are observed in failing hearts of humans and of experimental animals. SNX13-deficient zebrafish recapitulate HF with striking cardiomyocyte apoptosis. Mechanistically, a reduction in SNX13 expression facilitates the degradative sorting of apoptosis repressor with caspase recruitment domain (ARC), which is a multifunctional inhibitor of apoptosis. Consequently, the apoptotic pathway is activated, resulting in the loss of cardiac cells and the dampening of cardiac function. The N-terminal PXA structure of SNX13 is responsible for mediating the endosomal trafficking of ARC. Thus, this study reveals that SNX13 profoundly affects cardiac performance through the SNX13-PXA-ARC-caspase signalling pathway.
Collapse
Affiliation(s)
- Jun Li
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Changming Li
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China
| | - Dasheng Zhang
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Dan Shi
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Man Qi
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China
| | - Jing Feng
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China
| | - Tianyou Yuan
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Xinran Xu
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Dandan Liang
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Liang Xu
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Hong Zhang
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Yi Liu
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China
| | - Jinjin Chen
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China
| | - Jiangchuan Ye
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China
| | - Weifang Jiang
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingyu Cui
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Yangyang Zhang
- Cardiothoracic Surgical Department, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Luying Peng
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China [3] Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Zhaonian Zhou
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Laboratory of Hypoxic Cardiovascular Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Han Chen
- 1] Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China [2] Institute of Medical Genetics, Tongji University, Shanghai 200092, China [3] Department of Cardiology, East Hospital, Tongji University, Shanghai 200120, China [4] Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| |
Collapse
|
37
|
Almeida F, Santos-Silva D, Rodrigues T, Matafome P, Crisóstomo J, Sena C, Gonçalves L, Seiça R. Pyridoxamine reverts methylglyoxal-induced impairment of survival pathways during heart ischemia. Cardiovasc Ther 2014; 31:e79-85. [PMID: 23841818 DOI: 10.1111/1755-5922.12039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND AIMS Increased levels of advanced glycation end-products (AGE) and their precursors, such as methylglyoxal (MG), in patients with diabetes may account for impaired response to heart ischemia. Pyridoxamine is a derivate of vitamin B6, which has been shown to reduce AGE formation. Our goal was to assess the role of pyridoxamine in protecting from MG-induced impaired heart response to ischemia. METHODS Wistar rats were subjected to MG administration (WM), MG plus pyridoxamine (WMPyr), or no treatment (W). Half of the hearts from each group were submitted to ischemia and the other half were perfused as control. The levels of CEL, Bcl-2, Bax, and total and phosphorylated forms of JNK and Akt were determined. RESULTS Methylglyoxal led to higher levels of AGE and AGE receptor (RAGE) than in the W group. During ischemia, MG caused an impairment of survival pathways and Bcl-2/Bax ratio, a marker of apoptosis. Pyridoxamine treatment decreased glycation and restored the activation of JNK and Akt during ischemia. These events were followed by levels of Bcl-2/Bax ratio similar to W group. CONCLUSION Methylglyoxal-induced AGE accumulation impairs the activation of cell survival pathways during ischemia. Pyridoxamine-induced decrease of glycation inhibited the effects of MG accumulation in the heart, suggesting that it can be of added value to usual diabetic therapy.
Collapse
Affiliation(s)
- Filipa Almeida
- Laboratory of Physiology, Institute of Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Basic Research Unit on Cardiology, IBILI, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang X, Li Q, Hu Q, Suntharalingam P, From AHL, Zhang J. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration. PLoS One 2014; 9:e95247. [PMID: 24919180 PMCID: PMC4053321 DOI: 10.1371/journal.pone.0095247] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/24/2014] [Indexed: 01/24/2023] Open
Abstract
Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31− cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31− cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31− cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/−2.4; MI, 17.6+/−3.1; Cell, 28.2+/−4.2, n = 9, P<0.01). IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/−2.2; n = 9, P<0.01) and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31− cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31− cells revealed that Sca-1+/CD31− cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.
Collapse
Affiliation(s)
- Xiaohong Wang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (XW); (JZ)
| | - Qinglu Li
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Qingsong Hu
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Piradeep Suntharalingam
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Arthur H. L. From
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Jianyi Zhang
- Cardiovascular Division, Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail: (XW); (JZ)
| |
Collapse
|
39
|
Apoptosis repressor with a CARD domain (ARC) restrains Bax-mediated pathogenesis in dystrophic skeletal muscle. PLoS One 2013; 8:e82053. [PMID: 24312627 PMCID: PMC3846897 DOI: 10.1371/journal.pone.0082053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/21/2013] [Indexed: 01/22/2023] Open
Abstract
Myofiber wasting in muscular dystrophy has largely been ascribed to necrotic cell death, despite reports identifying apoptotic markers in dystrophic muscle. Here we set out to identify the contribution of canonical apoptotic pathways to skeletal muscle degeneration in muscular dystrophy by genetically deleting a known inhibitor of apoptosis, apoptosis repressor with a card domain (Arc), in dystrophic mouse models. Nol3 (Arc protein) genetic deletion in the dystrophic Sgcd or Lama2 null backgrounds showed exacerbated skeletal muscle pathology with decreased muscle performance compared with single null dystrophic littermate controls. The enhanced severity of the dystrophic phenotype associated with Nol3 deletion was caspase independent but dependent on the mitochondria permeability transition pore (MPTP), as the inhibitor Debio-025 partially rescued skeletal muscle pathology in Nol3 (-/-) Sgcd (-/-) double targeted mice. Mechanistically, Nol3 (-/-) Sgcd (-/-) mice showed elevated total and mitochondrial Bax protein levels, as well as greater mitochondrial swelling, suggesting that Arc normally restrains the cell death effects of Bax in skeletal muscle. Indeed, knockdown of Arc in mouse embryonic fibroblasts caused an increased sensitivity to cell death that was fully blocked in Bax Bak1 (genes encoding Bax and Bak) double null fibroblasts. Thus Arc deficiency in dystrophic muscle exacerbates disease pathogenesis due to a Bax-mediated sensitization of mitochondria-dependent death mechanisms.
Collapse
|
40
|
Imbrogno S, Garofalo F, Amelio D, Capria C, Cerra MC. Humoral control of cardiac remodeling in fish: role of Angiotensin II. Gen Comp Endocrinol 2013; 194:189-97. [PMID: 24080085 DOI: 10.1016/j.ygcen.2013.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 10/26/2022]
Abstract
Angiotensin II (AngII), the principal effector of the Renin-Angiotensin-System (RAS), is a multipotent hormone whose biological actions include short-term modulation as well as long-term adjustments. In the eel heart, AngII elicits short-term inotropic and chronotropic effects. However, information regarding the influence of AngII on cardiac remodeling, expressed as morphological and hemodynamic changes, is lacking. To clarify the putative actions of AngII on eel cardiac remodeling, we used freshwater eels (Anguilla anguilla) intraperitoneally injected for 4 weeks with saline or AngII (0.4 or 1.2 nmol g BW(-1)) or AngII (1.2 nmol g BW(-1)) plus the AT₂ receptor antagonist CGP42112. Using an in vitro working heart preparation, the cardiac response (stroke volume changes) to preload and afterload increases has been evaluated. Hearts of all groups showed similar Frank-Starling responses. However, in response to afterload increases, stroke volume rapidly decreased in control hearts, while it was better maintained in AngII-treated counterparts. These effects were abolished by an antagonist of the AT₂ receptor, whose cardiac expression was revealed by western blotting analysis. We also found by immunolocalization and immunoblotting that AngII influences both expression and localization of molecules which regulate cell growth [such as c-kit, heat shock protein 90 (Hsp-90), endothelial Nitric Oxide Synthase "(eNOS)-like" isoform] and apoptosis [i.e. apoptosis repressor with CARD domain (ARC)], thus playing a role in cardiac long-term adjustments. These results point to a role of AngII in eel heart remodeling, providing new insights regarding the modulation of cardiac plasticity in fish.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Dept. of Biology, Ecology and Earth Sciences (B.E.ST), University of Calabria, Italy.
| | | | | | | | | |
Collapse
|
41
|
Takemura G, Kanoh M, Minatoguchi S, Fujiwara H. Cardiomyocyte apoptosis in the failing heart — A critical review from definition and classification of cell death. Int J Cardiol 2013; 167:2373-86. [DOI: 10.1016/j.ijcard.2013.01.163] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/13/2012] [Accepted: 01/13/2013] [Indexed: 12/19/2022]
|
42
|
Wu P, Tang Y, He J, Qi L, Jiang W, Zhao S. ARC is highly expressed in nasopharyngeal carcinoma and confers X-radiation and cisplatin resistance. Oncol Rep 2013; 30:1807-13. [PMID: 23877130 DOI: 10.3892/or.2013.2622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/05/2022] Open
Abstract
Apoptosis repressor with caspase recruitment domain (ARC), an inhibitor of apoptosis, is primarily expressed in terminally differentiated tissues. Recent studies have revealed that ARC is highly expressed in a variety of human cancer cell lines and epithelial-derived cancers, which suggests that ARC plays an important role in the process of carcinogenesis. However, whether ARC is involved in the development of nasopharyngeal carcinoma (NPC) and the various roles it plays in NPC remain unclear. In the present study, we examined the expression of ARC in NPC cell lines and NPC tissues and the relationship between its subcellular expression and clinicopathological grade; moreover, we explored the effect of this protein on radiation resistance and chemoresistance in NPC cells. We found that cytoplasmic ARC was expressed at high levels in NPC tissues, at moderate levels in severe atypical hyperplasia and at low levels in benign nasopharyngeal tissues. High expression of cytoplasmic and nuclear ARC was correlated with advanced local invasion. However, only a small amount of nuclear ARC was expressed in NPC in contrast to cytoplasmic ARC. We also found that attenuation of ARC expression by miRNA resulted in decreased X-radiation and cisplatin resistance in NPC CNE-2 cells. In contrast, overexpression of ARC resulted in increased X-radiation and cisplatin resistance in NPC 6-10B cells. Furthermore, we demonstrated that ARC appears to be critical for blocking the activation of casapse-8 and casapse-2 in NPC cells subjected to X-radiation or cisplatin. These results suggest that high expression of ARC plays an important role in the pathogenesis of NPC and leads to X-radiation and cisplatin resistance in NPC.
Collapse
Affiliation(s)
- Ping Wu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Many neurologic diseases cause discrete episodic impairment in contrast with progressive deterioration. The symptoms of these episodic disorders exhibit striking variety. Herein we review what is known of the phenotypes, genetics, and pathophysiology of episodic neurologic disorders. Of these, most are genetically complex, with unknown or polygenic inheritance. In contrast, a fascinating panoply of episodic disorders exhibit Mendelian inheritance. We classify episodic Mendelian disorders according to the primary neuroanatomical location affected: skeletal muscle, cardiac muscle, neuromuscular junction, peripheral nerve, or central nervous system (CNS). Most known Mendelian mutations alter genes that encode membrane-bound ion channels. These mutations cause ion channel dysfunction, which ultimately leads to altered membrane excitability as manifested by episodic disease. Other Mendelian disease genes encode proteins essential for ion channel trafficking or stability. These observations have cemented the channelopathy paradigm, in which episodic disorders are conceptualized as disorders of ion channels. However, we expand on this paradigm to propose that dysfunction at the synaptic and neuronal circuit levels may underlie some episodic neurologic entities.
Collapse
Affiliation(s)
- Jonathan F Russell
- Department of Neurology, Howard Hughes Medical Institute, School of Medicine, University of California-San Francisco, CA 94158, USA.
| | | | | |
Collapse
|
44
|
Gobe GC, Morais C, Vesey DA, Johnson DW. Use of high-dose erythropoietin for repair after injury: A comparison of outcomes in heart and kidney. J Nephropathol 2013; 2:154-65. [PMID: 24475445 DOI: 10.12860/jnp.2013.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/25/2012] [Indexed: 11/20/2022] Open
Abstract
CONTEXT There is a need to define the exact benefits and contraindications of use of high-dose recombinant human erythropoietin (EPO) for its non-hematopoietic function as a cytokine that enhances tissue repair after injury. This review compares the outcomes from use of EPO in the injured heart and kidney, two organs that are thought, traditionally, to have intrinsically-different repair mechanisms. EVIDENCE ACQUISITIONS Directory of Open Access Journals (DOAJ), Google Scholar, Pubmed (NLM), LISTA (EBSCO) and Web of Science have been searched. RESULTS Ongoing work by us on EPO protection of ischemia-reperfusion-injured kidneys indicated, first, that EPO acutely enhanced kidney repair via anti-apoptotic, pro-regenerative mechanisms, and second, that EPO may promote chronic fibrosis in the long term. Work by others on the ischaemia-injured heart has also indicated that EPO promotes repair. Although myocardial infarcts are made up mostly of necrotic tissue, many publications state EPO is anti-apoptotic in the heart, as well as promoting healing via cell differentiation and stimulation of granulation tissue. In the case of the heart, promotion of fibrosis may be advantageous where an infarct has destroyed a zone of cardiomyocytes, but if EPO stimulates progressive fibrosis in the heart, this may promote cardiac failure. CONCLUSIONS A major concern in relation to the use of EPO in a cytoprotective role is its stimulation of long-term inflammation and fibrosis. EPO usage for cytoprotection is undoubtedly advantageous, but it may need to be offset with an anti-inflammatory agent in some organs, like kidney and heart, where progression to chronic fibrosis after acute injury is often recorded.
Collapse
Affiliation(s)
- Glenda C Gobe
- Centre for Kidney Disease Research and ; Discipline of Medicine, School of Medicine. The University of Queensland, Brisbane, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research and ; Discipline of Medicine, School of Medicine. The University of Queensland, Brisbane, Australia
| | - David A Vesey
- Centre for Kidney Disease Research and ; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - David W Johnson
- Centre for Kidney Disease Research and ; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
45
|
Shi T, Moravec CS, Perez DM. Novel proteins associated with human dilated cardiomyopathy: selective reduction in α(1A)-adrenergic receptors and increased desensitization proteins. J Recept Signal Transduct Res 2013; 33:96-106. [PMID: 23384050 DOI: 10.3109/10799893.2013.764897] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Therapeutics to treat human heart failure (HF) and the identification of proteins associated with HF are still limited. We analyzed α(1)-adrenergic receptor (AR) subtypes in human HF and performed proteomic analysis on more uniform samples to identify novel proteins associated with human HF. Six failing hearts with end-stage dilated cardiomyopathy (DCM) and four non-failing heart controls were subjected to proteomic analysis. Out of 48 identified proteins, 26 proteins were redundant between samples. Ten of these 26 proteins were previously reported to be associated with HF. Of the newly identified proteins, we found several muscle proteins and mitochondrial/electron transport proteins, while novel were functionally similar to previous reports. However, we also found novel proteins involved in functional classes such as β-oxidation and G-protein coupled receptor signaling and desensitization not previously associated with HF. We also performed radioligand-binding studies on the heart samples and not only confirmed a large loss of β(1)-ARs in end-stage DCM, but also found a selective decrease in the α(1A)-AR subtype not previously reported. We have identified new proteins and functional categories associated with end-stage DCM. We also report that similar to the previously characterized loss of β(1)-AR in HF, there is also a concomitant loss of α(1A)-ARs, which are considered cardioprotective proteins.
Collapse
Affiliation(s)
- Ting Shi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland, OH, USA
| | | | | |
Collapse
|
46
|
Lu D, Liu J, Jiao J, Long B, Li Q, Tan W, Li P. Transcription factor Foxo3a prevents apoptosis by regulating calcium through the apoptosis repressor with caspase recruitment domain. J Biol Chem 2013; 288:8491-8504. [PMID: 23382383 DOI: 10.1074/jbc.m112.442061] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Apoptosis can occur in the myocardium under a variety of pathological conditions, including myocardial infarction and heart failure. The forkhead family of transcription factor Foxo3a plays a pivotal role in apoptosis; however, its role in regulating cardiac apoptosis remains to be fully elucidated. We showed that enforced expression of Foxo3a inhibits cardiomyocyte apoptosis, whereas knockdown of endogenous Foxo3a sensitizes cardiomyocytes to undergo apoptosis. The apoptosis repressor with caspase recruitment domain (ARC) is a potent anti-apoptotic protein. Here, we demonstrate that it attenuates the release of calcium from the sarcoplasmic reticulum and inhibits calcium elevations in the cytoplasm and mitochondria provoked by oxidative stress in cardiomyocytes. Furthermore, Foxo3a is shown to maintain cytoplasmic and mitochondrial calcium homeostasis through ARC. We observed that Foxo3a knock-out mice exhibited enlarged myocardial infarction sizes upon ischemia/reperfusion, and ARC transgenic mice demonstrated reduced myocardial infarction and balanced calcium levels in mitochondria and sarcoplasmic reticulum. Moreover, we showed that Foxo3a activates ARC expression by directly binding to its promoter. This study reveals that Foxo3a maintains calcium homeostasis and inhibits cardiac apoptosis through trans-activation of the ARC promoter. These findings provided novel evidence that Foxo3a and ARC constitute an anti-apoptotic pathway that regulates calcium homeostasis in the heart.
Collapse
Affiliation(s)
- Daoyuan Lu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinping Liu
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianqin Jiao
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Long
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Li
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Tan
- Division of Cardiovascular Research, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peifeng Li
- College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612.
| |
Collapse
|
47
|
An J, Mehrhof F, Harms C, Lättig-Tünnemann G, Lee SLL, Endres M, Li M, Sellge G, Mandić AD, Trautwein C, Donath S. ARC is a novel therapeutic approach against acetaminophen-induced hepatocellular necrosis. J Hepatol 2013; 58:297-305. [PMID: 23046676 DOI: 10.1016/j.jhep.2012.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 09/07/2012] [Accepted: 10/01/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Acetaminophen (AAP) overdose is the most frequent cause of drug-induced liver failure. c-Jun N-terminal kinase (JNK) is thought to play a central role in AAP-induced hepatocellular necrosis. The apoptosis repressor with caspase recruitment domain (ARC) is a death repressor that inhibits death receptor and mitochondrial apoptotic signaling. Here, we investigated ARC's therapeutic effect and molecular mechanisms on AAP-induced hepatocellular necrosis. METHODS We tested the in vivo and in vitro effects of ARC fused with the transduction domain of HIV-1 (TAT-ARC) on murine AAP hepatotoxicity. RESULTS Treatment with TAT-ARC protein completely abrogated otherwise lethal liver failure induced by AAP overdose in C57BL/6 mice. AAP triggered caspase-independent necrosis, as evidenced by liver histology, elevated serum transaminases, and secreted HMGB1 that was inhibited by ARC. ARC-mediated hepatoprotection was not caused by an alteration of AAP metabolism, but resulted in reduced oxidative stress. AAP overdose led to induction of RIP-dependent signaling with subsequent JNK activation. Ectopic ARC inhibited JNK activation by specific interactions between ARC and JNK1 and JNK2. Importantly, survival of mice was even preserved when ARC therapy was initiated in a delayed manner after AAP administration. CONCLUSIONS This work identifies for the first time ARC-JNK-binding with subsequent inhibition of JNK signaling as a specific mechanism of ARC to interfere with AAP-dependent necrosis. Our data suggests that AAP-mediated induction of RIP signaling serves as a critical switch for hepatocellular necrosis. The efficacy of TAT-ARC protein transduction in murine AAP hepatotoxicity suggests its therapeutic potential for reversing AAP intoxication also in humans.
Collapse
Affiliation(s)
- Junfeng An
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Vecile E, Dobrina A, Salloum FN, Van Tassell BW, Falcione A, Gustini E, Secchiero S, Crovella S, Sinagra G, Finato N, Nicklin MJ, Abbate A. Intracellular function of interleukin-1 receptor antagonist in ischemic cardiomyocytes. PLoS One 2013; 8:e53265. [PMID: 23308180 PMCID: PMC3540084 DOI: 10.1371/journal.pone.0053265] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/27/2012] [Indexed: 01/24/2023] Open
Abstract
Background Loss of cardiac myocytes due to apoptosis is a relevant feature of ischemic heart disease. It has been described in infarct and peri-infarct regions of the myocardium in coronary syndromes and in ischemia-linked heart remodeling. Previous studies have provided protection against ischemia-induced cardiomyocyte apoptosis by the anti-inflammatory cytokine interleukin-1 receptor-antagonist (IL-1Ra). Mitochondria triggering of caspases plays a central role in ischemia-induced apoptosis. We examined the production of IL-1Ra in the ischemic heart and, based on dual intra/extracellular function of some other interleukins, we hypothesized that IL-1Ra may also directly inhibit mitochondria-activated caspases and cardiomyocyte apoptosis. Methodology/Principal Findings Synthesis of IL-1Ra was evidenced in the hearts explanted from patients with ischemic heart disease. In the mouse ischemic heart and in a mouse cardiomyocyte cell line exposed to long-lasting hypoxia, IL-1Ra bound and inhibited mitochondria-activated caspases, whereas inhibition of caspase activation was not observed in the heart of mice lacking IL-1Ra (Il-1ra−/−) or in siRNA to IL-1Ra-interfered cells. An impressive 6-fold increase of hypoxia-induced apoptosis was observed in cells lacking IL-1Ra. IL-1Ra down-regulated cells were not protected against caspase activation and apoptosis by knocking down of the IL-1 receptor, confirming the intracellular, receptor-independent, anti-apoptotic function of IL-1Ra. Notably, the inhibitory effect of IL-1Ra was not influenced by enduring ischemic conditions in which previously described physiologic inhibitors of apoptosis are neutralized. Conclusions/Significance These observations point to intracellular IL-1Ra as a critical mechanism of the cell self-protection against ischemia-induced apoptosis and suggest that this cytokine plays an important role in the remodeling of heart by promoting survival of cardiomyocytes in the ischemic regions.
Collapse
Affiliation(s)
- Elena Vecile
- Department of Life Sciences, University of Trieste, Italy
| | - Aldo Dobrina
- Department of Life Sciences, University of Trieste, Italy
- * E-mail:
| | - Fadi N. Salloum
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Benjamin W. Van Tassell
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | | | | | | | - Sergio Crovella
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Nicoletta Finato
- Department of Medical and Morphological Research, University of Udine, Italy
| | - Martin J. Nicklin
- Division of Genomic Medicine, Sir Henry Wellcome Laboratories for Medical Research, University of Sheffield, United Kingdom
| | - Antonio Abbate
- Victoria Johnson Research Laboratory and VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
49
|
Abstract
Redox signaling refers to the specific and usually reversible oxidation/reduction modification of molecules involved in cellular signaling pathways. In the heart, redox signaling regulates several physiological processes (eg, excitation-contraction coupling) and is involved in a wide variety of pathophysiological and homoeostatic or stress response pathways. Reactive oxygen species involved in cardiac redox signaling may derive from many sources, but NADPH oxidases, as dedicated sources of signaling reactive oxygen species, seem to be especially important. An increasing number of specific posttranslational oxidative modifications involved in cardiac redox signaling are being defined, along with the reactive oxygen species sources that are involved. Here, we review current knowledge on the molecular targets of signaling reactive oxygen species in cardiac cells and their involvement in cardiac physiopathology. Advances in this field may allow the development of targeted therapeutic strategies for conditions such as heart failure as opposed to the general antioxidant approaches that have failed to date.
Collapse
|
50
|
Russell JF, Steckley JL, Coppola G, Hahn AFG, Howard MA, Kornberg Z, Huang A, Mirsattari SM, Merriman B, Klein E, Choi M, Lee HY, Kirk A, Nelson-Williams C, Gibson G, Baraban SC, Lifton RP, Geschwind DH, Fu YH, Ptáček LJ. Familial cortical myoclonus with a mutation in NOL3. Ann Neurol 2012; 72:175-83. [PMID: 22926851 PMCID: PMC3431191 DOI: 10.1002/ana.23666] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Myoclonus is characterized by sudden, brief involuntary movements, and its presence is debilitating. We identified a family suffering from adult onset, cortical myoclonus without associated seizures. We performed clinical, electrophysiological, and genetic studies to define this phenotype. METHODS A large, 4-generation family with a history of myoclonus underwent careful questioning, examination, and electrophysiological testing. Thirty-five family members donated blood samples for genetic analysis, which included single nucleotide polymorphism mapping, microsatellite linkage, targeted massively parallel sequencing, and Sanger sequencing. In silico and in vitro experiments were performed to investigate functional significance of the mutation. RESULTS We identified 11 members of a Canadian Mennonite family suffering from adult onset, slowly progressive, disabling, multifocal myoclonus. Somatosensory evoked potentials indicated a cortical origin of the myoclonus. There were no associated seizures. Some severely affected individuals developed signs of progressive cerebellar ataxia of variable severity late in the course of their illness. The phenotype was inherited in an autosomal dominant fashion. We demonstrated linkage to chromosome 16q21-22.1. We then sequenced all coding sequence in the critical region, identifying only a single cosegregating, novel, nonsynonymous mutation, which resides in the gene NOL3. Furthermore, this mutation was found to alter post-translational modification of NOL3 protein in vitro. INTERPRETATION We propose that familial cortical myoclonus is a novel movement disorder that may be caused by mutation in NOL3. Further investigation of the role of NOL3 in neuronal physiology may shed light on neuronal membrane hyperexcitability and pathophysiology of myoclonus and related disorders.
Collapse
Affiliation(s)
- Jonathan F Russell
- Department of Neurology, School of Medicine, University of California at San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|