1
|
Rao G, Peng B, Zhang G, Fu X, Tian J, Tian Y. MicroRNAs in diabetic macroangiopathy. Cardiovasc Diabetol 2024; 23:344. [PMID: 39285459 PMCID: PMC11406791 DOI: 10.1186/s12933-024-02405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetic macroangiopathy is a leading cause of diabetes-related mortality worldwide. Both genetic and environmental factors, through a multitude of underlying molecular mechanisms, contribute to the pathogenesis of diabetic macroangiopathy. MicroRNAs (miRNAs), a class of non-coding RNAs known for their functional diversity and expression specificity, are increasingly recognized for their roles in the initiation and progression of diabetes and diabetic macroangiopathy. In this review, we will describe the biogenesis of miRNAs, and summarize their functions in diabetic macroangiopathy, including atherosclerosis, peripheral artery disease, coronary artery disease, and cerebrovascular disease, which are anticipated to provide new insights into future perspectives of miRNAs in basic, translational and clinical research, ultimately advancing the diagnosis, prevention, and treatment of diabetic macroangiopathy.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China
| | - Boqiang Peng
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Guixiang Zhang
- Department of General Surgery and Gastric Cancer Center and Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| | - Jingyan Tian
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Center for Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Tong Y, Wang DD, Zhang YL, He S, Chen D, Wu YX, Pang QF. MiR-196a-5p hinders vascular smooth muscle cell proliferation and vascular remodeling via repressing BACH1 expression. Sci Rep 2024; 14:16904. [PMID: 39043832 PMCID: PMC11266626 DOI: 10.1038/s41598-024-68122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
Hyperproliferation of vascular smooth muscle cells (VSMCs) is a driver of hypertensive vascular remodeling. This study aimed to uncover the mechanism of BTB and CNC homology 1 (BACH1) and microRNAs (miRNAs) in VSMC growth and hypertensive vascular remodeling. With the help of TargetScan, miRWalk, miRDB, and miRTarBase online database, we identified that BACH1 might be targeted by miR-196a-5p, and overexpressed in VSMCs and aortic tissues from spontaneously hypertensive rats (SHRs). Gain- and loss-of-function experiments demonstrated that miR-196a-5p suppressed VSMC proliferation, oxidative stress and hypertensive vascular remodeling. Double luciferase reporter gene assay and functional verification showed that miR-196a-5p cracked down the transcription and translation of BACH1 in both Wistar Kyoto rats (WKYs) and SHRs. Silencing BACH1 mimicked the actions of miR-196a-5p overexpression on attenuating the proliferation and oxidative damage of VSMCs derived from SHRs. Importantly, miR-196a-5p overexpression and BACH1 knockdown cooperatively inhibited VSMC proliferation and oxidative stress in SHRs. Furthermore, miR-196a-5p, if knocked down in SHRs, aggravated hypertension, upregulated BACH1 and promoted VSMC proliferation, all contributing to vascular remodeling. Taken together, targeting miR-196a-5p to downregulate BACH1 may be a promising strategy for retarding VSMC proliferation and hypertensive vascular remodeling.
Collapse
Affiliation(s)
- Ying Tong
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Dan-Dan Wang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Yan-Li Zhang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Shuai He
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Dan Chen
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Ya-Xian Wu
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China
| | - Qing-Feng Pang
- Department of Pathophysiology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
4
|
Zuo JY, Chen HX, Yang Q, Liu ZG, He GW. Tetralogy of Fallot: variants of MYH6 gene promoter and cellular functional analyses. Pediatr Res 2024; 96:338-346. [PMID: 38135727 DOI: 10.1038/s41390-023-02955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/10/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Tetralogy of Fallot (TOF) is a common form of congenital heart disease. The MYH6 gene has important effects on cardiovascular growth and development. METHODS In 608 subjects, including 315 TOF patients, we investigated the MYH6 gene promoter variants and verified the effect on gene expression by using cellular functional experiments with three cell lines (HEK-293, HL-1, and H9C2 cells) and bioinformatics analysis. RESULTS In the MYH6 gene promoter, 12 variants were identified from 608 subjects. Five variants were found only in patients with TOF and two of them (g.3384G>T and g.4518T>C) were novel. Electrophoretic mobility shift assay with three cell lines (HEK-293, HL-1, and H9C2) showed significant changes in the transcription factors bound by the promoter variants compared to the wild-type. Dual luciferase reporter showed that four of the five variants reduced the transcriptional activity of the MYH6 gene promoter (p < 0.05). CONCLUSIONS This study is the first to test the cellular function of variants in the promoter region of the MYH6 gene in patients with TOF, which provides new insights into the genetic basis of TOF and provides a basis for further study of the mechanism of TOF formation. IMPACT DNA from 608 human subjects was sequenced for MYH6 gene promoter region variants with five variants found only in TOF patients and two were novel. EMSA and dual luciferase reporter experiments in three cell lines found these variants pathological. Prediction by JASPAR database indicated that these variants alter the transcription factor binding sites. The study, for the first time, confirmed that there are variants at the MYH6 gene promoter region and these variants alter the cellular function. The variants found in this study suggest the possible pathological role in the formation of TOF.
Collapse
Affiliation(s)
- Ji-Yang Zuo
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
- Clinical School of Cardiovascular Disease, Tianjin Medical University, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China
| | - Zhi-Gang Liu
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, 300457, China.
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin, 300457, China.
| |
Collapse
|
5
|
Chen Z, Liao Z, Liu M, Lin F, Chen S, Wang G, Zheng Z, Liu B, Li C, Wang Z, Chen T, Huang H, Liao Q, Cui W. Nucleus Pulposus-Targeting Nanocarriers Facilitate Mirna-Based Therapeutics for Intervertebral Disc Degeneration. Adv Healthc Mater 2023; 12:e2301337. [PMID: 37625164 DOI: 10.1002/adhm.202301337] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/23/2023] [Indexed: 08/27/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common cause of low back pain. Understanding its molecular mechanisms is the basis for developing specific treatment. To demonstrate that miR-22-3p is critical in the regulation of IDD, miRNA microarray analyses are conducted in conjunction with in vivo and in vitro experiments. The miR-22-3p knockout (KO) mice show a marked decrease in the histological scores. Bioinformatic analysis reveals that miR-22-3p plays a mechanistic role in the development of IDD by targeting SIRT1, which in turn activates the JAK1/STAT3 signaling pathway. This is confirmed by a luciferase reporter assay and western blot analysis. Therapeutically, the delivery of miR-22-3p inhibitors and mimics through the synthesized nanoparticles in the IDD model alleviates and aggravates IDD, respectively. The nanocarriers enhance transportation of miR-22-3p to nucleus pulposus cells, thus enabling the in vivo inhibition of miR-22-3p for therapeutic purposes and consequently promoting the development of miRNA-specific drugs for IDD.
Collapse
Affiliation(s)
- Zhonghui Chen
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Zhong Liao
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Ming Liu
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Fengfei Lin
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Shunyou Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Geng Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, Fujian, 350000, China
| | - Zhong Zheng
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Boling Liu
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Chaoxiong Li
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Zheqiang Wang
- Department of Sport's Medicine, The Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fuzhou, Fujian, 350000, China
| | - Tianlai Chen
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Hongzhe Huang
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| | - Qi Liao
- Orthopaedic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430000, China
| | - Weiliang Cui
- Orthopaedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350000, China
- Orthopaedic Surgery, Fuzhou Second Hospital, Fuzhou, Fujian, 350000, China
| |
Collapse
|
6
|
Zhang M, Ge T, Zhang Y, La X. Identification of MARK2, CCDC71, GATA2, and KLRC3 as candidate diagnostic genes and potential therapeutic targets for repeated implantation failure with antiphospholipid syndrome by integrated bioinformatics analysis and machine learning. Front Immunol 2023; 14:1126103. [PMID: 37901230 PMCID: PMC10603295 DOI: 10.3389/fimmu.2023.1126103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Background Antiphospholipid syndrome (APS) is a group of clinical syndromes of thrombosis or adverse pregnancy outcomes caused by antiphospholipid antibodies, which increase the incidence of in vitro fertilization failure in patients with infertility. However, the common mechanism of repeated implantation failure (RIF) with APS is unclear. This study aimed to search for potential diagnostic genes and potential therapeutic targets for RIF with APS. Methods To obtain differentially expressed genes (DEGs), we downloaded the APS and RIF datasets separately from the public Gene Expression Omnibus database and performed differential expression analysis. We then identified the common DEGs of APS and RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed, and we then generated protein-protein interaction. Furthermore, immune infiltration was investigated by using the CIBERSORT algorithm on the APS and RIF datasets. LASSO regression analysis was used to screen for candidate diagnostic genes. To evaluate the diagnostic value, we developed a nomogram and validated it with receiver operating characteristic curves, then analyzed these genes in the Comparative Toxicogenomics Database. Finally, the Drug Gene Interaction Database was searched for potential therapeutic drugs, and the interactions between drugs, genes, and immune cells were depicted with a Sankey diagram. Results There were 11 common DEGs identified: four downregulated and seven upregulated. The common DEG analysis suggested that an imbalance of immune system-related cells and molecules may be a common feature in the pathophysiology of APS and RIF. Following validation, MARK2, CCDC71, GATA2, and KLRC3 were identified as candidate diagnostic genes. Finally, Acetaminophen and Fasudil were predicted as two candidate drugs. Conclusion Four immune-associated candidate diagnostic genes (MARK2, CCDC71, GATA2, and KLRC3) were identified, and a nomogram for RIF with APS diagnosis was developed. Our findings may aid in the investigation of potential biological mechanisms linking APS and RIF, as well as potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Manli Zhang
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Ge
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yunian Zhang
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Basic Medical College of Xinjiang Medical University, Urumqi, China
| | - Xiaolin La
- Center for Reproductive Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Tong Y, Zhou MH, Li SP, Zhao HM, Zhang YR, Chen D, Wu YX, Pang QF. MiR-155-5p Attenuates Vascular Smooth Muscle Cell Oxidative Stress and Migration via Inhibiting BACH1 Expression. Biomedicines 2023; 11:1679. [PMID: 37371773 DOI: 10.3390/biomedicines11061679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The malfunction of vascular smooth muscle cells (VSMCs) is an initiating factor in the pathogenesis of pathological vascular remodeling, including hypertension-related vascular lesions. MicroRNAs (miRNAs) have been implicated in the pathogenesis of VSMC proliferation and migration in numerous cases of cardiovascular remodeling. The evidence for the regulatory role of miR-155-5p in the development of the cardiovascular system has been emerging. However, it was previously unclear whether miR-155-5p participated in the migration of VSMCs under hypertensive conditions. Thus, we aimed to define the exact role and action of miR-155-5p in VSMC migration by hypertension. Here, we detected that the level of miR-155-5p was lower in primary VSMCs from spontaneously hypertensive rats (SHRs). Its overexpression attenuated, while its depletion accelerated, the migration and oxidative damage of VSMCs from SHRs. Our dual-luciferase reporter assay showed that miRNA-155-5p directly targeted the 3'-untranslated region (3'-UTR) of BTB and CNC homology 1 (BACH1). The miR-155-5p mimic inhibited BACH1 upregulation in SHR VSMCs. By contrast, the deletion of miR-155-5p further elevated the upregulation of BACH1 in SHR-derived VSMCs. Importantly, the overexpression of miR-155-5p and knockdown of BACH1 had synergistic effects on the inhibition of VSMCs in hypertension. Collectively, miR-155-5p attenuates VSMC migration and ameliorates vascular remodeling in SHRs, via suppressing BACH1 expression.
Collapse
Affiliation(s)
- Ying Tong
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Mei-Hui Zhou
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Sheng-Peng Li
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Hui-Min Zhao
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Ya-Ru Zhang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Dan Chen
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Ya-Xian Wu
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| | - Qing-Feng Pang
- Department of Physiopathology, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Binhu District, Wuxi 214122, China
| |
Collapse
|
8
|
Yu H, Douglas HF, Wathieu D, Braun RA, Edomwande C, Lightell DJ, Pham T, Klingenberg NC, Bishop SP, Khismatullin DB, Woods TC. Diabetes is accompanied by secretion of pro-atherosclerotic exosomes from vascular smooth muscle cells. Cardiovasc Diabetol 2023; 22:112. [PMID: 37179303 PMCID: PMC10183121 DOI: 10.1186/s12933-023-01833-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Atherosclerosis is a common co-morbidity of type 2 diabetes mellitus. Monocyte recruitment by an activated endothelium and the pro-inflammatory activity of the resulting macrophages are critical components of atherosclerosis. Exosomal transfer of microRNAs has emerged as a paracrine signaling mechanism regulating atherosclerotic plaque development. MicroRNAs-221 and -222 (miR-221/222) are elevated in vascular smooth muscle cells (VSMCs) of diabetic patients. We hypothesized that the transfer of miR-221/222 via VSMC-derived exosomes from diabetic sources (DVEs) promotes increased vascular inflammation and atherosclerotic plaque development. METHODS Exosomes were obtained from VSMCs, following exposure to non-targeting or miR-221/-222 siRNA (-KD), isolated from diabetic (DVEs) and non-diabetic (NVEs) sources and their miR-221/-222 content was measured using droplet digital PCR (ddPCR). Expression of adhesion molecules and the adhesion of monocytes was measured following exposure to DVEs and NVEs. Macrophage phenotype following exposure to DVEs was determined by measuring mRNA markers and secreted cytokines. Age-matched apolipoprotein-E-deficient mice null (ApoE-/-) mice were maintained on Western diet for 6 weeks and received injections of saline, NVEs, NVE-KDs, DVEs or DVE-KDs every other day. Atherosclerotic plaque formation was measured using Oil Red Oil staining. RESULTS Exposure of human umbilical vein and coronary artery endothelial cells to DVEs, but not NVEs, NVE-KDs, or DVE-KDs promoted increased intercellular adhesion molecule-1 expression and monocyte adhesion. DVEs but not NVEs, NVE-KDs, or DVE-KDs also promoted pro-inflammatory polarization of human monocytes in a miR-221/222 dependent manner. Finally, intravenous administration of DVEs, but not NVEs, resulted in a significant increase in atherosclerotic plaque development. CONCLUSION These data identify a novel paracrine signaling pathway that promotes the cardiovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Heng Yu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Hunter F Douglas
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Donald Wathieu
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Ryan A Braun
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Christine Edomwande
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Daniel J Lightell
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Thaidan Pham
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Natasha C Klingenberg
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | - Shelia Pugh Bishop
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA
| | | | - T Cooper Woods
- Department of Physiology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, 70112, USA.
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
9
|
Bierman-Chow S, Holland SM, Hsu AP, Palmer C, Lynch J, Mina Y, Joo (Sophie) Cho H. Clinical, Imaging, and Laboratory Findings in Patients With GATA2 Deficiency Presenting With Early-Onset Ischemic Stroke. Neurology 2023; 100:338-341. [PMID: 36357187 PMCID: PMC9969925 DOI: 10.1212/wnl.0000000000201569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The purpose of this study was to characterize the clinical, laboratory, and imaging findings of 10 patients with GATA2 deficiency who presented with early-onset ischemic stroke. METHODS A retrospective chart review was conducted on a 127-patient cohort enrolled in the Natural History Study of GATA2 Deficiency and Related Disorders protocol at NIH between 2013 and 2021. All patients had a genetically confirmed GATA2 deficiency. Patients were included if they had evidence of an ischemic stroke through clinical evaluation and neuroimaging. Stroke diagnosis was confirmed through brain magnetic resonance imaging and/or CT. RESULTS Ten patients between the ages of 15 and 38 years (4 males and 6 females) were identified with at least one ischemic stroke while 6 patients experienced recurrent strokes (7.9% overall, 10/127). Stroke etiology varied and included small vessel (n = 4), large vessel (n = 1), cardioembolic (n = 1), and undetermined (n = 4). Nine patients had lupus anticoagulant, and 2 patients had a history of recurrent deep vein thrombosis. DISCUSSION We describe the clinical, laboratory, and imaging findings of 10 patients with GATA2 deficiency younger than 40 years who suffered one or more ischemic strokes , suggesting a link between GATA2 deficiency and stroke. This report emphasizes the need for further research to understand this unique vulnerability within this patient population.
Collapse
Affiliation(s)
- Shaia Bierman-Chow
- From the National Institute of Neurological Disorders and Stroke (S.B.-C., J.L., Y.M., H.J.(S.)C.), National Institutes of Health, Bethesda, MD; National Institute of Allergy and Infectious Diseases (S.M.H., A.P.H.), National Institutes of Health, Bethesda, MD; National Institutes of Health Bethesda (C.P.), Maryland; and Sackler Faculty of Medicine (Y.M.), Tel Aviv University, Israel.
| | | | | | | | | | | | | |
Collapse
|
10
|
Strategies and challenges for non-viral delivery of non-coding RNAs to the heart. Trends Mol Med 2023; 29:70-91. [PMID: 36371335 DOI: 10.1016/j.molmed.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
Non-coding RNAs (ncRNAs), such as miRNAs and long non-coding RNAs (lncRNAs) have been reported as regulators of cardiovascular pathophysiology. Their transient effect and diversified mechanisms of action offer a plethora of therapeutic opportunities for cardiovascular diseases (CVDs). However, physicochemical RNA features such as charge, stability, and structural organization hinder efficient on-target cellular delivery. Here, we highlight recent preclinical advances in ncRNA delivery for the cardiovascular system using non-viral approaches. We identify the unmet needs and advance possible solutions towards clinical translation. Finding the optimal delivery vehicle and administration route is vital to improve therapeutic efficacy and safety; however, given the different types of ncRNAs, this may ultimately not be frameable within a one-size-fits-all approach.
Collapse
|
11
|
Affiliation(s)
- Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
12
|
Schaefer AK, Kiss A, Oszwald A, Nagel F, Acar E, Aliabadi-Zuckermann A, Hackl M, Zuckermann A, Kain R, Jakubowski A, Ferdinandy P, Hallström S, Podesser BK. Single Donor Infusion of S-Nitroso-Human-Serum-Albumin Attenuates Cardiac Isograft Fibrosis and Preserves Myocardial Micro-RNA-126-3p in a Murine Heterotopic Heart Transplant Model. Transpl Int 2022; 35:10057. [PMID: 35497886 PMCID: PMC9045410 DOI: 10.3389/ti.2022.10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/17/2022] [Indexed: 11/17/2022]
Abstract
Objectives: Cold ischemia and subsequent reperfusion injury are non-immunologic cornerstones in the development of graft injury after heart transplantation. The nitric oxide donor S-nitroso-human-serum-albumin (S-NO-HSA) is known to attenuate myocardial ischemia-reperfusion (I/R)-injury. We assessed whether donor preservation with S-NO-HSA affects isograft injury and myocardial expression of GATA2 as well as miR-126-3p, which are considered protective against vascular and endothelial injury. Methods: Donor C57BL/6 mice received intravenous (0.1 μmol/kg/h) S-NO-HSA (n = 12), or 0.9% saline (control, n = 11) for 20 min. Donor hearts were stored in cold histidine-tryptophan-α-ketoglutarate-N solution for 12 h and underwent heterotopic, isogenic transplantation, except 5 hearts of each group, which were analysed immediately after preservation. Fibrosis was quantified and expression of GATA2 and miR-126-3p assessed by RT-qPCR after 60 days or immediately after preservation. Results: Fibrosis was significantly reduced in the S-NO-HSA group (6.47% ± 1.76 vs. 11.52% ± 2.16; p = 0.0023; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX). Expression of miR-126-3p was downregulated in all hearts after ischemia compared to native myocardium, but the effect was significantly attenuated when donors received S-NO-HSA (1 ± 0.27 vs. 0.33 ± 0.31; p = 0.0187; 12 h-S-NO-HSA-hHTX vs. 12 h-control-hHTX; normalized expression to U6 snRNA). Conclusion: Donor pre-treatment with S-NO-HSA lead to reduced fibrosis and preservation of myocardial miR-126-3p and GATA2 levels in murine cardiac isografts 60 days after transplantation.
Collapse
Affiliation(s)
- Anne-Kristin Schaefer
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - André Oszwald
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Eylem Acar
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | | | - Andreas Zuckermann
- Department of Cardiac Surgery, Medical University of Vienna, Vienna, Austria
| | - Renate Kain
- Department of Pathology, Medical University of Vienna, Vienna, Austria.,Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andrzej Jakubowski
- Department of Pharmacology, Jagiellonian University Medical College, Kraków, Poland.,Department of Anesthesiology and Intensive Care, Małopolska Orthopedic and Rehabilitation Hospital, Kraków, Poland
| | - Peter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Seth Hallström
- Division of Physiological Chemistry, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Wang W, Chen R, Droll S, Barber E, Saleh L, Corrigan-Cummins M, Trick M, Anastas V, Hawk NV, Zhao Z, Vinh DC, Hsu A, Hickstein DD, Holland SM, Calvo KR. miR-181c regulates MCL1 and cell survival in GATA2 deficient cells. J Leukoc Biol 2022; 111:805-816. [PMID: 34270823 PMCID: PMC10506419 DOI: 10.1002/jlb.2a1220-824r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GATA2 is a transcription factor critical for hematopoiesis. Germline mutations in GATA binding protein 2 (GATA2) led to haploinsufficiency, severe cytopenias of multiple cell lineages, susceptibility to infections and strong propensity to develop myelodysplastic syndrome, and acute myeloid leukemia. Mechanisms of progressive cytopenias remain unclear. MicroRNA (miRNA) represents a unique mechanism of post-transcriptional gene regulation. In this study, miRNA profiles were evaluated and eight miRNAs were found to be differentially expressed (≥2-fold, P ≤ 0.05) in patient-derived cell lines (N = 13) in comparison to controls (N = 10). miR-9, miR-181a-2-3p, miR-181c, miR-181c-3p, miR-486-3p, and miR-582 showed increased expression, whereas miR-223 and miR-424-3p showed decreased expression. Cell death assays indicated that miR-181c potently induces cell death in lymphoid (Ly-8 and SP-53) and myeloid (HL-60) cell lines. miR-181c was predicted to target myeloid cell leukemia (MCL)1, which was confirmed by transfection assays, resulting in significantly reduced MCL1 mRNA and decreased live cell numbers. Bone marrow analysis of 34 GATA2 patients showed significantly decreased cellularity, CD34-positive cells, monocytes, dendritic cells, NK cells, B cells, and B cell precursors in comparison to healthy controls (N = 29; P < 0.001 for each), which was accompanied by decreased levels of MCL1 (P < 0.05). GATA2 expression led to significant repression of miR-181c expression in transfection experiments. Conversely, knockdown of GATA2 led to increased miR-181c expression. These findings indicate that miR-181c expression is increased and MCL1 levels decreased in GATA2 deficiency cells, and that GATA2 represses miR-181c transcription. Increased miR-181c may contribute to elevated cell death and cytopenia in GATA2 deficiency potentially through down-regulation of MCL1.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Rui Chen
- Department of Laboratory Medicine, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Stephenie Droll
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Emily Barber
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Layla Saleh
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Meghan Corrigan-Cummins
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Megan Trick
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Vollter Anastas
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zhen Zhao
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Donald C. Vinh
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
- Division of Infectious Diseases, McGill University Health Centre, Montreal, Canada
| | - Amy Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dennis D. Hickstein
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Wang Z, Wang H, Wu Q, Chen Y, Liu J, Liu Y, Sun D, Chen W. GATA2 promotes human vascular smooth muscle cell proliferation via mitofusin2-mediated Ras/Raf/MEK/ERK signaling pathway. Int J Cardiol 2022; 346:62-70. [PMID: 34774887 DOI: 10.1016/j.ijcard.2021.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/18/2021] [Accepted: 11/07/2021] [Indexed: 01/05/2023]
Affiliation(s)
- Zuoguang Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China.
| | - Hao Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Qiong Wu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Yanyu Chen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Jielin Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Ya Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Dongdong Sun
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China; Beijing Institute of Heart, Lung, Blood Vessel Diseases, Beijing, China
| | - Wenli Chen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Visacri MB, Nicoletti ADS, Pincinato EDC, Loren P, Saavedra N, Saavedra K, Salazar LA, Moriel P. Role of miRNAs as biomarkers of COVID-19: a scoping review of the status and future directions for research in this field. Biomark Med 2021; 15:1785-1795. [PMID: 34784802 PMCID: PMC8601154 DOI: 10.2217/bmm-2021-0348] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
Aim: miRNAs are potential biomarkers of several diseases. This review aimed to identify the miRNAs that could serve as biomarkers of COVID-19. Materials & methods: A literature search of nine databases was carried out for studies published before 13 June 2021 that described dysregulated miRNAs in cells or animals infected by SARS-CoV-2 or in patients with COVID-19. Two independent reviewers selected the studies and extracted data; disagreements were resolved by a third reviewer. Results: Twenty studies were included in this scoping review; results suggested that miR-21-5p, miR-146a, miR-126-3p, miR-144 and miR-155 are the most important dysregulated miRNAs that could serve as biomarkers for diagnosing and indicating the severity of COVID-19. miRNAs appear to play key roles in viral replication, proliferation of infected cells, immune response, inflammation and cardiovascular dysfunction. Conclusion: This review provides insights into the role of miRNAs as biomarkers in COVID-19 and the current status and future directions for research in this field.
Collapse
Affiliation(s)
- Marília B Visacri
- Department of Pharmacology, School of Medical Sciences, University of Campinas, Campinas, 13083-887, Brazil
| | - Aline de S Nicoletti
- Department of Pharmacology, School of Medical Sciences, University of Campinas, Campinas, 13083-887, Brazil
| | - Eder de C Pincinato
- Department of Clinical Pathology, School of Medical Sciences, University of Campinas, Campinas, 13083-887, Brazil
| | - Pía Loren
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Luis A Salazar
- Center of Molecular Biology & Pharmacogenetics, Scientific & Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, 4811230, Chile
| | - Patricia Moriel
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, 13083-871, Brazil
| |
Collapse
|
16
|
Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release. Acta Pharm Sin B 2021; 11:3493-3507. [PMID: 34900532 PMCID: PMC8642604 DOI: 10.1016/j.apsb.2021.03.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/08/2023] Open
Abstract
During the traumatic brain injury (TBI), improved expression of circulatory miR-21 serves as a diagnostic feature. Low levels of exosome-miR-21 in the brain can effectively improve neuroinflammation and blood–brain barrier (BBB) permeability, reduce nerve apoptosis, restore neural function and ameliorate TBI. We evaluated the role of macrophage derived exosomes-miR-21 (M-Exos-miR-21) in disrupting BBB, deteriorating TBI, and Rg1 interventions. IL-1β-induced macrophages (IIM)-Exos-miR-21 can activate NF-κB signaling pathway and induce the expressions of MMP-1, -3 and -9 and downregulate the levels of tight junction proteins (TJPs) deteriorating the BBB. Rg1 reduced miR-21-5p content in IIM-Exos (RIIM-Exos). The interaction of NMIIA–HSP90 controlled the release of Exos-miR-21, this interaction was restricted by Rg1. Rg1 could inhibit the Exos-miR-21 release in peripheral blood flow to brain, enhancing TIMP3 protein expression, MMPs proteolysis, and restricting TJPs degradation thus protected the BBB integrity. Conclusively, Rg1 can improve the cerebrovascular endothelial injury and hold the therapeutic potential against TBI disease.
Collapse
|
17
|
Zhang L, Nguyen LXT, Chen YC, Wu D, Cook GJ, Hoang DH, Brewer CJ, He X, Dong H, Li S, Li M, Zhao D, Qi J, Hua WK, Cai Q, Carnahan E, Chen W, Wu X, Swiderski P, Rockne RC, Kortylewski M, Li L, Zhang B, Marcucci G, Kuo YH. Targeting miR-126 in inv(16) acute myeloid leukemia inhibits leukemia development and leukemia stem cell maintenance. Nat Commun 2021; 12:6154. [PMID: 34686664 PMCID: PMC8536759 DOI: 10.1038/s41467-021-26420-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Acute myeloid leukemia (AML) harboring inv(16)(p13q22) expresses high levels of miR-126. Here we show that the CBFB-MYH11 (CM) fusion gene upregulates miR-126 expression through aberrant miR-126 transcription and perturbed miR-126 biogenesis via the HDAC8/RAN-XPO5-RCC1 axis. Aberrant miR-126 upregulation promotes survival of leukemia-initiating progenitors and is critical for initiating and maintaining CM-driven AML. We show that miR-126 enhances MYC activity through the SPRED1/PLK2-ERK-MYC axis. Notably, genetic deletion of miR-126 significantly reduces AML rate and extends survival in CM knock-in mice. Therapeutic depletion of miR-126 with an anti-miR-126 (miRisten) inhibits AML cell survival, reduces leukemia burden and leukemia stem cell (LSC) activity in inv(16) AML murine and xenograft models. The combination of miRisten with chemotherapy further enhances the anti-leukemia and anti-LSC activity. Overall, this study provides molecular insights for the mechanism and impact of miR-126 dysregulation in leukemogenesis and highlights the potential of miR-126 depletion as a therapeutic approach for inv(16) AML. miR-126 is highly expressed in inv(16) Acute myeloid leukemia (AML) but its role is unclear. Here, the authors show that the aberrant expression of miR-126 in inv(16) AML is directly due to the CBFB-MYH11 fusion gene and that it can promote AML development and leukemia stem cell maintenance, highlighting miR-126 as a therapeutic target for inv(16) AML patients
Collapse
Affiliation(s)
- Lianjun Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ying-Chieh Chen
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Guerry J Cook
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Dinh Hoa Hoang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Casey J Brewer
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Xin He
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Haojie Dong
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Shu Li
- Department of Hematology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Man Li
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Dandan Zhao
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Jing Qi
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Wei-Kai Hua
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Qi Cai
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Emily Carnahan
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Wei Chen
- Integrated Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Xiwei Wu
- Integrated Genomics Core, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Piotr Swiderski
- Department of Molecular Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Marcin Kortylewski
- Department of Immuno-oncology, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ya-Huei Kuo
- Gehr Family Center for Leukemia Research, Department of Hematological Malignancies Translational Science, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
18
|
Zhang B, Nguyen LXT, Zhao D, Frankhouser DE, Wang H, Hoang DH, Qiao J, Abundis C, Brehove M, Su YL, Feng Y, Stein A, Ghoda L, Dorrance A, Perrotti D, Chen Z, Han A, Pichiorri F, Jin J, Jovanovic-Talisman T, Caligiuri MA, Kuo CJ, Yoshimura A, Li L, Rockne RC, Kortylewski M, Zheng Y, Carlesso N, Kuo YH, Marcucci G. Treatment-induced arteriolar revascularization and miR-126 enhancement in bone marrow niche protect leukemic stem cells in AML. J Hematol Oncol 2021; 14:122. [PMID: 34372909 PMCID: PMC8351342 DOI: 10.1186/s13045-021-01133-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During acute myeloid leukemia (AML) growth, the bone marrow (BM) niche acquires significant vascular changes that can be offset by therapeutic blast cytoreduction. The molecular mechanisms of this vascular plasticity remain to be fully elucidated. Herein, we report on the changes that occur in the vascular compartment of the FLT3-ITD+ AML BM niche pre and post treatment and their impact on leukemic stem cells (LSCs). METHODS BM vasculature was evaluated in FLT3-ITD+ AML models (MllPTD/WT/Flt3ITD/ITD mouse and patient-derived xenograft) by 3D confocal imaging of long bones, calvarium vascular permeability assays, and flow cytometry analysis. Cytokine levels were measured by Luminex assay and miR-126 levels evaluated by Q-RT-PCR and miRNA staining. Wild-type (wt) and MllPTD/WT/Flt3ITD/ITD mice with endothelial cell (EC) miR-126 knockout or overexpression served as controls. The impact of treatment-induced BM vascular changes on LSC activity was evaluated by secondary transplantation of BM cells after administration of tyrosine kinase inhibitors (TKIs) to MllPTD/WT/Flt3ITD/ITD mice with/without either EC miR-126 KO or co-treatment with tumor necrosis factor alpha (TNFα) or anti-miR-126 miRisten. RESULTS In the normal BM niche, CD31+Sca-1high ECs lining arterioles have miR-126 levels higher than CD31+Sca-1low ECs lining sinusoids. We noted that during FLT3-ITD+ AML growth, the BM niche lost arterioles and gained sinusoids. These changes were mediated by TNFα, a cytokine produced by AML blasts, which induced EC miR-126 downregulation and caused depletion of CD31+Sca-1high ECs and gain in CD31+Sca-1low ECs. Loss of miR-126high ECs led to a decreased EC miR-126 supply to LSCs, which then entered the cell cycle and promoted leukemia growth. Accordingly, antileukemic treatment with TKI decreased the BM blast-produced TNFα and increased miR-126high ECs and the EC miR-126 supply to LSCs. High miR-126 levels safeguarded LSCs, as shown by more severe disease in secondary transplanted mice. Conversely, EC miR-126 deprivation via genetic or pharmacological EC miR-126 knock-down prevented treatment-induced BM miR-126high EC expansion and in turn LSC protection. CONCLUSIONS Treatment-induced CD31+Sca-1high EC re-vascularization of the leukemic BM niche may represent a LSC extrinsic mechanism of treatment resistance that can be overcome with therapeutic EC miR-126 deprivation.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| | - Le Xuan Truong Nguyen
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Dandan Zhao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | | | - Huafeng Wang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Dinh Hoa Hoang
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Junjing Qiao
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Christina Abundis
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Matthew Brehove
- Department of Molecular Medicine, City of Hope, Duarte, CA, USA
| | - Yu-Lin Su
- Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Yuxin Feng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anthony Stein
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Lucy Ghoda
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | | | | | - Zhen Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, USA
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Flavia Pichiorri
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | | | - Michael A Caligiuri
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA, USA
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Russell C Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | | | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nadia Carlesso
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, City of Hope Medical Center and Beckman Research Institute, 1500 E Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
19
|
Ying H, Ebrahimi M, Keivan M, Khoshnam SE, Salahi S, Farzaneh M. miRNAs; a novel strategy for the treatment of COVID-19. Cell Biol Int 2021; 45:2045-2053. [PMID: 34180562 PMCID: PMC8426984 DOI: 10.1002/cbin.11653] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/08/2021] [Accepted: 06/17/2021] [Indexed: 11/09/2022]
Abstract
Coronavirus disease 2019 (COVID‐19) is the seventh member of the bat severe acute respiratory syndrome family. COVID‐19 can fuse their envelopes with the host cell membranes and deliver their genetic material. COVID‐19 attacks the respiratory system and stimulates the host inflammatory responses, enhances the recruitment of immune cells, and promotes angiotensin‐converting enzyme 2 activities. Patients with confirmed COVID‐19 may have experienced fever, dry cough, headache, dyspnea, acute kidney injury, acute respiratory distress syndrome, and acute heart injury. Several strategies such as oxygen therapy, ventilation, antibiotic or antiviral therapy, and renal replacement therapy are commonly used to decrease COVID‐19‐associated mortality. However, these approaches may not be good treatment options. Therefore, the search for an alternative‐novel therapy is urgently important to prevent the disease progression. Recently, microRNAs (miRNAs) have emerged as a promising strategy for COVID‐19. The design of oligonucleotide against the genetic material of COVID‐19 might suppress virus RNA translation. Several previous studies have shown that host miRNAs play an antiviral role and improve the treatment of patients with COVID‐19. miRNAs by binding to the 3′‐untranslated region (UTR) or 5′‐UTR of viral RNA play an important role in COVID‐19‐host interplay and viral replication. miRNAs interact with multiple pathways and reduce inflammatory biomarkers, thrombi formation, and tissue damage to accelerate the patient outcome. The information in this review provides a summary of the current clinical application of miRNAs for the treatments of patients with COVID‐19.
Collapse
Affiliation(s)
- Hao Ying
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, China
| | - Mohsen Ebrahimi
- Neonatal and Children's Health Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mona Keivan
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sarvenaz Salahi
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Zhang Q, Yu H, Yang Z, Li L, He Y, Zhu S, Li C, Zhang S, Luo B, Gao Y. A Functional Indel Polymorphism Within MIR155HG Is Associated With Sudden Cardiac Death Risk in a Chinese Population. Front Cardiovasc Med 2021; 8:671168. [PMID: 34136547 PMCID: PMC8200405 DOI: 10.3389/fcvm.2021.671168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022] Open
Abstract
Sudden cardiac death (SCD) is a devastating complication of multiple disease processes and has gradually became a major public health issue. miR-155 is one of the best characterized miRNAs and plays a critical role in several physiological and pathological process, including cardiovascular diseases. In this study, we systematically screened the whole region of miR-155 host gene (MIR155HG) and identified a 4-bp insertion/deletion variant (rs72014506) residing in the intron region of MIR155HG as the candidate polymorphism. The association of rs72014506 with SCD susceptibility was evaluated using 166 SCD cases and 830 healthy controls in a Chinese population. Logistic regression analysis suggested that the homozygote del/del genotype significantly decreased the risk of SCD [odds ratio (OR) = 0.29; 95% confidence interval (CI) = 0.12–0.74; Ptrend = 0.0004]. Further genotype–expression association study using human myocardium tissue samples suggested that the deletion allele was intimately linked to lower the expression of both MIR155HG and mature miR155. Luciferase activity assay also revealed that the deletion allele of rs72014506 inhibited gene transcriptional activity. Finally, we performed electrophoretic mobility shift assay and verified the preferential binding affinity of the deletion allele with POU2F1 (POU domain class 2 transcription factor 1). Collectively, we have successfully identified a SCD risk conferring polymorphism in the MIR155HG gene and a likely biological mechanism for the decreased risk of SCD associated with the deletion allele. This novel variant may thus serve as a potential genetic marker for SCD diagnosis and prevention in natural populations, if validated by further studies with a larger sample size.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Shaohua Zhu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Sciences, Ministry of Justice, Shanghai, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Ranjan P, Kumari R, Goswami SK, Li J, Pal H, Suleiman Z, Cheng Z, Krishnamurthy P, Kishore R, Verma SK. Myofibroblast-Derived Exosome Induce Cardiac Endothelial Cell Dysfunction. Front Cardiovasc Med 2021; 8:676267. [PMID: 33969024 PMCID: PMC8102743 DOI: 10.3389/fcvm.2021.676267] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Endothelial cells (ECs) play a critical role in the maintenance of vascular homeostasis and in heart function. It was shown that activated fibroblast-derived exosomes impair cardiomyocyte function in hypertrophic heart, but their effect on ECs is not yet clear. Thus, we hypothesized that activated cardiac fibroblast-derived exosomes (FB-Exo) mediate EC dysfunction, and therefore modulation of FB-exosomal contents may improve endothelial function. Methods and Results: Exosomes were isolated from cardiac fibroblast (FB)-conditioned media and characterized by nanoparticle tracking analysis and electron microscopy. ECs were isolated from mouse heart. ECs were treated with exosomes isolated from FB-conditioned media, following FB culture with TGF-β1 (TGF-β1-FB-Exo) or PBS (control) treatment. TGF-β1 significantly activated fibroblasts as shown by increase in collagen type1 α1 (COL1α1), periostin (POSTN), and fibronectin (FN1) gene expression and increase in Smad2/3 and p38 phosphorylation. Impaired endothelial cell function (as characterized by a decrease in tube formation and cell migration along with reduced VEGF-A, Hif1α, CD31, and angiopoietin1 gene expression) was observed in TGF-β1-FB-Exo treated cells. Furthermore, TGF-β1-FB-Exo treated ECs showed reduced cell proliferation and increased apoptosis as compared to control cells. TGF-β1-FB-Exo cargo analysis revealed an alteration in fibrosis-associated miRNAs, including a significant increase in miR-200a-3p level. Interestingly, miR-200a-3p inhibition in activated FBs, alleviated TGF-β1-FB-Exo-mediated endothelial dysfunction. Conclusions: Taken together, this study demonstrates an important role of miR-200a-3p enriched within activated fibroblast-derived exosomes on endothelial cell biology and function.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rajesh Kumari
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sumanta Kumar Goswami
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jing Li
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harish Pal
- Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zainab Suleiman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zhongjian Cheng
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Raj Kishore
- Center for Translational Medicine, Temple University, Philadelphia, PA, United States
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
22
|
Garg A, Seeliger B, Derda AA, Xiao K, Gietz A, Scherf K, Sonnenschein K, Pink I, Hoeper MM, Welte T, Bauersachs J, David S, Bär C, Thum T. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur J Heart Fail 2021; 23:468-475. [PMID: 33421274 PMCID: PMC8014268 DOI: 10.1002/ejhf.2096] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
AIMS Coronavirus disease 2019 (COVID-19) is a still growing pandemic, causing many deaths and socio-economic damage. Elevated expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptor angiotensin-converting enzyme 2 on cardiac cells of patients with heart diseases may be related to cardiovascular burden. We have thus analysed cardiovascular and inflammatory microRNAs (miRs), sensitive markers of cardiovascular damage, in critically ill, ventilated patients with COVID-19 or influenza-associated acute respiratory distress syndrome (Influenza-ARDS) admitted to the intensive care unit and healthy controls. METHODS AND RESULTS Circulating miRs (miR-21, miR-126, miR-155, miR-208a, and miR-499) were analysed in a discovery cohort consisting of patients with mechanically-ventilated COVID-19 (n = 18) and healthy controls (n = 15). A validation study was performed in an independent cohort of mechanically-ventilated COVID-19 patients (n = 20), Influenza-ARDS patients (n = 13) and healthy controls (n = 32). In both cohorts, RNA was isolated from serum and cardiovascular disease/inflammatory-relevant miR concentrations were measured by miR-specific TaqMan PCR analyses. In both the discovery and the validation cohort, serum concentration of miR-21, miR-155, miR-208a and miR-499 were significantly increased in COVID-19 patients compared to healthy controls. Calculating the area under the curve using receiver operating characteristic analysis miR-155, miR-208a and miR-499 showed a clear distinction between COVID-19 and Influenza-ARDS patients. CONCLUSION In this exploratory study, inflammation and cardiac myocyte-specific miRs were upregulated in critically ill COVID-19 patients. Importantly, miR profiles were able to differentiate between severely ill, mechanically-ventilated Influenza-ARDS and COVID-19 patients, indicating a rather specific response and cardiac involvement of COVID-19.
Collapse
Affiliation(s)
- Ankita Garg
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Benjamin Seeliger
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Anselm A Derda
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Anika Gietz
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristian Scherf
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Kristina Sonnenschein
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Isabell Pink
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Marius M Hoeper
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine and German Centre of Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Sascha David
- Division of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany.,Institute of Intensive Care, University Hospital Zurich, Zurich, Switzerland
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Rebirth Center for Translational Regenerative Therapies, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
23
|
Li Y, Yan C, Fan J, Hou Z, Han Y. MiR-221-3p targets Hif-1α to inhibit angiogenesis in heart failure. J Transl Med 2021; 101:104-115. [PMID: 32873879 DOI: 10.1038/s41374-020-0450-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/07/2020] [Accepted: 06/07/2020] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis is involved in ischemic heart disease as well as the prognosis of heart failure (HF), and endothelial cells are the main participants in angiogenesis. In this study, we found that miR-221-3p is highly expressed in vascular tissue, especially in endothelial cells, and increased miR-221-3p was observed in heart tissue of HF patients and transverse aortic constriction (TAC)-induced HF mice. To explore the role of miR-221-3p in endothelial cells, microRNA (miRNA) mimics and inhibitors were employed in vitro. Overexpression of miR-221-3p inhibited endothelial cell proliferation, migration, and cord formation in vitro, while inhibition of miR-221-3p showed the opposite effect. Anti-argonaute 2 (Ago2) coimmunoprecipitation, dual-luciferase reporter assay, and western blotting were performed to verify the target of miR-221-3p. Hypoxia-inducible factor-1α (HIF-1α) was identified as a miR-221-3p target, and the adverse effects of miR-221-3p on endothelial cells were alleviated by HIF-1α re-expression. In vivo, a mouse model of hindlimb ischemia (HLI) was developed to demonstrate the effect of miR-221-3p on angiogenesis. AntagomiR-221-3p increased HIF-1α expression and promoted angiogenesis in mouse ischemic hindlimbs. Using the TAC model, we clarified that antagomiR-221-3p improved cardiac function in HF mice by promoting cardiac angiogenesis. Furthermore, serum miR-221-3p was detected to be negatively correlated with heart function in chronic heart failure (CHF) patients. Our results conclude that miR-221-3p inhibits angiogenesis of endothelial cells by targeting HIF-1α and that inhibition of miR-221-3p improves cardiac function of TAC-induced HF mice. Furthermore, miR-221-3p might be a potential prognostic marker of HF.
Collapse
Affiliation(s)
- Yuying Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Jiahui Fan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiwei Hou
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaling Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| |
Collapse
|
24
|
Kumari S, Prakash S, Gupta SK. NRF2: a key regulator of endothelial microRNA transcription. Cardiovasc Res 2020; 117:1241-1242. [PMID: 33351890 DOI: 10.1093/cvr/cvaa347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022] Open
Affiliation(s)
- Sunaina Kumari
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
25
|
Wang G, Lin F, Wan Q, Wu J, Luo M. Mechanisms of action of metformin and its regulatory effect on microRNAs related to angiogenesis. Pharmacol Res 2020; 164:105390. [PMID: 33352227 DOI: 10.1016/j.phrs.2020.105390] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Angiogenesis is rapidly initiated in response to pathological conditions and is a key target for pharmaceutical intervention in various malignancies. Anti-angiogenic therapy has emerged as a potential and effective therapeutic strategy for treating cancer and cardiovascular-related diseases. Metformin, a first-line oral antidiabetic agent for type 2 diabetes mellitus (T2DM), not only reduces blood glucose levels and improves insulin sensitivity and exerts cardioprotective effects but also shows benefits against cancers, cardiovascular diseases, and other diverse diseases and regulates angiogenesis. MicroRNAs (miRNAs) are endogenous noncoding RNA molecules with a length of approximately 19-25 bases that are widely involved in controlling various human biological processes. A large number of miRNAs are involved in the regulation of cardiovascular cell function and angiogenesis, of which miR-21 not only regulates vascular cell proliferation, migration and apoptosis but also plays an important role in angiogenesis. The relationship between metformin and abnormal miRNA expression has gradually been revealed in the context of numerous diseases and has received increasing attention. This paper reviews the drug-target interactions and drug repositioning events of metformin that influences vascular cells and has benefits on angiogenesis-mediated effects. Furthermore, we use miR-21 as an example to explain the specific molecular mechanism underlying metformin-mediated regulation of the miRNA signaling pathway controlling angiogenesis and vascular protective effects. These findings may provide a new therapeutic target and theoretical basis for the clinical prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Fang Lin
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qin Wan
- Department of Endocrinology, Nephropathy Clinical Medical Research Center of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
26
|
MiR155-5p Inhibits Cell Migration and Oxidative Stress in Vascular Smooth Muscle Cells of Spontaneously Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9030204. [PMID: 32121598 PMCID: PMC7140008 DOI: 10.3390/antiox9030204] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Migration of vascular smooth muscle cells (VSMCs) is essential for vascular reconstruction in hypertension and several vascular diseases. Our recent study showed that extracellular vesicles derived from vascular adventitial fibroblasts of normal rats inhibited VSMC proliferation by delivering miR155-5p to VSMCs. It is unknown whether miR155-5p inhibits cell migration and oxidative stress in VSMCs of spontaneously hypertensive rats (SHR) and in angiotensin II (Ang II)-treated VSMCs. The purpose of this study was to determine the role of miR155-5p in VSMC migration and its underlying mechanisms. Primary VSMCs were isolated from the aortic media of Wistar-Kyoto rats (WKY) and SHR. Wound healing assay and Boyden chamber assay were used to evaluate VSMC migration. A miR155-5p mimic inhibited, and a miR155-5p inhibitor promoted the migration of VSMC of SHR but had no significant effect on the migration of VSMC of WKY. The miR155-5p mimic inhibited angiotensin-converting enzyme (ACE) mRNA and protein expression in VSMCs. It also reduced superoxide anion production, NAD(P)H oxidase (NOX) activity, as well as NOX2, interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) expression levels in VSMCs of SHR but not in VSMCs of WKY rats. Overexpression of miR155-5p inhibited VSMC migration and superoxide anion and IL-1β production in VSMCs of SHR but had no impact on exogenous Ang II-induced VSMC migration and on superoxide anion and IL-1β production in WKY rats and SHR. These results indicate that miR155-5p inhibits VSMC migration in SHR by suppressing ACE expression and its downstream production of Ang II, superoxide anion, and inflammatory factors. However, miR155-5p had no effects on exogenous Ang II-induced VSMC migration.
Collapse
|
27
|
Zou X, Wang J, Chen C, Tan X, Huang Y, Jose PA, Yang J, Zeng C. Secreted Monocyte miR-27a, via Mesenteric Arterial Mas Receptor-eNOS Pathway, Causes Hypertension. Am J Hypertens 2020; 33:31-42. [PMID: 31328772 DOI: 10.1093/ajh/hpz112] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/09/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Essential hypertension is associated with increased plasma concentrations of extracellular vesicles (EVs). We aimed to determine the role of monocyte miR-27a in EVs on arterial Mas receptor expression, and its involvement in the pathogenesis of hypertension. METHODS THP-1 cells were transfected with miR-27a mimic and miR-27a inhibitor, and EVs were collected. Mas receptor expression and endothelial nitric oxide synthase (eNOS) phosphorylation were determined by immunoblotting. Sprague-Dawley (SD) rats received EVs via tail-vein injection. Blood pressure (BP) was measured with the tail-cuff method. The vasodilatory response of mesenteric arteries was measured using a small vessel myograph. RESULTS EVs from THP-1 cells increased rat BP by impairing Ang-(1-7)-mediated vasodilation in mesenteric arteries, which was further exaggerated by EVs from lipopolysaccharides-treated THP-1 cells. As the receptor and key signaling of Ang-(1-7), next experiments found that Mas receptor expression and eNOS phosphorylation were decreased in mesenteric arteries from EVs-treated SD rats. Screening studies found miR-27a in EVs may be involved in this process. Through transfection with miR-27a inhibitor or miR-27a mimic, we found that miR-27a downregulates Mas receptor expression in endothelial cells. Injection of EVs from miR-27a-transfected HEK-293 cells decreased Mas receptor and eNOS phosphorylation in mesenteric arteries, impaired Ang-(1-7)-mediated vasodilation and increased BP. Earlier effects were reversed using cells with downregulation of miR-27 in EVs. CONCLUSIONS Monocyte miR-27a in EVs decreases Mas receptor expression and eNOS phosphorylation in endothelium, impairs Ang-(1-7)-mediated vasodilation, and causes hypertension. Understanding the contributions of EVs in the pathogenesis of hypertension may facilitate their use as a diagnostic biomarker.
Collapse
Affiliation(s)
- Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Xiaorong Tan
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, P.R. China
| | - Pedro A Jose
- Division of Renal Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, P.R. China
| |
Collapse
|
28
|
Ren XS, Tong Y, Qiu Y, Ye C, Wu N, Xiong XQ, Wang JJ, Han Y, Zhou YB, Zhang F, Sun HJ, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. MiR155-5p in adventitial fibroblasts-derived extracellular vesicles inhibits vascular smooth muscle cell proliferation via suppressing angiotensin-converting enzyme expression. J Extracell Vesicles 2019; 9:1698795. [PMID: 31839907 PMCID: PMC6896498 DOI: 10.1080/20013078.2019.1698795] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/20/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays crucial roles in vascular remodelling and stiffening in hypertension. Vascular adventitial fibroblasts are a key regulator of vascular wall function and structure. This study is designed to investigate the roles of adventitial fibroblasts-derived extracellular vesicles (EVs) in VSMC proliferation and vascular remodelling in normotensive Wistar-Kyoto rat (WKY) and spontaneously hypertensive rat (SHR), an animal model of human essential hypertension. EVs were isolated from aortic adventitial fibroblasts of WKY (WKY-EVs) and SHR (SHR-EVs). Compared with WKY-EVs, miR155-5p content was reduced, while angiotensin-converting enzyme (ACE) content was increased in SHR-EVs. WKY-EVs inhibited VSMC proliferation of SHR, which was prevented by miR155-5p inhibitor. SHR-EVs promoted VSMC proliferation of both strains, which was enhanced by miR155-5p inhibitor, but abolished by captopril or losartan. Dual luciferase reporter assay showed that ACE was a target gene of miR155-5p. MiR155-5p mimic or overexpression inhibited VSMC proliferation and ACE upregulation of SHR. WKY-EVs reduced ACE mRNA and protein expressions while SHR-EVs only increased ACE protein level in VSMCs of both strains. However, the SHR-EVs-derived from the ACE knockdown-treated adventitial fibroblasts lost the roles in promoting VSMC proliferation and ACE upregulation. Systemic miR155-5p overexpression reduced vascular ACE, angiotensin II and proliferating cell nuclear antigen levels, and attenuated hypertension and vascular remodelling in SHR. Repetitive intravenous injection of SHR-EVs increased blood pressure and vascular ACE contents, and promoted vascular remodelling in both strains, while WKY-EVs reduced vascular ACE contents and attenuated hypertension and vascular remodelling in SHR. We concluded that WKY-EVs-mediated miR155-5p transfer attenuates VSMC proliferation and vascular remodelling in SHR via suppressing ACE expression, while SHR-EVs-mediated ACE transfer promotes VSMC proliferation and vascular remodelling.
Collapse
Affiliation(s)
- Xing-Sheng Ren
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Qiu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hai-Jian Sun
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
29
|
Mahamud MR, Geng X, Ho YC, Cha B, Kim Y, Ma J, Chen L, Myers G, Camper S, Mustacich D, Witte M, Choi D, Hong YK, Chen H, Varshney G, Engel JD, Wang S, Kim TH, Lim KC, Srinivasan RS. GATA2 controls lymphatic endothelial cell junctional integrity and lymphovenous valve morphogenesis through miR-126. Development 2019; 146:dev184218. [PMID: 31582413 PMCID: PMC6857586 DOI: 10.1242/dev.184218] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022]
Abstract
Mutations in the transcription factor GATA2 cause lymphedema. GATA2 is necessary for the development of lymphatic valves and lymphovenous valves, and for the patterning of lymphatic vessels. Here, we report that GATA2 is not necessary for valvular endothelial cell (VEC) differentiation. Instead, GATA2 is required for VEC maintenance and morphogenesis. GATA2 is also necessary for the expression of the cell junction molecules VE-cadherin and claudin 5 in lymphatic vessels. We identified miR-126 as a target of GATA2, and miR-126-/- embryos recapitulate the phenotypes of mice lacking GATA2. Primary human lymphatic endothelial cells (HLECs) lacking GATA2 (HLECΔGATA2) have altered expression of claudin 5 and VE-cadherin, and blocking miR-126 activity in HLECs phenocopies these changes in expression. Importantly, overexpression of miR-126 in HLECΔGATA2 significantly rescues the cell junction defects. Thus, our work defines a new mechanism of GATA2 activity and uncovers miR-126 as a novel regulator of mammalian lymphatic vascular development.
Collapse
Affiliation(s)
- Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Yuenhee Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jing Ma
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sally Camper
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Debbie Mustacich
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Marlys Witte
- Department of Surgery, University of Arizona, Tuscon, AZ 85724, USA
| | - Dongwon Choi
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Young-Kwon Hong
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA 02115, USA
| | - Gaurav Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Shusheng Wang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Tae-Hoon Kim
- Department of Biological Sciences and Center for Systems Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| |
Collapse
|
30
|
Fiedler J, Baker AH, Dimmeler S, Heymans S, Mayr M, Thum T. Non-coding RNAs in vascular disease - from basic science to clinical applications: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1281-1286. [PMID: 29800267 DOI: 10.1093/cvr/cvy121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Non-coding RNAs are increasingly recognized not only as regulators of various biological functions but also as targets for a new generation of RNA therapeutics and biomarkers. We hereby review recent insights relating to non-coding RNAs including microRNAs (e.g. miR-126, miR-146a), long non-coding RNAs (e.g. MIR503HG, GATA6-AS, SMILR), and circular RNAs (e.g. cZNF292) and their role in vascular diseases. This includes identification and therapeutic use of hypoxia-regulated non-coding RNAs and endogenous non-coding RNAs that regulate intrinsic smooth muscle cell signalling, age-related non-coding RNAs, and non-coding RNAs involved in the regulation of mitochondrial biology and metabolic control. Finally, we discuss non-coding RNA species with biomarker potential.This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Andrew H Baker
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, Edinburgh, UK
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stephane Heymans
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Kreutzer FP, Fiedler J, Thum T. Non-coding RNAs: key players in cardiac disease. J Physiol 2019; 598:2995-3003. [PMID: 31291008 DOI: 10.1113/jp278131] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/29/2019] [Indexed: 01/18/2023] Open
Abstract
Molecular mechanisms underlying heart failure (HF) are only partly understood. Non-coding RNAs (ncRNAs) have been reported to control function and signalling routes in the myocardium. As ncRNAs such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) or circular RNAs (circRNAs) can be selectively targeted via pharmacological approaches, this opens new avenues for diagnostic and therapeutic approaches. Here, we review the main ncRNA classes and how they influence cardiac biology. In addition we provide insight into the role of ncRNAs in chemotherapy-induced cardiac dysfunction. To provide a better understanding of ncRNAs in cardiovascular biology we present an outlook on specialized functions such as chromatin remodelling, biomarker potential and the recently discovered ncRNA-derived micropeptides.
Collapse
Affiliation(s)
- Fabian Philipp Kreutzer
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Jan Fiedler
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
| |
Collapse
|
32
|
Lu D, Thum T. RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 2019; 16:661-674. [PMID: 31186539 DOI: 10.1038/s41569-019-0218-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/03/2019] [Indexed: 12/17/2022]
Abstract
Cardiovascular diseases are the leading cause of death globally and are associated with increasing financial expenditure. With the availability of next-generation sequencing technologies since the early 2000s, non-coding RNAs such as microRNAs, long non-coding RNAs and circular RNAs have been assessed as potential therapeutic targets for numerous diseases, including cardiovascular diseases. In this Review, we summarize current approaches employed to screen for novel coding and non-coding RNA candidates with diagnostic and therapeutic potential in cardiovascular disease, including next-generation sequencing, functional high-throughput RNA screening and single-cell sequencing technologies. Furthermore, we highlight viral-based delivery tools that have been widely used to evaluate the therapeutic utility of both coding and non-coding RNAs in the context of cardiovascular disease. Finally, we discuss the potential of using oligonucleotide-based molecular products such as modified RNA, small interfering RNA and RNA mimics/inhibitors for the treatment of cardiovascular diseases. Given that many non-coding RNAs have not yet been functionally annotated, the number of potential RNA diagnostic and therapeutic targets for cardiovascular diseases will continue to expand for years to come.
Collapse
Affiliation(s)
- Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany. .,Cardior Pharmaceuticals GmbH, Hannover Medical School, Hannover, Germany. .,National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
33
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
34
|
Whigham CA, MacDonald TM, Walker SP, Pritchard N, Hannan NJ, Cannon P, Nguyen TV, Hastie R, Tong S, Kaitu'u-Lino TJ. Circulating GATA2 mRNA is decreased among women destined to develop preeclampsia and may be of endothelial origin. Sci Rep 2019; 9:235. [PMID: 30659233 PMCID: PMC6338784 DOI: 10.1038/s41598-018-36645-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022] Open
Abstract
Preeclampsia is a pregnancy complication associated with elevated placental secretion of anti-angiogenic factors, maternal endothelial dysfunction and organ injury. GATA2 is a transcription factor expressed in the endothelium which regulates vascular homeostasis by controlling transcription of genes and microRNAs, including endothelial miR126. We assessed GATA2 and miR126 in preeclampsia. Whole blood circulating GATA2 mRNA and miR126 expression were significantly decreased in women with established early-onset preeclampsia compared to gestation-matched controls (p = 0.002, p < 0.0001, respectively). Using case-control groups selected from a large prospective cohort, whole blood circulating GATA2 mRNA at both 28 and 36 weeks' gestation was significantly reduced prior to the clinical diagnosis of preeclampsia (p = 0.012, p = 0.015 respectively). There were no differences in GATA2 mRNA or protein expression in preeclamptic placentas compared to controls, suggesting the placenta is an unlikely source. Inducing endothelial dysfunction in vitro by administering either tumour necrosis factor-α or placenta-conditioned media to endothelial cells, significantly reduced GATA2 mRNA expression (p < 0.0001), suggesting the reduced levels of circulating GATA2 mRNA may be of endothelial origin. Circulating GATA2 mRNA is decreased in women with established preeclampsia and decreased up to 12 weeks preceding onset of disease. Circulating mRNAs of endothelial origin may be a novel source of biomarker discovery for preeclampsia.
Collapse
Affiliation(s)
- Carole-Anne Whigham
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia. .,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia.
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tuong Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Roxanne Hastie
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, 3084, Victoria, Australia.,Mercy Perinatal, Mercy Hospital for Women, Victoria, Australia
| |
Collapse
|
35
|
Tan KX, Pan S, Jeevanandam J, Danquah MK. Cardiovascular therapies utilizing targeted delivery of nanomedicines and aptamers. Int J Pharm 2019; 558:413-425. [PMID: 30660748 DOI: 10.1016/j.ijpharm.2019.01.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 01/01/2023]
Abstract
Cardiovascular ailments are the foremost trigger of death in the world today, including myocardial infarction and ischemic heart diseases. To date, extraordinary measures have been prescribed, from the perspectives of both conventional medical therapies and surgeries, to enforce cardiac cell regeneration post cardiac traumas, albeit with limited long-term success. The prospects of successful heart transplants are also grim, considering exorbitant costs and unavailability of suitable donors in most cases. From the perspective of cardiac revascularization, use of nanoparticles and nanoparticle mediated targeted drug delivery have garnered substantial attention, attributing to both active and passive heart targeting, with enhanced target specificity and sensitivity. This review focuses on this aspect, while outlining the progress in targeted delivery of nanomedicines in the prognosis and subsequent therapy of cardiovascular disorders, and recapitulating the benefits and intrinsic challenges associated with the incorporation of nanoparticles. This article categorically provides an overview of nanoparticle-mediated targeted delivery systems and their implications in handling cardiovascular diseases, including their intrinsic benefits and encountered procedural trials and challenges. Additionally, the solicitations of aptamers in targeted drug delivery with identical objectives, are presented. This includes a detailed appraisal on various aptamer-navigated nanoparticle targeted delivery platforms in the diagnosis and treatment of cardiovascular maladies. Despite a few impending challenges, subject to additional investigations, both nanoparticles as well as aptamers show a high degree of promise, and pose as the next generation of drug delivery vehicles, in targeted cardiovascular therapy.
Collapse
Affiliation(s)
- Kei Xian Tan
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Sharadwata Pan
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany.
| | - Jaison Jeevanandam
- Department of Chemical Engineering, Curtin University of Technology, 98009 Sarawak, Malaysia.
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403, United States.
| |
Collapse
|
36
|
Oder D, Liu D, Hu K, Üçeyler N, Salinger T, Müntze J, Lorenz K, Kandolf R, Gröne HJ, Sommer C, Ertl G, Wanner C, Nordbeck P. α-Galactosidase A Genotype N215S Induces a Specific Cardiac Variant of Fabry Disease. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.116.001691. [PMID: 29018006 DOI: 10.1161/circgenetics.116.001691] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 07/28/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypertrophic cardiomyopathy is the most common type of cardiomyopathy, but many patients lack sarcomeric/myofilament mutations. We studied whether cardio-specific α-galactosidase A gene variants are misinterpreted as hypertrophic cardiomyopathy because of the lack of extracardiac organ involvement. METHODS AND RESULTS All subjects who tested positive for the N215S genotype (n=26, 13 females, mean age 49±17 [range, 14-74] years) were characterized in this prospective monocentric longitudinal cohort study to determine genotype-specific clinical characteristics of the N215S (c.644A>G [p.Asn215Ser]) α-galactosidase A gene variant. All subjects were initially referred with suspicion of genetically determined hypertrophic cardiomyopathy. Cardiac hypertrophy (interventricular septum, 12±4 [7-23] mm; left ventricular posterior wall, 11±4 [7-21] mm; left ventricular mass, 86±41 [46-195] g/m2) was progressive, systolic function mainly preserved (cardiac index 2.8±0.6 [1.9-3.9] L/min per m2), and diastolic function mildly abnormal. Cardiac magnetic resonance imaging revealed replacement fibrosis in loco typico (18/26, 69%), particularly in subjects >50 years. Elderly subjects had advanced heart failure, and 6 (23%) were suggested for implantable cardioverter-defibrillator therapy. Leukocyte α-galactosidase A enzyme activity was mildly reduced in 19 subjects and lyso-globotriaosylceramide slightly elevated (median, 4.9; interquartile range, 1.3-9.1 ng/mL). Neurological and renal impairments (serum creatinine, 0.87±0.20; median, 0.80; interquartile range, 0.70-1.01 mg/dL; glomerular filtration rate, 102±23; median, 106; interquartile range, 84-113 mL/min) were discreet. Only 2 subjects developed clinically relevant proteinuria. CONCLUSIONS α-Galactosidase A genotype N215S does not lead to the development of a classical Fabry phenotype but induces a specific cardiac variant of Fabry disease mimicking nonobstructive hypertrophic cardiomyopathy. The lack of prominent noncardiac impairment leads to a significant delay in diagnosis and Fabry-specific therapy.
Collapse
Affiliation(s)
- Daniel Oder
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Dan Liu
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Kai Hu
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Nurcan Üçeyler
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Tim Salinger
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Jonas Müntze
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Kristina Lorenz
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Reinhard Kandolf
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Hermann-Josef Gröne
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Claudia Sommer
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Georg Ertl
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Christoph Wanner
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.)
| | - Peter Nordbeck
- From the Department of Internal Medicine I and Comprehensive Heart Failure Center (CHFC) (D.O., D.L., K.H., T.S., J.M., K.L., G.E., C.W., P.N.), Fabry Center for Interdisciplinary Therapy (FAZIT) (D.O., D.L., K.H., N.Ü., T.S., J.M., C.S., G.E., C.W., P.N.), and Department of Neurology (N.Ü., C.S.), University Hospital Würzburg, Germany; West German Heart and Vascular Center Essen, University Hospital Essen, Germany (K.L.); Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany (K.L.); Department of Molecular Pathology, University Hospital of Tübingen, Germany (R.K.); and Department of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Heidelberg, Germany (H.-J.G.). .,
| |
Collapse
|
37
|
Bei Y, Tao L, Cretoiu D, Cretoiu SM, Xiao J. MicroRNAs Mediate Beneficial Effects of Exercise in Heart. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1000:261-280. [PMID: 29098626 DOI: 10.1007/978-981-10-4304-8_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs, miRs), a group of small non-coding RNAs, repress gene expressions at posttranscriptional level in most cases and are involved in cardiovascular physiology and disease pathogenesis. Increasing evidence has proved that miRNAs are potential regulators of exercise induced cardiac growth and mediate the benefits of exercise in a variety of cardiovascular diseases. In this chapter, we will review the regulatory effects of miRNAs in cardiac adaptations to exercise, and summarize their cardioprotective effects against myocardial infarction, ischemia/reperfusion injury, heart failure, diabetic cardiomyopathy, atherosclerosis, hypertension, and pulmonary hypertension. Also, we will introduce circulating miRNAs in response to acute and chronic exercise. Therefore, miRNAs may serve as novel therapeutic targets and potential biomarkers for cardiovascular diseases.
Collapse
Affiliation(s)
- Yihua Bei
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Lichan Tao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Dragos Cretoiu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania.,Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Sanda Maria Cretoiu
- Victor Babes National Institute of Pathology, Bucharest, 050096, Romania.,Division of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, 050474, Romania
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
38
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:145/1/dev151423. [PMID: 29321181 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
39
|
Guo Y, Luo F, Zhang X, Chen J, Shen L, Zhu Y, Xu D. TPPU enhanced exercise-induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction. J Cell Mol Med 2017; 22:1489-1500. [PMID: 29265525 PMCID: PMC5824362 DOI: 10.1111/jcmm.13412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 week before undergoing MI surgery. After 1-week recovery, the mice followed a prescribed exercise programme. Bone marrow-derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 weeks of exercise and cultured for 7 days. Angiogenesis around the ischaemic area, EPC functions, and the expression of microRNA-126 (miR-126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR-126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down-regulated. Additionally, the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise-induced cardioprotection in mice after MI. TPPU enhances exercise-induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischaemic area.
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xv Zhang
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingyuan Chen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
40
|
Association of miR-21, miR-126 and miR-605 gene polymorphisms with ischemic stroke risk. Oncotarget 2017; 8:95755-95763. [PMID: 29221163 PMCID: PMC5707057 DOI: 10.18632/oncotarget.21316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022] Open
Abstract
We investigated whether three common microRNA polymorphisms (miR-21T>C [rs1292037], miR-126G>A [rs4636297] and miR-605T>C [rs2043556]) were associated with ischemic stroke (IS) risk in a Chinese population. The study population comprised 592 ischemic stroke patients and 456 normal controls. The polymorphisms were measured using Snapshot SNP genotyping assays and confirmed by sequencing. Relative expressions of miR-21, miR-126 and miR-605 were measured by quantitative real-time PCR. We found that miR-126 gene rs4636297 polymorphism was associated with decreased ischemic stroke risk (GA vs. GG: AOR=0.64, adjust P=0.025; AA vs. GG: AOR=0.32, adjust P=0.007; dominant model: AOR=0.58, adjust P=0.004). MiR-21 gene rs1292037 and miR-605 gene rs2043556 polymorphisms were not associated with ischemic stroke risk. In addition, compared with normal controls, serum miR-126 level was significantly decreased in ischemic stroke patients, while the miR-21 level was significantly increased. Importantly, patients carrying rs4636297 GA/AA genotypes had higher serum miR-126 level (P<0.05). MiR-126 gene rs4636297 polymorphism and serum miR-126/-21 levels are associated with ischemic stroke risk. Our data indicates that miR-126 and miR-21 play roles in the development of ischemic stroke.
Collapse
|
41
|
Nabzdyk CS, Pradhan-Nabzdyk L, LoGerfo FW. RNAi therapy to the wall of arteries and veins: anatomical, physiologic, and pharmacological considerations. J Transl Med 2017; 15:164. [PMID: 28754174 PMCID: PMC5534068 DOI: 10.1186/s12967-017-1270-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/20/2017] [Indexed: 12/02/2022] Open
Abstract
Background Cardiovascular disease remains a major health care challenge. The knowledge about the underlying mechanisms of the respective vascular disease etiologies has greatly expanded over the last decades. This includes the contribution of microRNAs, endogenous non-coding RNA molecules, known to vastly influence gene expression. In addition, short interference RNA has been established as a mechanism to temporarily affect gene expression. This review discusses challenges relating to the design of a RNA interference therapy strategy for the modulation of vascular disease. Despite advances in medical and surgical therapies, atherosclerosis (ATH), aortic aneurysms (AA) are still associated with high morbidity and mortality. In addition, intimal hyperplasia (IH) remains a leading cause of late vein and prosthetic bypass graft failure. Pathomechanisms of all three entities include activation of endothelial cells (EC) and dedifferentiation of vascular smooth muscle cells (VSMC). RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH, AA or IH. Successful RNAi delivery to the vessel wall faces multiple obstacles. These include the challenge of cell specific, targeted delivery of RNAi, anatomical barriers such as basal membrane, elastic laminae in arterial walls, multiple layers of VSMC, as well as adventitial tissues. Another major decision point is the route of delivery and potential methods of transfection. A plethora of transfection reagents and adjuncts have been described with varying efficacies and side effects. Timing and duration of RNAi therapy as well as target gene choice are further relevant aspects that need to be addressed in a temporo-spatial fashion. Conclusions While multiple preclinical studies reported encouraging results of RNAi delivery to the vascular wall, it remains to be seen if a single target can be sufficient to the achieve clinically desirable changes in the injured vascular wall in humans. It might be necessary to achieve simultaneous and/or sequential silencing of multiple, synergistically acting target genes. Some advances in cell specific RNAi delivery have been made, but a reliable vascular cell specific transfection strategy is still missing. Also, off-target effects of RNAi and unwanted effects of transfection agents on gene expression are challenges to be addressed. Close collaborative efforts between clinicians, geneticists, biologists, and chemical and medical engineers will be needed to provide tailored therapeutics for the various types of vascular diseases.
Collapse
Affiliation(s)
- Christoph S Nabzdyk
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| | - Leena Pradhan-Nabzdyk
- Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA.
| | - Frank W LoGerfo
- Frank W. LoGerfo Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street, Boston, MA, 02215, USA
| |
Collapse
|
42
|
Sanges S, Prévotat A, Fertin M, Terriou L, Lefèvre G, Quesnel B, Hatron PY, Hachulla É, Copin MC, Launay D. Haemodynamically proven pulmonary hypertension in a patient with GATA2 deficiency-associated pulmonary alveolar proteinosis and fibrosis. Eur Respir J 2017; 49:49/5/1700178. [PMID: 28495695 DOI: 10.1183/13993003.00178-2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 02/02/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Sébastien Sanges
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,INSERM, U995, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | | | - Marie Fertin
- CHU Lille, Service de Cardiologie, Lille, France
| | - Louis Terriou
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,INSERM, U995, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Guillaume Lefèvre
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,INSERM, U995, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France.,CHU Lille, Institut d'Immunologie, Lille, France
| | - Bruno Quesnel
- CHU Lille, Service des Maladies du Sang, Lille, France
| | - Pierre-Yves Hatron
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | - Éric Hachulla
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France.,INSERM, U995, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| | | | - David Launay
- Univ. Lille, INSERM U995 - LIRIC - Lille Inflammation Research International Center, Lille, France .,INSERM, U995, Lille, France.,CHU Lille, Département de Médecine Interne et Immunologie Clinique, Lille, France.,Centre National de Référence Maladies Systémiques et Auto-immunes Rares (Sclérodermie Systémique), Lille, France
| |
Collapse
|