1
|
Lerchenmüller C, Hastings MH, Rabolli CP, Betge F, Roshan M, Liu LX, Liu X, Heß C, Roh JD, Platt C, Bezzerides V, Busch M, Katus HA, Frey N, Most P, Rosenzweig A. CITED4 gene therapy protects against maladaptive cardiac remodeling after ischemia/reperfusion injury in mice. Mol Ther 2024; 32:3683-3694. [PMID: 39066479 PMCID: PMC11489533 DOI: 10.1016/j.ymthe.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cardiac signaling pathways functionally important in the heart's response to exercise often protect the heart against pathological stress, potentially providing novel therapeutic targets. However, it is important to determine which of these pathways can be feasibly targeted in vivo. Transgenic overexpression of exercise-induced CITED4 has been shown to protect against adverse remodeling after ischemia/reperfusion injury (IRI). Here we investigated whether somatic gene transfer of CITED4 in a clinically relevant time frame could promote recovery after IRI. Cardiac CITED4 gene delivery via intravenous AAV9 injections in wild type mice led to an approximately 3-fold increase in cardiac CITED4 expression. After 4 weeks, CITED4-treated animals developed physiological cardiac hypertrophy without adverse remodeling. In IRI, delivery of AAV9-CITED4 after reperfusion resulted in a 6-fold increase in CITED4 expression 1 week after surgery, as well as decreased apoptosis, fibrosis, and inflammatory markers, culminating in a smaller scar and improved cardiac function 8 weeks after IRI, compared with control mice receiving AAV9-GFP. Somatic gene transfer of CITED4 induced a phenotype suggestive of physiological cardiac growth and mitigated adverse remodeling after ischemic injury. These studies support the feasibility of CITED4 gene therapy delivered in a clinically relevant time frame to mitigate adverse ventricular remodeling after ischemic injury.
Collapse
Affiliation(s)
- Carolin Lerchenmüller
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany; Chair of Gender Medicine, University of Zurich, 8006 Zurich, Switzerland; Department of Cardiology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Margaret H Hastings
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Charles P Rabolli
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fynn Betge
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Mani Roshan
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Laura X Liu
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiaojun Liu
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Chiara Heß
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Jason D Roh
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Colin Platt
- Cardiology Division and Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Vassilios Bezzerides
- Harvard Medical School, Boston, MA 02115, USA; Cardiology Department, Boston Children's Hospital, Boston, MA 02115, USA
| | - Martin Busch
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Patrick Most
- Department of Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Anthony Rosenzweig
- Stanley and Judith Frankel Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Singh D, Memari E, He S, Yusefi H, Helfield B. Cardiac gene delivery using ultrasound: State of the field. Mol Ther Methods Clin Dev 2024; 32:101277. [PMID: 38983873 PMCID: PMC11231612 DOI: 10.1016/j.omtm.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Over the past two decades, there has been tremendous and exciting progress toward extending the use of medical ultrasound beyond a traditional imaging tool. Ultrasound contrast agents, typically used for improved visualization of blood flow, have been explored as novel non-viral gene delivery vectors for cardiovascular therapy. Given this adaptation to ultrasound contrast-enhancing agents, this presents as an image-guided and site-specific gene delivery technique with potential for multi-gene and repeatable delivery protocols-overcoming some of the limitations of alternative gene therapy approaches. In this review, we provide an overview of the studies to date that employ this technique toward cardiac gene therapy using cardiovascular disease animal models and summarize their key findings.
Collapse
Affiliation(s)
- Davindra Singh
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Elahe Memari
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Stephanie He
- Department of Biology, Concordia University, Montreal, QC, Canada
| | - Hossein Yusefi
- Department of Physics, Concordia University, Montreal, QC, Canada
| | - Brandon Helfield
- Department of Biology, Concordia University, Montreal, QC, Canada
- Department of Physics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
3
|
Hou G, Alissa M, Alsuwat MA, Ali Alarjany HM, Alzahrani KJ, Althobaiti FM, Mujalli HM, Alotaiby MM, Al-Doaiss AA, Anthony S. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science. Curr Probl Cardiol 2024; 49:102627. [PMID: 38723793 DOI: 10.1016/j.cpcardiol.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are associated with increasing financial health burden that requires research into novel therapeutic approaches. Since the early 2000s, the availability of next-generation sequencing techniques such as microRNAs, circular RNAs, and long non-coding RNAs have been proven as potential therapeutic targets for treating various CVDs. Therapeutics based on RNAs have become a viable option for addressing the intricate molecular pathways that underlie the pathophysiology of CVDs. We provide an in-depth analysis of the state of RNA therapies in the context of CVDs, emphasizing various approaches that target the various stages of the basic dogma of molecular biology to effect temporary or long-term changes. In this review, we summarize recent methodologies used to screen for novel coding and non-coding RNA candidates with diagnostic and treatment possibilities in cardiovascular diseases. These methods include single-cell sequencing techniques, functional RNA screening, and next-generation sequencing.Lastly, we highlighted the potential of using oligonucleotide-based chemical products such as modified RNA and RNA mimics/inhibitors for the treatment of CVDs. Moreover, there will be an increasing number of potential RNA diagnostic and therapeutic for CVDs that will progress to expand for years to come.
Collapse
Affiliation(s)
- Guoliang Hou
- Department of Cardiology, Tengzhou Central People's Hospital, Shandong 277599, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | | | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Fahad M Althobaiti
- Department of Nursing Leadership and Education, Nursing College, Taif University, Taif 21974, Saudi Arabia
| | | | - Monearah M Alotaiby
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, China.
| |
Collapse
|
4
|
Abdul-Rahman T, Lizano-Jubert I, Bliss ZSB, Garg N, Meale E, Roy P, Crino SA, Deepak BL, Miteu GD, Wireko AA, Qadeer A, Condurat A, Tanasa AD, Pyrpyris N, Sikora K, Horbas V, Sood A, Gupta R, Lavie CJ. RNA in cardiovascular disease: A new frontier of personalized medicine. Prog Cardiovasc Dis 2024; 85:93-102. [PMID: 38253161 DOI: 10.1016/j.pcad.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Personalized medicine has witnessed remarkable progress with the emergence of RNA therapy, offering new possibilities for the treatment of various diseases, and in particular in the context of cardiovascular disease (CVD). The ability to target the human genome through RNA manipulation offers great potential not only in the treatment of cardiac pathologies but also in their diagnosis and prevention, notably in cases of hyperlipidemia and myocardial infarctions. While only a few RNA-based treatments have entered clinical trials or obtained approval from the US Food and Drug Administration, the growing body of research on this subject is promising. However, the development of RNA therapies faces several challenges that must be overcome. These include the efficient delivery of drugs into cells, the potential for immunogenic responses, and safety. Resolving these obstacles is crucial to advance the development of RNA therapies. This review explores the newest developments in medical studies, treatment plans, and results related to RNA therapies for heart disease. Furthermore, it discusses the exciting possibilities and difficulties in this innovative area of research.
Collapse
Affiliation(s)
| | | | | | - Neil Garg
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Emily Meale
- Rowan-Virtua School of osteopathic medicine, Stratford, NJ, USA
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | | | - Goshen David Miteu
- School of Biosciences, University of Nottingham, Nottingham, England, United Kingdom
| | | | - Abdul Qadeer
- Hospital Internal Medicine Department, Scottsdale Campus, Mayo Clinic, AZ, USA
| | | | | | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | | | | - Aayushi Sood
- Department of Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Rahul Gupta
- Lehigh Valley Heart and Vascular Institute, Lehigh Valley Health Network, Allentown, PA, USA.
| | - Carl J Lavie
- Department of Cardiology, Ochsner Clinic Foundation, New Orleans, LA, United States; The University of Queensland Medical School, Ochsner Clinical School, New Orleans, LA, United States
| |
Collapse
|
5
|
Mundiña-Weilenmann C. Seeking for Regulatory Mechanisms of Phospholamban Expression. Circ Res 2024; 134:266-268. [PMID: 38300986 DOI: 10.1161/circresaha.124.324109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Cecilia Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Cátedra de Fisiología y Física Biológica, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Argentina
| |
Collapse
|
6
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Optimization of the cotransfection of SERCA2a and Cx43 genes for myocardial infarction complications. Life Sci 2023; 331:122067. [PMID: 37659592 DOI: 10.1016/j.lfs.2023.122067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones. Four weeks later, the genes SERCA2a and Cx43 were codelivered at different ratios (1:1, 1:2 and 2:1) into the infarcted heart via UTMD. Cardiac mechanoelectrical function was determined at 4 wks after gene delivery, and the hearts of the rats were harvested for measurement of MI size and detection of SERCA2a and Cx43 expression. Q-PCR analysis of the expression of Nkx2.5 and GATA4 in the myocardial infarct zone and measurement of neovascularization in infarcted hearts. After comparing the therapeutic effects of different cogene ratios, the SERCA2a/Cx43-1:2 group showed remarkable cardiac electrical stability and strengthened the role of anti-arrhythmia. In conclusion, the optimum ratio of the SERCA2a/Cx43 gene is 1:2, which is advantageous for maintaining cardiac electrophysiological stability.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China; Department of Ultrasound, Urumqi Friendship Hospital, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
7
|
Sharma AK, Singh S, Bhat M, Gill K, Zaid M, Kumar S, Shakya A, Tantray J, Jose D, Gupta R, Yangzom T, Sharma RK, Sahu SK, Rathore G, Chandolia P, Singh M, Mishra A, Raj S, Gupta A, Agarwal M, Kifayat S, Gupta A, Gupta P, Vashist A, Vaibhav P, Kathuria N, Yadav V, Singh RP, Garg A. New drug discovery of cardiac anti-arrhythmic drugs: insights in animal models. Sci Rep 2023; 13:16420. [PMID: 37775650 PMCID: PMC10541452 DOI: 10.1038/s41598-023-41942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023] Open
Abstract
Cardiac rhythm regulated by micro-macroscopic structures of heart. Pacemaker abnormalities or disruptions in electrical conduction, lead to arrhythmic disorders may be benign, typical, threatening, ultimately fatal, occurs in clinical practice, patients on digitalis, anaesthesia or acute myocardial infarction. Both traditional and genetic animal models are: In-vitro: Isolated ventricular Myocytes, Guinea pig papillary muscles, Patch-Clamp Experiments, Porcine Atrial Myocytes, Guinea pig ventricular myocytes, Guinea pig papillary muscle: action potential and refractory period, Langendorff technique, Arrhythmia by acetylcholine or potassium. Acquired arrhythmia disorders: Transverse Aortic Constriction, Myocardial Ischemia, Complete Heart Block and AV Node Ablation, Chronic Tachypacing, Inflammation, Metabolic and Drug-Induced Arrhythmia. In-Vivo: Chemically induced arrhythmia: Aconitine antagonism, Digoxin-induced arrhythmia, Strophanthin/ouabain-induced arrhythmia, Adrenaline-induced arrhythmia, and Calcium-induced arrhythmia. Electrically induced arrhythmia: Ventricular fibrillation electrical threshold, Arrhythmia through programmed electrical stimulation, sudden coronary death in dogs, Exercise ventricular fibrillation. Genetic Arrhythmia: Channelopathies, Calcium Release Deficiency Syndrome, Long QT Syndrome, Short QT Syndrome, Brugada Syndrome. Genetic with Structural Heart Disease: Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia, Dilated Cardiomyopathy, Hypertrophic Cardiomyopathy, Atrial Fibrillation, Sick Sinus Syndrome, Atrioventricular Block, Preexcitation Syndrome. Arrhythmia in Pluripotent Stem Cell Cardiomyocytes. Conclusion: Both traditional and genetic, experimental models of cardiac arrhythmias' characteristics and significance help in development of new antiarrhythmic drugs.
Collapse
Affiliation(s)
- Ashish Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India.
| | - Shivam Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mehvish Bhat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Kartik Gill
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohammad Zaid
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sachin Kumar
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anjali Shakya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Junaid Tantray
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Divyamol Jose
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rashmi Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Tsering Yangzom
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Rajesh Kumar Sharma
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | | | - Gulshan Rathore
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Priyanka Chandolia
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Shobhit Raj
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Archita Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Sumaiya Kifayat
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Anamika Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Prashant Gupta
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ankit Vashist
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Parth Vaibhav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Nancy Kathuria
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Vipin Yadav
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Ravindra Pal Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, Rajasthan, 303121, India
| | - Arun Garg
- MVN University, Palwal, Haryana, India
| |
Collapse
|
8
|
Kho C. Targeting calcium regulators as therapy for heart failure: focus on the sarcoplasmic reticulum Ca-ATPase pump. Front Cardiovasc Med 2023; 10:1185261. [PMID: 37534277 PMCID: PMC10392702 DOI: 10.3389/fcvm.2023.1185261] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
Impaired myocardial Ca2+ cycling is a critical contributor to the development of heart failure (HF), causing changes in the contractile function and structure remodeling of the heart. Within cardiomyocytes, the regulation of sarcoplasmic reticulum (SR) Ca2+ storage and release is largely dependent on Ca2+ handling proteins, such as the SR Ca2+ ATPase (SERCA2a) pump. During the relaxation phase of the cardiac cycle (diastole), SERCA2a plays a critical role in transporting cytosolic Ca2+ back to the SR, which helps to restore both cytosolic Ca2+ levels to their resting state and SR Ca2+ content for the next contraction. However, decreased SERCA2a expression and/or pump activity are key features in HF. As a result, there is a growing interest in developing therapeutic approaches to target SERCA2a. This review provides an overview of the regulatory mechanisms of the SERCA2a pump and explores potential strategies for SERCA2a-targeted therapy, which are being investigated in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
9
|
Hassel KR, Brito-Estrada O, Makarewich CA. Microproteins: Overlooked regulators of physiology and disease. iScience 2023; 26:106781. [PMID: 37213226 PMCID: PMC10199267 DOI: 10.1016/j.isci.2023.106781] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Ongoing efforts to generate a complete and accurate annotation of the genome have revealed a significant blind spot for small proteins (<100 amino acids) originating from short open reading frames (sORFs). The recent discovery of numerous sORF-encoded proteins, termed microproteins, that play diverse roles in critical cellular processes has ignited the field of microprotein biology. Large-scale efforts are currently underway to identify sORF-encoded microproteins in diverse cell-types and tissues and specialized methods and tools have been developed to aid in their discovery, validation, and functional characterization. Microproteins that have been identified thus far play important roles in fundamental processes including ion transport, oxidative phosphorylation, and stress signaling. In this review, we discuss the optimized tools available for microprotein discovery and validation, summarize the biological functions of numerous microproteins, outline the promise for developing microproteins as therapeutic targets, and look forward to the future of the field of microprotein biology.
Collapse
Affiliation(s)
- Keira R. Hassel
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Omar Brito-Estrada
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Catherine A. Makarewich
- The Heart Institute, Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Skogestad J, Albert I, Hougen K, Lothe GB, Lunde M, Eken OS, Veras I, Huynh NTT, Børstad M, Marshall S, Shen X, Louch WE, Robinson EL, Cleveland JC, Ambardekar AV, Schwisow JA, Jonas E, Calejo AI, Morth JP, Taskén K, Melleby AO, Lunde PK, Sjaastad I, Carlson CR, Aronsen JM. Disruption of Phosphodiesterase 3A Binding to SERCA2 Increases SERCA2 Activity and Reduces Mortality in Mice With Chronic Heart Failure. Circulation 2023; 147:1221-1236. [PMID: 36876489 DOI: 10.1161/circulationaha.121.054168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/08/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Increasing SERCA2 (sarco[endo]-plasmic reticulum Ca2+ ATPase 2) activity is suggested to be beneficial in chronic heart failure, but no selective SERCA2-activating drugs are available. PDE3A (phosphodiesterase 3A) is proposed to be present in the SERCA2 interactome and limit SERCA2 activity. Disruption of PDE3A from SERCA2 might thus be a strategy to develop SERCA2 activators. METHODS Confocal microscopy, 2-color direct stochastic optical reconstruction microscopy, proximity ligation assays, immunoprecipitations, peptide arrays, and surface plasmon resonance were used to investigate colocalization between SERCA2 and PDE3A in cardiomyocytes, map the SERCA2/PDE3A interaction sites, and optimize disruptor peptides that release PDE3A from SERCA2. Functional experiments assessing the effect of PDE3A-binding to SERCA2 were performed in cardiomyocytes and HEK293 vesicles. The effect of SERCA2/PDE3A disruption by the disruptor peptide OptF (optimized peptide F) on cardiac mortality and function was evaluated during 20 weeks in 2 consecutive randomized, blinded, and controlled preclinical trials in a total of 148 mice injected with recombinant adeno-associated virus 9 (rAAV9)-OptF, rAAV9-control (Ctrl), or PBS, before undergoing aortic banding (AB) or sham surgery and subsequent phenotyping with serial echocardiography, cardiac magnetic resonance imaging, histology, and functional and molecular assays. RESULTS PDE3A colocalized with SERCA2 in human nonfailing, human failing, and rodent myocardium. Amino acids 277-402 of PDE3A bound directly to amino acids 169-216 within the actuator domain of SERCA2. Disruption of PDE3A from SERCA2 increased SERCA2 activity in normal and failing cardiomyocytes. SERCA2/PDE3A disruptor peptides increased SERCA2 activity also in the presence of protein kinase A inhibitors and in phospholamban-deficient mice, and had no effect in mice with cardiomyocyte-specific inactivation of SERCA2. Cotransfection of PDE3A reduced SERCA2 activity in HEK293 vesicles. Treatment with rAAV9-OptF reduced cardiac mortality compared with rAAV9-Ctrl (hazard ratio, 0.26 [95% CI, 0.11 to 0.63]) and PBS (hazard ratio, 0.28 [95% CI, 0.09 to 0.90]) 20 weeks after AB. Mice injected with rAAV9-OptF had improved contractility and no difference in cardiac remodeling compared with rAAV9-Ctrl after aortic banding. CONCLUSIONS Our results suggest that PDE3A regulates SERCA2 activity through direct binding, independently of the catalytic activity of PDE3A. Targeting the SERCA2/PDE3A interaction prevented cardiac mortality after AB, most likely by improving cardiac contractility.
Collapse
Affiliation(s)
- Jonas Skogestad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ingrid Albert
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Gustav B Lothe
- Department of Pharmacology, Oslo University Hospital, Norway (G.B.L.)
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
| | - Marianne Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Olav Søvik Eken
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ioanni Veras
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Ngoc Trang Thi Huynh
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Mira Børstad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Serena Marshall
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Xin Shen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Emma Louise Robinson
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Joseph C Cleveland
- Department of Surgery (J.C.C.), University of Colorado Anschutz Medical Campus, Aurora
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Jessica A Schwisow
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Eric Jonas
- Division of Cardiology, Department of Medicine (E.L.R., A.V.A., J.A.S., E.J.), University of Colorado Anschutz Medical Campus, Aurora
| | - Ana I Calejo
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
| | - Jens Preben Morth
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby (J.P.M.)
| | - Kjetil Taskén
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership (A.I.C.C., J.P.M., K.T.), Oslo University Hospital and University of Oslo, Norway
- Institute for Cancer Research, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Norway (K.T.)
| | - Arne Olav Melleby
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| | - Per Kristian Lunde
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Cathrine Rein Carlson
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research (J.S., I.A., K.H., M.L., O.S.E., I.V., M.B., S.M., X.S., W.E.L., P.K.L., I.S., C.R.C., J.M.A.), Oslo University Hospital and University of Oslo, Norway
- Bjørknes College, Oslo, Norway (G.B.L., J.M.A.)
- Department of Molecular Medicine, University of Oslo, Norway (O.S.E., I.V., N.T.T.-H., A.O.M., J.M.A.)
| |
Collapse
|
11
|
Higo S. Disease modeling of desmosome-related cardiomyopathy using induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells 2023; 15:71-82. [PMID: 37007457 PMCID: PMC10052339 DOI: 10.4252/wjsc.v15.i3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity of heart tissues. Genetic mutations in desmosomal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable disease, and predispose patients to sudden cardiac death and heart failure. Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies. Among desmosomal genes, mutations in PKP2 (which encodes PKP2) are most frequently identified in patients with AC. PKP2 deficiency causes various pathological cardiac phenotypes. Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs) in combination with genome editing, which allows the precise arrangement of the targeted genome, are powerful experimental tools for studying disease. This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
12
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
13
|
Sanganalmath SK, Dubey S, Veeranki S, Narisetty K, Krishnamurthy P. The interplay of inflammation, exosomes and Ca 2+ dynamics in diabetic cardiomyopathy. Cardiovasc Diabetol 2023; 22:37. [PMID: 36804872 PMCID: PMC9942322 DOI: 10.1186/s12933-023-01755-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
Diabetes mellitus is one of the prime risk factors for cardiovascular complications and is linked with high morbidity and mortality. Diabetic cardiomyopathy (DCM) often manifests as reduced cardiac contractility, myocardial fibrosis, diastolic dysfunction, and chronic heart failure. Inflammation, changes in calcium (Ca2+) handling and cardiomyocyte loss are often implicated in the development and progression of DCM. Although the existence of DCM was established nearly four decades ago, the exact mechanisms underlying this disease pathophysiology is constantly evolving. Furthermore, the complex pathophysiology of DCM is linked with exosomes, which has recently shown to facilitate intercellular (cell-to-cell) communication through biomolecules such as micro RNA (miRNA), proteins, enzymes, cell surface receptors, growth factors, cytokines, and lipids. Inflammatory response and Ca2+ signaling are interrelated and DCM has been known to adversely affect many of these signaling molecules either qualitatively and/or quantitatively. In this literature review, we have demonstrated that Ca2+ regulators are tightly controlled at different molecular and cellular levels during various biological processes in the heart. Inflammatory mediators, miRNA and exosomes are shown to interact with these regulators, however how these mediators are linked to Ca2+ handling during DCM pathogenesis remains elusive. Thus, further investigations are needed to understand the mechanisms to restore cardiac Ca2+ homeostasis and function, and to serve as potential therapeutic targets in the treatment of DCM.
Collapse
Affiliation(s)
- Santosh K Sanganalmath
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nevada Las Vegas School of Medicine, Las Vegas, NV, 89102, USA.
| | - Shubham Dubey
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| | - Sudhakar Veeranki
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
| | | | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, University Blvd., Birmingham, AL, 35294, USA
| |
Collapse
|
14
|
Gorski PA, Lee A, Lee P, Oh JG, Vangheluwe P, Ishikawa K, Hajjar R, Kho C. Identification and Characterization of p300-Mediated Lysine Residues in Cardiac SERCA2a. Int J Mol Sci 2023; 24:ijms24043502. [PMID: 36834924 PMCID: PMC9959367 DOI: 10.3390/ijms24043502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Impaired calcium uptake resulting from reduced expression and activity of the cardiac sarco-endoplasmic reticulum Ca2+ ATPase (SERCA2a) is a hallmark of heart failure (HF). Recently, new mechanisms of SERCA2a regulation, including post-translational modifications (PTMs), have emerged. Our latest analysis of SERCA2a PTMs has identified lysine acetylation as another PTM which might play a significant role in regulating SERCA2a activity. SERCA2a is acetylated, and that acetylation is more prominent in failing human hearts. In this study, we confirmed that p300 interacts with and acetylates SERCA2a in cardiac tissues. Several lysine residues in SERCA2a modulated by p300 were identified using in vitro acetylation assay. Analysis of in vitro acetylated SERCA2a revealed several lysine residues in SERCA2a susceptible to acetylation by p300. Among them, SERCA2a Lys514 (K514) was confirmed to be essential for SERCA2a activity and stability using an acetylated mimicking mutant. Finally, the reintroduction of an acetyl-mimicking mutant of SERCA2a (K514Q) into SERCA2 knockout cardiomyocytes resulted in deteriorated cardiomyocyte function. Taken together, our data demonstrated that p300-mediated acetylation of SERCA2a is a critical PTM that decreases the pump's function and contributes to cardiac impairment in HF. SERCA2a acetylation can be targeted for therapeutic aims for the treatment of HF.
Collapse
Affiliation(s)
- Przemek A. Gorski
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ahyoung Lee
- Research Institute for Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Philyoung Lee
- New Drug Development Center, Osong Medical Innovation Fundation, Osong, Seoul 02841, Republic of Korea
| | - Jae Gyun Oh
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roger Hajjar
- Phospholamban Foundation, 1775 ZH Amsterdam, The Netherlands
| | - Changwon Kho
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Correspondence: ; Tel.: +82-51-510-8467
| |
Collapse
|
15
|
Xie A, Liu H, Kang GJ, Feng F, Dudley SC. Reduced sarcoplasmic reticulum Ca 2+ pump activity is antiarrhythmic in ischemic cardiomyopathy. Heart Rhythm 2022; 19:2107-2114. [PMID: 36028211 DOI: 10.1016/j.hrthm.2022.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND We have described an arrhythmic mechanism seen only in cardiomyopathy that involves increased mitochondrial Ca2+ handling and selective transfer of Ca2+ to the sarcoplasmic reticulum (SR). Modeling suggested that mitochondrial Ca2+ transfer to the SR via type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is a crucial element of this arrhythmic mechanism. OBJECTIVE We tested the role of SERCA2a in arrhythmias during ischemic cardiomyopathy. METHODS Myocardial infarction (MI) was induced in wild-type (Wt) and SERCA2a heterozygous knockdown (SERCA+/-) mice. RESULTS Compared with Wt MI mice, SERCA2a heterozygous knockdown (SERCA+/-) MI mice had a substantially lower mortality after 3 weeks of MI without a significant change in MI area. Aside from a significant delay of the cytoplasmic Ca2+ transient decay existed in SERCA+/- compared with Wt, SERCA+/- did not affect cardiac systolic and diastolic function at the whole organ or single cell levels either before or after MI. After MI, SERCA+/- mice had reduced SERCA2a expression in the MI border zone compared with Wt MI mice. SERCA+/- mice had significantly decreased corrected QT intervals and less ventricular tachycardia compared with Wt MI mice. SERCA+/- cardiomyocytes from MI mice showed a reduced action potential duration and reduced triggered activity compared with Wt MI cardiomyocytes. Reduction in arrhythmic risk was accompanied by reduced diastolic SR Ca2+ sparks, reduced SR Ca2+ content, reduced oxidized ryanodine receptor, and increased calsequestrin 2 in SERCA+/- MI mice. CONCLUSION SERCA2a knockdown was antiarrhythmic after MI without affecting overall systolic performance. Possible antiarrhythmic mechanisms included reduced SR free Ca2+ and reduced diastolic SR Ca2+ release.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Hong Liu
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Gyeoung-Jin Kang
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Feng Feng
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Samuel C Dudley
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
16
|
Signaling cascades in the failing heart and emerging therapeutic strategies. Signal Transduct Target Ther 2022; 7:134. [PMID: 35461308 PMCID: PMC9035186 DOI: 10.1038/s41392-022-00972-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure is the end stage of cardiac diseases. With a high prevalence and a high mortality rate worldwide, chronic heart failure is one of the heaviest health-related burdens. In addition to the standard neurohormonal blockade therapy, several medications have been developed for chronic heart failure treatment, but the population-wide improvement in chronic heart failure prognosis over time has been modest, and novel therapies are still needed. Mechanistic discovery and technical innovation are powerful driving forces for therapeutic development. On the one hand, the past decades have witnessed great progress in understanding the mechanism of chronic heart failure. It is now known that chronic heart failure is not only a matter involving cardiomyocytes. Instead, chronic heart failure involves numerous signaling pathways in noncardiomyocytes, including fibroblasts, immune cells, vascular cells, and lymphatic endothelial cells, and crosstalk among these cells. The complex regulatory network includes protein-protein, protein-RNA, and RNA-RNA interactions. These achievements in mechanistic studies provide novel insights for future therapeutic targets. On the other hand, with the development of modern biological techniques, targeting a protein pharmacologically is no longer the sole option for treating chronic heart failure. Gene therapy can directly manipulate the expression level of genes; gene editing techniques provide hope for curing hereditary cardiomyopathy; cell therapy aims to replace dysfunctional cardiomyocytes; and xenotransplantation may solve the problem of donor heart shortages. In this paper, we reviewed these two aspects in the field of failing heart signaling cascades and emerging therapeutic strategies based on modern biological techniques.
Collapse
|
17
|
Lin J, Chen Z, Yang L, Liu L, Yue P, Sun Y, Zhao M, Guo X, Hu X, Zhang Y, Zhang H, Li Y, Guo Y, Dong E. Cas9/AAV9-Mediated Somatic Mutagenesis Uncovered the Cell-Autonomous Role of Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase 2 in Murine Cardiomyocyte Maturation. Front Cell Dev Biol 2022; 10:864516. [PMID: 35433671 PMCID: PMC9012521 DOI: 10.3389/fcell.2022.864516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) is a key player in cardiomyocyte calcium handling and also a classic target in the gene therapy for heart failure. SERCA2 expression dramatically increases during cardiomyocyte maturation in the postnatal phase of heart development, which is essential for the heart to acquire its full function in adults. However, whether and how SERCA2 regulates cardiomyocyte maturation remains unclear. Here, we performed Cas9/AAV9-mediated somatic mutagenesis (CASAAV) in mice and achieved cardiomyocyte-specific knockout of Atp2a2, the gene coding SERCA2. Through a cardiac genetic mosaic analysis, we demonstrated the cell-autonomous role of SERCA2 in building key ultrastructures of mature ventricular cardiomyocytes, including transverse-tubules and sarcomeres. SERCA2 also exerts a profound impact on oxidative respiration gene expression and sarcomere isoform switching from Myh7/Tnni1 to Myh6/Tnni3, which are transcriptional hallmarks of cardiomyocyte maturation. Together, this study uncovered a pivotal role of SERCA2 in heart development and provided new insights about SERCA2-based cardiac gene therapy.
Collapse
Affiliation(s)
- Junsen Lin
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Zhan Chen
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Luzi Yang
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Lei Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Peng Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yueshen Sun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission of China (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing, China
| | - Xiaoling Guo
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaomin Hu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yan Zhang
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Hong Zhang
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education (MOE), Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuxuan Guo
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- *Correspondence: Yuxuan Guo,
| | - Erdan Dong
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, National Health Commission of China (NHC) Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research. Beijing, China
| |
Collapse
|
18
|
Jeong D. Generation of Atrial-Specific Construct Using Sarcolipin Promoter-Associated CRM4 Enhancer. Methods Mol Biol 2022; 2573:115-132. [PMID: 36040590 DOI: 10.1007/978-1-0716-2707-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cardiac gene therapy has been hampered by off-target expression of gene of interest irrespective of variety of delivery methods. To overcome this issue, cardiac-specific promoters provide target tissue specificity, although expression is often debilitated compared to that of ubiquitous promoters. We have previously shown that sarcolipin promoter with an enhancer calsequestrin cis-regulatory module 4 (CRM4) combination has an improved atrial specificity. Moreover, it showed a minimal extra-atrial expression, which is a significant advantage for AAV9-mediated cardiac gene therapy. Therefore, it can be a useful tool to study and treat atrial-specific diseases such as atrial fibrillation. In this chapter, we introduce practical and simple methodology for atrial-specific gene therapy using sarcolipin promoter with an enhancer CRM4.
Collapse
Affiliation(s)
- Dongtak Jeong
- Department of Molecular & Life Science, College of Science and Convergence Technology, Hanyang University ERICA, Ansan, South Korea.
| |
Collapse
|
19
|
Cardioprotective effects of early intervention with sacubitril/valsartan on pressure overloaded rat hearts. Sci Rep 2021; 11:16542. [PMID: 34400686 PMCID: PMC8368201 DOI: 10.1038/s41598-021-95988-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
Left ventricular remodeling due to pressure overload is associated with poor prognosis. Sacubitril/valsartan is the first-in-class Angiotensin Receptor Neprilysin Inhibitor and has been demonstrated to have superior beneficial effects in the settings of heart failure. The aim of this study was to determine whether sacubitril/valsartan has cardioprotective effect in the early intervention of pressure overloaded hearts and whether it is superior to valsartan alone. We induced persistent left ventricular pressure overload in rats by ascending aortic constriction surgery and orally administrated sacubitril/valsartan, valsartan, or vehicle one week post operation for 10 weeks. We also determined the effects of sacubitril/valsartan over valsartan on adult ventricular myocytes and fibroblasts that were isolated from healthy rats and treated in culture. We found that early intervention with sacubitril/valsartan is superior to valsartan in reducing pressure overload-induced ventricular fibrosis and in reducing angiotensin II-induced adult ventricular fibroblast activation. While neither sacubitril/valsartan nor valsartan changes cardiac hypertrophy development, early intervention with sacubitril/valsartan protects ventricular myocytes from mitochondrial dysfunction and is superior to valsartan in reducing mitochondrial oxidative stress in response to persistent left ventricular pressure overload. In conclusion, our findings demonstrate that sacubitril/valsartan has a superior cardioprotective effect over valsartan in the early intervention of pressure overloaded hearts, which is independent of the reduction of left ventricular afterload. Our study provides evidence in support of potential benefits of the use of sacubitril/valsartan in patients with resistant hypertension or in patients with severe aortic stenosis.
Collapse
|
20
|
Qu Z, Lu X, Qu Y, Tao T, Liu X, Li X. Attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities induced by tunicamycin or hypoxia/reoxygenation in neonatal rat cardiomyocytes by SERCA2a overexpression. Int J Mol Med 2021; 47:113. [PMID: 33907834 PMCID: PMC8075284 DOI: 10.3892/ijmm.2021.4946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 03/29/2021] [Indexed: 12/20/2022] Open
Abstract
The present study aimed to investigate the effects of the overexpression of sarco/endoplasmic reticulum Ca2+‑ATPase (SERCA2a) on endoplasmic reticulum (ER) stress (ERS)‑associated inflammation in neonatal rat cardiomyocytes (NRCMs) induced by tunicamycin (TM) or hypoxia/reoxygenation (H/R). The optimal multiplicity of infection (MOI) was 2 pfu/cell. Neonatal Sprague‑Dawley rat cardiomyocytes cultured in vitro were infected with adenoviral vectors carrying SERCA2a or enhanced green fluorescent protein genes, the latter used as a control. At 48 h following gene transfer, the NRCMs were treated with TM (10 µg/ml) or subjected to H/R to induce ERS. The results of electrophoretic mobility shift assay (EMSA) revealed that overexpression of SERCA2a attenuated the upregulation of nuclear factor (NF)‑κB and activator protein‑1 (AP‑1) DNA‑binding activities induced by TM or H/R. Western blot analysis and semi‑quantitative RT‑PCR revealed that the overexpression of SERCA2a attenuated the activation of the inositol‑requiring 1α (IRE1α) signaling pathway and ERS‑associated apoptosis induced by TM. The overexpression of SERCA2a also decreased the level of phospho‑p65 (Ser536) in the nucleus, as assessed by western blot analysis. However, the overexpression of SERCA2a induced the further nuclear translocation of NF‑κB p65 and higher levels of tumor necrosis factor (TNF)‑α transcripts in the NRCMs, indicating the occurrence of the ER overload response (EOR). Therefore, the overexpression of SERCA2a has a 'double‑edged sword' effect on ERS‑associated inflammation. On the one hand, it attenuates ERS and the activation of the IRE1α signaling pathway induced by TM, resulting in the attenuation of the upregulation of NF‑κB and AP‑1 DNA‑binding activities in the nucleus, and on the other hand, it induces EOR, leading to the further nuclear translocation of NF‑κB and the transcription of TNF‑α. The preceding EOR may precondition the NRCMs against subsequent ERS induced by TM. Further studies using adult rat cardiomyocytes are required to prevent the interference of EOR. The findings of the present study may enhance the current understanding of the role of SERCA2a in cardiomyocytes.
Collapse
Affiliation(s)
- Zhigang Qu
- Medical School of Chinese PLA, Beijing 100853, P.R. China
- Department of General Practice, The 900th Hospital of The Joint Logistic Support Force, Fuzhou, Fujian 350025, P.R. China
| | - Xiaochun Lu
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yan Qu
- Department of Functional Examination, Penglai Traditional Chinese Medicine Hospital, Penglai, Shandong 265600, P.R. China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xiaoying Li
- Department of Cardiology, The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
van der Pol A, Hoes MF, de Boer RA, van der Meer P. Cardiac foetal reprogramming: a tool to exploit novel treatment targets for the failing heart. J Intern Med 2020; 288:491-506. [PMID: 32557939 PMCID: PMC7687159 DOI: 10.1111/joim.13094] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
As the heart matures during embryogenesis from its foetal stages, several structural and functional modifications take place to form the adult heart. This process of maturation is in large part due to an increased volume and work load of the heart to maintain proper circulation throughout the growing body. In recent years, it has been observed that these changes are reversed to some extent as a result of cardiac disease. The process by which this occurs has been characterized as cardiac foetal reprogramming and is defined as the suppression of adult and re-activation of a foetal genes profile in the diseased myocardium. The reasons as to why this process occurs in the diseased myocardium are unknown; however, it has been suggested to be an adaptive process to counteract deleterious events taking place during cardiac remodelling. Although still in its infancy, several studies have demonstrated that targeting foetal reprogramming in heart failure can lead to substantial improvement in cardiac functionality. This is highlighted by a recent study which found that by modulating the expression of 5-oxoprolinase (OPLAH, a novel cardiac foetal gene), cardiac function can be significantly improved in mice exposed to cardiac injury. Additionally, the utilization of angiotensin receptor neprilysin inhibitors (ARNI) has demonstrated clear benefits, providing important clinical proof that drugs that increase natriuretic peptide levels (part of the foetal gene programme) indeed improve heart failure outcomes. In this review, we will highlight the most important aspects of cardiac foetal reprogramming and will discuss whether this process is a cause or consequence of heart failure. Based on this, we will also explain how a deeper understanding of this process may result in the development of novel therapeutic strategies in heart failure.
Collapse
Affiliation(s)
- A van der Pol
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Perioperative Inflammation and Infection Group, Department of Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - M F Hoes
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - R A de Boer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - P van der Meer
- From the, Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
22
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
23
|
Lyon AR, Babalis D, Morley-Smith AC, Hedger M, Suarez Barrientos A, Foldes G, Couch LS, Chowdhury RA, Tzortzis KN, Peters NS, Rog-Zielinska EA, Yang HY, Welch S, Bowles CT, Rahman Haley S, Bell AR, Rice A, Sasikaran T, Johnson NA, Falaschetti E, Parameshwar J, Lewis C, Tsui S, Simon A, Pepper J, Rudy JJ, Zsebo KM, Macleod KT, Terracciano CM, Hajjar RJ, Banner N, Harding SE. Investigation of the safety and feasibility of AAV1/SERCA2a gene transfer in patients with chronic heart failure supported with a left ventricular assist device - the SERCA-LVAD TRIAL. Gene Ther 2020; 27:579-590. [PMID: 32669717 PMCID: PMC7744277 DOI: 10.1038/s41434-020-0171-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/05/2020] [Accepted: 06/25/2020] [Indexed: 01/16/2023]
Abstract
The SERCA-LVAD trial was a phase 2a trial assessing the safety and feasibility of delivering an adeno-associated vector 1 carrying the cardiac isoform of the sarcoplasmic reticulum calcium ATPase (AAV1/SERCA2a) to adult chronic heart failure patients implanted with a left ventricular assist device. The SERCA-LVAD trial was one of a program of AAV1/SERCA2a cardiac gene therapy trials including CUPID1, CUPID 2 and AGENT trials. Enroled subjects were randomised to receive a single intracoronary infusion of 1 × 1013 DNase-resistant AAV1/SERCA2a particles or a placebo solution in a double-blinded design, stratified by presence of neutralising antibodies to AAV. Elective endomyocardial biopsy was performed at 6 months unless the subject had undergone cardiac transplantation, with myocardial samples assessed for the presence of exogenous viral DNA from the treatment vector. Safety assessments including ELISPOT were serially performed. Although designed as a 24 subject trial, recruitment was stopped after five subjects had been randomised and received infusion due to the neutral result from the CUPID 2 trial. Here we describe the results from the 5 patients at 3 years follow up, which confirmed that viral DNA was delivered to the failing human heart in 2 patients receiving gene therapy with vector detectable at follow up endomyocardial biopsy or cardiac transplantation. Absolute levels of detectable transgene DNA were low, and no functional benefit was observed. There were no safety concerns in this small cohort. This trial identified some of the challenges of performing gene therapy trials in this LVAD patient cohort which may help guide future trial design.
Collapse
Affiliation(s)
- A R Lyon
- National Heart and Lung Institute, Imperial College London, London, UK. .,NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK.
| | - D Babalis
- Imperial Clinical Trials Unit (ICTU), School of Public Health, Imperial College London, London, UK
| | - A C Morley-Smith
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - M Hedger
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - A Suarez Barrientos
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - G Foldes
- National Heart and Lung Institute, Imperial College London, London, UK
| | - L S Couch
- National Heart and Lung Institute, Imperial College London, London, UK
| | - R A Chowdhury
- National Heart and Lung Institute, Imperial College London, London, UK
| | - K N Tzortzis
- National Heart and Lung Institute, Imperial College London, London, UK
| | - N S Peters
- National Heart and Lung Institute, Imperial College London, London, UK
| | - E A Rog-Zielinska
- National Heart and Lung Institute, Imperial College London, London, UK.,Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center, University of Freiburg, Freiburg, Germany
| | - H-Y Yang
- National Heart and Lung Institute, Imperial College London, London, UK
| | - S Welch
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - C T Bowles
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - S Rahman Haley
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - A R Bell
- Department of Histopathology, Royal Brompton and Harefield Hospitals NHS Trust, Freiburg, Germany
| | - A Rice
- Department of Histopathology, Royal Brompton and Harefield Hospitals NHS Trust, Freiburg, Germany
| | - T Sasikaran
- Imperial Clinical Trials Unit (ICTU), School of Public Health, Imperial College London, London, UK
| | - N A Johnson
- Imperial Clinical Trials Unit (ICTU), School of Public Health, Imperial College London, London, UK
| | - E Falaschetti
- Imperial Clinical Trials Unit (ICTU), School of Public Health, Imperial College London, London, UK
| | | | - C Lewis
- Royal Papworth Hospital NHS Trust, Cambridge, UK
| | - S Tsui
- Royal Papworth Hospital NHS Trust, Cambridge, UK
| | - A Simon
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - J Pepper
- National Heart and Lung Institute, Imperial College London, London, UK.,NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - J J Rudy
- Celladon Corporation, San Diego, CA, USA
| | - K M Zsebo
- Celladon Corporation, San Diego, CA, USA
| | - K T Macleod
- National Heart and Lung Institute, Imperial College London, London, UK
| | - C M Terracciano
- National Heart and Lung Institute, Imperial College London, London, UK
| | - R J Hajjar
- Phospholamban Foundation, Amsterdam, Netherlands
| | - N Banner
- NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield Hospitals NHS Trust, London, UK
| | - S E Harding
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
24
|
Ge Z, Li A, McNamara J, Dos Remedios C, Lal S. Pathogenesis and pathophysiology of heart failure with reduced ejection fraction: translation to human studies. Heart Fail Rev 2020; 24:743-758. [PMID: 31209771 DOI: 10.1007/s10741-019-09806-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heart failure represents the end result of different pathophysiologic processes, which culminate in functional impairment. Regardless of its aetiology, the presentation of heart failure usually involves symptoms of pump failure and congestion, which forms the basis for clinical diagnosis. Pathophysiologic descriptions of heart failure with reduced ejection fraction (HFrEF) are being established. Most commonly, HFrEF is centred on a reactive model where a significant initial insult leads to reduced cardiac output, further triggering a cascade of maladaptive processes. Predisposing factors include myocardial injury of any cause, chronically abnormal loading due to hypertension, valvular disease, or tachyarrhythmias. The pathophysiologic processes behind remodelling in heart failure are complex and reflect systemic neurohormonal activation, peripheral vascular effects and localised changes affecting the cardiac substrate. These abnormalities have been the subject of intense research. Much of the translational successes in HFrEF have come from targeting neurohormonal responses to reduced cardiac output, with blockade of the renin-angiotensin-aldosterone system (RAAS) and beta-adrenergic blockade being particularly fruitful. However, mortality and morbidity associated with heart failure remains high. Although systemic neurohormonal blockade slows disease progression, localised ventricular remodelling still adversely affects contractile function. Novel therapy targeted at improving cardiac contractile mechanics in HFrEF hold the promise of alleviating heart failure at its source, yet so far none has found success. Nevertheless, there are increasing calls for a proximal, 'cardiocentric' approach to therapy. In this review, we examine HFrEF therapy aimed at improving cardiac function with a focus on recent trials and emerging targets.
Collapse
Affiliation(s)
- Zijun Ge
- Sydney Medical School, University of Sydney, Camperdown, Australia
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Amy Li
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
- Department of Pharmacy and Biomedical Science, La Trobe University, Melbourne, Australia
| | - James McNamara
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Cris Dos Remedios
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia
| | - Sean Lal
- Sydney Medical School, University of Sydney, Camperdown, Australia.
- Bosch Institute, School of Medical Sciences, University of Sydney, Camperdown, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
- Cardiac Research Laboratory, Discipline of Anatomy and Histology, University of Sydney, Anderson Stuart Building (F13), Camperdown, NSW, 2006, Australia.
| |
Collapse
|
25
|
Hadas Y, Vincek AS, Youssef E, Żak MM, Chepurko E, Sultana N, Sharkar MTK, Guo N, Komargodski R, Kurian AA, Kaur K, Magadum A, Fargnoli A, Katz MG, Hossain N, Kenigsberg E, Dubois NC, Schadt E, Hajjar R, Eliyahu E, Zangi L. Altering Sphingolipid Metabolism Attenuates Cell Death and Inflammatory Response After Myocardial Infarction. Circulation 2020; 141:916-930. [PMID: 31992066 PMCID: PMC7135928 DOI: 10.1161/circulationaha.119.041882] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sphingolipids have recently emerged as a biomarker of recurrence and mortality after myocardial infarction (MI). The increased ceramide levels in mammalian heart tissues during acute MI, as demonstrated by several groups, is associated with higher cell death rates in the left ventricle and deteriorated cardiac function. Ceramidase, the only enzyme known to hydrolyze proapoptotic ceramide, generates sphingosine, which is then phosphorylated by sphingosine kinase to produce the prosurvival molecule sphingosine-1-phosphate. We hypothesized that Acid Ceramidase (AC) overexpression would counteract the negative effects of elevated ceramide and promote cell survival, thereby providing cardioprotection after MI. METHODS We performed transcriptomic, sphingolipid, and protein analyses to evaluate sphingolipid metabolism and signaling post-MI. We investigated the effect of altering ceramide metabolism through a loss (chemical inhibitors) or gain (modified mRNA [modRNA]) of AC function post hypoxia or MI. RESULTS We found that several genes involved in de novo ceramide synthesis were upregulated and that ceramide (C16, C20, C20:1, and C24) levels had significantly increased 24 hours after MI. AC inhibition after hypoxia or MI resulted in reduced AC activity and increased cell death. By contrast, enhancing AC activity via AC modRNA treatment increased cell survival after hypoxia or MI. AC modRNA-treated mice had significantly better heart function, longer survival, and smaller scar size than control mice 28 days post-MI. We attributed the improvement in heart function post-MI after AC modRNA delivery to decreased ceramide levels, lower cell death rates, and changes in the composition of the immune cell population in the left ventricle manifested by lowered abundance of proinflammatory detrimental neutrophils. CONCLUSIONS Our findings suggest that transiently altering sphingolipid metabolism through AC overexpression is sufficient and necessary to induce cardioprotection post-MI, thereby highlighting the therapeutic potential of AC modRNA in ischemic heart disease.
Collapse
Affiliation(s)
- Yoav Hadas
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam S. Vincek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias Youssef
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Magdalena M. Żak
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nishat Sultana
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ningning Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rinat Komargodski
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann Anu Kurian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keerat Kaur
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ajit Magadum
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anthony Fargnoli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael G. Katz
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadia Hossain
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole C. Dubois
- Department of Developmental and Regenerative Biology and The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiscale Biology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger Hajjar
- Phospholamban Foundation, Amsterdam, Netherlands
| | - Efrat Eliyahu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Multiscale Biology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lior Zangi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
26
|
Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, Park ZY, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T, Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C. Role of SIRT1 in Modulating Acetylation of the Sarco-Endoplasmic Reticulum Ca 2+-ATPase in Heart Failure. Circ Res 2020; 124:e63-e80. [PMID: 30786847 DOI: 10.1161/circresaha.118.313865] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Przemek A Gorski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Seung Pil Jang
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Dongtak Jeong
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Ahyoung Lee
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Philyoung Lee
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Jae Gyun Oh
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Vadim Chepurko
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Dong Kwon Yang
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | | | - Soo Hyun Eom
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Zee-Yong Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Yung Joon Yoo
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Do Han Kim
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Hyun Kook
- Basic Research Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea (H.K.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, Japan (K.H.)
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, KU Leuven, Belgium (P.V.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Changwon Kho
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| |
Collapse
|
27
|
Law ML, Cohen H, Martin AA, Angulski ABB, Metzger JM. Dysregulation of Calcium Handling in Duchenne Muscular Dystrophy-Associated Dilated Cardiomyopathy: Mechanisms and Experimental Therapeutic Strategies. J Clin Med 2020; 9:jcm9020520. [PMID: 32075145 PMCID: PMC7074327 DOI: 10.3390/jcm9020520] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
: Duchenne muscular dystrophy (DMD) is an X-linked recessive disease resulting in the loss of dystrophin, a key cytoskeletal protein in the dystrophin-glycoprotein complex. Dystrophin connects the extracellular matrix with the cytoskeleton and stabilizes the sarcolemma. Cardiomyopathy is prominent in adolescents and young adults with DMD, manifesting as dilated cardiomyopathy (DCM) in the later stages of disease. Sarcolemmal instability, leading to calcium mishandling and overload in the cardiac myocyte, is a key mechanistic contributor to muscle cell death, fibrosis, and diminished cardiac contractile function in DMD patients. Current therapies for DMD cardiomyopathy can slow disease progression, but they do not directly target aberrant calcium handling and calcium overload. Experimental therapeutic targets that address calcium mishandling and overload include membrane stabilization, inhibition of stretch-activated channels, ryanodine receptor stabilization, and augmentation of calcium cycling via modulation of the Serca2a/phospholamban (PLN) complex or cytosolic calcium buffering. This paper addresses what is known about the mechanistic basis of calcium mishandling in DCM, with a focus on DMD cardiomyopathy. Additionally, we discuss currently utilized therapies for DMD cardiomyopathy, and review experimental therapeutic strategies targeting the calcium handling defects in DCM and DMD cardiomyopathy.
Collapse
Affiliation(s)
- Michelle L. Law
- Department of Family and Consumer Sciences, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA;
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Ashley A. Martin
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (H.C.); (A.A.M.); (A.B.B.A.)
- Correspondence: ; Tel.: +1-612-625-5902; Fax: +1-612-625-5149
| |
Collapse
|
28
|
Yeh CH, Shen ZQ, Hsiung SY, Wu PC, Teng YC, Chou YJ, Fang SW, Chen CF, Yan YT, Kao LS, Kao CH, Tsai TF. Cisd2 is essential to delaying cardiac aging and to maintaining heart functions. PLoS Biol 2019; 17:e3000508. [PMID: 31593566 PMCID: PMC6799937 DOI: 10.1371/journal.pbio.3000508] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/18/2019] [Accepted: 09/24/2019] [Indexed: 11/18/2022] Open
Abstract
CDGSH iron-sulfur domain-containing protein 2 (Cisd2) is pivotal to mitochondrial integrity and intracellular Ca2+ homeostasis. In the heart of Cisd2 knockout mice, Cisd2 deficiency causes intercalated disc defects and leads to degeneration of the mitochondria and sarcomeres, thereby impairing its electromechanical functioning. Furthermore, Cisd2 deficiency disrupts Ca2+ homeostasis via dysregulation of sarco/endoplasmic reticulum Ca2+-ATPase (Serca2a) activity, resulting in an increased level of basal cytosolic Ca2+ and mitochondrial Ca2+ overload in cardiomyocytes. Most strikingly, in Cisd2 transgenic mice, a persistently high level of Cisd2 is sufficient to delay cardiac aging and attenuate age-related structural defects and functional decline. In addition, it results in a younger cardiac transcriptome pattern during old age. Our findings indicate that Cisd2 plays an essential role in cardiac aging and in the heart's electromechanical functioning. They highlight Cisd2 as a novel drug target when developing therapies to delay cardiac aging and ameliorate age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Chi-Hsiao Yeh
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail: (C-HY); (T-FT)
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shao-Yu Hsiung
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Wu
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Chi Teng
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chou
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Su-Wen Fang
- Department of Thoracic and Cardiovascular Surgery, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chian-Feng Chen
- Genome Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Ting Yan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Lung-Sen Kao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
- Aging and Health Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- * E-mail: (C-HY); (T-FT)
| |
Collapse
|
29
|
Abstract
In the past 10 years, there has been tremendous progress made in the field of gene therapy. Effective treatments of Leber congenital amaurosis, hemophilia, and spinal muscular atrophy have been largely based on the efficiency and safety of adeno-associated vectors. Myocardial gene therapy has been tested in patients with heart failure using adeno-associated vectors with no safety concerns but lacking clinical improvements. Cardiac gene therapy is adapting to the new developments in vectors, delivery systems, targets, and clinical end points and is poised for success in the near future.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thomas Weber
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
30
|
Daniels LJ, Varma U, Annandale M, Chan E, Mellor KM, Delbridge LMD. Myocardial Energy Stress, Autophagy Induction, and Cardiomyocyte Functional Responses. Antioxid Redox Signal 2019; 31:472-486. [PMID: 30417655 DOI: 10.1089/ars.2018.7650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Energy stress in the myocardium occurs in a variety of acute and chronic pathophysiological contexts, including ischemia, nutrient deprivation, and diabetic disease settings of substrate disturbance. Although the heart is highly adaptive and flexible in relation to fuel utilization and routes of adenosine-5'-triphosphate (ATP) generation, maladaptations in energy stress situations confer functional deficit. An understanding of the mechanisms that link energy stress to impaired myocardial performance is crucial. Recent Advances: Emerging evidence suggests that, in parallel with regulated enzymatic pathways that control intracellular substrate supply, other processes of "bulk" autophagic macromolecular breakdown may be important in energy stress conditions. Recent findings indicate that cargo-specific autophagic activity may be important in different stress states. In particular, induction of glycophagy, a glycogen-specific autophagy, has been described in acute and chronic energy stress situations. The impact of elevated cardiomyocyte glucose flux relating to glycophagy dysregulation on contractile function is unknown. Critical Issues: Ischemia- and diabetes-related cardiac adverse events comprise the majority of cardiovascular disease morbidity and mortality. Current therapies involve management of systemic comorbidities. Cardiac-specific adjunct treatments targeted to manage myocardial energy stress responses are lacking. Future Directions: New knowledge is required to understand the mechanisms involved in selective recruitment of autophagic responses in the cardiomyocyte energy stress response. In particular, exploration of the links between cell substrate flux, calcium ion (Ca2+) flux, and phagosomal cargo flux is required. Strategies to target specific fuel "bulk" management defects in cardiac energy stress states may be of therapeutic value.
Collapse
Affiliation(s)
- Lorna J Daniels
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Upasna Varma
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Marco Annandale
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Eleia Chan
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Kimberley M Mellor
- 1 Department of Physiology, University of Auckland, Auckland, New Zealand.,2 Department of Physiology, University of Melbourne, Melbourne, Australia.,3 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Lea M D Delbridge
- 2 Department of Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Hu CS, Wu QH, Hu DY, Tkebuchava T. Treatment of chronic heart failure in the 21st century: A new era of biomedical engineering has come. Chronic Dis Transl Med 2019; 5:75-88. [PMID: 31367696 PMCID: PMC6656907 DOI: 10.1016/j.cdtm.2018.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) is a challenging burden on public health. Therapeutic strategies for CHF have developed rapidly in the past decades from conventional medical therapy, which mainly includes administration of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists, to biomedical engineering methods, which include interventional engineering, such as percutaneous balloon mitral valvotomy, percutaneous coronary intervention, catheter ablation, biventricular pacing or cardiac resynchronization therapy (CRT) and CRT-defibrillator use, and implantable cardioverter defibrillator use; mechanical engineering, such as left ventricular assistant device use, internal artery balloon counterpulsation, cardiac support device use, and total artificial heart implantation; surgical engineering, such as coronary artery bypass graft, valve replacement or repair of rheumatic or congenital heart diseases, and heart transplantation (HT); regenerate engineering, which includes gene therapy, stem cell transplantation, and tissue engineering; and rehabilitating engineering, which includes exercise training, low-salt diet, nursing, psychological interventions, health education, and external counterpulsation/enhanced external counterpulsation in the outpatient department. These biomedical engineering therapies have greatly improved the symptoms of CHF and life expectancy. To date, pharmacotherapy, which is based on evidence-based medicine, large-scale, multi-center, randomized controlled clinical trials, is still a major treatment option for CHF; the current interventional and mechanical device engineering treatment for advanced CHF is not enough owing to its individual status. In place of HT or the use of a total artificial heart, stem cell technology and gene therapy in regenerate engineering for CHF are very promising. However, each therapy has its advantages and disadvantages, and it is currently possible to select better therapeutic strategies for patients with CHF according to cost-efficacy analyses of these therapies. Taken together, we think that a new era of biomedical engineering for CHF has begun.
Collapse
Affiliation(s)
- Chun-Song Hu
- Jiangxi Academy of Medical Science, Hospital of Nanchang University, Nanchang University, Nanchang, Jiangxi 330006, China
- Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qing-Hua Wu
- Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Da-Yi Hu
- Department of Cardiology, People's Hospital of Peking University, Beijing 100044, China
- Department of Cardiology, Tongji University School of Medicine, Shanghai 200032, China
| | | |
Collapse
|
32
|
Ortiz-Sánchez P, Villalba-Orero M, López-Olañeta MM, Larrasa-Alonso J, Sánchez-Cabo F, Martí-Gómez C, Camafeita E, Gómez-Salinero JM, Ramos-Hernández L, Nielsen PJ, Vázquez J, Müller-McNicoll M, García-Pavía P, Lara-Pezzi E. Loss of SRSF3 in Cardiomyocytes Leads to Decapping of Contraction-Related mRNAs and Severe Systolic Dysfunction. Circ Res 2019; 125:170-183. [PMID: 31145021 PMCID: PMC6615931 DOI: 10.1161/circresaha.118.314515] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.
Collapse
Affiliation(s)
- Paula Ortiz-Sánchez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.)
| | - María Villalba-Orero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Marina M López-Olañeta
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Javier Larrasa-Alonso
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Fátima Sánchez-Cabo
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Carlos Martí-Gómez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Emilio Camafeita
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Jesús M Gómez-Salinero
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Laura Ramos-Hernández
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.)
| | - Peter J Nielsen
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany (P.J.N.)
| | - Jesús Vázquez
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P)
| | - Michaela Müller-McNicoll
- Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt/Main, Germany (M.M.-M.)
| | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain (P.O.-S., P.G.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Madrid, Spain (P.G.-P.)
| | - Enrique Lara-Pezzi
- From the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain (P.O.-S., M.V.-O., M.M.L.-O., J.L.-A., F.S.-C., C.M.-G., E.C., J.M.G.-S., L.R.-H., J.V., E.L.-P.).,Centro de Investigacion Biomedica en Red Cardiovascular (CIBERCV), Madrid, Spain (J.V., P.G.-P., E.L.-P).,National Heart and Lung Institute, Imperial College London, United Kingdom (E.L.-P.)
| |
Collapse
|
33
|
Yoo J, Kohlbrenner E, Kim O, Hajjar RJ, Jeong D. Enhancing atrial-specific gene expression using a calsequestrin cis-regulatory module 4 with a sarcolipin promoter. J Gene Med 2018; 20:e3060. [PMID: 30393908 PMCID: PMC6519042 DOI: 10.1002/jgm.3060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 01/31/2023] Open
Abstract
Background Cardiac gene therapy using the adeno‐associated virus serotype 9 vector is widely used because of its efficient transduction. However, the promoters used to drive expression often cause off‐target localization. To overcome this, studies have applied cardiac‐specific promoters, although expression is debilitated compared to that of ubiquitous promoters. To address these issues in the context of atrial‐specific gene expression, an enhancer calsequestrin cis‐regulatory module 4 (CRM4) and the highly atrial‐specific promoter sarcolipin were combined to enhance expression and minimize off tissue expression. Methods To observe expression and bio‐distribution, constructs were generated using two different reporter genes: luciferase and enhanced green fluorescent protein (EGFP). The ubiquitous cytomegalovirus (CMV), sarcolipin (SLN) and CRM4 combined with sarcolipin (CRM4.SLN) were compared and analyzed using the luciferase assay, western blotting, a quantitative polymerase chain reaction and fluorescence imaging. Results The CMV promoter containing vectors showed the strongest expression in vitro and in vivo. However, the module SLN combination showed enhanced atrial expression and a minimized off‐target effect even when compared with the individual SLN promoter. Conclusions For gene therapy involving atrial gene transfer, the CRM4.SLN combination is a promising alternative to the use of the CMV promoter. CRM4.SLN had significant atrial expression and minimized extra‐atrial expression.
Collapse
Affiliation(s)
- Jimeen Yoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Okkil Kim
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dongtak Jeong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
Singh R, Moreno P, Hajjar RJ, Lebeche D. A role for calcium in resistin transcriptional activation in diabetic hearts. Sci Rep 2018; 8:15633. [PMID: 30353146 PMCID: PMC6199245 DOI: 10.1038/s41598-018-34112-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/06/2018] [Indexed: 12/12/2022] Open
Abstract
The adipokine resistin has been proposed to link obesity, insulin resistance and diabetes. We have previously reported that diabetic hearts express high levels of resistin while overexpression of resistin in adult rat hearts gives rise to a phenotype resembling diabetic cardiomyopathy. The transcriptional regulation of resistin in diabetic cardiac tissue is currently unknown. This study investigated the mechanism of resistin upregulation and the role of Serca2a in its transcriptional suppression. We demonstrate that restoration of Ca2+ homeostasis in diabetic hearts, through normalization of Serca2a function genetically and pharmacologically, suppressed resistin expression via inhibition of NFATc. H9c2 myocytes stimulated with high-glucose concentration or Ca2+ time-dependently increased NFATc and resistin expression while addition of the Ca2+ chelator BAPTA-AM attenuated this effect. NFATc expression was enhanced in hearts from ob/ob diabetic and from cardiac-specific Serca2a−/− mice. Similarly, NFATc increased resistin expression in myocytes cultured in low glucose while the NFATc inhibitor VIVIT blocked glucose-induced resistin expression, suggesting that hyperglycemia/diabetes induces resistin expression possibly through NFATc activation. Interestingly, overexpression of Serca2a or VIVIT mitigated glucose-stimulated resistin and NFATc expression and enhanced AMPK activity, a downstream target of resistin signaling. NFATc direct activation of resistin was verified by resistin promoter luciferase activity and chromatin-immunoprecipitation analysis. Interestingly, activation of Serca2a by a novel agonist, CDN1163, mirrored the effects of AAV9-Serca2a gene transfer on resistin expression and its promoter activity and AMPK signaling in diabetic mice. These findings parse a role for Ca2+ in resistin transactivation and provide support that manipulation of Serca2a-NFATc-Resistin axis might be useful in hyper-resistinemic conditions.
Collapse
Affiliation(s)
- Rajvir Singh
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Pedro Moreno
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Roger J Hajjar
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA. .,Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, 10029, USA.
| |
Collapse
|
35
|
Makarewich CA, Munir AZ, Schiattarella GG, Bezprozvannaya S, Raguimova ON, Cho EE, Vidal AH, Robia SL, Bassel-Duby R, Olson EN. The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. eLife 2018; 7:e38319. [PMID: 30299255 PMCID: PMC6202051 DOI: 10.7554/elife.38319] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023] Open
Abstract
Calcium (Ca2+) dysregulation is a hallmark of heart failure and is characterized by impaired Ca2+ sequestration into the sarcoplasmic reticulum (SR) by the SR-Ca2+-ATPase (SERCA). We recently discovered a micropeptide named DWORF (DWarf Open Reading Frame) that enhances SERCA activity by displacing phospholamban (PLN), a potent SERCA inhibitor. Here we show that DWORF has a higher apparent binding affinity for SERCA than PLN and that DWORF overexpression mitigates the contractile dysfunction associated with PLN overexpression, substantiating its role as a potent activator of SERCA. Additionally, using a well-characterized mouse model of dilated cardiomyopathy (DCM) due to genetic deletion of the muscle-specific LIM domain protein (MLP), we show that DWORF overexpression restores cardiac function and prevents the pathological remodeling and Ca2+ dysregulation classically exhibited by MLP knockout mice. Our results establish DWORF as a potent activator of SERCA within the heart and as an attractive candidate for a heart failure therapeutic.
Collapse
Affiliation(s)
- Catherine A Makarewich
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Amir Z Munir
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Gabriele G Schiattarella
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Svetlana Bezprozvannaya
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Olga N Raguimova
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Ellen E Cho
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Alexander H Vidal
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Seth L Robia
- Department of Cell and Molecular PhysiologyLoyola University ChicagoMaywoodUnited States
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Eric N Olson
- Department of Molecular Biology and Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
36
|
Targeting protein-protein interactions for therapeutic discovery via FRET-based high-throughput screening in living cells. Sci Rep 2018; 8:12560. [PMID: 30135432 PMCID: PMC6105598 DOI: 10.1038/s41598-018-29685-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/16/2018] [Indexed: 01/16/2023] Open
Abstract
We have developed a structure-based high-throughput screening (HTS) method, using time-resolved fluorescence resonance energy transfer (TR-FRET) that is sensitive to protein-protein interactions in living cells. The membrane protein complex between the cardiac sarcoplasmic reticulum Ca-ATPase (SERCA2a) and phospholamban (PLB), its Ca-dependent regulator, is a validated therapeutic target for reversing cardiac contractile dysfunction caused by aberrant calcium handling. However, efforts to develop compounds with SERCA2a-PLB specificity have yet to yield an effective drug. We co-expressed GFP-SERCA2a (donor) in the endoplasmic reticulum membrane of HEK293 cells with RFP-PLB (acceptor), and measured FRET using a fluorescence lifetime microplate reader. We screened a small-molecule library and identified 21 compounds (Hits) that changed FRET by >3SD. 10 of these Hits reproducibly alter SERCA2a-PLB structure and function. One compound increases SERCA2a calcium affinity in cardiac membranes but not in skeletal, suggesting that the compound is acting specifically on the SERCA2a-PLB complex, as needed for a drug to mitigate deficient calcium transport in heart failure. The excellent assay quality and correlation between structural and functional assays validate this method for large-scale HTS campaigns. This approach offers a powerful pathway to drug discovery for a wide range of protein-protein interaction targets that were previously considered “undruggable”.
Collapse
|
37
|
Samuel TJ, Rosenberry RP, Lee S, Pan Z. Correcting Calcium Dysregulation in Chronic Heart Failure Using SERCA2a Gene Therapy. Int J Mol Sci 2018; 19:ijms19041086. [PMID: 29621141 PMCID: PMC5979534 DOI: 10.3390/ijms19041086] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/14/2023] Open
Abstract
Chronic heart failure (CHF) is a major contributor to cardiovascular disease and is the leading cause of hospitalization for those over the age of 65, which is estimated to account for close to seventy billion dollars in healthcare costs by 2030 in the US alone. The successful therapies for preventing and reversing CHF progression are urgently required. One strategy under active investigation is to restore dysregulated myocardial calcium (Ca2+), a hallmark of CHF. It is well established that intracellular Ca2+ concentrations are tightly regulated to control efficient myocardial systolic contraction and diastolic relaxation. Among the many cell surface proteins and intracellular organelles that act as the warp and woof of the regulatory network controlling intracellular Ca2+ signals in cardiomyocytes, sarco/endoplasmic reticulum Ca2+ ATPase type 2a (SERCA2a) undoubtedly plays a central role. SERCA2a is responsible for sequestrating cytosolic Ca2+ back into the sarcoplasmic reticulum during diastole, allowing for efficient uncoupling of actin-myosin and subsequent ventricular relaxation. Accumulating evidence has demonstrated that the expression of SERCA2a is downregulated in CHF, which subsequently contributes to severe systolic and diastolic dysfunction. Therefore, restoring SERCA2a expression and improving cardiomyocyte Ca2+ handling provides an excellent alternative to currently used transplantation and mechanical assist devices in the treatment of CHF. Indeed, advancements in safe and effective gene delivery techniques have led to the emergence of SERCA2a gene therapy as a potential therapeutic choice for CHF patients. This mini-review will succinctly detail the progression of SERCA2a gene therapy from its inception in plasmid and animal models, to its clinical trials in CHF patients, highlighting potential avenues for future work along the way.
Collapse
Affiliation(s)
- T Jake Samuel
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ryan P Rosenberry
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Seungyong Lee
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Zui Pan
- Department of Graduate Nursing, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
38
|
Zhai Y, Luo Y, Wu P, Li D. New insights into SERCA2a gene therapy in heart failure: pay attention to the negative effects of B-type natriuretic peptides. J Med Genet 2018; 55:287-296. [PMID: 29478009 DOI: 10.1136/jmedgenet-2017-105120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a) is a target of interest in gene therapy for heart failure with reduced ejection fraction (HFrEF). However, the results of an important clinical study, the Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID) trial, were controversial. Promising results were observed in the CUPID 1 trial, but the results of the CUPID 2 trial were negative. The factors that caused the controversial results remain unclear. Importantly, enrolled patients were required to have a higher plasma level of B-type natriuretic peptide (BNP) in the CUPID 2 trial. Moreover, BNP was shown to inhibit SERCA2a expression. Therefore, it is possible that high BNP levels interact with treatment effects of SERCA2a gene transfer and accordingly lead to negative results of CUPID 2 trial. From this point of view, effects of SERCA2a gene therapy should be explored in heart failure with preserved ejection fraction, which is characterised by lower BNP levels compared with HFrEF. In this review, we summarise the current knowledge of SERCA2a gene therapy for heart failure, analyse potential interaction between BNP levels and therapeutic effects of SERCA2a gene transfer and provide directions for future research to solve the identified problems.
Collapse
Affiliation(s)
- Yuting Zhai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Pei Wu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
39
|
Mattila M, Koskenvuo J, Söderström M, Eerola K, Savontaus M. Intramyocardial injection of SERCA2a-expressing lentivirus improves myocardial function in doxorubicin-induced heart failure. J Gene Med 2018; 18:124-33. [PMID: 27203155 DOI: 10.1002/jgm.2885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Doxorubicin is an effective anticancer drug. The major limitation to its use is the induction of dose-dependent cardiomyopathy. No specific treatment exists for doxorubicin-induced cardiomyopathy and treatments used for other forms of heart failure have only limited beneficial effects. The contraction-relaxation cycle of the heart is controlled by cytosolic calcium concentrations, which, in turn, are critically regulated by the activity of the sarcoplasmic reticulum Ca(2) (+) ATPase (SERCA2a) pump. We hypothesized that SERCA2a gene transfer would ameliorate doxorubicin-induced cardiomyopathy. METHODS Lentiviral vectors LV-SERCA2a-GFP and LV-GFP were constructed and in vitro gene transfer of LV-SERCA2a-GFP confirmed SERCA2a expression by western blot analysis. Heart failure was induced by giving a single intraperitoneal injection of doxorubicin. LV-SERCA2a-GFP, LV-GFP vectors and phosphate-buffered saline (PBS) were injected under echocardiographic control to the anterior wall of the left ventricle. RESULTS Echocardiography analyses were performed on the injection day and 28 days postinjection. On the injection day, there were no significant differences in the average ejection fractions (EFs) among SERCA2a (40.0%), GFP (41.1%) and PBS (39.4%) injected animals. On day 28, EF in the SERCA2a group had increased by 16.6 ± 6.7% to 46.4 ± 2.1%. By contrast, EFs in the GFP (40.2 ± 1.3%) and PBS (40.6 ± 1.4%) groups remained at pre-injection levels. In addition, end systolic and end diastolic left ventricle volumes were significantly smaller in the SERCA2a group compared to controls. CONCLUSIONS SERCA2a gene transfer significantly improves left ventricle function and dimensions in doxorubicin-induced cardiomyopathy, thus making LV-SERCA2a gene transfer an attractive treatment modality for doxorubicin-induced heart failure. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Minttu Mattila
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Juha Koskenvuo
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Mirva Söderström
- Department of Pathology, Turku University Hospital, University of Turku, Turku, Finland
| | - Kim Eerola
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland.,Drug Research Doctoral Program, University of Turku, Turku, Finland
| | - Mikko Savontaus
- Turku Centre for Biotechnology, University of Turku, Turku, Finland.,Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland.,Heart Centre, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
40
|
Dong J, Gao C, Liu J, Cao Y, Tian L. TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget 2018; 7:39207-39215. [PMID: 27206677 PMCID: PMC5129926 DOI: 10.18632/oncotarget.9393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/16/2016] [Indexed: 11/25/2022] Open
Abstract
Elevated thyroid-stimulating hormone (TSH) levels often accompany impaired LV diastolic function and subtle systolic dysfunction in subclinical hypothyroidism (sHT). These cardiac dysfunctions are characterized by increases in mean aortic acceleration and pre-ejection/ejection time ratios. To explore the mechanism underlying these pathologies, we investigated the effects of TSH on sarcoplasmic reticulum calcium ATPase (SERCA2a) activity and expression in neonatal rat cardiomyocytes. TSH inhibited SERCA2a activity and expression by binding to TSH receptors in cardiomyocyte membranes and inhibiting the protein kinase A/phoshpolamban (PKA/PLN) signaling pathway. These results suggest that increases in serum TSH levels contribute to the development of cardiac diastolic and systolic dysfunction.
Collapse
Affiliation(s)
- Jiajia Dong
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Cuixia Gao
- Department of Ultrasonic Diagnosis, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Yunshan Cao
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Limin Tian
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
41
|
Greenberg B. Gene therapy for heart failure: time to go back to the drawing board. Eur J Heart Fail 2017; 19:1542-1544. [DOI: 10.1002/ejhf.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/22/2017] [Indexed: 11/11/2022] Open
|
42
|
Kaneko M, Yamamoto H, Sakai H, Kamada Y, Tanaka T, Fujiwara S, Yamamoto S, Takahagi H, Igawa H, Kasai S, Noda M, Inui M, Nishimoto T. A pyridone derivative activates SERCA2a by attenuating the inhibitory effect of phospholamban. Eur J Pharmacol 2017; 814:1-8. [DOI: 10.1016/j.ejphar.2017.07.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 01/26/2023]
|
43
|
Liu R, Lee J, Kim BS, Wang Q, Buxton SK, Balasubramanyam N, Kim JJ, Dong J, Zhang A, Li S, Gupte AA, Hamilton DJ, Martin JF, Rodney GG, Coarfa C, Wehrens XH, Yechoor VK, Moulik M. Tead1 is required for maintaining adult cardiomyocyte function, and its loss results in lethal dilated cardiomyopathy. JCI Insight 2017; 2:93343. [PMID: 28878117 DOI: 10.1172/jci.insight.93343] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/27/2017] [Indexed: 11/17/2022] Open
Abstract
Heart disease remains the leading cause of death worldwide, highlighting a pressing need to identify novel regulators of cardiomyocyte (CM) function that could be therapeutically targeted. The mammalian Hippo/Tead pathway is critical in embryonic cardiac development and perinatal CM proliferation. However, the requirement of Tead1, the transcriptional effector of this pathway, in the adult heart is unknown. Here, we show that tamoxifen-inducible adult CM-specific Tead1 ablation led to lethal acute-onset dilated cardiomyopathy, associated with impairment in excitation-contraction coupling. Mechanistically, we demonstrate Tead1 is a cell-autonomous, direct transcriptional activator of SERCA2a and SR-associated protein phosphatase 1 regulatory subunit, Inhibitor-1 (I-1). Thus, Tead1 deletion led to a decrease in SERCA2a and I-1 transcripts and protein, with a consequent increase in PP1-activity, resulting in accumulation of dephosphorylated phospholamban (Pln) and decreased SERCA2a activity. Global transcriptomal analysis in Tead1-deleted hearts revealed significant changes in mitochondrial and sarcomere-related pathways. Additional studies demonstrated there was a trend for correlation between protein levels of TEAD1 and I-1, and phosphorylation of PLN, in human nonfailing and failing hearts. Furthermore, TEAD1 activity was required to maintain PLN phosphorylation and expression of SERCA2a and I-1 in human induced pluripotent stem cell-derived (iPS-derived) CMs. To our knowledge, taken together, this demonstrates a nonredundant, novel role of Tead1 in maintaining normal adult heart function.
Collapse
Affiliation(s)
- Ruya Liu
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Byung S Kim
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine
| | - Qiongling Wang
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | - Samuel K Buxton
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | | | - Jean J Kim
- Stem Cells and Regenerative Medicine Center, and.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Jianrong Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Aijun Zhang
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Shumin Li
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anisha A Gupte
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - Dale J Hamilton
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, Texas, USA
| | - James F Martin
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Xander Ht Wehrens
- Cardiovascular Research Institute.,Department of Molecular Physiology and Biophysics
| | - Vijay K Yechoor
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine.,Cardiovascular Research Institute
| | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Texas (UT) Health McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
44
|
Chemaly ER, Troncone L, Lebeche D. SERCA control of cell death and survival. Cell Calcium 2017; 69:46-61. [PMID: 28747251 DOI: 10.1016/j.ceca.2017.07.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/31/2022]
Abstract
Intracellular calcium (Ca2+) is a critical coordinator of various aspects of cellular physiology. It is increasingly apparent that changes in cellular Ca2+ dynamics contribute to the regulation of normal and pathological signal transduction that controls cell growth and survival. Aberrant perturbations in Ca2+ homeostasis have been implicated in a range of pathological conditions, such as cardiovascular diseases, diabetes, tumorigenesis and steatosis hepatitis. Intracellular Ca2+ concentrations are therefore tightly regulated by a number of Ca2+ handling enzymes, proteins, channels and transporters located in the plasma membrane and in Ca2+ storage organelles, which work in concert to fine tune a temporally and spatially precise Ca2+ signal. Chief amongst them is the sarco/endoplasmic reticulum (SR/ER) Ca2+ ATPase pump (SERCA) which actively re-accumulates released Ca2+ back into the SR/ER, therefore maintaining Ca2+ homeostasis. There are at least 14 different SERCA isoforms encoded by three ATP2A1-3 genes whose expressions are species- and tissue-specific. Altered SERCA expression and activity results in cellular malignancy and induction of ER stress and ER stress-associated apoptosis. The role of SERCA misregulation in the control of apoptosis in various cell types and disease setting with prospective therapeutic implications is the focus of this review. Ca2+ is a double edge sword for both life as well as death, and current experimental evidence supports a model in which Ca2+ homeostasis and SERCA activity represent a nodal point that controls cell survival. Pharmacological or genetic targeting of this axis constitutes an incredible therapeutic potential to treat different diseases sharing similar biological disorders.
Collapse
Affiliation(s)
- Elie R Chemaly
- Division of Nephrology and Hypertension, Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Luca Troncone
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Djamel Lebeche
- Cardiovascular Research Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Diabetes, Obesity and Metabolism Institute, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Graduate School of Biological Sciences, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
45
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
46
|
Hulot JS, Salem JE, Redheuil A, Collet JP, Varnous S, Jourdain P, Logeart D, Gandjbakhch E, Bernard C, Hatem SN, Isnard R, Cluzel P, Le Feuvre C, Leprince P, Hammoudi N, Lemoine FM, Klatzmann D, Vicaut E, Komajda M, Montalescot G, Lompré AM, Hajjar RJ. Effect of intracoronary administration of AAV1/SERCA2a on ventricular remodelling in patients with advanced systolic heart failure: results from the AGENT-HF randomized phase 2 trial. Eur J Heart Fail 2017; 19:1534-1541. [DOI: 10.1002/ejhf.826] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/17/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Jean-Sébastien Hulot
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Joe-Elie Salem
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Alban Redheuil
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Jean-Philippe Collet
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Shaida Varnous
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | | | - Damien Logeart
- UMR-S 942, Université Paris Diderot, DHU FIRE, Department of Cardiology, Lariboisière Hospital; Assistance Publique-Hôpitaux de Paris (AP-HP); Paris France
| | - Estelle Gandjbakhch
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Claude Bernard
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP; Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department; F-75013 Paris France
| | - Stéphane N. Hatem
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Richard Isnard
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Philippe Cluzel
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Claude Le Feuvre
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Pascal Leprince
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Nadjib Hammoudi
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - François M. Lemoine
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP; Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department; F-75013 Paris France
| | - David Klatzmann
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP; Clinical Investigation Center for Biotherapies and Inflammation-Immunopathology-Biotherapy Department; F-75013 Paris France
| | - Eric Vicaut
- ACTION Study Group, Unité de Recherche Clinique, Lariboisière; Paris France
| | - Michel Komajda
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Gilles Montalescot
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
- ACTION Study Group, Unité de Recherche Clinique, Lariboisière; Paris France
| | - Anne-Marie Lompré
- Sorbonne Universités, UPMC Univ Paris 06, AP-HP, CIC Paris-Est 1421, Institute of Cardiometabolism and Nutrition (ICAN); Pitié-Salpêtrière Hospital; F-75013 Paris France
| | - Roger J. Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinaï; New York NY USA
| | | |
Collapse
|
47
|
Shanks J, Herring N, Johnson E, Liu K, Li D, Paterson DJ. Overexpression of Sarcoendoplasmic Reticulum Calcium ATPase 2a Promotes Cardiac Sympathetic Neurotransmission via Abnormal Endoplasmic Reticulum and Mitochondria Ca 2+ Regulation. Hypertension 2017; 69:625-632. [PMID: 28223472 PMCID: PMC5344179 DOI: 10.1161/hypertensionaha.116.08507] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/11/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Reduced cardiomyocyte excitation–contraction coupling and downregulation of the SERCA2a (sarcoendoplasmic reticulum calcium ATPase 2a) is associated with heart failure. This has led to viral transgene upregulation of SERCA2a in cardiomyocytes as a treatment. We hypothesized that SERCA2a gene therapy expressed under a similar promiscuous cytomegalovirus promoter could also affect the cardiac sympathetic neural axis and promote sympathoexcitation. Stellate neurons were isolated from 90 to 120 g male, Sprague–Dawley, Wistar Kyoto, and spontaneously hypertensive rats. Neurons were infected with Ad-mCherry or Ad-mCherry-hATP2Aa (SERCA2a). Intracellular Ca2+ changes were measured using fura-2AM in response to KCl, caffeine, thapsigargin, and carbonylcyanide-p-trifluoromethoxyphenylhydrazine to mobilize intracellular Ca2+ stores. The effect of SERCA2a on neurotransmitter release was measured using [3H]-norepinephrine overflow from 340 to 360 g Sprague–Dawley rat atria in response to right stellate ganglia stimulation. Upregulation of SERCA2a resulted in greater neurotransmitter release in response to stellate stimulation compared with control (empty: 98.7±20.5 cpm, n=7; SERCA: 186.5±28.41 cpm, n=8; P<0.05). In isolated Sprague–Dawley rat stellate neurons, SERCA2a overexpression facilitated greater depolarization-induced Ca2+ transients (empty: 0.64±0.03 au, n=57; SERCA: 0.75±0.03 au, n=68; P<0.05), along with increased endoplasmic reticulum and mitochondria Ca2+ load. Similar results were observed in Wistar Kyoto and age-matched spontaneously hypertensive rats, despite no further increase in endoplasmic reticulum load being observed in the spontaneously hypertensive rat (spontaneously hypertensive rats: empty, 0.16±0.04 au, n=18; SERCA: 0.17±0.02 au, n=25). In conclusion, SERCA2a upregulation in cardiac sympathetic neurons resulted in increased neurotransmission and increased Ca2+ loading into intracellular stores. Whether the increased Ca2+ transient and neurotransmission after SERCA2A overexpression contributes to enhanced sympathoexcitation in heart failure patients remains to be determined.
Collapse
Affiliation(s)
- Julia Shanks
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Neil Herring
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Errin Johnson
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Kun Liu
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - Dan Li
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.)
| | - David J Paterson
- From the Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Oxford, United Kingdom (J.S., N.H., K.L., D.L., D.J.P.); and Sir William Dunn School of Pathology, Oxford, United Kingdom (E.J.).
| |
Collapse
|
48
|
Aronsen JM, Espe EKS, Skårdal K, Hasic A, Zhang L, Sjaastad I. Noninvasive stratification of postinfarction rats based on the degree of cardiac dysfunction using magnetic resonance imaging and echocardiography. Am J Physiol Heart Circ Physiol 2017; 312:H932-H942. [PMID: 28188213 DOI: 10.1152/ajpheart.00668.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 11/22/2022]
Abstract
The myocardial infarction (MI) rat model plays a crucial role in modern cardiovascular research, but the inherent heterogeneity of this model represents a challenge. We sought to identify subgroups among the post-MI rats and establish simple noninvasive stratification protocols for such subgroups. Six weeks after induction of MI, 49 rats underwent noninvasive examinations using magnetic resonance imaging (MRI) and echocardiography. Twelve sham-operated rats served as controls. Increased end-diastolic left ventricular (LV) pressure and lung weight served as indicators for congestive heart failure (CHF). A clustering algorithm using 13 noninvasive and invasive parameters was used to identify distinct groups among the animals. The cluster analysis revealed four distinct post-MI phenotypes; two without congestion but with different degree of LV dilatation, and two with different degree of congestion and right ventricular (RV) affection. Among the MRI parameters, RV mass emerged as robust noninvasive marker of CHF with 100% specificity/sensitivity. Moreover, LV infarct size and RV ejection fraction further predicted subgroup among the non-CHF and CHF rats with excellent specificity/sensitivity. Of the echocardiography parameters, left atrial diameter predicted CHF. Moreover, LV end-diastolic diameter predicted the subgroups among the non-CHF rats. We propose two simple noninvasive schemes to stratify post-MI rats, based on the degree of heart failure; one for MRI and one for echocardiography.NEW & NOTEWORTHY In vivo phenotyping of rats is essential for robust and reliable data. Here, we present two simple noninvasive schemes for the stratification of postinfarction rats based on the degree of heart failure: one using magnetic resonance imaging and one based on echocardiography.
Collapse
Affiliation(s)
- Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and .,Bjørknes College, Oslo, Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Kristine Skårdal
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| |
Collapse
|
49
|
Karam CN, Warren CM, Henze M, Banke NH, Lewandowski ED, Solaro RJ. Peroxisome proliferator-activated receptor-α expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy. Am J Physiol Heart Circ Physiol 2017; 312:H681-H690. [PMID: 28130336 DOI: 10.1152/ajpheart.00469.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Although alterations in fatty acid (FA) metabolism have been shown to have a negative impact on contractility of the hypertrophied heart, the targets of action remain elusive. In this study we compared the function of skinned fiber bundles from transgenic (Tg) mice that overexpress a relatively low level of the peroxisome proliferator-activated receptor α (PPARα), and nontransgenic (NTg) littermates. The mice (NTg-T and Tg-T) were stressed by transverse aortic constriction (TAC) and compared with shams (NTg-S and Tg-S). There was an approximate 4-fold increase in PPARα expression in Tg-S compared with NTg-S, but Tg-T hearts showed the same PPARα expression as NTg-T. Expression of PPARα did not alter the hypertrophic response to TAC but did reduce ejection fraction (EF) in Tg-T hearts compared with other groups. The rate of actomyosin ATP hydrolysis was significantly higher in Tg-S skinned fiber bundles compared with all other groups. Tg-T hearts showed an increase in phosphorylation of specific sites on cardiac myosin binding protein-C (cMyBP-C) and β-myosin heavy chain isoform. These results advance our understanding of potential signaling to the myofilaments induced by altered FA metabolism under normal and pathological states. We demonstrate that chronic and transient PPARα activation during pathological stress alters myofilament response to Ca2+ through a mechanism that is possibly mediated by MyBP-C phosphorylation and myosin heavy chain isoforms.NEW & NOTEWORTHY Data presented here demonstrate novel signaling to sarcomeric proteins by chronic alterations in fatty acid metabolism induced by PPARα. The mechanism involves modifications of key myofilament regulatory proteins modifying cross-bridge dynamics with differential effects in controls and hearts stressed by pressure overload.
Collapse
Affiliation(s)
- Chehade N Karam
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Chad M Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Marcus Henze
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Natasha H Banke
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Douglas Lewandowski
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and.,Sanford Burnham Presbyterian Medical Discovery Institute, Orlando, Florida
| | - R John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
50
|
Kaneko M, Hashikami K, Yamamoto S, Matsumoto H, Nishimoto T. Phospholamban Ablation Using CRISPR/Cas9 System Improves Mortality in a Murine Heart Failure Model. PLoS One 2016; 11:e0168486. [PMID: 27992596 PMCID: PMC5161475 DOI: 10.1371/journal.pone.0168486] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/30/2016] [Indexed: 01/18/2023] Open
Abstract
Sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) and its inhibitory protein called phospholamban (PLN) are pivotal for Ca2+ handling in cardiomyocyte and are known that their expression level and activity were changed in the heart failure patients. To examine whether PLN inhibition can improve survival rate as well as cardiac function in heart failure, we performed PLN ablation in calsequestrin overexpressing (CSQ-Tg) mice, a severe heart failure model, using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system. According this method, generation rate of PLN wild type mice (PLN copy >0.95) and PLN homozygous knockout (KO) mice (PLN copy <0.05) were 39.1% and 10.5%, respectively. While CSQ overexpression causes severe heart failure symptoms and premature death, a significant ameliorating effect on survival rate was observed in PLN homozygous KO/CSQ-Tg mice compared to PLN wild type/CSQ-Tg mice (median survival days are 55 and 50 days, respectively). Measurement of cardiac function with cardiac catheterization at the age of 5 weeks revealed that PLN ablation improved cardiac function in CSQ-Tg mice without affecting heart rate and blood pressure. Furthermore, increases in atrial and lung weight, an index of congestion, were significantly inhibited by PLN ablation. These results suggest that PLN deletion would be a promising approach to improve both mortality and cardiac function in the heart failure.
Collapse
Affiliation(s)
- Manami Kaneko
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
- * E-mail:
| | - Kentarou Hashikami
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoshi Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Hirokazu Matsumoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Tomoyuki Nishimoto
- Cardiovascular and Metabolic Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|