1
|
Paudel R, Jafri MS, Ullah A. Gain-of-Function and Loss-of-Function Mutations in the RyR2-Expressing Gene Are Responsible for the CPVT1-Related Arrhythmogenic Activities in the Heart. Curr Issues Mol Biol 2024; 46:12886-12910. [PMID: 39590361 PMCID: PMC11592891 DOI: 10.3390/cimb46110767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca2+ release (SOICR), and (d) loss of function. The goal of this study was to use computational models to understand these four mechanisms and how they might contribute to arrhythmia. To this end, we have developed a local control stochastic model of a ventricular cardiac myocyte and used it to investigate how the Ca2+ dynamics in the mutant RyR2 are responsible for the development of an arrhythmogenic episode under the condition of β-adrenergic (β-AR) stimulation or pauses afterward. Into the model, we have incorporated 20,000 distinct cardiac dyads consisting of stochastically gated L-type Ca2+ channels (LCCs) and ryanodine receptors (RyR2s) and the intervening dyadic cleft to analyze the alterations in Ca2+ dynamics. Recent experimental findings were incorporated into the model parameters to test these proposed mechanisms and their role in triggering arrhythmias. The model could not find any connection between SOICR and the destabilization of binding proteins as the arrhythmic mechanisms in the mutant myocyte. On the other hand, the model was able to observe loss-of-function and gain-of-function mutations resulting in EADs (Early Afterdepolarizations) and variations in action potential amplitudes and durations as the precursors to generate arrhythmia, respectively. These computational studies demonstrate how GOF and LOF mutations can lead to arrhythmia and cast doubt on the feasibility of SOICR as a mechanism of arrhythmia.
Collapse
Affiliation(s)
- Roshan Paudel
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- School of Computer, Mathematical, and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
2
|
Guo S, Zha L. Pathogenesis and Clinical Characteristics of Hereditary Arrhythmia Diseases. Genes (Basel) 2024; 15:1368. [PMID: 39596569 PMCID: PMC11593610 DOI: 10.3390/genes15111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
Hereditary arrhythmias, as a class of cardiac electrophysiologic abnormalities caused mainly by genetic mutations, have gradually become one of the most important causes of sudden cardiac death in recent years. With the continuous development of genetics and molecular biology techniques, the study of inherited arrhythmias has made remarkable progress in the past few decades. More and more disease-causing genes are being identified, and there have been advances in the application of genetic testing for disease screening in individuals with disease and their family members. Determining more refined disease prevention strategies and therapeutic regimens that are tailored to the genetic characteristics and molecular pathogenesis of different groups or individuals forms the basis of individualized treatment. Understanding advances in the study of inherited arrhythmias provides important clues to better understand their pathogenesis and clinical features. This article provides a review of the pathophysiologic alterations caused by genetic variants and their relationship to disease phenotypes, including mainly cardiac ion channelopathies and cardiac conduction disorders.
Collapse
Affiliation(s)
- Shuang Guo
- Department of Vascular Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China;
| | - Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Beqaj H, Sittenfeld L, Chang A, Miotto M, Dridi H, Willson G, Jorge CM, Li JA, Reiken S, Liu Y, Dai Z, Marks AR. Location of ryanodine receptor type 2 mutation predicts age of onset of sudden death in catecholaminergic polymorphic ventricular tachycardia - A systematic review and meta-analysis of case-based literature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304349. [PMID: 38559077 PMCID: PMC10980137 DOI: 10.1101/2024.03.15.24304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia caused by mutations in the ryanodine receptor type 2 (RyR2). Diagnosis of CPVT often occurs after a major cardiac event, thus posing a severe threat to the patient's health. Methods Publication databases, including PubMed, Scopus, and Embase, were searched for articles on patients with RyR2-CPVT mutations and their associated clinical presentation. Articles were reviewed by two independent reviewers and mutations were analyzed for demographic information, mutation distribution, and therapeutics. The human RyR2 cryo-EM structure was used to model CPVT mutations and predict the diagnosis and outcomes of CPVT patients. Findings We present a database of 1008 CPVT patients from 227 papers. Data analyses revealed that patients most often experienced exercise-induced syncope in their early teenage years but the diagnosis of CPVT took a decade. Mutations located near key regulatory sites in the channel were associated with earlier onset of CPVT symptoms including sudden cardiac death. Interpretation The present study provides a road map for predicting clinical outcomes based on the location of RyR2 mutations in CPVT patients. The study was partially limited by the inconsistency in the depth of information provided in each article, but nevertheless is an important contribution to the understanding of the clinical and molecular basis of CPVT and suggests the need for early diagnosis and creative approaches to disease management. Funding The work was supported by grant NIH R01HL145473, P01 HL164319 R25HL156002, T32 HL120826.
Collapse
|
4
|
Molecular Aspects Implicated in Dantrolene Selectivity with Respect to Ryanodine Receptor Isoforms. Int J Mol Sci 2023; 24:ijms24065409. [PMID: 36982484 PMCID: PMC10049336 DOI: 10.3390/ijms24065409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/24/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Dantrolene is an intra-cellularly acting skeletal muscle relaxant used for the treatment of the rare genetic disorder, malignant hyperthermia (MH). In most cases, MH susceptibility is caused by dysfunction of the skeletal ryanodine receptor (RyR1) harboring one of nearly 230 single-point MH mutations. The therapeutic effect of dantrolene is the result of a direct inhibitory action on the RyR1 channel, thus suppressing aberrant Ca2+ release from the sarcoplasmic reticulum. Despite the almost identical dantrolene-binding sequence exits in all three mammalian RyR isoforms, dantrolene appears to be an isoform-selective inhibitor. Whereas RyR1 and RyR3 channels are competent to bind dantrolene, the RyR2 channel, predominantly expressed in the heart, is unresponsive. However, a large body of evidence suggests that the RyR2 channel becomes sensitive to dantrolene-mediated inhibition under certain pathological conditions. Although a consistent picture of the dantrolene effect emerges from in vivo studies, in vitro results are often contradictory. Hence, our goal in this perspective is to provide the best possible clues to the molecular mechanism of dantrolene’s action on RyR isoforms by identifying and discussing potential sources of conflicting results, mainly coming from cell-free experiments. Moreover, we propose that, specifically in the case of the RyR2 channel, its phosphorylation could be implicated in acquiring the channel responsiveness to dantrolene inhibition, interpreting functional findings in the structural context.
Collapse
|
5
|
Eitoku T, Nishii N, Morita H, Kasahara S. A rare case of tetralogy of Fallot with catecholaminergic polymorphic ventricular tachycardia. HeartRhythm Case Rep 2022; 9:152-155. [PMID: 36970376 PMCID: PMC10030305 DOI: 10.1016/j.hrcr.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Takahiro Eitoku
- Department of Pediatrics, Kawasaki Medical School, Kurashiki, Japan
- Address reprint requests and correspondence: Dr Takahiro Eitoku, Department of Pediatrics, Kawasaki Medical School, 577 Matsushima, Kurashiki 701-0192, Japan.
| | - Nobuhiro Nishii
- Department of Cardiovascular therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shingo Kasahara
- Department of Cardiovascular Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Wan JF, Wang G, Qin FY, Huang DL, Wang Y, Su AL, Zhang HP, Liu Y, Zeng SY, Wei CL, Cheng YX, Liu J. Z16b, a natural compound from Ganoderma cochlear is a novel RyR2 stabilizer preventing catecholaminergic polymorphic ventricular tachycardia. Acta Pharmacol Sin 2022; 43:2340-2350. [PMID: 35190699 PMCID: PMC9433431 DOI: 10.1038/s41401-022-00870-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited, lethal ventricular arrhythmia triggered by catecholamines. Mutations in genes that encode cardiac ryanodine receptor (RyR2) and proteins that regulate RyR2 activity cause enhanced diastolic Ca2+ release (leak) through the RyR2 channels, resulting in CPVT. Current therapies for CPVT are limited. We found that Z16b, a meroterpenoid isolated from Ganoderma cochlear, inhibited Ca2+ spark frequency (CaSF) in R2474S/ + cardiomyocytes in a dose-dependent manner, with an IC50 of 3.2 μM. Z16b also dose-dependently suppressed abnormal post-pacing Ca2+ release events. Intraperitoneal injection (i.p.) of epinephrine and caffeine stimulated sustained ventricular tachycardia in all R2474S/+ mice, while pretreatment with Z16b (0.5 mg/kg, i.p.) prevented ventricular arrhythmia in 9 of 10 mice, and Z16b administration immediately after the onset of VT abolished sVT in 9 of 12 mice. Of translational significance, Z16b significantly inhibited CaSF and abnormal Ca2+ release events in human CPVT iPS-CMs. Mechanistically, Z16b interacts with RyR2, enhancing the "zipping" state of the N-terminal and central domains of RyR2. A molecular docking simulation and point mutation and pulldown assays identified Z16b forms hydrogen bonds with Arg626, His1670, and Gln2126 in RyR2 as a triangle shape that anchors the NTD and CD interaction and thus stabilizes RyR2 in a tight "zipping" conformation. Our findings support that Z16b is a novel RyR2 stabilizer that can prevent CPVT. It may also serve as a lead compound with a new scaffold for the design of safer and more efficient drugs for treating CPVT.
Collapse
Affiliation(s)
- Jiang-Fan Wan
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Gang Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Fu-Ying Qin
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Dan-Ling Huang
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Ai-Ling Su
- Center for Translation Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Hai-Ping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518000, China
| | - Yang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Shao-Yin Zeng
- Guangdong Provincial key laboratory of South China Structure Heart Disease, Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, China
| | - Chao-Liang Wei
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China
| | - Yong-Xian Cheng
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen, 518000, China.
| | - Jie Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Department of Pathophysiology, School of Medicine, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
7
|
Stutzman MJ, Kim CSJ, Tester DJ, Hamrick SK, Dotzler SM, Giudicessi JR, Miotto MC, Gc JB, Frank J, Marks AR, Ackerman MJ. Characterization of N-terminal RYR2 variants outside CPVT1 hotspot regions using patient iPSCs reveal pathogenesis and therapeutic potential. Stem Cell Reports 2022; 17:2023-2036. [PMID: 35931078 PMCID: PMC9481874 DOI: 10.1016/j.stemcr.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a cardiac channelopathy causing ventricular tachycardia following adrenergic stimulation. Pathogenic variants in RYR2-encoded ryanodine receptor 2 (RYR2) cause CPVT1 and cluster into domains I–IV, with the most N-terminal domain involving residues 77–466. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated for RYR2-F13L, -L14P, -R15P, and -R176Q variants. Isogenic control iPSCs were generated using CRISPR-Cas9/PiggyBac. Fluo-4 Ca2+ imaging assessed Ca2+ handling with/without isoproterenol (ISO), nadolol (Nad), and flecainide (Flec) treatment. CPVT1 iPSC-CMs displayed increased Ca2+ sparking and Ca2+ transient amplitude following ISO compared with control. Combined Nad treatment/ISO stimulation reduced Ca2+ amplitude and sparking in variant iPSC-CMs. Molecular dynamic simulations visualized the structural role of these variants. We provide the first functional evidence that these most proximal N-terminal localizing variants alter calcium handling similar to CPVT1. These variants are located at the N-terminal domain and the central domain interface and could destabilize the RYR2 channel promoting Ca2+ leak-triggered arrhythmias. Extreme N-terminal RyR2 variants alter calcium handling similar to classical CPVT1 Abnormal Ca2+ kinetics as well as uncontrolled Ca2+ release underlies CPVT1 In vitro arrhythmia studies with iPSCs show nadolol is an effective treatment In silico 3D modeling of RYR2 revealed pathogenicity of N-terminal variants
Collapse
Affiliation(s)
- Marissa J Stutzman
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - C S John Kim
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA
| | - Samantha K Hamrick
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven M Dotzler
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - John R Giudicessi
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA
| | - Marco C Miotto
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jeevan B Gc
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics; Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN 55905, USA; Department of Cardiovascular Medicine/Division of Heart Rhythm Services; Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN 55905, USA; Department of Pediatric and Adolescent Medicine/Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
8
|
Molecular, Subcellular, and Arrhythmogenic Mechanisms in Genetic RyR2 Disease. Biomolecules 2022; 12:biom12081030. [PMID: 35892340 PMCID: PMC9394283 DOI: 10.3390/biom12081030] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The ryanodine receptor (RyR2) has a critical role in controlling Ca2+ release from the sarcoplasmic reticulum (SR) throughout the cardiac cycle. RyR2 protein has multiple functional domains with specific roles, and four of these RyR2 protomers are required to form the quaternary structure that comprises the functional channel. Numerous mutations in the gene encoding RyR2 protein have been identified and many are linked to a wide spectrum of arrhythmic heart disease. Gain of function mutations (GoF) result in a hyperactive channel that causes excessive spontaneous SR Ca2+ release. This is the predominant cause of the inherited syndrome catecholaminergic polymorphic ventricular tachycardia (CPVT). Recently, rare hypoactive loss of function (LoF) mutations have been identified that produce atypical effects on cardiac Ca2+ handling that has been termed calcium release deficiency syndrome (CRDS). Aberrant Ca2+ release resulting from both GoF and LoF mutations can result in arrhythmias through the Na+/Ca2+ exchange mechanism. This mini-review discusses recent findings regarding the role of RyR2 domains and endogenous regulators that influence RyR2 gating normally and with GoF/LoF mutations. The arrhythmogenic consequences of GoF/LoF mutations will then be discussed at the macromolecular and cellular level.
Collapse
|
9
|
Engel MA, Wörmann YR, Kaestner H, Schüler C. An Optogenetic Arrhythmia Model—Insertion of Several Catecholaminergic Polymorphic Ventricular Tachycardia Mutations Into Caenorhabditis elegans UNC-68 Disturbs Calstabin-Mediated Stabilization of the Ryanodine Receptor Homolog. Front Physiol 2022; 13:691829. [PMID: 35399287 PMCID: PMC8990320 DOI: 10.3389/fphys.2022.691829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disturbance of the heart rhythm (arrhythmia) that is induced by stress or that occurs during exercise. Most mutations that have been linked to CPVT are found in two genes, i.e., ryanodine receptor 2 (RyR2) and calsequestrin 2 (CASQ2), two proteins fundamentally involved in the regulation of intracellular Ca2+ in cardiac myocytes. We inserted six CPVT-causing mutations via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 into unc-68 and csq-1, the Caenorhabditis elegans homologs of RyR and CASQ, respectively. We characterized those mutations via video-microscopy, electrophysiology, and calcium imaging in our previously established optogenetic arrhythmia model. In this study, we additionally enabled high(er) throughput recordings of intact animals by combining optogenetic stimulation with a microfluidic chip system. Whereas only minor/no pump deficiency of the pharynx was observed at baseline, three mutations of UNC-68 (S2378L, P2460S, Q4623R; RyR2-S2246L, -P2328S, -Q4201R) reduced the ability of the organ to follow 4 Hz optogenetic stimulation. One mutation (Q4623R) was accompanied by a strong reduction of maximal pump rate. In addition, S2378L and Q4623R evoked an altered calcium handling during optogenetic stimulation. The 1,4-benzothiazepine S107, which is suggested to stabilize RyR2 channels by enhancing the binding of calstabin2, reversed the reduction of pumping ability in a mutation-specific fashion. However, this depends on the presence of FKB-2, a C. elegans calstabin2 homolog, indicating the involvement of calstabin2 in the disease-causing mechanisms of the respective mutations. In conclusion, we showed for three CPVT-like mutations in C. elegans RyR a reduced pumping ability upon light stimulation, i.e., an arrhythmia-like phenotype, that can be reversed in two cases by the benzothiazepine S107 and that depends on stabilization via FKB-2. The genetically amenable nematode in combination with optogenetics and high(er) throughput recordings is a promising straightforward system for the investigation of RyR mutations and the selection of mutation-specific drugs.
Collapse
Affiliation(s)
- Marcial Alexander Engel
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Yves René Wörmann
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Hanna Kaestner
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Schüler
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- *Correspondence: Christina Schüler,
| |
Collapse
|
10
|
Dulhunty AF. Molecular Changes in the Cardiac RyR2 With Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT). Front Physiol 2022; 13:830367. [PMID: 35222090 PMCID: PMC8867003 DOI: 10.3389/fphys.2022.830367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
The cardiac ryanodine receptor Ca2+ release channel (RyR2) is inserted into the membrane of intracellular sarcoplasmic reticulum (SR) myocyte Ca2+ stores, where it releases the Ca2+ essential for contraction. Mutations in proteins involved in Ca2+ signaling can lead to catecholaminergic polymorphic ventricular tachycardia (CPVT). The most common cellular phenotype in CPVT is higher than normal cytoplasmic Ca2+ concentrations during diastole due to Ca2+ leak from the SR through mutant RyR2. Arrhythmias are triggered when the surface membrane sodium calcium exchanger (NCX) lowers cytoplasmic Ca2+ by importing 3 Na+ ions to extrude one Ca2+ ion. The Na+ influx leads to delayed after depolarizations (DADs) which trigger arrhythmia when reaching action potential threshold. Present therapies use drugs developed for different purposes that serendipitously reduce RyR2 Ca2+ leak, but can adversely effect systolic Ca2+ release and other target processes. Ideal drugs would specifically reverse the effect of individual mutations, without altering normal channel function. Such drugs will depend on the location of the mutation in the 4967-residue monomer and the effect of the mutation on local structure, and downstream effects on structures along the conformational pathway to the pore. Such atomic resolution information is only now becoming available. This perspective provides a summary of known or predicted structural changes associated with a handful of CPVT mutations. Known molecular changes associated with RyR opening are discussed, as well one study where minute molecular changes with a particular mutation have been tracked from the N-terminal mutation site to gating residues in the channel pore.
Collapse
|
11
|
De novo mutations in childhood cases of sudden unexplained death that disrupt intracellular Ca2+ regulation. Proc Natl Acad Sci U S A 2021; 118:2115140118. [PMID: 34930847 PMCID: PMC8719874 DOI: 10.1073/pnas.2115140118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 01/04/2023] Open
Abstract
Approximately 400 United States children 1 y of age and older die suddenly from unexplained causes annually. We studied whole-exome sequence data from 124 “trios” (decedent child and living parents) to identify genetic risk factors. Nonsynonymous mutations, mostly de novo (present in child but absent in both biological parents), were highly enriched in genes associated with cardiac and seizure disorders relative to controls, and contributed to 9% of deaths. We found significant overtransmission of loss-of-function or pathogenic missense variants in cardiac and seizure disorder genes. Most pathogenic variants were de novo in origin, highlighting the importance of trio studies. Many of these pathogenic de novo mutations altered a protein network regulating calcium-related excitability at submembrane junctions in cardiomyocytes and neurons. Sudden unexplained death in childhood (SUDC) is an understudied problem. Whole-exome sequence data from 124 “trios” (decedent child, living parents) was used to test for excessive de novo mutations (DNMs) in genes involved in cardiac arrhythmias, epilepsy, and other disorders. Among decedents, nonsynonymous DNMs were enriched in genes associated with cardiac and seizure disorders relative to controls (odds ratio = 9.76, P = 2.15 × 10−4). We also found evidence for overtransmission of loss-of-function (LoF) or previously reported pathogenic variants in these same genes from heterozygous carrier parents (11 of 14 transmitted, P = 0.03). We identified a total of 11 SUDC proband genotypes (7 de novo, 1 transmitted parental mosaic, 2 transmitted parental heterozygous, and 1 compound heterozygous) as pathogenic and likely contributory to death, a genetic finding in 8.9% of our cohort. Two genes had recurrent missense DNMs, RYR2 and CACNA1C. Both RYR2 mutations are pathogenic (P = 1.7 × 10−7) and were previously studied in mouse models. Both CACNA1C mutations lie within a 104-nt exon (P = 1.0 × 10−7) and result in slowed L-type calcium channel inactivation and lower current density. In total, six pathogenic DNMs can alter calcium-related regulation of cardiomyocyte and neuronal excitability at a submembrane junction, suggesting a pathway conferring susceptibility to sudden death. There was a trend for excess LoF mutations in LoF intolerant genes, where ≥1 nonhealthy sample in denovo-db has a similar variant (odds ratio = 6.73, P = 0.02); additional uncharacterized genetic causes of sudden death in children might be discovered with larger cohorts.
Collapse
|
12
|
Robinson VM, Alsalahat I, Freeman S, Antzelevitch C, Barajas-Martinez H, Venetucci L. A Carvedilol Analogue, VK-II-86, Prevents Hypokalaemia-induced Ventricular Arrhythmia through Novel multi-Channel Effects. Br J Pharmacol 2021; 179:2713-2732. [PMID: 34877651 DOI: 10.1111/bph.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE QT prolongation and intracellular Ca2+ loading with diastolic Ca2+ release via ryanodine receptors (RyR2) are the predominant mechanisms underlying hypokalaemia-induced ventricular arrhythmia. We investigated the antiarrhythmic actions of two RyR2 inhibitors: dantrolene and VK-II-86, a carvedilol analogue with no β-blocking activity, in hypokalaemia. EXPERIMENTAL APPROACH Surface ECG and ventricular action potentials (APs) were recorded from whole-heart murine Langendorff preparations. Ventricular arrhythmia incidence was compared in hearts perfused with low [K+ ], and those pre-treated with dantrolene or VK-II-86. Whole-cell patch clamping was used in murine and canine ventricular cardiomyocytes to study the effects of dantrolene and VK-II-86 on AP parameters in low [K+ ] and the effects of VK-II-86 on the inward rectifier current (IK1 ), late sodium current (INa_L ) and the L-type Ca2+ current (ICa ). Effects of VK-II-86 on IKr were investigated in transfected HEK-293 cells. A fluorogenic probe quantified the effects of VK-II-86 on oxidative stress in hypokalaemia. KEY RESULTS Dantrolene reduced the incidence of ventricular arrhythmias induced by low [K+ ] in explanted murine hearts by 94%, whereas VK-II-86 prevented all arrhythmias. VK-II-86 prevented hypokalaemia-induced AP prolongation and depolarization, but did not alter AP parameters in normokalaemia. Hypokalaemia was associated with a significant reduction of IK1 and IKr , and increase in INa-L , and ICa . VK-II-86 prevented all hypokalaemia-induced changes in ion channel activity and oxidative stress. CONCLUSIONS AND IMPLICATIONS VK-II-86 prevents hypokalaemia-induced arrhythmogenesis by normalising calcium homeostasis and repolarization reserve. VK-II-86 may provide an exciting treatment in hypokalaemia and other arrhythmias caused by delayed repolarization or Ca2+ overload.
Collapse
Affiliation(s)
- Victoria M Robinson
- The University of Manchester, UK.,Lankenau Institute for Medical Research, Wynnewood, PA, USA
| | | | | | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.,Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, PA, USA.,Lankenau Heart Institute, Wynnewood, PA, USA
| | | | | |
Collapse
|
13
|
Kallas D, Lamba A, Roston TM, Arslanova A, Franciosi S, Tibbits GF, Sanatani S. Pediatric Catecholaminergic Polymorphic Ventricular Tachycardia: A Translational Perspective for the Clinician-Scientist. Int J Mol Sci 2021; 22:ijms22179293. [PMID: 34502196 PMCID: PMC8431429 DOI: 10.3390/ijms22179293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare and potentially lethal inherited arrhythmia disease characterized by exercise or emotion-induced bidirectional or polymorphic ventricular tachyarrhythmias. The median age of disease onset is reported to be approximately 10 years of age. The majority of CPVT patients have pathogenic variants in the gene encoding the cardiac ryanodine receptor, or calsequestrin 2. These lead to mishandling of calcium in cardiomyocytes resulting in after-depolarizations, and ventricular arrhythmias. Disease severity is particularly pronounced in younger individuals who usually present with cardiac arrest and arrhythmic syncope. Risk stratification is imprecise and long-term prognosis on therapy is unknown despite decades of research focused on pediatric CPVT populations. The purpose of this review is to summarize contemporary data on pediatric CPVT, highlight knowledge gaps and present future research directions for the clinician-scientist to address.
Collapse
Affiliation(s)
- Dania Kallas
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Avani Lamba
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Thomas M. Roston
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Clinician-Investigator Program, University of British Columbia, 2016-1874 East Mall, Vancouver, BC V6T 1Z1, Canada
| | - Alia Arslanova
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Sonia Franciosi
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
| | - Glen F. Tibbits
- Cellular and Regenerative Medicine Centre, British Columbia Children’s Hospital Research Institute, 938 W 28th Ave, Vancouver, BC V5Z 4H4, Canada; (A.A.); (G.F.T.)
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Dr., Burnaby, BC V5A 1S6, Canada
| | - Shubhayan Sanatani
- British Columbia Children’s Hospital Heart Center, 1F9-4480 Oak St., Vancouver, BC V6H 3V4, Canada; (D.K.); (A.L.); (T.M.R.); (S.F.)
- Correspondence:
| |
Collapse
|
14
|
Enhancing calmodulin binding to ryanodine receptor is crucial to limit neuronal cell loss in Alzheimer disease. Sci Rep 2021; 11:7289. [PMID: 33790404 PMCID: PMC8012710 DOI: 10.1038/s41598-021-86822-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive neuronal cell loss. Recently, dysregulation of intracellular Ca2+ homeostasis has been suggested as a common proximal cause of neural dysfunction in AD. Here, we investigated (1) the pathogenic role of destabilization of ryanodine receptor (RyR2) in endoplasmic reticulum (ER) upon development of AD phenotypes in AppNL-G-F mice, which harbor three familial AD mutations (Swedish, Beyreuther/Iberian, and Arctic), and (2) the therapeutic effect of enhanced calmodulin (CaM) binding to RyR2. In the neuronal cells from AppNL-G-F mice, CaM dissociation from RyR2 was associated with AD-related phenotypes, i.e. Aβ accumulation, TAU phosphorylation, ER stress, neuronal cell loss, and cognitive dysfunction. Surprisingly, either genetic (by V3599K substitution in RyR2) or pharmacological (by dantrolene) enhancement of CaM binding to RyR2 reversed almost completely the aforementioned AD-related phenotypes, except for Aβ accumulation. Thus, destabilization of RyR2 due to CaM dissociation is most likely an early and fundamental pathogenic mechanism involved in the development of AD. The discovery that neuronal cell loss can be fully prevented simply by stabilizing RyR2 sheds new light on the treatment of AD.
Collapse
|
15
|
Shauer A, Shor O, Wei J, Elitzur Y, Kucherenko N, Wang R, Chen SRW, Einav Y, Luria D. Novel RyR2 Mutation (G3118R) Is Associated With Autosomal Recessive Ventricular Fibrillation and Sudden Death: Clinical, Functional, and Computational Analysis. J Am Heart Assoc 2021; 10:e017128. [PMID: 33686871 PMCID: PMC8174198 DOI: 10.1161/jaha.120.017128] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The cardiac ryanodine receptor type 2 (RyR2) is a large homotetramer, located in the sarcoplasmic reticulum (SR), which releases Ca2+ from the SR during systole. The molecular mechanism underlying Ca2+ sensing and gating of the RyR2 channel in health and disease is only partially elucidated. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT1) is the most prevalent syndrome caused by RyR2 mutations. Methods and Results This study involves investigation of a family with 4 cases of ventricular fibrillation and sudden death and physiological tests in HEK 293 cells and normal mode analysis (NMA) computation. We found 4 clinically affected members who were homozygous for a novel RyR2 mutation, G3118R, whereas their heterozygous relatives are asymptomatic. G3118R is located in the periphery of the protein, far from the mutation hotspot regions. HEK293 cells harboring G3118R mutation inhibited Ca2+ release in response to increasing doses of caffeine, but decreased the termination threshold for store‐overload‐induced Ca2+ release, thus increasing the fractional Ca2+ release in response to increasing extracellular Ca2+. NMA showed that G3118 affects RyR2 tetramer in a dose‐dependent manner, whereas in the model of homozygous mutant RyR2, the highest entropic values are assigned to the pore and the central regions of the protein. Conclusions RyR2 G3118R is related to ventricular fibrillation and sudden death in recessive mode of inheritance and has an effect of gain of function on the protein. Despite a peripheral location, it has an allosteric effect on the stability of central and pore regions in a dose‐effect manner.
Collapse
Affiliation(s)
- Ayelet Shauer
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Oded Shor
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Jinhong Wei
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yair Elitzur
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| | - Nataly Kucherenko
- Biochemistry and Molecular Biology Tel Aviv University Tel Aviv Israel
| | - Ruiwu Wang
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - S R Wayne Chen
- Department of Physiology and Pharmacology The Libin Cardiovascular Institute of AlbertaUniversity of Calgary Alberta Canada
| | - Yulia Einav
- Faculty of Engineering Holon Institute of Technology Holon Israel
| | - David Luria
- Heart Institute Hadassah-Hebrew University Medical Center Jerusalem Israel
| |
Collapse
|
16
|
Yuan Y, Fan S, Shu L, Huang W, Xie L, Bi C, Yu H, Wang Y, Li Y. Exploration the Mechanism of Doxorubicin-Induced Heart Failure in Rats by Integration of Proteomics and Metabolomics Data. Front Pharmacol 2020; 11:600561. [PMID: 33362553 PMCID: PMC7758990 DOI: 10.3389/fphar.2020.600561] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure is a common systemic disease with high morbidity and mortality worldwide. Doxorubicin (DOX) is a commonly used anthracycline broad-spectrum antitumor antibiotic with strong antitumor effect and definite curative effect. However, cardiotoxicity is the adverse reaction of drug dose cumulative toxicity, but the mechanism is still unclear. In this study, proteomics and metabonomics techniques were used to analyze the tissue and plasma of DOX-induced heart failure (HF) in rats and to clarify the molecular mechanism of the harmful effects of DOX on cardiac metabolism and function in rats from a new point of view. The results showed that a total of 278 proteins with significant changes were identified by quantitative proteomic analysis, of which 118 proteins were significantly upregulated and 160 proteins were significantly downregulated in myocardial tissue. In the metabonomic analysis, 21 biomarkers such as L-octanoylcarnitine, alpha-ketoglutarate, glutamine, creatine, and sphingosine were detected. Correlation analysis showed that DOX-induced HF mainly affected phenylalanine, tyrosine, and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, and other metabolic pathways, suggesting abnormal amino acid metabolism, fatty acid metabolism, and glycerol phospholipid metabolism. It is worth noting that we have found the key upstream target of DOX-induced HF, PTP1B, which inhibits the expression of HIF-1α by inhibiting the phosphorylation of IRS, leading to disorders of fatty acid metabolism and glycolysis, which together with the decrease of Nrf2, SOD, Cytc, and AK4 proteins lead to oxidative stress. Therefore, we think that PTP1B may play an important role in the development of heart failure induced by doxorubicin and can be used as a potential target for the treatment of heart failure.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuming Wang
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yubo Li
- Department of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Liu J. Alcohol consumption combined with dietary low-carbohydrate/high-protein intake increased the left ventricular systolic dysfunction risk and lethal ventricular arrhythmia susceptibility in apolipoprotein E/low-density lipoprotein receptor double-knockout mice. Alcohol 2020; 89:63-74. [PMID: 32702503 DOI: 10.1016/j.alcohol.2020.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/21/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Alcohol abuse is positively associated with cardiovascular disease. Dietary low-carbohydrate/high-protein (LCHP) intake confers a greater mortality risk. Here, the impact of ethanol consumption in combination with dietary LCHP intake on left ventricular (LV) systolic function and lethal ventricular arrhythmia susceptibility were investigated in apolipoprotein E/low-density lipoprotein receptor double-knockout (AL) mice. The underlying mechanisms, cardiac sympathovagal balance, beta-adrenergic receptor (ADRB) levels, and gap junction channel protein connexin 43 (Cx43) expression, were examined. Male AL mice fed an LCHP diet with or without ethanol were bred for 16 weeks. Age-matched male AL and wild-type mice received standard chow diet and served as controls. The following were used to assess LV systolic function, lethal ventricular arrhythmia susceptibility, cardiac sympathovagal balance, Cx43 expression, and ADRB levels: The results demonstrated that ethanol consumption in combination with dietary LCHP intake worsened LCHP-induced LV systolic dysfunction in AL mice and enhanced their susceptibility in the ventricular arrhythmia-evoked test. There were concomitant increases in LV weight, LF/HF ratio shown by HRV, TH, ADRB1, ADRB2, and Cx43 expressions by LV fluorescence immunohistochemistry, and LV Cx43 messenger ribonucleic acid expression by PCR. In AL mice, alcohol consumption combined with dietary LCHP intake may thus promote a shift in cardiac sympathovagal balance toward sympathetic predominance, the increases in beta-adrenergic receptors (ADRB1 and ADRB2), and then affect the gap junction channel protein Cx43, which in turn could contribute to increased risks of LV systolic dysfunction and susceptibility to lethal ventricular arrhythmia.
Collapse
|
18
|
Huang Y, Lei C, Xie W, Yan L, Wang Y, Yuan S, Wang J, Zhao Y, Wang Z, Yang X, Qin X, Fang Q, Fang L, Guo X. Oxidation of Ryanodine Receptors Promotes Ca 2+ Leakage and Contributes to Right Ventricular Dysfunction in Pulmonary Hypertension. Hypertension 2020; 77:59-71. [PMID: 33249863 DOI: 10.1161/hypertensionaha.120.15561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Right ventricular (RV) failure is a major cause of death in patients with pulmonary arterial hypertension, and the mechanism of RV failure remains unclear. While the malfunction of RyR2 (ryanodine receptor type 2) on sarcoplasmic reticulum (SR) and aberrant Ca2+ cycling in cardiomyocytes have been recognized in some cardiovascular diseases, their roles in RV failure secondary to pulmonary arterial hypertension require further investigation. In a monocrotaline-induced rat model of pulmonary arterial hypertension, the RV remodeling process was divided into normal, compensated, and decompensated stages according to the hemodynamic and morphological parameters. In both compensated and decompensated stages, significant diastolic SR Ca2+ leakage was detected along with reduced intracellular Ca2+ transient amplitude and SR Ca2+ contents in RV myocytes. RyR2 protein levels decreased progressively during the process, and the thiol oxidation proportions of RyR2 were higher in compensated and decompensated stages than in normal stage. Inhibition of RyR2 oxidation by dithiothreitol or repairing RyR2 directly by dantrolene could restore Ca2+ homeostasis in RV myocytes. Daily intraperitoneal injection of dantrolene delayed decompensation progression and significantly improved the survival rate of pulmonary hypertension rats in decompensated stage (79.3% versus 55.9%; P=0.026). Our findings suggest that diastolic SR Ca2+ leakage via oxidized RyR2 facilitates the development of RV failure. Dantrolene can inhibit diastolic SR Ca2+ leakage in RV cardiomyocytes, delay right cardiac dysfunction, and improve the survival of rats with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Yongfa Huang
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuxiang Lei
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenjun Xie
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Shaanxi, China (W.X.)
| | - Li Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China (L.Y., J.W.)
| | | | - Su Yuan
- Department of Anesthesiology, Fuwai Hospital, National Center for Cardiovascular Diseases (S.Y.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Wang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China (L.Y., J.W.)
| | - Yan Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University-Tsinghua University Joint Center for Life Sciences, Peking University, China (Y.W., Y.Z.)
| | | | - Xiaoying Yang
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaohan Qin
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quan Fang
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ligang Fang
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoxiao Guo
- From the Department of Cardiology, Peking Union Medical College Hospital (Y.H., C.L., Z.W., X.Y., X.Q., Q.F., L.F., X.G.), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Kistamás K, Veress R, Horváth B, Bányász T, Nánási PP, Eisner DA. Calcium Handling Defects and Cardiac Arrhythmia Syndromes. Front Pharmacol 2020; 11:72. [PMID: 32161540 PMCID: PMC7052815 DOI: 10.3389/fphar.2020.00072] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Calcium ions (Ca2+) play a major role in the cardiac excitation-contraction coupling. Intracellular Ca2+ concentration increases during systole and falls in diastole thereby determining cardiac contraction and relaxation. Normal cardiac function also requires perfect organization of the ion currents at the cellular level to drive action potentials and to maintain action potential propagation and electrical homogeneity at the tissue level. Any imbalance in Ca2+ homeostasis of a cardiac myocyte can lead to electrical disturbances. This review aims to discuss cardiac physiology and pathophysiology from the elementary membrane processes that can cause the electrical instability of the ventricular myocytes through intracellular Ca2+ handling maladies to inherited and acquired arrhythmias. Finally, the paper will discuss the current therapeutic approaches targeting cardiac arrhythmias.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| | - Roland Veress
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter P Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Dental Physiology, Faculty of Dentistry, University of Debrecen, Debrecen, Hungary
| | - David A Eisner
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
20
|
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare congenital arrhythmogenic disorder induced by physical or emotional stress. It mainly affects children and younger adults and is characterized by rapid polymorphic and bidirectional ventricular tachycardia. Symptoms can include dizziness, palpitations, and presyncope, which may progress to syncope, hypotonia, convulsive movements, and sudden cardiac death. CPVT is the result of perturbations in Ca ion handling in the sarcoplasmic reticulum of cardiac myocytes. Mutations in the cardiac ryanodine receptor gene and the calsequestrin isoform 2 gene are most commonly seen in familial CPVT patients. Under catecholaminergic stimulation, either mutation can result in an excess Ca load during diastole resulting in delayed after depolarization and subsequent arrhythmogenesis. The current first-line treatment for CPVT is β-blocker therapy. Other therapeutic interventions that can be used in conjunction with β-blockers include moderate exercise training, flecainide, left cardiac sympathetic denervation, and implantable cardioverter-defibrillators. Several potential therapeutic interventions, including verapamil, dantrolene, JTV519, and gene therapy, are also discussed.
Collapse
|
21
|
Basaki M, Tabandeh MR, Aminlari M, Asasi K, Mohsenifard E, Abdi-Hachesoo B. Sequence and expression analysis of cardiac ryanodine receptor 2 in broilers that died from sudden death syndrome. Avian Pathol 2019; 48:444-453. [PMID: 31081346 DOI: 10.1080/03079457.2019.1618439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sudden death syndrome (SDS) is a stress-related disease in broilers with no diagnostic clinical or necropsy findings. SDS is associated with ventricular tachycardia (VT) and ventricular fibrillation (VF); however, its pathogenesis is not precisely described at the molecular level. Dysfunction of ryanodine receptor 2 (RYR2), that controls rapid release of Ca2+ from the sarcoplasmic reticulum (SR) into the cytosol during muscle contraction, has been associated with VT and sudden cardiac death (SCD) in human patients with structurally normal heart, but there is no report describing abnormalities in RYR2 in diseased broilers. In order to advance our knowledge on the molecular mechanisms predisposing broilers to fatal arrhythmia, the present study was conducted to determine the occurrence of possible mutations and changes in the expression level of the chicken RYR2 gene (chRYR2) in broilers that died from SDS. An increase in mRNA expression level and nine novel point mutations in chRYR2 were found in relation to SDS. In conclusion, susceptibility to lethal cardiac arrhythmia in SDS may be associated with specific changes in intracellular Ca2+ cycling components such as RYR2 due to mutation and dysregulation. Finding the probable association of SDS with gene defects can be applied to select for chickens with lower susceptibility to SDS and decrease the poultry industry losses due to SDS mortality. RESEARCH HIGHLIGHTS Investigation of the occurrence of possible mutations and changes in the expression level of chicken RYR2 gene (chRYR2) in broilers that died from SDS. Increase in the mRNA expression level of chRYR2 in relation to SDS. Nine novel point mutations in chRYR2 of broilers that died from SDS. Possible connection between susceptibility to lethal cardiac arrhythmia in SDS and changes in intracellular Ca2+ cycling machinery, such as RYR2, due to mutation and dysregulation.
Collapse
Affiliation(s)
- M Basaki
- Department of Basic Sciences, School of Veterinary Medicine, University of Tabriz , Tabriz , Iran
| | - M R Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz , Ahvaz , Iran
| | - M Aminlari
- Department of Biochemistry, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - K Asasi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - E Mohsenifard
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - B Abdi-Hachesoo
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|
22
|
Dulhunty AF, Beard NA, Casarotto MG. Recent advances in understanding the ryanodine receptor calcium release channels and their role in calcium signalling. F1000Res 2018; 7. [PMID: 30542613 PMCID: PMC6259491 DOI: 10.12688/f1000research.16434.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 12/30/2022] Open
Abstract
The ryanodine receptor calcium release channel is central to cytoplasmic Ca
2+ signalling in skeletal muscle, the heart, and many other tissues, including the central nervous system, lymphocytes, stomach, kidney, adrenal glands, ovaries, testes, thymus, and lungs. The ion channel protein is massive (more than 2.2 MDa) and has a structure that has defied detailed determination until recent developments in cryo-electron microscopy revealed much of its structure at near-atomic resolution. The availability of this high-resolution structure has provided the most significant advances in understanding the function of the ion channel in the past 30 years. We can now visualise the molecular environment of individual amino acid residues that form binding sites for essential modulators of ion channel function and determine its role in Ca
2+ signalling. Importantly, the structure has revealed the structural environment of the many deletions and point mutations that disrupt Ca
2+ signalling in skeletal and cardiac myopathies and neuropathies. The implications are of vital importance to our understanding of the molecular basis of the ion channel’s function and for the design of therapies to counteract the effects of ryanodine receptor-associated disorders.
Collapse
Affiliation(s)
- Angela F Dulhunty
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, 131 Garran Road, The Australian National University, Acton, ACT, 2601, Australia
| | - Nicole A Beard
- Centre for Research in Therapeutic Solutions, Faculty of Science and Technology, University of Canberra, Bruce, ACT, 2617, Australia
| | - Marco G Casarotto
- Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, 131 Garran Road, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
23
|
Nishimura S, Yamamoto T, Nakamura Y, Kohno M, Hamada Y, Sufu Y, Fukui G, Nanno T, Ishiguchi H, Kato T, Xu X, Ono M, Oda T, Okuda S, Kobayashi S, Yano M. Mutation-linked, excessively tight interaction between the calmodulin binding domain and the C-terminal domain of the cardiac ryanodine receptor as a novel cause of catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 2018; 15:905-914. [PMID: 29427818 DOI: 10.1016/j.hrthm.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ryanodine receptor (RyR2) is known to be a causal gene of catecholaminergic polymorphic ventricular tachycardia (CPVT), an important inherited disease. Some of the human CPVT-associated mutations have been found in a domain (4026-4172) that has EF hand motifs, the so-called calmodulin (CaM)-like domain (CaMLD). OBJECTIVE The purpose of this study was to investigate the underlying mechanism by which CPVT is induced by a mutation at CaMLD. METHODS A new N4103K/+ knock-in (KI) mice model was generated. RESULTS Sustained ventricular tachycardia was frequently observed after infusion of caffeine plus epinephrine in KI mice. Endogenous CaM bound to RyR2 decreased even at baseline in isolated KI cardiomyocytes. Ca2+ spark frequency (CaSpF) was much higher in KI cells than in wild-type cells. Addition of GSH-CaM (higher affinity CaM to RyR2) significantly decreased CaSpF. In response to isoproterenol, spontaneous Ca2+ transient (SCaT) was frequently observed in intact KI cells. Incorporation of GSH-CaM into intact KI cells using a protein delivery kit decreased SCaT significantly. An assay using a quartz crystal microbalance technique revealed that mutated CaMLD peptide showed higher binding affinity to CaM binding domain (CaMBD) peptide. CONCLUSION In the N4103K mutant, CaM binding affinity to RyR2 was significantly reduced regardless of beta-adrenergic stimulation. We found that this was caused by an abnormally tight interaction between CaMBD and mutated CaM-like domain (N4103K-CaMBD). Thus, CaMBD-CaMLD interaction may be a novel therapeutic target for treatment of lethal arrhythmia.
Collapse
Affiliation(s)
- Shigehiko Nishimura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Michiaki Kohno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoriomi Hamada
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoko Sufu
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Go Fukui
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takuma Nanno
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hironori Ishiguchi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takayoshi Kato
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Xiaojuan Xu
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Makoto Ono
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
24
|
Santulli G, Lewis D, des Georges A, Marks AR, Frank J. Ryanodine Receptor Structure and Function in Health and Disease. Subcell Biochem 2018; 87:329-352. [PMID: 29464565 PMCID: PMC5936639 DOI: 10.1007/978-981-10-7757-9_11] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ryanodine receptors (RyRs) are ubiquitous intracellular calcium (Ca2+) release channels required for the function of many organs including heart and skeletal muscle, synaptic transmission in the brain, pancreatic beta cell function, and vascular tone. In disease, defective function of RyRs due either to stress (hyperadrenergic and/or oxidative overload) or genetic mutations can render the channels leaky to Ca2+ and promote defective disease-causing signals as observed in heat failure, muscular dystrophy, diabetes mellitus, and neurodegerative disease. RyRs are massive structures comprising the largest known ion channel-bearing macromolecular complex and exceeding 3 million Daltons in molecular weight. RyRs mediate the rapid release of Ca2+ from the endoplasmic/sarcoplasmic reticulum (ER/SR) to stimulate cellular functions through Ca2+-dependent processes. Recent advances in single-particle cryogenic electron microscopy (cryo-EM) have enabled the determination of atomic-level structures for RyR for the first time. These structures have illuminated the mechanisms by which these critical ion channels function and interact with regulatory ligands. In the present chapter we discuss the structure, functional elements, gating and activation mechanisms of RyRs in normal and disease states.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA
- The Wilf Family Cardiovascular Research Institute and the Einstein-Mount Sinai Diabetes Research Center, Department of Medicine, Albert Einstein College of Medicine - Montefiore University Hospital, New York, NY, USA
| | - Daniel Lewis
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Amedee des Georges
- Advanced Science Research Center at the Graduate Center of the City University of New York, New York, NY, USA
- Department of Chemistry & Biochemistry, City College of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Columbia University, New York, NY, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
25
|
Faltinova A, Tomaskova N, Antalik M, Sevcik J, Zahradnikova A. The N-Terminal Region of the Ryanodine Receptor Affects Channel Activation. Front Physiol 2017; 8:443. [PMID: 28713282 PMCID: PMC5492033 DOI: 10.3389/fphys.2017.00443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/12/2017] [Indexed: 11/29/2022] Open
Abstract
Mutations in the cardiac ryanodine receptor (RyR2), the ion channel responsible for release of calcium ions from intracellular stores into cytoplasm, are the cause of several inherited cardiac arrhythmias. At the molecular level, disease symptoms can be mimicked by domain peptides from mutation-prone regions of RyR2 that bind to RyR2 and activate it. Here we show that the domain peptide DPcpvtN2, corresponding to the central helix of the N-terminal region of RyR2, activates the RyR2 channel. Structural modeling of interaction between DPcpvtN2 and the N-terminal region of RyR2 in the closed and open conformation provided three plausible structures of the complex. Only one of them could explain the dependence of RyR2 activity on concentration of DPcpvtN2. The structure of the complex was at odds with the previously proposed “domain switch” mechanism of competition between domain peptides and ryanodine receptor domains. Likewise, in structural models of the N-terminal region, the conformational changes induced by DPcpvtN2 binding were different from those induced by mutation of central helix amino acids. The activating effect of DPcpvtN2 binding and of mutations in the central helix could be explained by their similar effect on the transition energy between the closed and open conformation of RyR2.
Collapse
Affiliation(s)
- Andrea Faltinova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Nataša Tomaskova
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Marián Antalik
- Faculty of Science, Institute of Chemical Sciences, Pavol Jozef Šafárik UniversityKošice, Slovakia
| | - Jozef Sevcik
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Alexandra Zahradnikova
- Department of Muscle Cell Research, Institute of Molecular Physiology and Genetics of the Centre of Biosciences, Slovak Academy of SciencesBratislava, Slovakia.,Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| |
Collapse
|
26
|
Santulli G, Lewis DR, Marks AR. Physiology and pathophysiology of excitation-contraction coupling: the functional role of ryanodine receptor. J Muscle Res Cell Motil 2017; 38:37-45. [PMID: 28653141 PMCID: PMC5813681 DOI: 10.1007/s10974-017-9470-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release from intracellular stores plays a key role in the regulation of skeletal muscle contraction. The type 1 ryanodine receptors (RyR1) is the major Ca2+ release channel on the sarcoplasmic reticulum (SR) of myocytes in skeletal muscle and is required for excitation-contraction (E-C) coupling. This article explores the role of RyR1 in skeletal muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Gaetano Santulli
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Daniel R Lewis
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Andrew R Marks
- The Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, Columbia University, New York, NY, USA.
- Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
27
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Acsai K, Ördög B, Varró A, Nánási PP. Role of the dysfunctional ryanodine receptor - Na(+)-Ca(2+)exchanger axis in progression of cardiovascular diseases: What we can learn from pharmacological studies? Eur J Pharmacol 2016; 779:91-101. [PMID: 26970182 DOI: 10.1016/j.ejphar.2016.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 12/28/2022]
Abstract
Abnormal Ca(2+)homeostasis is often associated with chronic cardiovascular diseases, such as hypertension, heart failure or cardiac arrhythmias, and typically contributes to the basic ethiology of the disease. Pharmacological targeting of cardiac Ca(2+)handling has great therapeutic potential offering invaluable options for the prevention, slowing down the progression or suppression of the harmful outcomes like life threatening cardiac arrhythmias. In this review we outline the existing knowledge on the involvement of malfunction of the ryanodine receptor and the Na(+)-Ca(2+)exchanger in disturbances of Ca(2+)homeostasis and discuss important proof of concept pharmacological studies targeting these mechanisms in context of hypertension, heart failure, atrial fibrillation and ventricular arrhythmias. We emphasize the promising results of preclinical studies underpinning the potential benefits of the therapeutic strategies based on ryanodine receptor or Na(+)-Ca(2+)exchanger inhibition.
Collapse
Affiliation(s)
- Károly Acsai
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Balázs Ördög
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - András Varró
- MTA-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary; Department of Pharmacology and Pharmacotherapy, University of Szeged, Faculty of Medicine, Szeged, Hungary
| | - Péter P Nánási
- Department of Physiology, University of Debrecen, Debrecen, Hungary; Department of Dentistry, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
29
|
Abstract
The ryanodine receptor/Ca2+ release channel plays a pivotal role in skeletal and cardiac muscle excitation-contraction coupling. Defective regulation leads to neuromuscular disorders and arrhythmogenic cardiac disease. This mini-review focuses on channel regulation through structural intra- and inter-subunit interactions and their implications in ryanodine receptor pathophysiology.
Collapse
|
30
|
Savio-Galimberti E, Knollmann BC. Channel Activity of Cardiac Ryanodine Receptors (RyR2) Determines Potency and Efficacy of Flecainide and R-Propafenone against Arrhythmogenic Calcium Waves in Ventricular Cardiomyocytes. PLoS One 2015; 10:e0131179. [PMID: 26121139 PMCID: PMC4488248 DOI: 10.1371/journal.pone.0131179] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
Flecainide blocks ryanodine receptor type 2 (RyR2) channels in the open state, suppresses arrhythmogenic Ca2+ waves and prevents catecholaminergic polymorphic ventricular tachycardia (CPVT) in mice and humans. We hypothesized that differences in RyR2 activity induced by CPVT mutations determines the potency of open-state RyR2 blockers like flecainide (FLEC) and R-propafenone (RPROP) against Ca2+ waves in cardiomyocytes. Using confocal microscopy, we studied Ca2+ sparks and waves in isolated saponin-permeabilized ventricular myocytes from two CPVT mouse models (Casq2-/-, RyR2-R4496C+/-), wild-type (c57bl/6, WT) mice, and WT rabbits (New Zealand white rabbits). Consistent with increased RyR2 activity, Ca2+ spark and wave frequencies were significantly higher in CPVT compared to WT mouse myocytes. We next obtained concentration-response curves of Ca2+ wave inhibition for FLEC, RPROP (another open-state RyR2 blocker), and tetracaine (TET) (a state-independent RyR2 blocker). Both FLEC and RPROP inhibited Ca2+ waves with significantly higher potency (lower IC50) and efficacy in CPVT compared to WT. In contrast, TET had similar potency in all groups studied. Increasing RyR2 activity of permeabilized WT myocytes by exposure to caffeine (150 µM) increased the potency of FLEC and RPROP but not of TET. RPROP and FLEC were also significantly more potent in rabbit ventricular myocytes that intrinsically exhibit higher Ca2+ spark rates than WT mouse ventricular myocytes. In conclusion, RyR2 activity determines the potency of open-state blockers FLEC and RPROP for suppressing arrhythmogenic Ca2+ waves in cardiomyocytes, a mechanism likely relevant to antiarrhythmic drug efficacy in CPVT.
Collapse
Affiliation(s)
- Eleonora Savio-Galimberti
- Division of Clinical Pharmacology and Oates Institute for Experimental Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
- Division of Cardiovascular Medicine. Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
| | - Björn C. Knollmann
- Division of Clinical Pharmacology and Oates Institute for Experimental Therapeutics, Department of Medicine, Vanderbilt University School of Medicine, Nashville, United States of America
- * E-mail:
| |
Collapse
|
31
|
Penttinen K, Swan H, Vanninen S, Paavola J, Lahtinen AM, Kontula K, Aalto-Setälä K. Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models. PLoS One 2015; 10:e0125366. [PMID: 25955245 PMCID: PMC4425399 DOI: 10.1371/journal.pone.0125366] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/13/2015] [Indexed: 01/07/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1) is caused by cardiac ryanodine receptor (RyR2) gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca2+ release, has been shown to rescue this abnormal Ca2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs) on average by 74% (range 33-97) in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs) were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs). The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca2+ cycling abnormalities in 80% (range 65-97) of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.
Collapse
Affiliation(s)
- Kirsi Penttinen
- BioMediTech, University of Tampere, Tampere, Finland; School of Medicine, University of Tampere, Tampere, Finland
| | - Heikki Swan
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
| | - Sari Vanninen
- Heart Hospital, Tampere University Hospital, Tampere, Finland
| | - Jere Paavola
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Lahtinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Kontula
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katriina Aalto-Setälä
- BioMediTech, University of Tampere, Tampere, Finland; School of Medicine, University of Tampere, Tampere, Finland; Heart Hospital, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
32
|
Oo YW, Gomez-Hurtado N, Walweel K, van Helden DF, Imtiaz MS, Knollmann BC, Laver DR. Essential Role of Calmodulin in RyR Inhibition by Dantrolene. Mol Pharmacol 2015; 88:57-63. [PMID: 25920678 DOI: 10.1124/mol.115.097691] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 04/28/2015] [Indexed: 12/17/2022] Open
Abstract
Dantrolene is the first line therapy of malignant hyperthermia. Animal studies suggest that dantrolene also protects against heart failure and arrhythmias caused by spontaneous Ca(2+) release. Although dantrolene inhibits Ca(2+) release from the sarcoplasmic reticulum of skeletal and cardiac muscle preparations, its mechanism of action has remained controversial, because dantrolene does not inhibit single ryanodine receptor (RyR) Ca(2+) release channels in lipid bilayers. Here we test the hypothesis that calmodulin (CaM), a physiologic RyR binding partner that is lost during incorporation into lipid bilayers, is required for dantrolene inhibition of RyR channels. In single channel recordings (100 nM cytoplasmic [Ca(2+)] + 2 mM ATP), dantrolene caused inhibition of RyR1 (rabbit skeletal muscle) and RyR2 (sheep) with a maximal inhibition of Po (Emax) to 52 ± 4% of control only after adding physiologic [CaM] = 100 nM. Dantrolene inhibited RyR2 with an IC50 of 0.16 ± 0.03 µM. Mutant N98S-CaM facilitated dantrolene inhibition with an IC50 = 5.9 ± 0.3 nM. In mouse cardiomyocytes, dantrolene had no effect on cardiac Ca(2+) release in the absence of CaM, but reduced Ca(2+) wave frequency (IC50 = 0.42 ± 0.18 µM, Emax = 47 ± 4%) and amplitude (IC50 = 0.19 ± 0.04 µM, Emax = 66 ± 4%) in the presence of 100 nM CaM. We conclude that CaM is essential for dantrolene inhibition of RyR1 and RyR2. Its absence explains why dantrolene inhibition of single RyR channels has not been previously observed.
Collapse
Affiliation(s)
- Ye Win Oo
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Nieves Gomez-Hurtado
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Kafa Walweel
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Dirk F van Helden
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Mohammad S Imtiaz
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Bjorn C Knollmann
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| | - Derek R Laver
- School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia (Y.W.O., K.W., D.F.H., M.S.I., D.R.L.); and Division of Clinical Pharmacology, School of Medicine, Vanderbilt University, Nashville, Tennessee (N.G.-H., B.C.K.)
| |
Collapse
|
33
|
Domeier TL, Roberts CJ, Gibson AK, Hanft LM, McDonald KS, Segal SS. Dantrolene suppresses spontaneous Ca2+ release without altering excitation-contraction coupling in cardiomyocytes of aged mice. Am J Physiol Heart Circ Physiol 2014; 307:H818-29. [PMID: 25038147 DOI: 10.1152/ajpheart.00287.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac dysfunction in the aged heart reflects abnormalities in cardiomyocyte Ca(2+) homeostasis including altered Ca(2+) cycling through the sarcoplasmic reticulum (SR). The ryanodine receptor antagonist dantrolene exerts antiarrhythmic effects by preventing spontaneous diastolic Ca(2+) release from the SR. We tested the hypothesis that dantrolene prevents spontaneous Ca(2+) release without altering excitation-contraction coupling in aged myocardium. Left ventricular cardiomyocytes isolated from young (3 to 4 mo) and aged (24-26 mo) C57BL/6 mice were loaded with the Ca(2+) indicator fluo-4. Amplitudes of action potential-induced Ca(2+) transients at 1-Hz pacing were similar between young and aged mice, yet cell shortening was impaired in aged mice. Isoproterenol (1 μM) increased Ca(2+) transient amplitude and cell shortening to identical levels in young and aged; dantrolene (1 μM) had no effect on Ca(2+) transients or cell shortening during pacing. Under Ca(2+) overload conditions induced with 10 mM extracellular Ca(2+) concentration, spontaneous Ca(2+) waves were of diminished amplitude and associated with lower SR Ca(2+) content in aged versus young mice. Despite no effect in young mice, dantrolene increased SR Ca(2+) content and Ca(2+) wave amplitude in aged mice. In the presence of isoproterenol following rest from 1-Hz pacing, Ca(2+) spark frequency was elevated in aged mice, yet the time to spontaneous Ca(2+) wave was similar between young and aged mice; dantrolene decreased Ca(2+) spark frequency and prolonged the time to Ca(2+) wave onset in aged mice with no effect in young mice. Thus dantrolene attenuates diastolic Ca(2+) release in the aged murine heart that may prove useful in preventing cardiac dysfunction.
Collapse
Affiliation(s)
- Timothy L Domeier
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Cale J Roberts
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Anne K Gibson
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri; and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
34
|
Faggioni M, van der Werf C, Knollmann BC. Sinus node dysfunction in catecholaminergic polymorphic ventricular tachycardia: risk factor and potential therapeutic target? Trends Cardiovasc Med 2014; 24:273-8. [PMID: 25112803 DOI: 10.1016/j.tcm.2014.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023]
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited heart rhythm disorder characterized by the occurrence of potentially life-threatening polymorphic ventricular tachyarrhythmias in conditions of physical or emotional stress. The underlying cause is a dysregulation in intracellular Ca handling due to mutations in the sarcoplasmic reticulum Ca release unit. Recent experimental work suggests that sinus bradycardia, which is sometimes observed in CPVT patients, may be another primary defect caused by CPVT mutations. Herein, we review the pathophysiology of CPVT and discuss the role of sinus node dysfunction as a modulator of arrhythmia risk and potential therapeutic target.
Collapse
Affiliation(s)
- Michela Faggioni
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical School, Medical Research Building IV, Rm. 1265, 2215B Garland Ave, Nashville, TN 37232-0575; Department of Cardiology, University of Pisa, Pisa, Italy
| | - Christian van der Werf
- Heart Center, Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical School, Medical Research Building IV, Rm. 1265, 2215B Garland Ave, Nashville, TN 37232-0575.
| |
Collapse
|
35
|
Fukuda M, Yamamoto T, Nishimura S, Kato T, Murakami W, Hino A, Ono M, Tateishi H, Oda T, Okuda S, Kobayashi S, Koseki N, Kyushiki H, Yano M. Enhanced binding of calmodulin to RyR2 corrects arrhythmogenic channel disorder in CPVT-associated myocytes. Biochem Biophys Res Commun 2014; 448:1-7. [DOI: 10.1016/j.bbrc.2014.03.152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022]
|
36
|
Sedej S, Schmidt A, Denegri M, Walther S, Matovina M, Arnstein G, Gutschi EM, Windhager I, Ljubojević S, Negri S, Heinzel FR, Bisping E, Vos MA, Napolitano C, Priori SG, Kockskämper J, Pieske B. Subclinical abnormalities in sarcoplasmic reticulum Ca(2+) release promote eccentric myocardial remodeling and pump failure death in response to pressure overload. J Am Coll Cardiol 2013; 63:1569-79. [PMID: 24315909 DOI: 10.1016/j.jacc.2013.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/26/2022]
Abstract
OBJECTIVES This study sought to explore whether subclinical alterations of sarcoplasmic reticulum (SR) Ca(2+) release through cardiac ryanodine receptors (RyR2) aggravate cardiac remodeling in mice carrying a human RyR2(R4496C+/-) gain-of-function mutation in response to pressure overload. BACKGROUND RyR2 dysfunction causes increased diastolic SR Ca(2+) release associated with arrhythmias and contractile dysfunction in inherited and acquired cardiac diseases, such as catecholaminergic polymorphic ventricular tachycardia and heart failure (HF). METHODS Functional and structural properties of wild-type and catecholaminergic polymorphic ventricular tachycardia-associated RyR2(R4496C+/-) hearts were characterized under conditions of pressure overload induced by transverse aortic constriction (TAC). RESULTS Wild-type and RyR2(R4496C+/-) hearts had comparable structural and functional properties at baseline. After TAC, RyR2(R4496C+/-) hearts responded with eccentric hypertrophy, substantial fibrosis, ventricular dilation, and reduced fractional shortening, ultimately resulting in overt HF. RyR2(R4496C+/-)-TAC cardiomyocytes showed increased incidence of spontaneous SR Ca(2+) release events, reduced Ca(2+) transient peak amplitude, and SR Ca(2+) content as well as reduced SR Ca(2+)-ATPase 2a and increased Na(+)/Ca(2+)-exchanger protein expression. HF phenotype in RyR2(R4496C+/-)-TAC mice was associated with increased mortality due to pump failure but not tachyarrhythmic events. RyR2-stabilizer K201 markedly reduced Ca(2+) spark frequency in RyR2(R4496C+/-)-TAC cardiomyocytes. Mini-osmotic pump infusion of K201 prevented deleterious remodeling and improved survival in RyR2(R4496C+/-)-TAC mice. CONCLUSIONS The combination of subclinical congenital alteration of SR Ca(2+) release and pressure overload promoted eccentric remodeling and HF death in RyR2(R4496C+/-) mice, and pharmacological RyR2 stabilization prevented this deleterious interaction. These findings suggest potential clinical relevance for patients with acquired or inherited gain-of-function of RyR2-mediated SR Ca(2+) release.
Collapse
Affiliation(s)
- Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria.
| | - Albrecht Schmidt
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Marco Denegri
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Stefanie Walther
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Marinko Matovina
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Georg Arnstein
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Eva-Maria Gutschi
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | | | - Senka Ljubojević
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Sara Negri
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Frank R Heinzel
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Egbert Bisping
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria
| | - Marc A Vos
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Carlo Napolitano
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy; Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Silvia G Priori
- IRCCS Salvatore Maugeri Foundation and Department of Molecular Medicine, University of Pavia, Pavia, Italy; Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York
| | - Jens Kockskämper
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University of Marburg, Marburg, Germany
| | - Burkert Pieske
- Department of Cardiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Translational Heart Failure Research, Graz, Austria.
| |
Collapse
|
37
|
Abstract
AbstractThe effect of a domain peptide DPCPVTc from the central region of the RYR2 on ryanodine receptors from rat heart has been examined in planar lipid bilayers. At a zero holding potential and at 8 mmol L−1 luminal Ca2+ concentration, DPCPVTc induced concentrationdependent activation of the ryanodine receptor that led up to 20-fold increase of PO at saturating DPCPVTc concentrations. DPCPVTc prolonged RyR2 openings and increased RyR2 opening frequency. At all peptide concentrations the channels displayed large variability in open probability, open time and frequency of openings. With increasing peptide concentration, the fraction of high open probability records increased together with their open time. The closed times of neither low- nor high-open probability records depended on peptide concentration. The concentration dependence of all gating parameters had EC50 of 20 μmol L−1 and a Hill slope of 2. Comparison of the effects of DPCPVTc with the effects of ATP and cytosolic Ca2+ suggests that activation does not involve luminal feed-through and is not caused by modulation of the cytosolic activation A-site. The data suggest that although “domain unzipping” by DPCPVTc occurs in both modes of RyR activity, it affects RyR gating only when the channel resides in the H-mode of activity.
Collapse
|
38
|
Stathopulos PB, Seo MD, Enomoto M, Amador FJ, Ishiyama N, Ikura M. Themes and variations in ER/SR calcium release channels: structure and function. Physiology (Bethesda) 2013; 27:331-42. [PMID: 23223627 DOI: 10.1152/physiol.00013.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Calcium (Ca(2+)) release from reticular stores is a vital regulatory signal in eukaryotes. Recent structural data on large NH(2)-terminal regions of IP(3)Rs and RyRs and their tetrameric arrangement in the full-length context reveal striking mechanistic similarities in Ca(2+) release channel function. A common ancestor found in unicellular genomes underscores the fundamentality of these elements to Ca(2+) release channels.
Collapse
Affiliation(s)
- Peter B Stathopulos
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Zhang Y, Matthews GDK, Lei M, Huang CLH. Abnormal Ca(2+) homeostasis, atrial arrhythmogenesis, and sinus node dysfunction in murine hearts modeling RyR2 modification. Front Physiol 2013; 4:150. [PMID: 23805105 PMCID: PMC3691467 DOI: 10.3389/fphys.2013.00150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 06/05/2013] [Indexed: 12/19/2022] Open
Abstract
Ryanodine receptor type 2 (RyR2) mutations are implicated in catecholaminergic polymorphic ventricular tachycardia (CPVT) thought to result from altered myocyte Ca(2+) homeostasis reflecting inappropriate "leakiness" of RyR2-Ca(2+) release channels arising from increases in their basal activity, alterations in their phosphorylation, or defective interactions with other molecules or ions. The latter include calstabin, calsequestrin-2, Mg(2+), and extraluminal or intraluminal Ca(2+). Recent clinical studies additionally associate RyR2 abnormalities with atrial arrhythmias including atrial tachycardia (AT), fibrillation (AF), and standstill, and sinus node dysfunction (SND). Some RyR2 mutations associated with CPVT in mouse models also show such arrhythmias that similarly correlate with altered Ca(2+) homeostasis. Some examples show evidence for increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of RyR2. A homozygotic RyR2-P2328S variant demonstrates potential arrhythmic substrate resulting from reduced conduction velocity (CV) in addition to delayed afterdepolarizations (DADs) and ectopic action potential (AP) firing. Finally, one model with an increased RyR2 activity in the sino-atrial node (SAN) shows decreased automaticity in the presence of Ca(2+)-dependent decreases in I Ca, L and diastolic sarcoplasmic reticular (SR) Ca(2+) depletion.
Collapse
Affiliation(s)
- Yanmin Zhang
- Department of Paediatrics, Institute of Shaanxi Province Children's Cardiovascular Diseases, The Shaanxi Provincial People's Hospital of Xi'an Jiaotong UniversityXi'an, PR of China
- Faculty of Medicine and Human Sciences, Institute of Cardiovascular Sciences, University of ManchesterManchester, UK
| | | | - Ming Lei
- Faculty of Medicine and Human Sciences, Institute of Cardiovascular Sciences, University of ManchesterManchester, UK
| | - Christopher L.-H. Huang
- Physiological Laboratory, Faculty of Biology, University of CambridgeCambridge, UK
- Department of Biochemistry, University of CambridgeCambridge, UK
| |
Collapse
|
40
|
Zhang XH, Haviland S, Wei H, Sarić T, Fatima A, Hescheler J, Cleemann L, Morad M. Ca2+ signaling in human induced pluripotent stem cell-derived cardiomyocytes (iPS-CM) from normal and catecholaminergic polymorphic ventricular tachycardia (CPVT)-afflicted subjects. Cell Calcium 2013; 54:57-70. [PMID: 23684427 DOI: 10.1016/j.ceca.2013.04.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 12/16/2022]
Abstract
Derivation of cardiomyocytes from induced pluripotent stem cells (iPS-CMs) allowed us to probe the Ca(2+)-signaling parameters of human iPS-CMs from healthy- and catecholaminergic polymorphic ventricular tachycardia (CPVT1)-afflicted individuals carrying a novel point mutation p.F2483I in ryanodine receptors (RyR2). iPS-CMs were dissociated on day 30-40 of differentiation and patch-clamped within 3-6 days. Calcium currents (ICa) averaged ∼8pA/pF in control and mutant iPS-CMs. ICa-induced Ca(2+)-transients in control and mutant cells had bell-shaped voltage-dependence similar to that of ICa, consistent with Ca(2+)-induced Ca(2+)-release (CICR) mechanism. The ratio of ICa-activated to caffeine-triggered Ca(2+)-transients was ∼0.3 in both cell types. Caffeine-induced Ca(2+)-transients generated significantly smaller Na(+)-Ca(2+) exchanger current (INCX) in mutant cells, reflecting their smaller Ca(2+)-stores. The gain of CICR was voltage-dependent as in adult cardiomyocytes. Adrenergic agonists enhanced ICa, but differentially altered the CICR gain, diastolic Ca(2+), and Ca(2+)-sparks in mutant cells. The mutant cells, when Ca(2+)-overloaded, showed longer and wandering Ca(2+)-sparks that activated adjoining release sites, had larger CICR gain at -30mV yet smaller Ca(2+)-stores. We conclude that control and mutant iPS-CMs express the adult cardiomyocyte Ca(2+)-signaling phenotype. RyR2 F2483I mutant myocytes have aberrant unitary Ca(2+)-signaling, smaller Ca(2+)-stores, higher CICR gains, and sensitized adrenergic regulation, consistent with functionally altered Ca(2+)-release profile of CPVT syndrome.
Collapse
Affiliation(s)
- X-H Zhang
- Cardiac Signaling Center of USC, MUSC, & Clemson University, Charleston, SC 29403, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
42
|
Tencerová B, Zahradníková A, Gaburjáková J, Gaburjáková M. Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP. ACTA ACUST UNITED AC 2012; 140:93-108. [PMID: 22851674 PMCID: PMC3409101 DOI: 10.1085/jgp.201110708] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The synergic effect of luminal Ca2+, cytosolic Ca2+, and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose–response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca2+ concentration of 100 nM over a range of luminal Ca2+ concentrations and, vice versa, at a diastolic luminal Ca2+ concentration of 1 mM over a range of cytosolic Ca2+ concentrations. Low level of luminal Ca2+ (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca2+ (8–53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca2+ levels (<500 nM) greatly amplified the effects of luminal Ca2+. Fractional inhibition by cytosolic Mg2+ was not affected by luminal Ca2+. In models, the effects of luminal and cytosolic Ca2+ could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca2+ ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca2+ likely varies in cardiac myocytes.
Collapse
Affiliation(s)
- Barbora Tencerová
- Institute of Molecular Physiology and Genetics, Centre of Excellence for Cardiovascular Research, Slovak Academy of Sciences, 833 34 Bratislava, Slovak Republic
| | | | | | | |
Collapse
|
43
|
Nyegaard M, Overgaard MT, Søndergaard MT, Vranas M, Behr ER, Hildebrandt LL, Lund J, Hedley PL, Camm AJ, Wettrell G, Fosdal I, Christiansen M, Børglum AD. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet 2012; 91:703-12. [PMID: 23040497 DOI: 10.1016/j.ajhg.2012.08.015] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/03/2012] [Accepted: 08/15/2012] [Indexed: 01/13/2023] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a devastating inherited disorder characterized by episodic syncope and/or sudden cardiac arrest during exercise or acute emotion in individuals without structural cardiac abnormalities. Although rare, CPVT is suspected to cause a substantial part of sudden cardiac deaths in young individuals. Mutations in RYR2, encoding the cardiac sarcoplasmic calcium channel, have been identified as causative in approximately half of all dominantly inherited CPVT cases. Applying a genome-wide linkage analysis in a large Swedish family with a severe dominantly inherited form of CPVT-like arrhythmias, we mapped the disease locus to chromosome 14q31-32. Sequencing CALM1 encoding calmodulin revealed a heterozygous missense mutation (c.161A>T [p.Asn53Ile]) segregating with the disease. A second, de novo, missense mutation (c.293A>G [p.Asn97Ser]) was subsequently identified in an individual of Iraqi origin; this individual was diagnosed with CPVT from a screening of 61 arrhythmia samples with no identified RYR2 mutations. Both CALM1 substitutions demonstrated compromised calcium binding, and p.Asn97Ser displayed an aberrant interaction with the RYR2 calmodulin-binding-domain peptide at low calcium concentrations. We conclude that calmodulin mutations can cause severe cardiac arrhythmia and that the calmodulin genes are candidates for genetic screening of individual cases and families with idiopathic ventricular tachycardia and unexplained sudden cardiac death.
Collapse
Affiliation(s)
- Mette Nyegaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Venetucci L, Denegri M, Napolitano C, Priori SG. Inherited calcium channelopathies in the pathophysiology of arrhythmias. Nat Rev Cardiol 2012; 9:561-75. [DOI: 10.1038/nrcardio.2012.93] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
45
|
Shao CH, Tian C, Ouyang S, Moore CJ, Alomar F, Nemet I, D'Souza A, Nagai R, Kutty S, Rozanski GJ, Ramanadham S, Singh J, Bidasee KR. Carbonylation induces heterogeneity in cardiac ryanodine receptor function in diabetes mellitus. Mol Pharmacol 2012; 82:383-99. [PMID: 22648972 DOI: 10.1124/mol.112.078352] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Heart failure and arrhythmias occur at 3 to 5 times higher rates among individuals with diabetes mellitus, compared with age-matched, healthy individuals. Studies attribute these defects in part to alterations in the function of cardiac type 2 ryanodine receptors (RyR2s), the principal Ca(2+)-release channels on the internal sarcoplasmic reticulum (SR). To date, mechanisms underlying RyR2 dysregulation in diabetes remain poorly defined. A rat model of type 1 diabetes, in combination with echocardiography, in vivo and ex vivo hemodynamic studies, confocal microscopy, Western blotting, mass spectrometry, site-directed mutagenesis, and [(3)H]ryanodine binding, lipid bilayer, and transfection assays, was used to determine whether post-translational modification by reactive carbonyl species (RCS) represented a contributing cause. After 8 weeks of diabetes, spontaneous Ca(2+) release in ventricular myocytes increased ~5-fold. Evoked Ca(2+) release from the SR was nonuniform (dyssynchronous). Total RyR2 protein levels remained unchanged, but the ability to bind the Ca(2+)-dependent ligand [(3)H]ryanodine was significantly reduced. Western blotting and mass spectrometry revealed RCS adducts on select basic residues. Mutation of residues to delineate the physiochemical impact of carbonylation yielded channels with enhanced or reduced cytoplasmic Ca(2+) responsiveness. The prototype RCS methylglyoxal increased and then decreased the RyR2 open probability. Methylglyoxal also increased spontaneous Ca(2+) release and induced Ca(2+) waves in healthy myocytes. Treatment of diabetic rats with RCS scavengers normalized spontaneous and evoked Ca(2+) release from the SR, reduced carbonylation of RyR2s, and increased binding of [(3)H]ryanodine to RyR2s. From these data, we conclude that post-translational modification by RCS contributes to the heterogeneity in RyR2 activity that is seen in experimental diabetes.
Collapse
Affiliation(s)
- Chun Hong Shao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198-5800, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Atrial fibrillation is the most common type of cardiac arrhythmia, and is responsible for substantial morbidity and mortality in the general population. Current treatments have moderate efficacy and considerable risks, especially of pro-arrhythmia, highlighting the need for new therapeutic strategies. In recent years, substantial efforts have been invested in developing novel treatments that target the underlying molecular determinants of atrial fibrillation, and several new compounds are under development. This Review focuses on the mechanistic rationale for the development of new anti-atrial fibrillation drugs, on the molecular and structural motifs that they target and on the results obtained so far in experimental and clinical studies.
Collapse
|