1
|
Cochrane ALK, Murphy MP, Ozanne SE, Giussani DA. Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring. Eur Heart J 2024:ehae671. [PMID: 39508438 DOI: 10.1093/eurheartj/ehae671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/12/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Pregnancy complicated by maternal obesity contributes to an increased cardiovascular risk in offspring, which is increasingly concerning as the rates of obesity and cardiovascular disease are higher than ever before and still growing. There has been much research in humans and preclinical animal models to understand the impact of maternal obesity on offspring health. This review summarizes what is known about the offspring cardiovascular phenotype, describing a mechanistic role for oxidative stress, metabolic inflexibility, and mitochondrial dysfunction in mediating these impairments. It also discusses the impact of secondary postnatal insults, which may reveal latent cardiovascular deficits that originated in utero. Finally, current interventional efforts and gaps of knowledge to limit the developmental origins of cardiovascular dysfunction in offspring of obese pregnancy are highlighted.
Collapse
Affiliation(s)
- Anna L K Cochrane
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael P Murphy
- Department of Medicine, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Susan E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Loke Centre for Trophoblast Research, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Cambridge Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
- British Heart Foundation, Cambridge Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Storz JF, Scott GR. To what extent do physiological tolerances determine elevational range limits of mammals? J Physiol 2024; 602:5475-5484. [PMID: 37889163 PMCID: PMC11052920 DOI: 10.1113/jp284586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
A key question in biology concerns the extent to which distributional range limits of species are determined by intrinsic limits of physiological tolerance. Here, we use common-garden data for wild rodents to assess whether species with higher elevational range limits typically have higher thermogenic capacities in comparison to closely related lowland species. Among South American leaf-eared mice (genus Phyllotis), mean thermogenic performance is higher in species with higher elevational range limits, but there is little among-species variation in the magnitude of plasticity in this trait. In the North American rodent genus Peromyscus, highland deer mice (Peromyscus maniculatus) have greater thermogenic maximal oxygen uptake (V ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ ) than lowland white-footed mice (Peromyscus leucopus) at a level of hypoxia that matches the upper elevational range limit of the former species. In highland deer mice, the enhanced thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ in hypoxia is attributable to a combination of evolved and plastic changes in physiological pathways that govern the transport and utilization of O2 and metabolic substrates. Experiments with Peromyscus mice also demonstrate that exposure to hypoxia during different stages of development elicits plastic changes in cardiorespiratory traits that improve thermogenicV ̇ O 2 max ${\dot V_{{{\mathrm{O}}_{\mathrm{2}}}{\mathrm{max}}}}$ via distinct physiological mechanisms. Evolved differences in thermogenic capacity provide clues about why some species are able to persist in higher-elevation habitats that lie slightly beyond the tolerable limits of other species. Such differences in environmental tolerance also suggest why some species might be more vulnerable to climate change than others.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Heath-Freudenthal A, Estrada A, von Alvensleben I, Julian CG. Surviving birth at high altitude. J Physiol 2024; 602:5463-5473. [PMID: 38520695 PMCID: PMC11418585 DOI: 10.1113/jp284554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 03/11/2024] [Indexed: 03/25/2024] Open
Abstract
This Symposium Review examines challenges to surviving birth and infancy at high altitudes. Chronic exposure to the environmental hypoxia of high altitudes increases the incidence of maternal vascular disorders of pregnancy characterized by placental insufficiency, restricted fetal growth and preterm delivery, and impairs pulmonary vascular health during infancy. While each condition independently contributes to excess morbidity and mortality in early life, evidence indicates vascular disorders of pregnancy and infantile pulmonary vascular dysfunction are intertwined. By integrating our recent scientific and clinical observations in Bolivia with existing literature, we propose potential avenues to reduce the infant mortality burden at high altitudes and reduce pulmonary vascular disease in highland neonates, and emphasize the need for further research to address unresolved questions.
Collapse
Affiliation(s)
| | | | | | - Colleen G. Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, US
| |
Collapse
|
4
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
5
|
Ruhr IM, Shiels HA, Crossley DA, Galli GLJ. Developmental programming of sarcoplasmic reticulum function improves cardiac anoxia tolerance in turtles. J Exp Biol 2024; 227:jeb247434. [PMID: 39246147 DOI: 10.1242/jeb.247434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Oxygen deprivation during embryonic development can permanently remodel the vertebrate heart, often causing cardiovascular abnormalities in adulthood. While this phenomenon is mostly damaging, recent evidence suggests developmental hypoxia produces stress-tolerant phenotypes in some ectothermic vertebrates. Embryonic common snapping turtles (Chelydra serpentina) subjected to chronic hypoxia display improved cardiac anoxia tolerance after hatching, which is associated with altered Ca2+ homeostasis in heart cells (cardiomyocytes). Here, we examined the possibility that changes in Ca2+ cycling, through the sarcoplasmic reticulum (SR), underlie the developmentally programmed cardiac phenotype of snapping turtles. We investigated this hypothesis by isolating cardiomyocytes from juvenile turtles that developed in either normoxia (21% O2; 'N21') or chronic hypoxia (10% O2; 'H10') and subjected the cells to anoxia/reoxygenation, in either the presence or absence of SR Ca2+-cycling inhibitors. We simultaneously measured cellular shortening, intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). Under normoxic conditions, N21 and H10 cardiomyocytes shortened equally, but H10 Ca2+ transients (Δ[Ca2+]i) were twofold smaller than those of N21 cells, and SR inhibition only decreased N21 shortening and Δ[Ca2+]i. Anoxia subsequently depressed shortening, Δ[Ca2+]i and pHi in control N21 and H10 cardiomyocytes, yet H10 shortening and Δ[Ca2+]i recovered to pre-anoxic levels, partly due to enhanced myofilament Ca2+ sensitivity. SR blockade abolished the recovery of anoxic H10 cardiomyocytes and potentiated decreases in shortening, Δ[Ca2+]i and pHi. Our novel results provide the first evidence of developmental programming of SR function and demonstrate that developmental hypoxia confers a long-lasting, superior anoxia-tolerant cardiac phenotype in snapping turtles, by modifying SR function and enhancing myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Ilan M Ruhr
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
- School of Science, Engineering, & Environment, University of Salford, Salford M5 4NT, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Gina L J Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
6
|
Hourtovenko C, Sreetharan S, Tharmalingam S, Tai TC. Impact of Ionizing Radiation Exposure on Placental Function and Implications for Fetal Programming. Int J Mol Sci 2024; 25:9862. [PMID: 39337351 PMCID: PMC11432287 DOI: 10.3390/ijms25189862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Accidental exposure to high-dose radiation while pregnant has shown significant negative effects on the developing fetus. One fetal organ which has been studied is the placenta. The placenta performs all essential functions for fetal development, including nutrition, respiration, waste excretion, endocrine communication, and immunological functions. Improper placental development can lead to complications during pregnancy, as well as the occurrence of intrauterine growth-restricted (IUGR) offspring. IUGR is one of the leading indicators of fetal programming, classified as an improper uterine environment leading to the predisposition of diseases within the offspring. With numerous studies examining fetal programming, there remains a significant gap in understanding the placenta's role in irradiation-induced fetal programming. This review aims to synthesize current knowledge on how irradiation affects placental function to guide future research directions. This review provides a comprehensive overview of placental biology, including its development, structure, and function, and summarizes the placenta's role in fetal programming, with a focus on the impact of radiation on placental biology. Taken together, this review demonstrates that fetal radiation exposure causes placental degradation and immune function dysregulation. Given the placenta's crucial role in fetal development, understanding its impact on irradiation-induced IUGR is essential.
Collapse
Affiliation(s)
- Cameron Hourtovenko
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - Shayen Sreetharan
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Medical Imaging, London Health Sciences Centre, 339 Windermere Rd., London, ON N6A 5A5, Canada
| | - Sujeenthar Tharmalingam
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| | - T C Tai
- Medical Sciences Division, NOSM University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
7
|
Li M, Liu X, Zhou Y, Guan R, Zhu X, Zou Y, Zheng M, Luo W, Zhang J. Retarded astrogliogenesis in response to hypoxia is facilitated by downregulation of CIRBP. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116710. [PMID: 39024953 DOI: 10.1016/j.ecoenv.2024.116710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The adverse impacts of chronic hypoxia on maternal and infant health at high altitudes warrant significant attention. However, effective protective measures against the resultant growth restrictions and neurodevelopmental disorders in infants and young children are still lacking. This study investigated the neurodevelopment of mice offspring under hypoxic conditions by exposing pregnant mice to a hypobaric oxygen chamber that simulated the hypobaric hypoxia at an altitude of 4000 m until 28 days after delivery. Our findings suggested that prolonged exposure to hypoxia might result in emotional abnormalities and social disorders in offspring. The significant reduction in astrogliogenesis was a characteristic feature associated with neurodevelopmental disorders induced by hypoxia. Further studies demonstrated that cold-induced RNA-binding protein (CIRBP) was a key transcriptional regulator in astrogliogenesis, which downregulated astrocytic differentiation under hypoxia through its crosstalk with the NFIA. Our study emphasized the crucial role of CIRBP in regulating astrogliogenesis and highlighted its potential as a promising target for therapeutic interventions in neurodevelopmental disorders associated with hypoxia.
Collapse
Affiliation(s)
- Ming Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Yang Zhou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Xiaozheng Zhu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yuankang Zou
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Mingze Zheng
- School of Basic Medical Sciences, Fourth Military Medical University, China
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, China.
| |
Collapse
|
8
|
Krause BJ, Paz AA, Garrud TAC, Peñaloza E, Vega-Tapia F, Ford SG, Niu Y, Giussani DA. Epigenetic regulation by hypoxia, N-acetylcysteine and hydrogen sulphide of the fetal vasculature in growth restricted offspring: A study in humans and chicken embryos. J Physiol 2024; 602:3833-3852. [PMID: 38985827 DOI: 10.1113/jp286266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Fetal growth restriction (FGR) is a common outcome in human suboptimal gestation and is related to prenatal origins of cardiovascular dysfunction in offspring. Despite this, therapy of human translational potential has not been identified. Using human umbilical and placental vessels and the chicken embryo model, we combined cellular, molecular, and functional studies to determine whether N-acetylcysteine (NAC) and hydrogen sulphide (H2S) protect cardiovascular function in growth-restricted unborn offspring. In human umbilical and placental arteries from control or FGR pregnancy and in vessels from near-term chicken embryos incubated under normoxic or hypoxic conditions, we determined the expression of the H2S gene CTH (i.e. cystathionine γ-lyase) (via quantitative PCR), the production of H2S (enzymatic activity), the DNA methylation profile (pyrosequencing) and vasodilator reactivity (wire myography) in the presence and absence of NAC treatment. The data show that FGR and hypoxia increased CTH expression in the embryonic/fetal vasculature in both species. NAC treatment increased aortic CTH expression and H2S production and enhanced third-order femoral artery dilator responses to the H2S donor sodium hydrosulphide in chicken embryos. NAC treatment also restored impaired endothelial relaxation in human third-to-fourth order chorionic arteries from FGR pregnancies and in third-order femoral arteries from hypoxic chicken embryos. This NAC-induced protection against endothelial dysfunction in hypoxic chicken embryos was mediated via nitric oxide independent mechanisms. Both developmental hypoxia and NAC promoted vascular changes in CTH DNA and NOS3 methylation patterns in chicken embryos. Combined, therefore, the data support that the effects of NAC and H2S offer a powerful mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy. KEY POINTS: Gestation complicated by chronic fetal hypoxia and fetal growth restriction (FGR) increases a prenatal origin of cardiovascular disease in offspring, increasing interest in antenatal therapy to prevent against a fetal origin of cardiovascular dysfunction. We investigated the effects between N-acetylcysteine (NAC) and hydrogen sulphide (H2S) in the vasculature in FGR human pregnancy and in chronically hypoxic chicken embryos. Combining cellular, molecular, epigenetic and functional studies, we show that the vascular expression and synthesis of H2S is enhanced in hypoxic and FGR unborn offspring in both species and this acts to protect their vasculature. Therefore, the NAC/H2S pathway offers a powerful therapeutic mechanism of human translational potential against fetal cardiovascular dysfunction in complicated pregnancy.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Adolfo A Paz
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Tessa A C Garrud
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Fabian Vega-Tapia
- Instituto de Ciencias de la Salud, Universidad O'Higgins, Santiago, Chile
| | - Sage G Ford
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
10
|
Avalani KH, Patterson ND, Murray KO. Uterine artery dysfunction in hypoxic pregnancy: a mitochondrial perspective. J Physiol 2024; 602:2153-2155. [PMID: 38635337 PMCID: PMC11096013 DOI: 10.1113/jp286475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Affiliation(s)
- Krisha H Avalani
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Noah D Patterson
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
11
|
Wang Z, Camm EJ, Nuzzo AM, Spiroski AM, Skeffington KL, Ashmore TJ, Rolfo A, Todros T, Logan A, Ma J, Murphy MP, Niu Y, Giussani DA. In vivo mitochondria-targeted protection against uterine artery vascular dysfunction and remodelling in rodent hypoxic pregnancy. J Physiol 2024; 602:1211-1225. [PMID: 38381050 DOI: 10.1113/jp286178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Gestational hypoxia adversely affects uterine artery function, increasing complications. However, an effective therapy remains unidentified. Here, we show in rodent uterine arteries that hypoxic pregnancy promotes hypertrophic remodelling, increases constrictor reactivity via protein kinase C signalling, and triggers compensatory dilatation via nitric oxide-dependent mechanisms and stimulation of large conductance Ca2+ -activated K+ -channels. Maternal in vivo oral treatment with the mitochondria-targeted antioxidant MitoQ in hypoxic pregnancy normalises uterine artery reactivity and prevents vascular remodelling. From days 6-20 of gestation (term ∼22 days), female Wistar rats were randomly assigned to normoxic or hypoxic (13-14% O2 ) pregnancy ± daily maternal MitoQ treatment (500 µm in drinking water). At 20 days of gestation, maternal, placental and fetal tissue was frozen to determine MitoQ uptake. The uterine arteries were harvested and, in one segment, constrictor and dilator reactivity was determined by wire myography. Another segment was fixed for unbiased stereological analysis of vessel morphology. Maternal administration of MitoQ in both normoxic and hypoxic pregnancy crossed the placenta and was present in all tissues analysed. Hypoxia increased uterine artery constrictor responses to norepinephrine, angiotensin II and the protein kinase C activator, phorbol 12,13-dibutyrate. Hypoxia enhanced dilator reactivity to sodium nitroprusside, the large conductance Ca2+ -activated K+ -channel activator NS1619 and ACh via increased nitric oxide-dependent mechanisms. Uterine arteries from hypoxic pregnancy showed increased wall thickness and MitoQ treatment in hypoxic pregnancy prevented all effects on uterine artery reactivity and remodelling. The data support mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy. KEY POINTS: Dysfunction and remodelling of the uterine artery are strongly implicated in many pregnancy complications, including advanced maternal age, maternal hypertension of pregnancy, maternal obesity, gestational diabetes and pregnancy at high altitude. Such complications not only have immediate adverse effects on the growth of the fetus, but also they can also increase the risk of cardiovascular disease in the mother and offspring. Despite this, there is a significant unmet clinical need for therapeutics that treat uterine artery vascular dysfunction in adverse pregnancy. Here, we show in a rodent model of gestational hypoxia that in vivo oral treatment of the mitochondria-targeted antioxidant MitoQ protects against uterine artery vascular dysfunction and remodelling, supporting the use of mitochondria-targeted therapy against adverse changes in uterine artery structure and function in high-risk pregnancy.
Collapse
Affiliation(s)
- Zhongchao Wang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
- Department of Congenital Heart Disease, General Hospital of Northern Theater Command, Shenyang, China
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Anna Maria Nuzzo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Ana-Mishel Spiroski
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Katie L Skeffington
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Thomas J Ashmore
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alessandro Rolfo
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Tullia Todros
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Angela Logan
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Youguo Niu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cambridge Cardiovascular Strategic Research Initiative, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Pantaleão LC, Loche E, Fernandez-Twinn DS, Dearden L, Córdova-Casanova A, Osmond C, Salonen MK, Kajantie E, Niu Y, de Almeida-Faria J, Thackray BD, Mikkola TM, Giussani DA, Murray AJ, Bushell M, Eriksson JG, Ozanne SE. Programming of cardiac metabolism by miR-15b-5p, a miRNA released in cardiac extracellular vesicles following ischemia-reperfusion injury. Mol Metab 2024; 80:101875. [PMID: 38218535 PMCID: PMC10832484 DOI: 10.1016/j.molmet.2024.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
OBJECTIVE We investigated the potential involvement of miRNAs in the developmental programming of cardiovascular diseases (CVD) by maternal obesity. METHODS Serum miRNAs were measured in individuals from the Helsinki Birth Cohort (with known maternal body mass index), and a mouse model was used to determine causative effects of maternal obesity during pregnancy and ischemia-reperfusion on offspring cardiac miRNA expression and release. RESULTS miR-15b-5p levels were increased in the sera of males born to mothers with higher BMI and in the hearts of adult mice born to obese dams. In an ex-vivo model of perfused mouse hearts, we demonstrated that cardiac tissue releases miR-15b-5p, and that some of the released miR-15b-5p was contained within small extracellular vesicles (EVs). We also demonstrated that release was higher from hearts exposed to maternal obesity following ischaemia/reperfusion. Over-expression of miR-15b-5p in vitro led to loss of outer mitochondrial membrane stability and to repressed fatty acid oxidation in cardiomyocytes. CONCLUSIONS These findings suggest that miR-15-b could play a mechanistic role in the dysregulation of cardiac metabolism following exposure to an in utero obesogenic environment and that its release in cardiac EVs following ischaemic damage may be a novel factor contributing to inter-organ communication between the programmed heart and peripheral tissues.
Collapse
Affiliation(s)
- Lucas C Pantaleão
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Elena Loche
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Denise S Fernandez-Twinn
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Laura Dearden
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Adriana Córdova-Casanova
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Clive Osmond
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Minna K Salonen
- Finnish Institute for Health and Welfare, Public Health Unit, Finland
| | - Eero Kajantie
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Clinical Medicine Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Youguo Niu
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Juliana de Almeida-Faria
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Benjamin D Thackray
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tuija M Mikkola
- Finnish Institute for Health and Welfare, Public Health Unit, Finland; Folkhalsan Research Center, Helsinki, Finland; Faculty of Medicine, University of Helsinki, Finland
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Andrew J Murray
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Martin Bushell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Johan G Eriksson
- Folkhalsan Research Center, Helsinki, Finland; Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Finland; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore, Singapore; Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan E Ozanne
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Fuenzalida B, Yañez MJ, Mueller M, Mistry HD, Leiva A, Albrecht C. Evidence for hypoxia-induced dysregulated cholesterol homeostasis in preeclampsia: Insights into the mechanisms from human placental cells and tissues. FASEB J 2024; 38:e23431. [PMID: 38265294 PMCID: PMC10953329 DOI: 10.1096/fj.202301708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
Preeclampsia (PE) poses a considerable risk to the long-term cardiovascular health of both mothers and their offspring due to a hypoxic environment in the placenta leading to reduced fetal oxygen supply. Cholesterol is vital for fetal development by influencing placental function. Recent findings suggest an association between hypoxia, disturbed cholesterol homeostasis, and PE. This study investigates the influence of hypoxia on placental cholesterol homeostasis. Using primary human trophoblast cells and placentae from women with PE, various aspects of cholesterol homeostasis were examined under hypoxic and hypoxia/reoxygenation (H/R) conditions. Under hypoxia and H/R, intracellular total and non-esterified cholesterol levels were significantly increased. This coincided with an upregulation of HMG-CoA-reductase and HMG-CoA-synthase (key genes regulating cholesterol biosynthesis), and a decrease in acetyl-CoA-acetyltransferase-1 (ACAT1), which mediates cholesterol esterification. Hypoxia and H/R also increased the intracellular levels of reactive oxygen species and elevated the expression of hypoxia-inducible factor (HIF)-2α and sterol-regulatory-element-binding-protein (SREBP) transcription factors. Additionally, exposure of trophoblasts to hypoxia and H/R resulted in enhanced cholesterol efflux to maternal and fetal serum. This was accompanied by an increased expression of proteins involved in cholesterol transport such as the scavenger receptor class B type I (SR-BI) and the ATP-binding cassette transporter G1 (ABCG1). Despite these metabolic alterations, mitogen-activated-protein-kinase (MAPK) signaling, a key regulator of cholesterol homeostasis, was largely unaffected. Our findings indicate dysregulation of cholesterol homeostasis at multiple metabolic points in both the trophoblast hypoxia model and placentae from women with PE. The increased cholesterol efflux and intracellular accumulation of non-esterified cholesterol may have critical implications for both the mother and the fetus during pregnancy, potentially contributing to an elevated cardiovascular risk later in life.
Collapse
Affiliation(s)
- Barbara Fuenzalida
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
| | - Maria Jose Yañez
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Martin Mueller
- Division of Gynecology and ObstetricsLindenhofgruppeBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Hiten D. Mistry
- Department of Women and Children's HealthSchool of Life Course and Population Health Sciences, King's College LondonLondonUK
| | - Andrea Leiva
- School of Medical Technology, Faculty of Medicine and ScienceUniversidad San SebastiánSantiagoChile
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of MedicineUniversity of BernBernSwitzerland
- Swiss National Center of Competence in Research, NCCR TransCureUniversity of BernBernSwitzerland
| |
Collapse
|
14
|
Lu L, Shi Y, Wei B, Li W, Yu X, Zhao Y, Yu D, Sun M. YTHDF3 modulates the Cbln1 level by recruiting BTG2 and is implicated in the impaired cognition of prenatal hypoxia offspring. iScience 2024; 27:108703. [PMID: 38205248 PMCID: PMC10776956 DOI: 10.1016/j.isci.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.
Collapse
Affiliation(s)
- Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Weisheng Li
- Department of Gynaecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Méndez N, Corvalan F, Halabi D, Ehrenfeld P, Maldonado R, Vergara K, Seron-Ferre M, Torres-Farfan C. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res 2023; 75:e12908. [PMID: 37650128 DOI: 10.1111/jpi.12908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
During gestation, the developing fetus relies on precise maternal circadian signals for optimal growth and preparation for extrauterine life. These signals regulate the daily delivery of oxygen, nutrients, hormones, and other biophysical factors while synchronizing fetal rhythms with the external photoperiod. However, modern lifestyle factors such as light pollution and shift work can induce gestational chronodisruption, leading to the desynchronization of maternal and fetal circadian rhythms. Such disruptions have been associated with adverse effects on cardiovascular, neurodevelopmental, metabolic, and endocrine functions in the fetus, increasing the susceptibility to noncommunicable diseases (NCDs) in adult life. This aligns with the Developmental Origins of Health and Disease theory, suggesting that early-life exposures can significantly influence health outcomes later in life. The consequences of gestational chronodisruption also extend into adulthood. Environmental factors like diet and stress can exacerbate the adverse effects of these disruptions, underscoring the importance of maintaining a healthy circadian rhythm across the lifespan to prevent NCDs and mitigate the impact of gestational chronodisruption on aging. Research efforts are currently aimed at identifying potential interventions to prevent or mitigate the effects of gestational chronodisruption. Melatonin supplementation during pregnancy emerges as a promising intervention, although further investigation is required to fully understand the precise mechanisms involved and to develop effective strategies for promoting health and preventing NCDs in individuals affected by gestational chronodisruption.
Collapse
Affiliation(s)
- Natalia Méndez
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Corvalan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Diego Halabi
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
| | - Pamela Ehrenfeld
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Maldonado
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Karina Vergara
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Maria Seron-Ferre
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
- School of Dentistry, Facultad de Medicina, Universidad Austral de Chile, Santiago, Chile
- Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago de Chile
| | - Claudia Torres-Farfan
- Laboratorio de Cronobiología del Desarrollo, Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
16
|
Li A, Zhao M, Yang Z, Fang Z, Qi W, Zhang C, Zhou M, Guo J, Li S, Wang X, Zhang M. 6-Gingerol alleviates placental injury in preeclampsia by inhibiting oxidative stress via BNIP3/LC3 signaling-mediated trophoblast mitophagy. Front Pharmacol 2023; 14:1243734. [PMID: 37900164 PMCID: PMC10611501 DOI: 10.3389/fphar.2023.1243734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background and aims: Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality worldwide. Apoptosis of trophoblast cells induced by oxidative stress is a principal reason of placental injury in PE. 6-Gingerol, an antioxidant from ginger, plays an important role in many disease models, but its effect on obstetric diseases has not been elucidated. In this study, we investigated the protective effect of 6-gingerol against placental injury. Methods: In vitro hypoxia/reoxygenation (H/R) model of HTR8/Svneo cells and preeclamptic mice model were established to simulate PE. The effects of 6-Gingerol on PE were evaluated by morphological detection, biochemical analysis, and Western blot. Results: We found that H/R treatment induced cell apoptosis, increased the production of reactive oxygen species, malondialdehyde and lactate dehydrogenase, and decreased superoxide dismutase in trophoblast. In addition, the polarization of mitochondrial membrane potential and the cellular calcium flux were also destroyed under H/R condition, which also activated BCL2-interacting protein 3 (BNIP3) and provoked excessive mitophagy. Importantly, 6-Gingerol reversed these corrosive effects. Furthermore, the placenta damage in PE-like mouse caused by the cell apoptosis, oxidative stress and mitophagy was mitigated by 6-Gingerol. Conclusion: These findings suggest that 6-Gingerol exerts a protective effect against placental injury in PE by reducing oxidative stress and inhibiting excessive mitophagy caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zexin Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Weiyi Qi
- Department of Clinical Medicine, Shandong First Medical University, Jinan, China
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
17
|
Pan M, Zhou J, Wang J, Cao W, Li L, Wang L. The role of placental aging in adverse pregnancy outcomes: A mitochondrial perspective. Life Sci 2023; 329:121924. [PMID: 37429418 DOI: 10.1016/j.lfs.2023.121924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Premature placental aging is associated with placental insufficiency, which reduces the functional capacity of the placenta, leading to adverse pregnancy outcomes. Placental mitochondria are vital organelles that provide energy and play essential roles in placental development and functional maintenance. In response to oxidative stress, damage, and senescence, an adaptive response is induced to selectively remove mitochondria through the mitochondrial equivalent of autophagy. However, adaptation can be disrupted when mitochondrial abnormalities or dysfunctions persist. This review focuses on the adaptation and transformation of mitochondria during pregnancy. These changes modify placental function throughout pregnancy and can cause complications. We discuss the relationship between placental aging and adverse pregnancy outcomes from the perspective of mitochondria and potential approaches to improve abnormal pregnancy outcomes.
Collapse
Affiliation(s)
- Meijun Pan
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Second Clinical Medical College of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Jing Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Wenli Cao
- Center for Reproductive Medicine, Zhoushan Women and Children Hospital, Zhejiang, China
| | - Lisha Li
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China; The Academy of Integrative Medicine of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai, China.
| |
Collapse
|
18
|
Salinas CE, Patey OV, Murillo C, Gonzales M, Espinoza V, Mendoza S, Ruiz R, Vargas R, Perez Y, Montaño J, Toledo-Jaldin L, Badner A, Jimenez J, Peñaranda J, Romero C, Aguilar M, Riveros L, Arana I, Giussani DA. Preeclampsia and risk of maternal pulmonary hypertension at high altitude in Bolivia. J Dev Orig Health Dis 2023; 14:523-531. [PMID: 37497575 DOI: 10.1017/s2040174423000193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Women with a history of preeclampsia (PE) have a greater risk of pulmonary arterial hypertension (PAH). In turn, pregnancy at high altitude is a risk factor for PE. However, whether women who develop PE during highland pregnancy are at risk of PAH before and after birth has not been investigated. We tested the hypothesis that during highland pregnancy, women who develop PE are at greater risk of PAH compared to women undergoing healthy highland pregnancies. The study was on 140 women in La Paz, Bolivia (3640m). Women undergoing healthy highland pregnancy were controls (C, n = 70; 29 ± 3.3 years old, mean±SD). Women diagnosed with PE were the experimental group (PE, n = 70, 31 ± 2 years old). Conventional (B- and M-mode, PW Doppler) and modern (pulsed wave tissue Doppler imaging) ultrasound were applied for cardiovascular íííassessment. Spirometry determined maternal lung function. Assessments occurred at 35 ± 4 weeks of pregnancy and 6 ± 0.3 weeks after birth. Relative to highland controls, highland PE women had enlarged right ventricular (RV) and right atrial chamber sizes, greater pulmonary artery dimensions and increased estimated RV contractility, pulmonary artery pressure and pulmonary vascular resistance. Highland PE women had lower values for peripheral oxygen saturation, forced expiratory flow and the bronchial permeability index. Differences remained 6 weeks after birth. Therefore, women who develop PE at high altitude are at greater risk of PAH before and long after birth. Hence, women with a history of PE at high altitude have an increased cardiovascular risk that transcends the systemic circulation to include the pulmonary vascular bed.
Collapse
Affiliation(s)
- C E Salinas
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - O V Patey
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - C Murillo
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - M Gonzales
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - V Espinoza
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - S Mendoza
- Centro de Salud Tembladerani, La Paz, Bolivia
| | - R Ruiz
- Hospital Materno Infantil, La Paz, Bolivia
| | - R Vargas
- Hospital de la Mujer, La Paz, Bolivia
| | - Y Perez
- Hospital de la Mujer, La Paz, Bolivia
| | - J Montaño
- Hospital de la Mujer, La Paz, Bolivia
| | | | - A Badner
- Hospital Materno Infantil, La Paz, Bolivia
| | - J Jimenez
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | | | - C Romero
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - M Aguilar
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - L Riveros
- Instituto Boliviano de Biología de Altura (IBBA), UMSA, La Paz, Bolivia
| | - I Arana
- Grupo Premio Nobel, La Paz, Bolivia
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
- BHF Centre for Research Excellence, University of Cambridge, Cambridge, UK
- Strategic Research Initiative in Reproduction, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Lock MC, Botting KJ, Allison BJ, Niu Y, Ford SG, Murphy MP, Orgeig S, Giussani DA, Morrison JL. MitoQ as an antenatal antioxidant treatment improves markers of lung maturation in healthy and hypoxic pregnancy. J Physiol 2023; 601:3647-3665. [PMID: 37467062 PMCID: PMC10952154 DOI: 10.1113/jp284786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Chronic fetal hypoxaemia is a common pregnancy complication that increases the risk of infants experiencing respiratory complications at birth. In turn, chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in animal models of hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. However, whether antenatal antioxidant therapy confers any benefit on lung development in complicated pregnancies has not yet been investigated. Here, we tested the hypothesis that maternal antenatal treatment with MitoQ will protect the developing lung in hypoxic pregnancy in sheep, a species with similar fetal lung developmental milestones as humans. Maternal treatment with MitoQ during late gestation promoted fetal pulmonary surfactant maturation and an increase in the expression of lung mitochondrial complexes III and V independent of oxygenation. Maternal treatment with MitoQ in hypoxic pregnancy also increased the expression of genes regulating liquid reabsorption in the fetal lung. These data support the hypothesis tested and suggest that MitoQ as an antenatal targeted antioxidant treatment may improve lung maturation in the late gestation fetus. KEY POINTS: Chronic fetal hypoxaemia promotes oxidative stress, and maternal antioxidant therapy in hypoxic pregnancy has proven to be protective with regards to fetal growth and cardiovascular development. MitoQ is a targeted antioxidant that uses the cell and the mitochondrial membrane potential to accumulate within the mitochondria. Treatment of healthy or hypoxic pregnancy with MitoQ, increases the expression of key molecules involved in surfactant maturation, lung liquid reabsorption and in mitochondrial proteins driving ATP synthesis in the fetal sheep lung. There were no detrimental effects of MitoQ treatment alone on the molecular components measured in the present study, suggesting that maternal antioxidant treatment has no effect on other components of normal maturation of the surfactant system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Kimberley J. Botting
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Beth J. Allison
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Youguo Niu
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Sage G. Ford
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | | | - Sandra Orgeig
- UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Dino A. Giussani
- Department of Physiology, Development & NeuroscienceUniversity of CambridgeCambridgeUK
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health ScienceUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
20
|
Mansfield R, Cecula P, Pedraz CT, Zimianiti I, Elsaddig M, Zhao R, Sathiyamurthy S, McEniery CM, Lees C, Banerjee J. Impact of perinatal factors on biomarkers of cardiovascular disease risk in preadolescent children. J Hypertens 2023; 41:1059-1067. [PMID: 37115847 DOI: 10.1097/hjh.0000000000003452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
BACKGROUND This review aims to summarize associations of the perinatal environment with arterial biophysical properties in childhood, to elucidate possible perinatal origins of adult cardiovascular disease (CVD). METHODS A systematic search of PubMed database was performed (December 2020). Studies exploring associations of perinatal factors with arterial biophysical properties in children 12 years old or less were included. Properties studied included: pulse wave velocity; arterial stiffness or distensibility; augmentation index; intima-media thickness of aorta (aIMT) or carotids; endothelial function (laser flow Doppler, flow-mediated dilatation). Two reviewers independently performed study selection and data extraction. RESULTS Fifty-two of 1084 identified records were included. Eleven studies explored associations with prematurity, 14 explored maternal factors during pregnancy, and 27 explored effects of low birth weight, small-for-gestational age and foetal growth restriction (LBW/SGA/FGR). aIMT was consistently higher in offspring affected by LBW/SGA/FGR in all six studies examining this variable. The cause of inconclusive or conflicting associations found with other arterial biophysical properties and perinatal factors may be multifactorial: in particular, measurements and analyses of related properties differed in technique, equipment, anatomical location, and covariates used. CONCLUSION aIMT was consistently higher in LBW/SGA/FGR offspring, which may relate to increased long-term CVD risk. Larger and longer term cohort studies may help to elucidate clinical significance, particularly in relation to established CVD risk factors. Experimental studies may help to understand whether lifestyle or medical interventions can reverse perinatal changes aIMT. The field could be advanced by validation and standardization of techniques assessing arterial structure and function in children.
Collapse
Affiliation(s)
- Roshni Mansfield
- Department of Neonatology, Queen Charlotte's and Chelsea Hospital
- Biomedical Research Centre, Imperial College Healthcare NHS Trust
| | - Paulina Cecula
- St Marys Campus, Medical School, Imperial College London, London
| | | | - Ioanna Zimianiti
- St Marys Campus, Medical School, Imperial College London, London
| | - Malaz Elsaddig
- Department of Neonatology, Queen Charlotte's and Chelsea Hospital
| | - Rebecca Zhao
- University Hospitals Birmingham NHS Foundation Trust, Birmingham
| | | | - Carmel M McEniery
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge
| | - Christoph Lees
- Institute of Reproductive and Developmental Biology, Imperial College London
- Department of Fetal Medicine, Queen Charlotte's and Chelsea Hospital, Imperial College Healthcare Trust, Du Cane Rd, White City
| | - Jayanta Banerjee
- Department of Neonatology, Queen Charlotte's and Chelsea Hospital
- Institute of Reproductive and Developmental Biology, Imperial College London
- Origins of Health and Disease, Centre for Child Health, Imperial College London, London, UK
| |
Collapse
|
21
|
Freedman AA, Price E, Franklin A, Ernst LM. Measures of Fetal Growth and Cardiac Structure in Stillbirths With Placental Maternal Vascular Malperfusion: Evidence for Heart Weight Sparing and Structural Cardiac Alterations in Humans. Pediatr Dev Pathol 2023:10935266231166548. [PMID: 37082927 DOI: 10.1177/10935266231166548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
BACKGROUND Placental maternal vascular malperfusion (MVM) is associated with fetal growth restriction (FGR). While FGR increases the risk of cardiovascular disease, the impact of MVM on fetal cardiac structure is understudied. METHODS We utilized a cohort of autopsied stillbirths; 29 with MVM as the cause of death and 21 with a cause of death unrelated to MVM. Fetal and organ weights and heart measurements were standardized by gestational age and compared between MVM and non-MVM stillbirths. Differences in standardized fetal organ and cardiac measures as compared to standardized fetal body weight were calculated to account for body size. RESULTS MVM stillbirths had smaller organ and heart weights than non-MVM stillbirths; however, after accounting for gestational age, heart weight was the least affected among all organs. In an analysis of organ weights relative to body size, heart weights were 0.31 standard deviations (SD) larger than expected relative to body weight (95% CI: 0.04, 0.57). Right and left ventricle thicknesses and mitral valve circumference were also larger than expected relative to body weight. CONCLUSION Stillbirth due to MVM was associated with relative sparing of heart weight and other heart measurements. The significance of these findings in liveborn infants needs further study.
Collapse
Affiliation(s)
- Alexa A Freedman
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, IL, USA
| | - Erica Price
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
| | - Andrew Franklin
- Department of Pediatrics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Pathology, University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
22
|
Eggleton EJ, McMurrugh KJ, Aiken CE. Perinatal outcomes in pregnancies complicated by maternal cardiomyopathy: a systematic review and meta-analysis. Am J Obstet Gynecol 2023; 228:283-291. [PMID: 36150520 DOI: 10.1016/j.ajog.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study aimed to systematically assess perinatal outcomes of pregnancies complicated by maternal cardiomyopathy. DATA SOURCES PubMed, Ovid Embase, Ovid MEDLINE, the Cochrane Library, and ClinicalTrials.gov were systematically searched from inception to August 25, 2022. STUDY ELIGIBILITY CRITERIA Observational cohort, case-control, and case-cohort studies in human populations were included if they reported predefined perinatal outcomes in pregnant women with cardiomyopathy (any subtype) and an appropriate control population (either pregnant women with no known cardiac disease or pregnant women with noncardiomyopathy cardiac disease). METHODS Of note, 2 reviewers independently assessed the articles for eligibility and risk of bias, and conflicts were resolved by a third reviewer. Data were extracted and synthesized according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. RESULTS Here, 13 studies (representing 2,291,024 pregnancies) were eligible for inclusion. Perinatal death was more likely in neonates born to women with cardiomyopathy than in (1) neonates born to women with no cardiac disease (stillbirth: odds ratio, 20.82; 95% confidence interval, 6.68-64.95; I2 = not available; P<.00001; neonatal mortality: odds ratio, 6.75; 95% confidence interval, 3.54-12.89; I2=0%; P<.00001) and (2) neonates born to women with other forms of cardiac disease (stillbirth: odds ratio, 3.75; 95% confidence interval, 1.86-7.59; I2=0%; P=.0002; neonatal mortality: odds ratio, 2.42; 95% confidence interval, 1.39-4.21; I2=0%; P=.002). Pregnancies affected by maternal cardiomyopathy were significantly more likely to result in preterm birth (odds ratio, 2.21; 95% confidence interval, 1.31-3.73; I2=77%; P=.003) and small-for-gestational-age neonates (odds ratio, 2.97; 95% confidence interval, 2.38-3.70; I2=47%; P<.00001), both major causes of short- and long-term morbidities, than pregnancies affected by other forms of cardiac disease. CONCLUSION There was an increased likelihood of adverse perinatal outcomes in pregnancies affected by maternal cardiomyopathy compared with both pregnancies affected by noncardiomyopathy cardiac disease and pregnancies without cardiac disease. Women with cardiomyopathy who plan to get pregnant should receive detailed counseling regarding these risks and have their pregnancies managed by experienced multidisciplinary teams that can provide close fetal monitoring and neonatology expertise.
Collapse
Affiliation(s)
- Elizabeth J Eggleton
- The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, United Kingdom
| | - Kate J McMurrugh
- East Surrey Hospital, Surrey and Sussex Healthcare NHS Trust, Canada Avenue, Surrey, United Kingdom
| | - Catherine E Aiken
- Department of Obstetrics and Gynaecology, Rosie Hospital and NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
23
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
24
|
Zhan K, Zhang X, Wang B, Jiang Z, Fang X, Yang S, Jia H, Li L, Cao G, Zhang K, Ma X. Response to: COVID-19 and diabetes-double whammy. QJM 2023; 116:144-145. [PMID: 35178559 DOI: 10.1093/qjmed/hcac048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- K Zhan
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - X Zhang
- Department of General Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - B Wang
- Pulmonary and Critical Care Medicine Center, Chinese PLA Respiratory Disease Institute, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Z Jiang
- Yidu Cloud Technology Co. Ltd, Beijing, China
| | - X Fang
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - S Yang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - H Jia
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - L Li
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - G Cao
- Department of Respiratory Medicine, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - K Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - X Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
25
|
Chai N, Zheng H, Zhang H, Li L, Yu X, Wang L, Bi X, Yang L, Niu T, Liu X, Zhao Y, Dong L. Spermidine Alleviates Intrauterine Hypoxia-Induced Offspring Newborn Myocardial Mitochondrial Damage in Rats by Inhibiting Oxidative Stress and Regulating Mitochondrial Quality Control. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e133776. [PMID: 36945337 PMCID: PMC10024813 DOI: 10.5812/ijpr-133776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 03/05/2023]
Abstract
Background Intrauterine hypoxia (IUH) increases the risk of cardiovascular diseases in offspring. As a reactive oxygen species (ROS) scavenger, polyamine spermidine (SPD) is essential for embryonic and fetal survival and growth. However, further studies on the SPD protection and mechanisms for IUH-induced heart damage in offspring are required. Objectives This study aimed to investigate the preventive effects of prenatal SPD treatment on IUH-induced heart damage in newborn offspring rats and its underlying mitochondrial-related mechanism. Methods The rat model of IUH was established by exposure to 10% O2 seven days before term. Meanwhile, for seven days, the pregnant rats were given SPD (5 mg.kg-1.d-1; ip). The one-day offspring rats were sacrificed to assess several parameters, including growth development, heart damage, cardiomyocytes proliferation, myocardial oxidative stress, cell apoptosis, and mitochondrial function, and have mitochondrial quality control (MQC), including mitophagy, mitochondrial biogenesis, and mitochondrial fusion/fission. In in vitro experiments, primary cardiomyocytes were subjected to hypoxia with or without SPD for 24 hours. Results IUH decreased body weight, heart weight, cardiac Ki67 expression, the activity of SOD, and the CAT and adenosine 5'-triphosphate (ATP) levels and increased the BAX/BCL2 expression, and TUNEL-positive nuclei numbers. Furthermore, IUH also caused mitochondrial structure abnormality, dysfunction, and decreased mitophagy (decreased number of mitophagosomes), declined mitochondrial biogenesis (decreased expression of SIRT-1, PGC-1α, NRF-2, and TFAM), and led to fission/fusion imbalance (increased percentage of mitochondrial fragments, increased DRP1 expression, and decreased MFN2 expression) in the myocardium. Surprisingly, SPD treatment normalized the variations in the IUH-induced parameters. Furthermore, SPD also prevented hypoxia-induced ROS accumulation, mitochondrial membrane potential decay, and the mitophagy decrease in cardiomyocytes. Conclusion Maternal SPD treatment caused IUH-induced heart damage in newborn offspring rats by improving the myocardial mitochondrial function via anti-oxidation and anti-apoptosis, and regulating MQC.
Collapse
Affiliation(s)
- Nannan Chai
- College of Nursing, Chifeng University, Chifeng, China
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Haihong Zheng
- The Second Affiliated Hospital Department of the Laboratory Animal, Harbin Medical University, Harbin, China
| | - Hao Zhang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lingxu Li
- Department of Nephrology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xue Yu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Liyi Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Bi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihong Yang
- College of Nursing, Chifeng University, Chifeng, China
| | - Tongxu Niu
- College of Nursing, Chifeng University, Chifeng, China
| | - Xiujuan Liu
- College of Nursing, Chifeng University, Chifeng, China
| | - Yajun Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, China
- Corresponding Author: Department of Pathophysiology, Harbin Medical University, Harbin, China.
| | - Lijie Dong
- Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China
- Corresponding Author: Neonatal Intensive Care Unit, Harbin Children’s Hospital, Harbin, China.
| |
Collapse
|
26
|
Xiao Y, Lu Y, Liu M, Zeng R, Bai J. A deep feature fusion network for fetal state assessment. Front Physiol 2022; 13:969052. [PMID: 36531165 PMCID: PMC9748093 DOI: 10.3389/fphys.2022.969052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/15/2022] [Indexed: 09/05/2023] Open
Abstract
CTG (cardiotocography) has consistently been used to diagnose fetal hypoxia. It is susceptible to identifying the average fetal acid-base balance but lacks specificity in recognizing prenatal acidosis and neurological impairment. CTG plays a vital role in intrapartum fetal state assessment, which can prevent severe organ damage if fetal hypoxia is detected earlier. In this paper, we propose a novel deep feature fusion network (DFFN) for fetal state assessment. First, we extract spatial and temporal information from the fetal heart rate (FHR) signal using a multiscale CNN-BiLSTM network, increasing the features' diversity. Second, the multiscale CNN-BiLSM network and frequently used features are integrated into the deep learning model. The proposed DFFN model combines different features to improve classification accuracy. The multiscale convolutional kernels can identify specific essential information and consider signal's temporal information. The proposed method achieves 61.97%, 73.82%, and 66.93% of sensitivity, specificity, and quality index, respectively, on the public CTU-UHB database. The proposed method achieves the highest QI on the private database, verifying the proposed method's effectiveness and generalization. The proposed DFFN combines the advantages of feature engineering and deep learning models and achieves competitive accuracy in fetal state assessment compared with related works.
Collapse
Affiliation(s)
- Yahui Xiao
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Yaosheng Lu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Mujun Liu
- College of Science and Engineering Jinan University, Guangzhou, China
| | - Rongdan Zeng
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
27
|
Smith KLM, Swiderska A, Lock MC, Graham L, Iswari W, Choudhary T, Thomas D, Kowash HM, Desforges M, Cottrell EC, Trafford AW, Giussani DA, Galli GLJ. Chronic developmental hypoxia alters mitochondrial oxidative capacity and reactive oxygen species production in the fetal rat heart in a sex-dependent manner. J Pineal Res 2022; 73:e12821. [PMID: 35941749 PMCID: PMC9540814 DOI: 10.1111/jpi.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
Insufficient oxygen supply (hypoxia) during fetal development leads to cardiac remodeling and a predisposition to cardiovascular disease in later life. Previous work has shown hypoxia causes oxidative stress in the fetal heart and alters the activity and expression of mitochondrial proteins in a sex-dependent manner. However, the functional effects of these modifications on mitochondrial respiration remain unknown. Furthermore, while maternal antioxidant treatments are emerging as a promising new strategy to protect the hypoxic fetus, whether these treatments convey similar protection to cardiac mitochondria in the male or female fetus has not been investigated. Therefore, using an established rat model, we measured the sex-dependent effects of gestational hypoxia and maternal melatonin treatment on fetal cardiac mitochondrial respiration, reactive oxygen species (ROS) production, and lipid peroxidation. Pregnant Wistar rats were subjected to normoxia or hypoxia (13% oxygen) during gestational days (GDs) 6-20 (term ~22 days) with or without melatonin treatment (5 µg/ml in maternal drinking water). On GD 20, mitochondrial aerobic respiration and H2 O2 production were measured in fetal heart tissue, together with lipid peroxidation and citrate synthase (CS) activity. Gestational hypoxia reduced maternal body weight gain (p < .01) and increased placental weight (p < .05) but had no effect on fetal weight or litter size. Cardiac mitochondria from male but not female fetuses of hypoxic pregnancy had reduced respiratory capacity at Complex II (CII) (p < .05), and an increase in H2 O2 production/O2 consumption (p < .05) without any changes in lipid peroxidation. CS activity was also unchanged in both sexes. Despite maternal melatonin treatment increasing maternal and fetal plasma melatonin concentration (p < .001), melatonin treatment had no effect on any of the mitochondrial parameters investigated. To conclude, we show that gestational hypoxia leads to ROS generation from the mitochondrial electron transport chain and affects fetal cardiac mitochondrial respiration in a sex-dependent manner. We also show that maternal melatonin treatment had no effect on these relationships, which has implications for the development of future therapies for hypoxic pregnancies.
Collapse
Affiliation(s)
- Kerri L. M. Smith
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Agnieszka Swiderska
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Mitchell C. Lock
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Lucia Graham
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Wulan Iswari
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Tashi Choudhary
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Donna Thomas
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Hager M. Kowash
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Michelle Desforges
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Elizabeth C. Cottrell
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Andrew W. Trafford
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| | - Dino A. Giussani
- Department of Physiology Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | - Gina L. J. Galli
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and HealthUniversity of ManchesterManchesterUK
| |
Collapse
|
28
|
Flouri D, Darby JRT, Holman SL, Cho SKS, Dimasi CG, Perumal SR, Ourselin S, Aughwane R, Mufti N, Macgowan CK, Seed M, David AL, Melbourne A, Morrison JL. Placental MRI Predicts Fetal Oxygenation and Growth Rates in Sheep and Human Pregnancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203738. [PMID: 36031385 PMCID: PMC9596844 DOI: 10.1002/advs.202203738] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Indexed: 06/09/2023]
Abstract
Magnetic resonance imaging (MRI) assessment of fetal blood oxygen saturation (SO2 ) can transform the clinical management of high-risk pregnancies affected by fetal growth restriction (FGR). Here, a novel MRI method assesses the feasibility of identifying normally grown and FGR fetuses in sheep and is then applied to humans. MRI scans are performed in pregnant ewes at 110 and 140 days (term = 150d) gestation and in pregnant women at 28+3 ± 2+5 weeks to measure feto-placental SO2 . Birth weight is collected and, in sheep, fetal blood SO2 is measured with a blood gas analyzer (BGA). Fetal arterial SO2 measured by BGA predicts fetal birth weight in sheep and distinguishes between fetuses that are normally grown, small for gestational age, and FGR. MRI feto-placental SO2 in late gestation is related to fetal blood SO2 measured by BGA and body weight. In sheep, MRI feto-placental SO2 in mid-gestation is related to fetal SO2 later in gestation. MRI feto-placental SO2 distinguishes between normally grown and FGR fetuses, as well as distinguishing FGR fetuses with and without normal Doppler in humans. Thus, a multi-compartment placental MRI model detects low placental SO2 and distinguishes between small hypoxemic fetuses and normally grown fetuses.
Collapse
Affiliation(s)
- Dimitra Flouri
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Jack R. T. Darby
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Steven K. S. Cho
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- Department of PhysiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Catherine G. Dimasi
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Sunthara R. Perumal
- South Australian Health & Medical Research InstitutePreclinicalImaging & Research LaboratoriesAdelaideSA 5001Australia
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
| | - Rosalind Aughwane
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Nada Mufti
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Christopher K. Macgowan
- Division of Translational MedicineThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoON M5S 1A1Canada
| | - Mike Seed
- Department of PaediatricsDivision of CardiologyThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
- Department of Diagnostic ImagingThe Hospital for Sick ChildrenUniversity of TorontoTorontoON M5G 1X8Canada
| | - Anna L. David
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research CentreUniversity College London HospitalsLondonW1T 7DNUK
| | - Andrew Melbourne
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonSE1 7EUUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research GroupHealth and Biomedical InnovationUniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
29
|
Tong W, Allison BJ, Brain KL, Patey OV, Niu Y, Botting KJ, Ford SG, Garrud TA, Wooding PF, Shaw CJ, Lyu Q, Zhang L, Ma J, Cindrova-Davies T, Yung HW, Burton GJ, Giussani DA. Chronic Hypoxia in Ovine Pregnancy Recapitulates Physiological and Molecular Markers of Preeclampsia in the Mother, Placenta, and Offspring. Hypertension 2022; 79:1525-1535. [PMID: 35534925 PMCID: PMC9172902 DOI: 10.1161/hypertensionaha.122.19175] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Preeclampsia continues to be a prevalent pregnancy complication and underlying mechanisms remain controversial. A common feature of preeclampsia is utero-placenta hypoxia. In contrast to the impact of hypoxia on the placenta and fetus, comparatively little is known about the maternal physiology. METHODS We adopted an integrative approach to investigate the inter-relationship between chronic hypoxia during pregnancy with maternal, placental, and fetal outcomes, common in preeclampsia. We exploited a novel technique using isobaric hypoxic chambers and in vivo continuous cardiovascular recording technology for measurement of blood pressure in sheep and studied the placental stress in response to hypoxia at cellular and subcellular levels. RESULTS Chronic hypoxia in ovine pregnancy promoted fetal growth restriction (FGR) with evidence of fetal brain-sparing, increased placental hypoxia-mediated oxidative damage, and activated placental stress response pathways. These changes were linked with dilation of the placental endoplasmic reticulum (ER) cisternae and increased placental expression of the antiangiogenic factors sFlt-1 (soluble fms-like tyrosine kinase 1) and sEng (soluble endoglin), combined with a shift towards an angiogenic imbalance in the maternal circulation. Chronic hypoxia further led to an increase in uteroplacental vascular resistance and the fall in maternal blood pressure with advancing gestation measured in normoxic pregnancy did not occur in hypoxic pregnancy. CONCLUSIONS Therefore, we show in an ovine model of sea-level adverse pregnancy that chronic hypoxia recapitulates physiological and molecular features of preeclampsia in the mother, placenta, and offspring.
Collapse
Affiliation(s)
- Wen Tong
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Beth J. Allison
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Kirsty L. Brain
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Olga V. Patey
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Youguo Niu
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Kimberley J. Botting
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| | - Sage G. Ford
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Tessa A. Garrud
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Peter F.B. Wooding
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Caroline J. Shaw
- Department of Metabolism, Digestion and Reproduction, Imperial College London, United Kingdom (C.J.S.)
| | - Qiang Lyu
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Lin Zhang
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Jin Ma
- Department of Aerospace Physiology, Fourth Military Medical University, Xi’an, China (Y.N., Q.L., L.Z., J.M., D.A.G.)
| | - Tereza Cindrova-Davies
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Hong Wa Yung
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Graham J. Burton
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
| | - Dino A. Giussani
- Department of Physiology Development & Neuroscience, University of Cambridge, United Kingdom (W.T., B.J.A., K.L.B., O.V.P., Y.N., K.J.B., S.G.F., T.A.G., P.F.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- Centre for Trophoblast Research, University of Cambridge, United Kingdom (W.T., Y.N., K.J.B., T.A.G., P.G.B.W., T.C.-D., H.W.Y., G.J.B., D.A.G.)
- BHF Cardiovascular Centre for Research Excellence, University of Cambridge, United Kingdom (Y.N., K.J.B., D.A.S.)
| |
Collapse
|
30
|
Heath-Freudenthal A, Toledo-Jaldin L, von Alvensleben I, Lazo-Vega L, Mizutani R, Stalker M, Yasini H, Mendizabal F, Madera JD, Mundo W, Castro-Monrroy M, Houck JA, Moreno-Aramayo A, Miranda-Garrido V, Su EJ, Giussani DA, Abman SH, Moore LG, Julian CG. Vascular Disorders of Pregnancy Increase Susceptibility to Neonatal Pulmonary Hypertension in High-Altitude Populations. Hypertension 2022; 79:1286-1296. [PMID: 35437031 PMCID: PMC9098686 DOI: 10.1161/hypertensionaha.122.19078] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Preeclampsia and fetal growth restriction increase cardiopulmonary disease risk for affected offspring and occur more frequently at high-altitude (≥2500 m). Retrospective studies indicate that birth to a preeclampsia woman at high altitude increases the risk of pulmonary hypertension (PH) in later life. This prospective study asked whether preeclampsia with or without fetal growth restriction exaggerated fetal hypoxia and impaired angiogenesis in the fetal lung, leading to neonatal cardiopulmonary circulation abnormalities and neonatal or infantile PH. METHODS AND RESULTS We studied 79 maternal-infant pairs (39 preeclampsia, 40 controls) in Bolivia (3600-4100 m). Cord blood erythropoietin, hemoglobin, and umbilical artery and venous blood gases were measured as indices of fetal hypoxia. Maternal and cord plasma levels of angiogenic (VEGF [vascular endothelial growth factor]) and antiangiogenic (sFlt1 [soluble fms-like tyrosine kinase]) factors were determined. Postnatal echocardiography (1 week and 6-9 months) assessed pulmonary hemodynamics and PH. Preeclampsia augmented fetal hypoxia and increased the risk of PH in the neonate but not later in infancy. Pulmonary abnormalities were confined to preeclampsia cases with fetal growth restriction. Maternal and fetal plasma sFlt1 levels were higher in preeclampsia than controls and positively associated with PH. CONCLUSIONS The effect of preeclampsia with fetal growth restriction to increase fetal hypoxia and sFlt1 levels may impede normal development of the pulmonary circulation at high altitude, leading to adverse neonatal pulmonary vascular outcomes. Our observations highlight important temporal windows for the prevention of pulmonary vascular disease among babies born to highland residents or those with exaggerated hypoxia in utero or newborn life.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hussna Yasini
- College of Liberal Arts and Sciences, University of Colorado Denver, Denver, Colorado
| | | | - Jesus Dorado Madera
- College of Liberal Arts and Sciences, University of Colorado Denver, Denver, Colorado
| | - William Mundo
- University of Colorado School of Medicine, Aurora, Colorado
| | | | - Julie A. Houck
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | | | | | - Emily J. Su
- Departments of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Dino A. Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Steven H. Abman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Lorna G. Moore
- Departments of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado
| | - Colleen G. Julian
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
31
|
Intergenerational effects of prenatal hypoxia exposure on uterine artery adaptations to pregnancies in the female offspring. J Dev Orig Health Dis 2022; 13:794-799. [PMID: 35616050 DOI: 10.1017/s2040174422000216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prenatal hypoxia is a common complication of pregnancy and is associated with detrimental health outcomes, such as impaired cardiac and vascular function, in adult offspring. Exposure to prenatal hypoxia reportedly impacts the reproductive system of female offspring. Whether exposure to prenatal hypoxia influences pregnancy adaptations and outcomes in these female offspring is unknown. We hypothesised that prenatal hypoxia impairs uterine artery adaptations in pregnancies of the adult offspring. Pregnancy outcomes and uterine artery function were assessed in 14-16 weeks old non-pregnant and late pregnant (gestational day 20; term = 22 days) adult female offspring born to rats exposed to prenatal normoxia (21% oxygen) or hypoxia (11% oxygen, between days 15-21 of gestation). Compared with normoxia controls, prenatal hypoxia was associated with pregnant adult offspring having reduced placental weights in their litters, and uterine artery circumferential stress that increased with pregnancy. Overall, prenatal hypoxia adversely, albeit mildly, compromised pregnancies of adult offspring.
Collapse
|
32
|
Liu Y, Luo Z, Liao Z, Wang M, Zhou Y, Luo S, Ding Y, Liu T, Cao C, Yue S. Effects of Excessive Activation of N-methyl-D-aspartic Acid Receptors in Neonatal Cardiac Mitochondrial Dysfunction Induced by Intrauterine Hypoxia. Front Cardiovasc Med 2022; 9:837142. [PMID: 35498024 PMCID: PMC9039344 DOI: 10.3389/fcvm.2022.837142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Intrauterine hypoxia is a common complication during pregnancy and could increase the risk of cardiovascular disease in offspring. However, the underlying mechanism is controversial. Memantine, an NMDA receptor antagonist, is reported to be a potential cardio-protective agent. We hypothesized that antenatal memantine treatment could prevent heart injury in neonatal offspring exposed to intrauterine hypoxia. Pregnant rats were exposed to gestational hypoxia or antenatal memantine treatment during late pregnancy. Newborns were then sacrificed to assess multiple parameters. The results revealed that Intrauterine hypoxia resulted in declining birth weight, heart weight, and an abnormally high heart weight/birth weight ratio. Furthermore, intrauterine hypoxia caused mitochondrial structural, functional abnormalities and decreased expression of DRP1, and upregulation of NMDAR1 in vivo. Antenatal memantine treatment,an NMDARs antagonist, improved these changes. In vitro, hypoxia increased the glutamate concentration and expression of NMDAR1. NMDAR activation may lead to similar changes in mitochondrial function, structure, and downregulation of DRP1 in vitro. Pharmacological blockade of NMDARs by the non-competitive NMDA antagonist MK-801 or knockdown of the glutamate receptor NR1 significantly attenuated the increased mitochondrial reactive oxygen species and calcium overload-induced by hypoxia exposure. These facts suggest that memantine could provide a novel and promising treatment for clinical use in intrauterine hypoxia during pregnancy to protect the cardiac mitochondrial function in the offspring. To our best knowledge, our research is the first study that shows intrauterine hypoxia can excessively activate cardiac NMDARs and thus cause mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziqiang Luo
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhengchang Liao
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Mingjie Wang
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhou
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Luo
- Departments of Pediatrics and Neonatology, Children's Hospital of Fudan University, Shanghai, China
- Laboratory of Neonatal Diseases, National Children's Medical Center, National Commission of Health, Shanghai, China
| | - Ying Ding
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Liu
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuangding Cao
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shaojie Yue
- Department of Neonatology, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Shaojie Yue
| |
Collapse
|
33
|
McDonald CR, Weckman AM, Wright JK, Conroy AL, Kain KC. Developmental origins of disease highlight the immediate need for expanded access to comprehensive prenatal care. Front Public Health 2022; 10:1021901. [PMID: 36504964 PMCID: PMC9730730 DOI: 10.3389/fpubh.2022.1021901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/01/2022] [Indexed: 11/25/2022] Open
Abstract
The prenatal environment plays a critical role in shaping fetal development and ultimately the long-term health of the child. Here, we present data linking prenatal health, via maternal nutrition, comorbidities in pregnancy (e.g., diabetes, hypertension), and infectious and inflammatory exposures, to lifelong health through the developmental origins of disease framework. It is well-established that poor maternal health puts a child at risk for adverse outcomes in the first 1,000 days of life, yet the full health impact of the in utero environment is not confined to this narrow window. The developmental origins of disease framework identifies cognitive, neuropsychiatric, metabolic and cardiovascular disorders, and chronic diseases in childhood and adulthood that have their genesis in prenatal life. This perspective highlights the enormous public health implications for millions of pregnancies where maternal care, and therefore maternal health and fetal health, is lacking. Despite near universal agreement that access to antenatal care is a priority to protect the health of women and children in the first 1,000 days of life, insufficient progress has been achieved. Instead, in some regions there has been a political shift toward deprioritizing maternal health, which will further negatively impact the health and safety of pregnant people and their children across the lifespan. In this article we argue that the lifelong health impact attributed to the perinatal environment justifies policies aimed at improving access to comprehensive antenatal care globally.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Andrea M Weckman
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | - Julie K Wright
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrea L Conroy
- Department of Pediatrics, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kevin C Kain
- Sandra A. Rotman (SAR) Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Gonzalez-Candia A, Herrera EA. High Altitude Pregnancies and Vascular Dysfunction: Observations From Latin American Studies. Front Physiol 2021; 12:786038. [PMID: 34950057 PMCID: PMC8688922 DOI: 10.3389/fphys.2021.786038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/14/2022] Open
Abstract
An estimated human population of 170 million inhabit at high-altitude (HA, above 2,500 m). The potential pathological effects of HA hypobaric hypoxia during gestation have been the focus of several researchers around the world. The studies based on the Himalayan and Central/South American mountains are particularly interesting as these areas account for nearly 70% of the HA world population. At present, studies in human and animal models revealed important alterations in fetal development and growth at HA. Moreover, vascular responses to chronic hypobaria in the pregnant mother and her fetus may induce marked cardiovascular impairments during pregnancy or in the neonatal period. In addition, recent studies have shown potential long-lasting postnatal effects that may increase cardiovascular risk in individuals gestated under chronic hypobaria. Hence, the maternal and fetal adaptive responses to hypoxia, influenced by HA ancestry, are vital for a better developmental and cardiovascular outcome of the offspring. This mini-review exposes and discusses the main determinants of vascular dysfunction due to developmental hypoxia at HA, such as the Andean Mountains, at the maternal and fetal/neonatal levels. Although significant advances have been made from Latin American studies, this area still needs further investigations to reveal the mechanisms involved in vascular dysfunction, to estimate complications of pregnancy and postnatal life adequately, and most importantly, to determine potential treatments to prevent or treat the pathological effects of being developed under chronic hypobaric hypoxia.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Candia
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile
| |
Collapse
|