1
|
Chen X, Fang M, Hong J, Guo Y. Longitudinal Variations in Th and Treg Cells Before and After Percutaneous Coronary Intervention, and Their Intercorrelations and Prognostic Value in Acute Syndrome Patients. Inflammation 2025; 48:316-330. [PMID: 38874809 DOI: 10.1007/s10753-024-02062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
T helper (Th) and regulatory T (Treg) cells regulate atherosclerosis, plaque, inflammation to involve in acute coronary syndrome (ACS). The current study aimed to investigate the clinical implications of Th and Treg cells in ACS patients receiving percutaneous coronary intervention (PCI). Blood Th1, Th2, Th17 and Treg cells were detected in 160 ACS patients before PCI, after PCI, at 1 month (M). Short physical performance battery (SPPB) at M1/M3 and major adverse cardiac event (MACE) during follow-ups were evaluated. Th1 and Th17 both showed upward trends during PCI, then greatly declined at M1 (P < 0.001). Th2 exhibited an upward trend during PCI but decreased slightly at M1 (P < 0.001). Treg remained stable during PCI but elevated at M1 (P < 0.001). Moreover, a positive correlation between Th1 and Th17, a negative correlation between Th17 and Treg, were discovered at several timepoints (most P < 0.050). Interestingly, the receiver operating curve (ROC) analyses revealed that Th1 [area under curve (AUC) between 0.633-0.645] and Th17 (AUC between 0.626-0.699) exhibited values estimating SPPB score <= 6 points at M1 or M3 to some extent. Importantly, Th1 (AUC between 0.708-0.710), Th17 (AUC between 0.694-0.783), and Treg (AUC between 0.706-0.729) predicted MACE risk. Multivariate models involving Th and Treg cells along with other characteristics revealed acceptable values estimating SPPB score <= 6 points at M1 or M3 (AUC between 0.690-0.813), and good values predicting MACE risk (AUC between 0.830-0.971). Dynamic variations in Th and Treg cells can predict the prognosis of ACS patients receiving PCI.
Collapse
Affiliation(s)
- Xinjing Chen
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China.
| | - Mingcheng Fang
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Jingxuan Hong
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| | - Yansong Guo
- Department of Cardiology, Provincial Clinical Medical College of Fujian Medical University, Provincial Hospital Affiliated to Fuzhou University, Fujian Institute of Cardiovascular Disease, Fujian Provincial Hospital, 134 East Street, Fuzhou, 350001, China
| |
Collapse
|
2
|
Jones PW, Mallat Z, Nus M. T-Cell/B-Cell Interactions in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1502-1511. [PMID: 38813700 PMCID: PMC11208060 DOI: 10.1161/atvbaha.124.319845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Atherosclerosis is a complex inflammatory disease in which the adaptive immune response plays an important role. While the overall impact of T and B cells in atherosclerosis is relatively well established, we are only beginning to understand how bidirectional T-cell/B-cell interactions can exert prominent atheroprotective and proatherogenic functions. In this review, we will focus on these T-cell/B-cell interactions and how we could use them to therapeutically target the adaptive immune response in atherosclerosis.
Collapse
Affiliation(s)
- Peter William Jones
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| | - Ziad Mallat
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
- INSERM U970, Paris Cardiovascular Research Centre, France (Z.M.)
| | - Meritxell Nus
- Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute, University of Cambridge, United Kingdom (P.W.J., Z.M., M.N.)
| |
Collapse
|
3
|
de Jong MJM, Depuydt MAC, Schaftenaar FH, Liu K, Maters D, Wezel A, Smeets HJ, Kuiper J, Bot I, van Gisbergen K, Slütter B. Resident Memory T Cells in the Atherosclerotic Lesion Associate With Reduced Macrophage Content and Increased Lesion Stability. Arterioscler Thromb Vasc Biol 2024; 44:1318-1329. [PMID: 38634281 DOI: 10.1161/atvbaha.123.320511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Tissue resident memory T (TRM) cells are a T-cell subset that resides at the site of prior antigen recognition to protect the body against reoccurring encounters. Besides their protective function, TRM cells have also been implicated in inflammatory disorders. TRM cells are characterized by the expression of CD69 and transcription factors Hobit (homolog of Blimp-1 [B lymphocyte-induced maturation protein 1] in T cells) and Blimp-1. As the majority of T cells in the arterial intima expresses CD69, TRM cells may contribute to the pathogenesis of atherosclerosis as well. Here, we aimed to assess the presence and potential role of TRM cells in atherosclerosis. METHODS To identify TRM cells in human atherosclerotic lesions, a single-cell RNA-sequencing data set was interrogated, and T-cell phenotypes were compared with that of integrated predefined TRM cells. The presence and phenotype of TRM in atherosclerotic lesions was corroborated using a mouse model that enabled tracking of Hobit-expressing TRM cells. To explore the function of TRM cells during atherogenesis, RAG1-/- (recombination activating gene 1 deficient) LDLr-/- (low-density lipoprotein receptor knockout) mice received a bone marrow transplant from HobitKO/CREBlimp-1flox/flox mice, which exhibit abrogated TRM cell formation, whereafter the mice were fed a Western-type diet for 10 weeks. RESULTS Human atherosclerotic lesions contained T cells that exhibited a TRM cell-associated gene signature. Moreover, a fraction of these T cells clustered together with predefined TRM cells upon integration. The presence of Hobit-expressing TRM cells in the atherosclerotic lesion was confirmed in mice. These lesion-derived TRM cells were characterized by the expression of CD69 and CD49α. Moreover, we demonstrated that this small T-cell subset significantly affects lesion composition, by reducing the amount of intralesional macrophages and increasing collagen content. CONCLUSIONS TRM cells, characterized by the expression of CD69 and CD49α, constitute a minor population in atherosclerotic lesions and are associated with increased lesion stability in a Hobit and Blimp-1 knockout mouse model.
Collapse
MESH Headings
- Animals
- Atherosclerosis/pathology
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Humans
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Macrophages/pathology
- Disease Models, Animal
- Immunologic Memory
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Plaque, Atherosclerotic
- Mice, Inbred C57BL
- Mice
- Male
- Mice, Knockout
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Lectins, C-Type/metabolism
- Lectins, C-Type/genetics
- Phenotype
- Female
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Aortic Diseases/pathology
- Aortic Diseases/immunology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
Collapse
Affiliation(s)
- Maaike J M de Jong
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Marie A C Depuydt
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Frank H Schaftenaar
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Kun Liu
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - David Maters
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medical Center, The Hague, the Netherlands (A.W., H.J.S.)
| | - Harm J Smeets
- Department of Surgery, Haaglanden Medical Center, The Hague, the Netherlands (A.W., H.J.S.)
| | - Johan Kuiper
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Ilze Bot
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| | - Klaas van Gisbergen
- van Gisbergen Lab, Tissue Immunity, Champalimaud Research, Lisbon, Portugal (K.v.G.)
| | - Bram Slütter
- Division of Biotherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands (M.J.M.d.J., M.A.C.D., F.H.S., K.L., D.M., J.K., I.B., B.S.)
| |
Collapse
|
4
|
Ngai D, Sukka SR, Tabas I. Crosstalk between efferocytic myeloid cells and T-cells and its relevance to atherosclerosis. Front Immunol 2024; 15:1403150. [PMID: 38873597 PMCID: PMC11169609 DOI: 10.3389/fimmu.2024.1403150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
The interplay between myeloid cells and T-lymphocytes is critical to the regulation of host defense and inflammation resolution. Dysregulation of this interaction can contribute to the development of chronic inflammatory diseases. Important among these diseases is atherosclerosis, which refers to focal lesions in the arterial intima driven by elevated apolipoprotein B-containing lipoproteins, notably low-density lipoprotein (LDL), and characterized by the formation of a plaque composed of inflammatory immune cells, a collection of dead cells and lipids called the necrotic core, and a fibrous cap. As the disease progresses, the necrotic core expands, and the fibrous cap becomes thin, which increases the risk of plaque rupture or erosion. Plaque rupture leads to a rapid thrombotic response that can give rise to heart attack, stroke, or sudden death. With marked lowering of circulating LDL, however, plaques become more stable and cardiac risk is lowered-a process known as atherosclerosis regression. A critical aspect of both atherosclerosis progression and regression is the crosstalk between innate (myeloid cells) and adaptive (T-lymphocytes) immune cells. Myeloid cells are specialized at clearing apoptotic cells by a process called efferocytosis, which is necessary for inflammation resolution. In advanced disease, efferocytosis is impaired, leading to secondary necrosis of apoptotic cells, inflammation, and, most importantly, defective tissue resolution. In regression, efferocytosis is reawakened aiding in inflammation resolution and plaque stabilization. Here, we will explore how efferocytosing myeloid cells could affect T-cell function and vice versa through antigen presentation, secreted factors, and cell-cell contacts and how this cellular crosstalk may contribute to the progression or regression of atherosclerosis.
Collapse
Affiliation(s)
- David Ngai
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Santosh R. Sukka
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- Department of Physiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Britsch S, Langer H, Duerschmied D, Becher T. The Evolving Role of Dendritic Cells in Atherosclerosis. Int J Mol Sci 2024; 25:2450. [PMID: 38397127 PMCID: PMC10888834 DOI: 10.3390/ijms25042450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Atherosclerosis, a major contributor to cardiovascular morbidity and mortality, is characterized by chronic inflammation of the arterial wall. This inflammatory process is initiated and maintained by both innate and adaptive immunity. Dendritic cells (DCs), which are antigen-presenting cells, play a crucial role in the development of atherosclerosis and consist of various subtypes with distinct functional abilities. Following the recognition and binding of antigens, DCs become potent activators of cellular responses, bridging the innate and adaptive immune systems. The modulation of specific DC subpopulations can have either pro-atherogenic or atheroprotective effects, highlighting the dual pro-inflammatory or tolerogenic roles of DCs. In this work, we provide a comprehensive overview of the evolving roles of DCs and their subtypes in the promotion or limitation of atherosclerosis development. Additionally, we explore antigen pulsing and pharmacological approaches to modulate the function of DCs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Simone Britsch
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Harald Langer
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Daniel Duerschmied
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 13092 Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Tobias Becher
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Centre for Acute Cardiovascular Medicine Mannheim (ZKAM), University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, 69117 Mannheim, Germany; (H.L.); (D.D.); (T.B.)
| |
Collapse
|
6
|
Bi L, Wacker BK, Komandur K, Sanford N, Dichek DA. Apolipoprotein A-I vascular gene therapy reduces vein-graft atherosclerosis. Mol Ther Methods Clin Dev 2023; 30:558-572. [PMID: 37693942 PMCID: PMC10482902 DOI: 10.1016/j.omtm.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Coronary artery venous bypass grafts typically fail because of atherosclerosis driven by lipid and macrophage accumulation. Therapy for vein-graft atherosclerosis is limited to statin drugs, which are only modestly effective. We hypothesized that transduction of vein-graft endothelium of fat-fed rabbits with a helper-dependent adenovirus expressing apolipoprotein AI (HDAdApoAI) would reduce lipid and macrophage accumulation. Fat-fed rabbits received bilateral external jugular vein-to-carotid artery interposition grafts. Four weeks later, one graft per rabbit (n = 23 rabbits) was infused with HDAdApoAI and the contralateral graft with HDAdNull. Grafts were harvested 12 weeks later. Paired analyses of grafts were performed, with vein graft cholesterol, intimal lipid, and macrophage content as the primary endpoints. HDAd genomes were detected in all grafts. APOAI mRNA was median 63-fold higher in HDAdApoAI grafts versus HDAdNull grafts (p < 0.001). HDAdApoAI grafts had a mean 15% lower total cholesterol (by mass spectrometry; p = 0.003); mean 19% lower intimal lipid (by oil red O staining; p = 0.02); and mean 13% lower expression of the macrophage marker CD68 (by reverse transcriptase-mediated quantitative PCR; p = 0.008). In vivo transduction of vein-graft endothelium achieves persistent APOAI expression and reduces vein-graft cholesterol, intimal lipid, and CD68 expression. Vascular gene therapy with APOAI has promise for preventing vein-graft failure caused by atherosclerosis.
Collapse
Affiliation(s)
- Lianxiang Bi
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Bradley K. Wacker
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Kaushik Komandur
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - Nicole Sanford
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| | - David A. Dichek
- Department of Medicine, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA
| |
Collapse
|
7
|
Hinkley H, Counts DA, VonCanon E, Lacy M. T Cells in Atherosclerosis: Key Players in the Pathogenesis of Vascular Disease. Cells 2023; 12:2152. [PMID: 37681883 PMCID: PMC10486666 DOI: 10.3390/cells12172152] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-rich plaques within arterial walls. T cells play a pivotal role in the pathogenesis of atherosclerosis in which they help orchestrate immune responses and contribute to plaque development and instability. Here, we discuss the recognition of atherosclerosis-related antigens that may trigger T cell activation together with additional signaling from co-stimulatory molecules and lesional cytokines. Although few studies have indicated candidates for the antigen specificity of T cells in atherosclerosis, further research is needed. Furthermore, we describe the pro-atherogenic and atheroprotective roles of diverse subsets of T cells such as CD4+ helper, CD8+ cytotoxic, invariant natural killer, and γδ T cells. To classify and quantify T cell subsets in atherosclerosis, we summarize current methods to analyze cellular heterogeneity including single cell RNA sequencing and T cell receptor (TCR) sequencing. Further insights into T cell biology will help shed light on the immunopathology of atherosclerosis, inform potential therapeutic interventions, and pave the way for precision medicine approaches in combating cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Michael Lacy
- Department of Medical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Jing J, Zhu C, Gong R, Qi X, Zhang Y, Zhang Z. Research progress on the active ingredients of traditional Chinese medicine in the intervention of atherosclerosis: A promising natural immunotherapeutic adjuvant. Biomed Pharmacother 2023; 159:114201. [PMID: 36610225 DOI: 10.1016/j.biopha.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease caused by disorders of lipid metabolism. Abnormal deposition of low-density lipoproteins in the arterial wall stimulates the activation of immune cells, including the adhesion and infiltration of monocytes, the proliferation and differentiation of macrophages and lymphocytes, and the activation of their functions. The complex interplay between immune cells coordinates the balance between pro- and anti-inflammation and plays a key role in the progression of AS. Therefore, targeting immune cell activity may lead to the development of more selective drugs with fewer side effects to treat AS without compromising host defense mechanisms. At present, an increasing number of studies have found that the active ingredients of traditional Chinese medicine (TCM) can regulate the function of immune cells in multiple ways to against AS, showing great potential for the treatment of AS and promising clinical applications. In this paper, we review the mechanisms of immune cell action in AS lesions and the potential targets and/or pathways for immune cell regulation by the active ingredients of TCM to promote the understanding of the immune system interactions of AS and provide a relevant basis for the use of active ingredients of TCM as natural adjuvants for AS immunotherapy.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Chaojun Zhu
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Rui Gong
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xue Qi
- Department of General Surgery, Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250001, China.
| | - Yue Zhang
- Peripheral Vascular Disease Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Zhaohui Zhang
- Surgical Department of Traditional Chinese Medicine, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
9
|
Macrophage Phenotyping in Atherosclerosis by Proteomics. Int J Mol Sci 2023; 24:ijms24032613. [PMID: 36768933 PMCID: PMC9917096 DOI: 10.3390/ijms24032613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Macrophages are heterogeneous and plastic cells, able to adapt their phenotype and functions to changes in the microenvironment. They are involved in several homeostatic processes and also in many human diseases, including atherosclerosis, where they participate in all the stages of the disease. For these reasons, macrophages have been studied extensively using different approaches, including proteomics. Proteomics, indeed, may be a powerful tool to better understand the behavior of these cells, and a careful analysis of the proteome of different macrophage phenotypes can help to better characterize the role of these phenotypes in atherosclerosis and provide a broad view of proteins that might potentially affect the course of the disease. In this review, we discuss the different proteomic techniques that have been used to delineate the proteomic profile of macrophage phenotypes and summarize some results that can help to elucidate the roles of macrophages and develop new strategies to counteract the progression of atherosclerosis and/or promote regression.
Collapse
|
10
|
Depuydt MAC, Schaftenaar FH, Prange KHM, Boltjes A, Hemme E, Delfos L, de Mol J, de Jong MJM, Bernabé Kleijn MNA, Peeters JAHM, Goncalves L, Wezel A, Smeets HJ, de Borst GJ, Foks AC, Pasterkamp G, de Winther MPJ, Kuiper J, Bot I, Slütter B. Single-cell T cell receptor sequencing of paired human atherosclerotic plaques and blood reveals autoimmune-like features of expanded effector T cells. NATURE CARDIOVASCULAR RESEARCH 2023; 2:112-125. [PMID: 38665903 PMCID: PMC11041750 DOI: 10.1038/s44161-022-00208-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/20/2022] [Indexed: 04/28/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease; however, whether it can be classified as an autoimmune disease remains unclear. In this study, we applied single-cell T cell receptor seqencing (scTCR-seq) on human carotid artery plaques and matched peripheral blood mononuclear cell samples to assess the extent of TCR clonality and antigen-specific activation within the various T cell subsets. We observed the highest degree of plaque-specific clonal expansion in effector CD4+ T cells, and these clonally expanded T cells expressed genes such as CD69, FOS and FOSB, indicative of recent TCR engagement, suggesting antigen-specific stimulation. CellChat analysis suggested multiple potential interactions of these effector CD4+ T cells with foam cells. Finally, we integrated a published scTCR-seq dataset of the autoimmune disease psoriatic arthritis, and we report various commonalities between the two diseases. In conclusion, our data suggest that atherosclerosis has an autoimmune compondent driven by autoreactive CD4+ T cells.
Collapse
Affiliation(s)
- Marie A. C. Depuydt
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Frank H. Schaftenaar
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Koen H. M. Prange
- Amsterdam University Medical Centers, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Arjan Boltjes
- Central Diagnostic Laboratory, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Esmeralda Hemme
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Lucie Delfos
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Jill de Mol
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Maaike J. M. de Jong
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Mireia N. A. Bernabé Kleijn
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | | | - Lauren Goncalves
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Anouk Wezel
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Harm J. Smeets
- Department of Surgery, Haaglanden Medisch Centrum Westeinde, The Hague, the Netherlands
| | - Gert J. de Borst
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Amanda C. Foks
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Gerard Pasterkamp
- Central Diagnostic Laboratory, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Menno P. J. de Winther
- Amsterdam University Medical Centers, University of Amsterdam, Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam, the Netherlands
| | - Johan Kuiper
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| | - Bram Slütter
- Leiden Academic Centre for Drug Research, Division of Biotherapeutics, Leiden University, Leiden, the Netherlands
| |
Collapse
|
11
|
Chen J, Xiang X, Nie L, Guo X, Zhang F, Wen C, Xia Y, Mao L. The emerging role of Th1 cells in atherosclerosis and its implications for therapy. Front Immunol 2023; 13:1079668. [PMID: 36685487 PMCID: PMC9849744 DOI: 10.3389/fimmu.2022.1079668] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive inflammatory disease of the large and medium-sized artery walls. The molecular mechanisms regulating the onset and progression of atherosclerosis remain unclear. T cells, one of the most common immune cell types in atherosclerotic plaques, are increasingly recognized as a key mediator in the pathogenesis of atherosclerosis. Th1 cells are a subset of CD4+ T helper cells of the adaptive immune system, characterized by the expression of the transcription factor T-bet and secretion of cytokines such as IFN-γ. Converging evidence shows that Th1 cells play a key role in the onset and progression of atherosclerosis. Besides, Th1 is the central mediator to orchestrate the adaptive immune system. In this review, we aim to summarize the complex role of Th1 cells in atherosclerosis and propose novel preventative and therapeutic approaches targeting Th1 cell-associated specific cytokines and receptors to prevent atherogenesis.
Collapse
Affiliation(s)
| | | | - Lei Nie
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Guo
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | |
Collapse
|
12
|
Hindy G, Tyrrell DJ, Vasbinder A, Wei C, Presswalla F, Wang H, Blakely P, Ozel AB, Graham S, Holton GH, Dowsett J, Fahed AC, Amadi KM, Erne GK, Tekmulla A, Ismail A, Launius C, Sotoodehnia N, Pankow JS, Thørner LW, Erikstrup C, Pedersen OB, Banasik K, Brunak S, Ullum H, Eugen-Olsen J, Ostrowski SR, Haas ME, Nielsen JB, Lotta LA, Engström G, Melander O, Orho-Melander M, Zhao L, Murthy VL, Pinsky DJ, Willer CJ, Heckbert SR, Reiser J, Goldstein DR, Desch KC, Hayek SS. Increased soluble urokinase plasminogen activator levels modulate monocyte function to promote atherosclerosis. J Clin Invest 2022; 132:e158788. [PMID: 36194491 PMCID: PMC9754000 DOI: 10.1172/jci158788] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/29/2022] [Indexed: 01/26/2023] Open
Abstract
People with kidney disease are disproportionately affected by atherosclerosis for unclear reasons. Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived mediator of kidney disease, levels of which are strongly associated with cardiovascular outcomes. We assessed suPAR's pathogenic involvement in atherosclerosis using epidemiologic, genetic, and experimental approaches. We found serum suPAR levels to be predictive of coronary artery calcification and cardiovascular events in 5,406 participants without known coronary disease. In a genome-wide association meta-analysis including over 25,000 individuals, we identified a missense variant in the plasminogen activator, urokinase receptor (PLAUR) gene (rs4760), confirmed experimentally to lead to higher suPAR levels. Mendelian randomization analysis in the UK Biobank using rs4760 indicated a causal association between genetically predicted suPAR levels and atherosclerotic phenotypes. In an experimental model of atherosclerosis, proprotein convertase subtilisin/kexin-9 (Pcsk9) transfection in mice overexpressing suPAR (suPARTg) led to substantially increased atherosclerotic plaques with necrotic cores and macrophage infiltration compared with those in WT mice, despite similar cholesterol levels. Prior to induction of atherosclerosis, aortas of suPARTg mice excreted higher levels of CCL2 and had higher monocyte counts compared with WT aortas. Aortic and circulating suPARTg monocytes exhibited a proinflammatory profile and enhanced chemotaxis. These findings characterize suPAR as a pathogenic factor for atherosclerosis acting at least partially through modulation of monocyte function.
Collapse
Affiliation(s)
- George Hindy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Population Medicine, Qatar University College of Medicine, QU Health, Doha, Qatar
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Daniel J. Tyrrell
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexi Vasbinder
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Changli Wei
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Feriel Presswalla
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Hui Wang
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Pennelope Blakely
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah Graham
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Grace H. Holton
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph Dowsett
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Akl C. Fahed
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Kingsley-Michael Amadi
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Grace K. Erne
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annika Tekmulla
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Anis Ismail
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Launius
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, Washington, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lise Wegner Thørner
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Karina Banasik
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper Eugen-Olsen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Mary E. Haas
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Jonas B. Nielsen
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | - Luca A. Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, New York, USA
| | | | - Gunnar Engström
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Lili Zhao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesh L. Murthy
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David J. Pinsky
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Cristen J. Willer
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Daniel R. Goldstein
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl C. Desch
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Salim S. Hayek
- Division of Cardiology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Bellini R, Bonacina F, Norata GD. Crosstalk between dendritic cells and T lymphocytes during atherogenesis: Focus on antigen presentation and break of tolerance. Front Cardiovasc Med 2022; 9:934314. [PMID: 35966516 PMCID: PMC9365967 DOI: 10.3389/fcvm.2022.934314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/05/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic disease resulting from an impaired lipid and immune homeostasis, where the interaction between innate and adaptive immune cells leads to the promotion of atherosclerosis-associated immune-inflammatory response. Emerging evidence has suggested that this response presents similarities to the reactivity of effector immune cells toward self-epitopes, often as a consequence of a break of tolerance. In this context, dendritic cells, a heterogeneous population of antigen presenting cells, play a key role in instructing effector T cells to react against foreign antigens and T regulatory cells to maintain tolerance against self-antigens and/or to patrol for self-reactive effector T cells. Alterations in this delicate balance appears to contribute to atherogenesis. The aim of this review is to discuss different DC subsets, and their role in atherosclerosis as well as in T cell polarization. Moreover, we will discuss how loss of T cell tolerogenic phenotype participates to the immune-inflammatory response associated to atherosclerosis and how a better understanding of these mechanisms might result in designing immunomodulatory therapies targeting DC-T cell crosstalk for the treatment of atherosclerosis-related inflammation.
Collapse
Affiliation(s)
- Rossella Bellini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- *Correspondence: Fabrizia Bonacina,
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
- Giuseppe Danilo Norata,
| |
Collapse
|
14
|
Roy P, Orecchioni M, Ley K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat Rev Immunol 2022; 22:251-265. [PMID: 34389841 PMCID: PMC10111155 DOI: 10.1038/s41577-021-00584-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is the root cause of many cardiovascular diseases. Extensive research in preclinical models and emerging evidence in humans have established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. New techniques have highlighted the enormous heterogeneity of leukocyte subsets in the arterial wall that have pro-inflammatory or regulatory roles in atherogenesis. Understanding the homing and activation pathways of these immune cells, their disease-associated dynamics and their regulation by microbial and metabolic factors will be crucial for the development of clinical interventions for atherosclerosis, including potentially vaccination-based therapeutic strategies. Here, we review key molecular mechanisms of immune cell activation implicated in modulating atherogenesis and provide an update on the contributions of innate and adaptive immune cell subsets in atherosclerosis.
Collapse
Affiliation(s)
- Payel Roy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Marco Orecchioni
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA.
| |
Collapse
|
15
|
Adoptive transfer of metabolically reprogrammed macrophages for atherosclerosis treatment in diabetic ApoE−/- mice. Bioact Mater 2022; 16:82-94. [PMID: 35386323 PMCID: PMC8958426 DOI: 10.1016/j.bioactmat.2022.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Atherosclerosis is characterized by inflammation in the arterial wall, which is known to be exacerbated by diabetes. Therapeutic repression of inflammation is a promising strategy for treating atherosclerosis. In this study, we showed that diabetes aggravated atherosclerosis in apolipoproteinE knockout (ApoE−/-) mice, in which increased expression of long-chain acyl-CoA synthetase 1 (Acsl1) in macrophages played an important role. Knockdown of Acsl1 in macrophages (MφshAcsl1) reprogrammed macrophages to an anti-inflammatory phenotype, especially under hyperglycemic conditions. Injection of MφshAcsl1 reprogrammed macrophages into streptozotocin (STZ)-induced diabetic ApoE−/- mice (ApoE−/-+ STZ) alleviated inflammation locally in the plaque, liver and spleen. Consistent with the reduction in inflammation, plaques became smaller and more stable after the adoptive transfer of reprogrammed macrophages. Taken together, our findings indicate that increased Acsl1 expression in macrophages play a key role in aggravated atherosclerosis of diabetic mice, possibly by promoting inflammation. Adoptive transfer of Acsl1 silenced macrophages may serve as a potential therapeutic strategy for atherosclerosis. Increased Acsl1 in macrophages is responsible for the exacerbated inflammation in diabetes MφshAcsl1 is characterized as anti-inflammatory phenotype Adoptive transfer of MφshAcsl1 alleviates atherosclerosis in diabetic ApoE−/- mice MφshAcsl1 inhibits both local and systemic inflammation in vivo
Collapse
|
16
|
Yoo JY, Sniffen S, McGill Percy KC, Pallaval VB, Chidipi B. Gut Dysbiosis and Immune System in Atherosclerotic Cardiovascular Disease (ACVD). Microorganisms 2022; 10:108. [PMID: 35056557 PMCID: PMC8780459 DOI: 10.3390/microorganisms10010108] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, such as trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated with common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota, and its metabolites, and the host immune system could reveal promising insights into ACVD development, prognostic factors, and treatments.
Collapse
Affiliation(s)
- Ji Youn Yoo
- College of Nursing, University of Tennessee, 1200 Volunteer Blvd, Knoxville, TN 37996, USA
| | - Sarah Sniffen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kyle Craig McGill Percy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Bojjibabu Chidipi
- Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., MDC 78, Tampa, FL 33612, USA
| |
Collapse
|
17
|
Marchini T, Abogunloko T, Wolf D. Modulating Autoimmunity against LDL: Development of a Vaccine against Atherosclerosis. Hamostaseologie 2021; 41:447-457. [PMID: 34942658 PMCID: PMC8702296 DOI: 10.1055/a-1661-1908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractAtherosclerosis is a chronic inflammatory disease of the arterial wall that leads to the build-up of occluding atherosclerotic plaques. Its clinical sequelae, myocardial infarction and stroke, represent the most frequent causes of death worldwide. Atherosclerosis is a multifactorial pathology that involves traditional risk factors and chronic low-grade inflammation in the atherosclerotic plaque and systemically. This process is accompanied by a strong autoimmune response that involves autoreactive T cells in lymph nodes and atherosclerotic plaques, as well as autoantibodies that recognize low-density lipoprotein (LDL) and its main protein component apolipoprotein B (ApoB). In the past 60 years, numerous preclinical observations have suggested that immunomodulatory vaccination with LDL, ApoB, or its peptides has the potential to specifically dampen autoimmunity, enhance tolerance to atherosclerosis-specific antigens, and protect from experimental atherosclerosis in mouse models. Here, we summarize and discuss mechanisms, challenges, and therapeutic opportunities of immunomodulatory vaccination and other strategies to enhance protective immunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Tijani Abogunloko
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology I, University Heart Center and Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Tanaka T, Sasaki N, Rikitake Y. Recent Advances on the Role and Therapeutic Potential of Regulatory T Cells in Atherosclerosis. J Clin Med 2021; 10:5907. [PMID: 34945203 PMCID: PMC8707380 DOI: 10.3390/jcm10245907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerotic diseases, including ischemic heart disease and stroke, are a main cause of mortality worldwide. Chronic vascular inflammation via immune dysregulation is critically involved in the pathogenesis of atherosclerosis. Accumulating evidence suggests that regulatory T cells (Tregs), responsible for maintaining immunological tolerance and suppressing excessive immune responses, play an important role in preventing the development and progression of atherosclerosis through the regulation of pathogenic immunoinflammatory responses. Several strategies to prevent and treat atherosclerosis through the promotion of regulatory immune responses have been developed, and could be clinically applied for the treatment of atherosclerotic cardiovascular disease. In this review, we summarize recent advances in our understanding of the protective role of Tregs in atherosclerosis and discuss attractive approaches to treat atherosclerotic disease by augmenting regulatory immune responses.
Collapse
Affiliation(s)
- Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe 658-8558, Japan; (T.T.); (Y.R.)
| |
Collapse
|
19
|
Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res 2021; 117:2544-2562. [PMID: 34450620 DOI: 10.1093/cvr/cvab285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Unversité Paris Descartes, Sorbonne Paris Cité, Paris France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Marchini T, Hansen S, Wolf D. ApoB-Specific CD4 + T Cells in Mouse and Human Atherosclerosis. Cells 2021; 10:446. [PMID: 33669769 PMCID: PMC7922692 DOI: 10.3390/cells10020446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory condition of the arterial wall that leads to the formation of vessel-occluding plaques within the subintimal space of middle-sized and larger arteries. While traditionally understood as a myeloid-driven lipid-storage disease, growing evidence suggests that the accumulation of low-density lipoprotein cholesterol (LDL-C) ignites an autoimmune response with CD4+ T-helper (TH) cells that recognize self-peptides from Apolipoprotein B (ApoB), the core protein of LDL-C. These autoreactive CD4+ T cells home to the atherosclerotic plaque, clonally expand, instruct other cells in the plaque, and induce clinical plaque instability. Recent developments in detecting antigen-specific cells at the single cell level have demonstrated that ApoB-reactive CD4+ T cells exist in humans and mice. Their phenotypes and functions deviate from classical immunological concepts of distinct and terminally differentiated TH immunity. Instead, ApoB-specific CD4+ T cells have a highly plastic phenotype, can acquire several, partially opposing and mixed transcriptional programs simultaneously, and transit from one TH subset into another over time. In this review, we highlight adaptive immune mechanisms in atherosclerosis with a focus on CD4+ T cells, introduce novel technologies to detect ApoB-specific CD4+ T cells at the single cell level, and discuss the potential impact of ApoB-driven autoimmunity in atherosclerosis.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Junín 954, C1113 AAD Buenos Aires, Argentina
| | - Sophie Hansen
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Hugstetterstraße 55, 79106 Freiburg, Germany; (T.M.); (S.H.)
- Faculty of Medicine, University of Freiburg, Breisacherstraße 153, 79110 Freiburg, Germany
| |
Collapse
|
21
|
Functional Role of B Cells in Atherosclerosis. Cells 2021; 10:cells10020270. [PMID: 33572939 PMCID: PMC7911276 DOI: 10.3390/cells10020270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is a lipid-driven inflammatory disease of blood vessels, and both innate and adaptive immune responses are involved in its development. The impact of B cells on atherosclerosis has been demonstrated in numerous studies and B cells have been found in close proximity to atherosclerotic plaques in humans and mice. B cells exert both atheroprotective and pro-atherogenic functions, which have been associated with their B cell subset attribution. While B1 cells and marginal zone B cells are considered to protect against atherosclerosis, follicular B cells and innate response activator B cells have been shown to promote atherosclerosis. In this review, we shed light on the role of B cells from a different, functional perspective and focus on the three major B cell functions: antibody production, antigen presentation/T cell interaction, and the release of cytokines. All of these functions have the potential to affect atherosclerosis by multiple ways and are dependent on the cellular milieu and the activation status of the B cell. Moreover, we discuss B cell receptor signaling and the mechanism of B cell activation under atherosclerosis-prone conditions. By summarizing current knowledge of B cells in and beyond atherosclerosis, we are pointing out open questions and enabling new perspectives.
Collapse
|
22
|
Hume RD, Chong JJH. The Cardiac Injury Immune Response as a Target for Regenerative and Cellular Therapies. Clin Ther 2020; 42:1923-1943. [PMID: 33010930 DOI: 10.1016/j.clinthera.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Despite modern reperfusion and pharmacologic therapies, myocardial infarction (MI) remains a leading cause of morbidity and mortality worldwide. Therefore, the development of further therapeutics affecting post-MI recovery poses significant benefits. This review focuses on the post-MI immune response and immunomodulatory therapeutics that could improve the wound-healing response. METHODS This narrative review used OVID versions of MEDLINE and EMBASE searching for clinical therapeutics targeting the immune system during MI. Preclinical models and clinical trials were included. Additional studies were sourced from the reference lists of relevant articles and other personal files. FINDINGS After MI, cardiomyocytes are starved of oxygen and undergo cell death via coagulative necrosis. This process activates the immune system and a multifaceted wound-healing response, comprising a number of complex and overlapping phases. Overactivation or persistence of one or more of these phases can have potentially lethal implications. This review describes the immune response post-MI and any adverse events that can occur during these different phases. Second, we describe immunomodulatory therapies that attempt to target these immune cell aberrations by mitigating or diminishing their effects on the wound-healing response. Also discussed are adult stem/progenitor cell therapies, exosomes, and regulatory T cells, and their immunomodulatory effects in the post-MI setting. IMPLICATIONS An updated understanding into the importance of various inflammatory cell phenotypes, coupled with new technologies, may hold promise for a new era of immunomodulatory therapeutics. The implications of such therapies could dramatically improve patients' quality of life post-MI and reduce the incidence of progressive heart failure.
Collapse
Affiliation(s)
- Robert D Hume
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia
| | - James J H Chong
- Centre for Heart Research, Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, NSW 2145, Australia; Department of Cardiology, Westmead Hospital, Hawkesbury Rd, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Regulatory T cells in ischemic cardiovascular injury and repair. J Mol Cell Cardiol 2020; 147:1-11. [PMID: 32777294 DOI: 10.1016/j.yjmcc.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023]
Abstract
Ischemic injury triggers a heightened inflammatory response that is essential for tissue repair, but excessive and chronic inflammatory responses contribute to the pathogenesis of ischemic cardiovascular disease. Regulatory T cells (Tregs), a major regulator of self-tolerance and immune suppression, control innate and adaptive immune responses, modulate specific immune cell subsets, prevent excessive inflammation, and participate in tissue repair after ischemia. Herein, we summarize the multiple potential mechanisms by which Tregs exert suppressor functions including modulation of cytokine production, alteration of cell-cell interactions, and disruption of metabolic pathways. Furthermore, we review the role of Tregs implicated in ischemic injury and repair including myocardial, limb, and cerebral ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of Treg biology in understanding the pathogenesis of ischemic cardiovascular disease states.
Collapse
|
24
|
Wolf D, Gerhardt T, Winkels H, Michel NA, Pramod AB, Ghosheh Y, Brunel S, Buscher K, Miller J, McArdle S, Baas L, Kobiyama K, Vassallo M, Ehinger E, Dileepan T, Ali A, Schell M, Mikulski Z, Sidler D, Kimura T, Sheng X, Horstmann H, Hansen S, Mitre LS, Stachon P, Hilgendorf I, Gaddis DE, Hedrick C, Benedict CA, Peters B, Zirlik A, Sette A, Ley K. Pathogenic Autoimmunity in Atherosclerosis Evolves From Initially Protective Apolipoprotein B 100-Reactive CD4 + T-Regulatory Cells. Circulation 2020; 142:1279-1293. [PMID: 32703007 PMCID: PMC7515473 DOI: 10.1161/circulationaha.119.042863] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Throughout the inflammatory response that accompanies atherosclerosis, autoreactive CD4+ T-helper cells accumulate in the atherosclerotic plaque. Apolipoprotein B100 (apoB), the core protein of low-density lipoprotein, is an autoantigen that drives the generation of pathogenic T-helper type 1 (TH1) cells with proinflammatory cytokine secretion. Clinical data suggest the existence of apoB-specific CD4+ T cells with an atheroprotective, regulatory T cell (Treg) phenotype in healthy individuals. Yet, the function of apoB-reactive Tregs and their relationship with pathogenic TH1 cells remain unknown. METHODS To interrogate the function of autoreactive CD4+ T cells in atherosclerosis, we used a novel tetramer of major histocompatibility complex II to track T cells reactive to the mouse self-peptide apo B978-993 (apoB+) at the single-cell level. RESULTS We found that apoB+ T cells build an oligoclonal population in lymph nodes of healthy mice that exhibit a Treg-like transcriptome, although only 21% of all apoB+ T cells expressed the Treg transcription factor FoxP3 (Forkhead Box P3) protein as detected by flow cytometry. In single-cell RNA sequencing, apoB+ T cells formed several clusters with mixed TH signatures that suggested overlapping multilineage phenotypes with pro- and anti-inflammatory transcripts of TH1, T helper cell type 2 (TH2), and T helper cell type 17 (TH17), and of follicular-helper T cells. ApoB+ T cells were increased in mice and humans with atherosclerosis and progressively converted into pathogenic TH1/TH17-like cells with proinflammatory properties and only a residual Treg transcriptome. Plaque T cells that expanded during progression of atherosclerosis consistently showed a mixed TH1/TH17 phenotype in single-cell RNA sequencing. In addition, we observed a loss of FoxP3 in a fraction of apoB+ Tregs in lineage tracing of hyperlipidemic Apoe-/- mice. In adoptive transfer experiments, converting apoB+ Tregs failed to protect from atherosclerosis. CONCLUSIONS Our results demonstrate an unexpected mixed phenotype of apoB-reactive autoimmune T cells in atherosclerosis and suggest an initially protective autoimmune response against apoB with a progressive derangement in clinical disease. These findings identify apoB autoreactive Tregs as a novel cellular target in atherosclerosis.
Collapse
Affiliation(s)
- Dennis Wolf
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Teresa Gerhardt
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Charité - University Medicine Berlin (Campus Benjamin Franklin), Germany (T.G.)
| | - Holger Winkels
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Nathaly Anto Michel
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Akula Bala Pramod
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Department of Psychiatry, University of California San Diego, La Jolla (A.B.P.)
| | - Yanal Ghosheh
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Simon Brunel
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Konrad Buscher
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Jacqueline Miller
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Sara McArdle
- Microscopy Core Facility (S.M.), La Jolla Institute for Immunology, CA
| | - Livia Baas
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Kouji Kobiyama
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Melanie Vassallo
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Erik Ehinger
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | | | - Amal Ali
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Maximilian Schell
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Zbigniew Mikulski
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Daniel Sidler
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Takayuki Kimura
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA
| | - Xia Sheng
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Hauke Horstmann
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Sophie Hansen
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Lucia Sol Mitre
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Peter Stachon
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Ingo Hilgendorf
- Department of Cardiology/Angiology I, University Heart Center Freiburg-Bad Krozingen, Germany (D.W., T.G., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.).,Medical Faculty, University of Freiburg, Germany (D.W., N.A.M., X.S., H.H., S.H., L.S.M., P.S., I.H.)
| | - Dalia E Gaddis
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Catherine Hedrick
- Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| | - Chris A Benedict
- Division of Immune Regulation (S.B., D.S., C.A.B.), La Jolla Institute for Immunology, CA
| | - Bjoern Peters
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Andreas Zirlik
- Department of Cardiology, Medical University Graz, Austria (N.A.M., A.Z.)
| | - Alessandro Sette
- Division of Vaccine Discovery (B.P., A.S.), La Jolla Institute for Immunology, CA
| | - Klaus Ley
- Laboratory of Inflammation Biology(D.W., T.G., H.W., A.B.P., Y.G., K.B., J.M., L.B., K.K., M.V., E.E., A.A., M.S., T.K., K.L.), La Jolla Institute for Immunology, CA.,Center for Autoimmunity and Inflammation (D.E.G., C.H., K.L.), La Jolla Institute for Immunology, CA
| |
Collapse
|
25
|
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall and the primary underlying cause of cardiovascular disease. Data from in vivo imaging, cell-lineage tracing and knockout studies in mice, as well as clinical interventional studies and advanced mRNA sequencing techniques, have drawn attention to the role of T cells as critical drivers and modifiers of the pathogenesis of atherosclerosis. CD4+ T cells are commonly found in atherosclerotic plaques. A large body of evidence indicates that T helper 1 (TH1) cells have pro-atherogenic roles and regulatory T (Treg) cells have anti-atherogenic roles. However, Treg cells can become pro-atherogenic. The roles in atherosclerosis of other TH cell subsets such as TH2, TH9, TH17, TH22, follicular helper T cells and CD28null T cells, as well as other T cell subsets including CD8+ T cells and γδ T cells, are less well understood. Moreover, some T cells seem to have both pro-atherogenic and anti-atherogenic functions. In this Review, we summarize the knowledge on T cell subsets, their functions in atherosclerosis and the process of T cell homing to atherosclerotic plaques. Much of our understanding of the roles of T cells in atherosclerosis is based on findings from experimental models. Translating these findings into human disease is challenging but much needed. T cells and their specific cytokines are attractive targets for developing new preventive and therapeutic approaches including potential T cell-related therapies for atherosclerosis.
Collapse
Affiliation(s)
- Ryosuke Saigusa
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Holger Winkels
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
26
|
Abstract
Adaptive as well as innate immune responses contribute to the development of atherosclerosis. Studies performed in experimental animals have revealed that some of these immune responses are protective while others contribute to the progression of disease. These observations suggest that it may be possible to develop novel therapies for cardiovascular disease by selectively modulating such atheroprotective and proatherogenic immunity. Recent advances in cancer treatment using immune check inhibitors and CAR (chimeric antigen receptor) T-cell therapy serve as excellent examples of the possibilities of targeting the immune system to combat disease. LDL (low-density lipoprotein) that has accumulated in the artery wall is a key autoantigen in atherosclerosis, and activation of antigen-specific T helper 1–type T cells is thought to fuel plaque inflammation. Studies aiming to prove this concept by immunizing experimental animals with oxidized LDL particles unexpectedly resulted in activation of atheroprotective immunity involving regulatory T cells. This prompted several research groups to try to develop vaccines against atherosclerosis. In this review, we will discuss the experimental and clinical data supporting the possibility of developing immune-based therapies for lowering cardiovascular risk. We will also summarize ongoing clinical studies and discuss the challenges associated with developing an effective and safe atherosclerosis vaccine.
Collapse
Affiliation(s)
- Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (J.N.)
| | - Göran K. Hansson
- Department of Medicine, Karolinska University Hospital Solna, Karolinska Institute, Sweden (G.K.H.)
| |
Collapse
|
27
|
Atherosclerosis: Insights into Vascular Pathobiology and Outlook to Novel Treatments. J Cardiovasc Transl Res 2020; 13:744-757. [PMID: 32072564 DOI: 10.1007/s12265-020-09961-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
The pathobiology of atherosclerosis and its current and potential future treatments are summarized, with a spotlight on three central cell types involved: (i) endothelial cells (ECs), (ii) macrophages, and (iii) vascular smooth muscle cells (VSMCs). (i) EC behaviour is regulated by the central transcription factors YAP/TAZ in reaction to biomechanical forces, such as hemodynamic shear stress. (ii) VSMC transdifferentiation (phenotype switching) to a macrophage-like phenotype contributes to the majority of cells positive for common cell surface macrophage markers in atherosclerotic plaques. (iii) Intra-plaque macrophages originate in a significant number from vascular resident macrophages. They can be activated via pattern recognition receptors on cell membrane (e.g. toll-like receptors) and inside cells (e.g. inflammasomes), requiring priming by neutrophil extracellular traps (NETs). ECs and macrophages can also be characterized by single-cell RNA sequencing. Adaptive immunity plays an important role in the inflammatory process. Future therapeutic options include vaccination, TRAF-STOPs, senolysis, or CD47 blockade. Graphical Abstract.
Collapse
|
28
|
Tay C, Kanellakis P, Hosseini H, Cao A, Toh BH, Bobik A, Kyaw T. B Cell and CD4 T Cell Interactions Promote Development of Atherosclerosis. Front Immunol 2020; 10:3046. [PMID: 31998318 PMCID: PMC6965321 DOI: 10.3389/fimmu.2019.03046] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/12/2019] [Indexed: 12/26/2022] Open
Abstract
Interaction between B and CD4 T cells is crucial for their optimal responses in adaptive immunity. Immune responses augmented by their partnership promote chronic inflammation. Here we report that interaction between B and CD4 T cells augments their atherogenicity to promote lipid-induced atherosclerosis. Genetic deletion of the gene encoding immunoglobulin mu (μ) heavy chain (μMT) in ApoE−/− mice resulted in global loss of B cells including those in atherosclerotic plaques, undetectable immunoglobulins and impaired germinal center formation. Despite unaffected numbers in the circulation and peripheral lymph nodes, CD4 T cells were also reduced in spleens as were activated and memory CD4 T cells. In hyperlipidemic μMT−/− ApoE−/− mice, B cell deficiency decreased atherosclerotic lesions, accompanied by absence of immunoglobulins and reduced CD4 T cell accumulation in lesions. Adoptive transfer of B cells deficient in either MHCII or co-stimulatory molecule CD40, molecules required for B and CD4 T cell interaction, into B cell-deficient μMT−/− ApoE−/− mice failed to increase atherosclerosis. In contrast, wildtype B cells transferred into μMT−/− ApoE−/− mice increased atherosclerosis and increased CD4 T cells in lesions including activated and memory CD4 T cells. Transferred B cells also increased their expression of atherogenic cytokines IL-1β, TGF-β, MCP-1, M-CSF, and MIF, with partial restoration of germinal centers and plasma immunoglobulins. Our study demonstrates that interaction between B and CD4 T cells utilizing MHCII and CD40 is essential to augment their function to increase atherosclerosis in hyperlipidemic mice. These findings suggest that targeting B cell and CD4 T cell interaction may be a therapeutic strategy to limit atherosclerosis progression.
Collapse
Affiliation(s)
- Christopher Tay
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Peter Kanellakis
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Hamid Hosseini
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Anh Cao
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Ban-Hock Toh
- Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Alex Bobik
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Tin Kyaw
- Vascular Biology and Atherosclerosis Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Centre for Inflammatory Diseases, Department of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Herrero-Fernandez B, Gomez-Bris R, Somovilla-Crespo B, Gonzalez-Granado JM. Immunobiology of Atherosclerosis: A Complex Net of Interactions. Int J Mol Sci 2019; 20:E5293. [PMID: 31653058 PMCID: PMC6862594 DOI: 10.3390/ijms20215293] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of mortality worldwide, and atherosclerosis the principal factor underlying cardiovascular events. Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction, intimal lipid deposition, smooth muscle cell proliferation, cell apoptosis and necrosis, and local and systemic inflammation, involving key contributions to from innate and adaptive immunity. The balance between proatherogenic inflammatory and atheroprotective anti-inflammatory responses is modulated by a complex network of interactions among vascular components and immune cells, including monocytes, macrophages, dendritic cells, and T, B, and foam cells; these interactions modulate the further progression and stability of the atherosclerotic lesion. In this review, we take a global perspective on existing knowledge about the pathogenesis of immune responses in the atherosclerotic microenvironment and the interplay between the major innate and adaptive immune factors in atherosclerosis. Studies such as this are the basis for the development of new therapies against atherosclerosis.
Collapse
Affiliation(s)
- Beatriz Herrero-Fernandez
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
| | - Raquel Gomez-Bris
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | | | - Jose Maria Gonzalez-Granado
- LamImSys Lab. Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
- Departamento de Fisiología. Facultad de Medicina. Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain.
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares, 28029 Madrid, Spain.
| |
Collapse
|
30
|
Affiliation(s)
- Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|