1
|
Florindi C, Vurro V, Moretti P, Bertarelli C, Zaza A, Lanzani G, Lodola F. Role of stretch-activated channels in light-generated action potentials mediated by an intramembrane molecular photoswitch. J Transl Med 2024; 22:1068. [PMID: 39605022 PMCID: PMC11600573 DOI: 10.1186/s12967-024-05902-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The use of light to control the activity of living cells is a promising approach in cardiac research due to its unparalleled spatio-temporal selectivity and minimal invasiveness. Ziapin2, a newly synthesized azobenzene compound, has recently been reported as an efficient tool for light-driven modulation of excitation-contraction coupling (ECC) in human-induced pluripotent stem cells-derived cardiomyocytes. However, the exact biophysical mechanism of this process remains incompletely understood. METHODS To address this, we performed a detailed electrophysiological characterization in a more mature cardiac model, specifically adult mouse ventricular myocytes (AMVMs). RESULTS Our in vitro results demonstrate that Ziapin2 can photomodulate cardiac ECC in mature AMVMs without affecting the main transporters and receptors located within the sarcolemma. We established a connection between Ziapin2-induced membrane thickness modulation and light-generated action potentials by showcasing the pivotal role of stretch-activated channels (SACs). Notably, our experimental findings, through pharmacological blockade, suggest that non-selective SACs might serve as the biological culprit responsible for the effect. CONCLUSIONS Taken together, these findings elucidate the intricacies of Ziapin2-mediated photostimulation mechanism and open new perspectives for its application in cardiac research.
Collapse
Affiliation(s)
- Chiara Florindi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Vito Vurro
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
| | - Paola Moretti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Chiara Bertarelli
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Antonio Zaza
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy
| | - Guglielmo Lanzani
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy
- Department of Physics, Politecnico di Milano, Milan, Italy
| | - Francesco Lodola
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.za della Scienza 2, 20126, Milan, Italy.
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Milan, Italy.
| |
Collapse
|
2
|
de Bulhões FV, Assis GE, Cazé AB, Barros-Pereira JP, Laguna GGDC, Improta-Caria AC, Aras-Júnior R. The Action of Colchicine in Patients with Metabolic Syndrome and Obesity: Perspectives and Challenges. Metabolites 2024; 14:629. [PMID: 39590865 PMCID: PMC11596755 DOI: 10.3390/metabo14110629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/27/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Colchicine is an alkaloid traditionally used to treat inflammatory conditions such as gout and familial Mediterranean fever. Currently, there are proposals for the use of this drug in several other situations, such as cardiovascular and liver diseases and diabetes. In this study, the current literature on the potential of colchicine in the treatment of obesity and metabolic syndrome (MS) was evaluated. The inhibitory action of the NLRP3 inflammasome and other processes, such as reductions in the migration and activation of immune system cells, are effects observed in both in vitro studies and animal models related to colchicine, as well as the promotion of mechanisms of the intensification of lipid metabolism, the reduction of tissue fibrosis, and the reduction of serum glucose and triglycerides. These factors are associated with changes in the prognoses of patients with MS, which, together with obesity, has a high association with inflammatory mechanisms for its maintenance and secondary impairments to homeostasis. In humans, clinical research has rarely addressed the use of colchicine in obesity and MS, with only one pilot randomized clinical trial having been conducted, which identified a beneficial anti-inflammatory effect on endothelial function and the process of insulin resistance in this population. However, it is not yet possible to extrapolate its findings and apply its results to a broader context. Given the potential of this "ancient drug" in various pathological contexts and its good tolerability, it is important that its properties continue to be investigated and that more clinical studies be conducted to expand the therapeutic applications of this low-cost substance in patients with obesity and MS.
Collapse
Affiliation(s)
- Fábio Vieira de Bulhões
- Faculty of Medicine, Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (F.V.d.B.); (G.E.A.); (A.B.C.); (J.P.B.-P.)
| | - Gabriele Eliza Assis
- Faculty of Medicine, Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (F.V.d.B.); (G.E.A.); (A.B.C.); (J.P.B.-P.)
| | - Ana Beatriz Cazé
- Faculty of Medicine, Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (F.V.d.B.); (G.E.A.); (A.B.C.); (J.P.B.-P.)
| | - Jackson Pedro Barros-Pereira
- Faculty of Medicine, Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (F.V.d.B.); (G.E.A.); (A.B.C.); (J.P.B.-P.)
| | | | - Alex Cleber Improta-Caria
- Laboratory of Biochemistry and Molecular Biology of the Exercise, Physical Education and Sport School, University of Sao Paulo (USP), Sao Paulo 05508-030, SP, Brazil
| | - Roque Aras-Júnior
- Faculty of Medicine, Federal University of Bahia (UFBA), Salvador 40110-060, BA, Brazil; (F.V.d.B.); (G.E.A.); (A.B.C.); (J.P.B.-P.)
| |
Collapse
|
3
|
Peng Y, Li Z, Zhang J, Dong Y, Zhang C, Dong Y, Zhai Y, Zheng H, Liu M, Zhao J, Du W, Liu Y, Sun L, Li X, Tao H, Long D, Zhao X, Du X, Ma C, Wang Y, Dong J. Low-Dose Colchicine Ameliorates Doxorubicin Cardiotoxicity Via Promoting Autolysosome Degradation. J Am Heart Assoc 2024; 13:e033700. [PMID: 38700005 PMCID: PMC11179898 DOI: 10.1161/jaha.123.033700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/04/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND The only clinically approved drug that reduces doxorubicin cardiotoxicity is dexrazoxane, but its application is limited due to the risk of secondary malignancies. So, exploring alternative effective molecules to attenuate its cardiotoxicity is crucial. Colchicine is a safe and well-tolerated drug that helps reduce the production of reactive oxygen species. High doses of colchicine have been reported to block the fusion of autophagosomes and lysosomes in cancer cells. However, the impact of colchicine on the autophagy activity within cardiomyocytes remains inadequately elucidated. Recent studies have highlighted the beneficial effects of colchicine on patients with pericarditis, postprocedural atrial fibrillation, and coronary artery disease. It remains ambiguous how colchicine regulates autophagic flux in doxorubicin-induced heart failure. METHODS AND RESULTS Doxorubicin was administered to establish models of heart failure both in vivo and in vitro. Prior studies have reported that doxorubicin impeded the breakdown of autophagic vacuoles, resulting in damaged mitochondria and the accumulation of reactive oxygen species. Following the administration of a low dose of colchicine (0.1 mg/kg, daily), significant improvements were observed in heart function (left ventricular ejection fraction: doxorubicin group versus treatment group=43.75%±3.614% versus 57.07%±2.968%, P=0.0373). In terms of mechanism, a low dose of colchicine facilitated the degradation of autolysosomes, thereby mitigating doxorubicin-induced cardiotoxicity. CONCLUSIONS Our research has shown that a low dose of colchicine is pivotal in restoring the autophagy activity, thereby attenuating the cardiotoxicity induced by doxorubicin. Consequently, colchicine emerges as a promising therapeutic candidate to improve doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Ying Peng
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Zhonggen Li
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Jianchao Zhang
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yunshu Dong
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics Chinese Academy of Sciences Beijing China
| | - Chenglin Zhang
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Yiming Dong
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yafei Zhai
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Honglin Zheng
- Department of Neurology The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Mengduan Liu
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Jing Zhao
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Wenting Du
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Yangyang Liu
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Liping Sun
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Xiaowei Li
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Hailong Tao
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Deyong Long
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Xiaoyan Zhao
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
| | - Xin Du
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Changsheng Ma
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| | - Yaohe Wang
- Centre for Cancer Biomarkers & Biotherapeutics Barts Cancer Institute, Queen Mary University of London London United Kingdom
| | - Jianzeng Dong
- Centre for Cardiovascular Diseases, Henan Key Laboratory of Hereditary Cardiovascular Diseases The First Affiliated Hospital of Zhengzhou University, Zhengzhou University Zhengzhou China
- Department of Cardiology, Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
4
|
LeBar K, Liu W, Pang J, Chicco AJ, Wang Z. Role of the microtubule network in the passive anisotropic viscoelasticity of right ventricle with pulmonary hypertension progression. Acta Biomater 2024; 176:293-303. [PMID: 38272197 DOI: 10.1016/j.actbio.2024.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Cardiomyocytes are viscoelastic and contribute significantly to right ventricle (RV) mechanics. Microtubule, a cytoskeletal protein, has been shown to regulate cardiomyocyte viscoelasticity. Additionally, hypertrophied cardiomyocytes from failing myocardium have increased microtubules and cell stiffness. How the microtubules contribute to the tissue-level viscoelastic behavior in RV failure remains unknown. Our aim was to investigate the role of the microtubules in the passive anisotropic viscoelasticity of the RV free wall (RVFW) during pulmonary hypertension (PH) progression. Equibiaxial stress relaxation tests were conducted in the RVFW from healthy and PH rats under early (6%) and end (15%) diastolic strains, and at sub- (1Hz) and physiological (5Hz) stretch-rates. The RVFW viscoelasticity was also measured before and after the depolymerization of microtubules at 5Hz. In intact tissues, PH increased RV viscosity and elasticity at both stretch rates and strain levels, and the increase was stronger in the circumferential than longitudinal direction. At 6% of strain, the removal of microtubules reduced elasticity, viscosity, and the ratio of viscosity to elasticity in both directions and for both healthy and diseased RVs. However, at 15% of strain, the effect of microtubules was different between groups - both viscosity and elasticity were reduced in healthy RVs, but in the diseased RVs only the circumferential viscosity and the ratio of viscosity to elasticity were reduced. These data suggest that, at a large strain with collagen recruitment, microtubules play more significant roles in healthy RV tissue elasticity and diseased RV tissue viscosity. Our findings suggest cardiomyocyte cytoskeletons are critical to RV passive viscoelasticity under pressure overload. STATEMENT OF SIGNIFICANCE: This study investigated the impact of microtubules on the passive anisotropic viscoelasticity of the right ventricular (RV) free wall at healthy and pressure-overloaded states. We originally found that the microtubules contribute significantly to healthy and diseased RV viscoelasticity in both (longitudinal and circumferential) directions at early diastolic strains. At end diastolic strains (with the engagement of collagen fibers), microtubules contribute more to the tissue elasticity of healthy RVs and tissue viscosity of diseased RVs. Our findings reveal the critical role of microtubules in the anisotropic viscoelasticity of the RV tissue, and the altered contribution from healthy to diseased state suggests that therapies targeting microtubules may have potentials for RV failure patients.
Collapse
Affiliation(s)
- Kristen LeBar
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA
| | - Wenqiang Liu
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA USA
| | - Jassia Pang
- Laboratory Animal Resources, Colorado State University, Fort Collins, CO USA
| | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO USA
| | - Zhijie Wang
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO USA; School of Biomedical Engineering, Colorado State University, Fort Collins, CO USA.
| |
Collapse
|
5
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
6
|
Zhan Y, Yue H, Zhao X, Tang J, Wu Z. Colchicine in atrial fibrillation: are old trees in bloom? Front Physiol 2023; 14:1260774. [PMID: 37916222 PMCID: PMC10616799 DOI: 10.3389/fphys.2023.1260774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Colchicine is a widely used drug that was originally used to treat gout and rheumatic diseases. In recent years, colchicine has shown high potential in the cardiovascular field. Atrial fibrillation (AF) is a cardiovascular disease with a high incidence. One of the most frequent complications following cardiovascular surgery is postoperative atrial fibrillation (POAF), which affects patient health and disease burden. This article reviews the research status of colchicine in AF and summarizes the relevant progress.
Collapse
Affiliation(s)
- Yujia Zhan
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Honghua Yue
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xueshan Zhao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Juan Tang
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu, University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Medical University, Haikou, China
| | - Zhong Wu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Pereira L, Val-Blasco A, Benitah JP, Gómez AM. Profiling the Ca +2 sparks dynamics in live cardiomyocytes. NATURE CARDIOVASCULAR RESEARCH 2023; 2:225-226. [PMID: 38774914 PMCID: PMC11108056 DOI: 10.1038/s44161-022-00203-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Affiliation(s)
- Laetitia Pereira
- Inserm, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Université Paris-Saclay, 91400 Orsay, France
| | - Almudena Val-Blasco
- Inserm, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Université Paris-Saclay, 91400 Orsay, France
| | - Jean-Pierre Benitah
- Inserm, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Université Paris-Saclay, 91400 Orsay, France
| | - Ana M Gómez
- Inserm, UMR-S 1180, “Signaling and Cardiovascular Pathophysiology”, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
8
|
Sun X, Duan J, Gong C, Feng Y, Hu J, Gu R, Xu B. Colchicine Ameliorates Dilated Cardiomyopathy Via SIRT2-Mediated Suppression of NLRP3 Inflammasome Activation. J Am Heart Assoc 2022; 11:e025266. [PMID: 35766262 PMCID: PMC9333380 DOI: 10.1161/jaha.122.025266] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Dilated cardiomyopathy remains a leading cause of heart failure worldwide. Immune inflammation response is recognized as a significant player in the progression of heart failure; however, immunomodulatory strategies remain a long-term challenge. Colchicine, a potent anti-inflammatory drug, has many benefits in ischemic cardiovascular events, but its role in nonischemic heart failure remains unclear. Methods and Results Doxorubicin administration was used to establish a murine dilated cardiomyopathy model, and colchicine or saline was orally given. At the end point, cardiac function and fibrosis were measured to investigate the effects of colchicine. Inflammatory cytokine levels, neutrophil recruitment, and NLRP3 (NOD-like receptor protein 3) inflammasome activation were detected to evaluate the inflammatory response. Furthermore, to examine the downstream target of colchicine, SIRT2 (Sirtuin 2) was pharmacologically inhibited in vitro; thus, changes in the NLRP3 inflammasome were detected by immunoblotting. These results showed that murine cardiac function was significantly improved and fibrosis was significantly alleviated after colchicine treatment. Moreover, the infiltration of neutrophils and the levels of inflammatory cytokines in the failing myocardium were both decreased by colchicine treatment. Mechanistically, colchicine upregulated the expression of SIRT2, leading to the inactivation of the NLRP3 inflammasome in an NLRP3 deacetylated manner. Conversely, the inhibition of SIRT2 attenuated the suppressive effect of colchicine on NLRP3 inflammasome activation. Conclusions This study indicated that colchicine could be a promising therapeutic candidate for dilated cardiomyopathy and other nonischemic heart failure associated with the inflammatory response.
Collapse
Affiliation(s)
- Xuan Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Junfeng Duan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Chenyi Gong
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Yuting Feng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Jiaxin Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| | - Biao Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital Medical School of Nanjing University Nanjing China
| |
Collapse
|
9
|
Wang S, Zhang J, Wang Y, Jiang X, Guo M, Yang Z. NLRP3 inflammasome as a novel therapeutic target for heart failure. Anatol J Cardiol 2022; 26:15-22. [PMID: 35191381 PMCID: PMC8878950 DOI: 10.5152/anatoljcardiol.2021.580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 06/30/2024] Open
Abstract
Heart failure (HF) is a leading cause of mortality worldwide. The pathogenesis of HF is complex and has not yet been fully elucidated, which has slowed drug development and long-term treatments. Inflammasome-mediated responses occur during the progression of HF. It has been reported that energy metabolism and metabolites of intestinal flora are also involved in the process of HF, and they interact with each other to promote the progression of HF. NLR family pyrin domain containing 3 (NLRP3) inflammasome may be a key target in the relationship between inflammation-mediated energy metabolism and metabolites of intestinal flora. Elucidating the relationship among the above three factors may help to identify new molecular targets for the prevention and treatment of HF and ultimately affect the course of HF. In this study, we systematically summarize evidence regarding the relationship among NLRP3 inflammasome, energy metabolism, intestinal microflora metabolites, and inflammation, as well as highlight advantages of NLRP3 inflammasome in treating HF.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Jiaqi Zhang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Yuli Wang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Xijuan Jiang
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Maojuan Guo
- Department of Integrative Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| | - Zhen Yang
- Department of Chinese Medicine, Tianjin University of Traditional Chinese Medicine; Tianjin-China
| |
Collapse
|
10
|
Quinn TA, Kohl P. Cardiac Mechano-Electric Coupling: Acute Effects of Mechanical Stimulation on Heart Rate and Rhythm. Physiol Rev 2020; 101:37-92. [PMID: 32380895 DOI: 10.1152/physrev.00036.2019] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The heart is vital for biological function in almost all chordates, including humans. It beats continually throughout our life, supplying the body with oxygen and nutrients while removing waste products. If it stops, so does life. The heartbeat involves precise coordination of the activity of billions of individual cells, as well as their swift and well-coordinated adaption to changes in physiological demand. Much of the vital control of cardiac function occurs at the level of individual cardiac muscle cells, including acute beat-by-beat feedback from the local mechanical environment to electrical activity (as opposed to longer term changes in gene expression and functional or structural remodeling). This process is known as mechano-electric coupling (MEC). In the current review, we present evidence for, and implications of, MEC in health and disease in human; summarize our understanding of MEC effects gained from whole animal, organ, tissue, and cell studies; identify potential molecular mediators of MEC responses; and demonstrate the power of computational modeling in developing a more comprehensive understanding of ‟what makes the heart tick.ˮ.
Collapse
Affiliation(s)
- T Alexander Quinn
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Department of Physiology and Biophysics and School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg/Bad Krozingen, Medical Faculty of the University of Freiburg, Freiburg, Germany; and CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Sun G, Chen H, Liang WZ, Jan CR. Exploration of the effect of the alkaloid colchicine on Ca2+ handling and its related physiology in human oral cancer cells. Arch Oral Biol 2019; 102:179-185. [DOI: 10.1016/j.archoralbio.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/15/2019] [Accepted: 04/27/2019] [Indexed: 10/26/2022]
|
12
|
Frommeyer G, Krawczyk J, Dechering DG, Kochhäuser S, Leitz P, Fehr M, Eckardt L. Colchicine Increases Ventricular Vulnerability in an Experimental Whole-Heart Model. Basic Clin Pharmacol Toxicol 2017; 120:505-508. [DOI: 10.1111/bcpt.12702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 11/06/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Gerrit Frommeyer
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| | - Julius Krawczyk
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| | - Dirk G. Dechering
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| | - Simon Kochhäuser
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| | - Patrick Leitz
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| | - Michael Fehr
- Clinic of Exotic Pets, Reptiles, Exotic and Feral Birds; University of Hanover; Hanover Germany
| | - Lars Eckardt
- Division of Electrophysiology; Department of Cardiovascular Medicine; University of Münster; Münster Germany
| |
Collapse
|
13
|
Drum BML, Yuan C, Li L, Liu Q, Wordeman L, Santana LF. Oxidative stress decreases microtubule growth and stability in ventricular myocytes. J Mol Cell Cardiol 2016; 93:32-43. [PMID: 26902968 PMCID: PMC4902331 DOI: 10.1016/j.yjmcc.2016.02.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/21/2016] [Accepted: 02/12/2016] [Indexed: 02/05/2023]
Abstract
Microtubules (MTs) have many roles in ventricular myocytes, including structural stability, morphological integrity, and protein trafficking. However, despite their functional importance, dynamic MTs had never been visualized in living adult myocytes. Using adeno-associated viral vectors expressing the MT-associated protein plus end binding protein 3 (EB3) tagged with EGFP, we were able to perform live imaging and thus capture and quantify MT dynamics in ventricular myocytes in real time under physiological conditions. Super-resolution nanoscopy revealed that EB1 associated in puncta along the length of MTs in ventricular myocytes. The vast (~80%) majority of MTs grew perpendicular to T-tubules at a rate of 0.06μm∗s(-1) and growth was preferentially (82%) confined to a single sarcomere. Microtubule catastrophe rate was lower near the Z-line than M-line. Hydrogen peroxide increased the rate of catastrophe of MTs ~7-fold, suggesting that oxidative stress destabilizes these structures in ventricular myocytes. We also quantified MT dynamics after myocardial infarction (MI), a pathological condition associated with increased production of reactive oxygen species (ROS). Our data indicate that the catastrophe rate of MTs increases following MI. This contributed to decreased transient outward K(+) currents by decreasing the surface expression of Kv4.2 and Kv4.3 channels after MI. On the basis of these data, we conclude that, under physiological conditions, MT growth is directionally biased and that increased ROS production during MI disrupts MT dynamics, decreasing K(+) channel trafficking.
Collapse
Affiliation(s)
- Benjamin M L Drum
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Can Yuan
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Lei Li
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Qinghang Liu
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - Linda Wordeman
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, WA 98195, United States
| | - L Fernando Santana
- Deparment of Physiology & Membrane Biology, University of California School of Medicine, Davis, CA 95616, United States.
| |
Collapse
|
14
|
Tong DC, Wilson AM, Layland J. Colchicine in cardiovascular disease: an ancient drug with modern tricks. Heart 2016; 102:995-1002. [PMID: 26993138 DOI: 10.1136/heartjnl-2015-309211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 11/04/2022] Open
Abstract
From the dark history of being a poison and purgative, colchicine has risen to become one of the few irrefutable positives in the history of pharmacology in the management of myriad inflammatory conditions. Colchicine exerts its action through binding to tubulin, which in turn affects several cellular processes and pathways modulating the inflammatory response. Despite narrow therapeutic-toxicity window and the most common complaint of gastrointestinal upset, its list of medicinal use is expanding in recent years as we continue to unravel the mystery of this ancient remedy. In this review, we summarise the history of colchicine use, discuss its pharmacokinetics and mechanism of actions, and examine the most up-to-date evidence of colchicine in the treatment of various cardiac conditions with a focus on cardiovascular disease.
Collapse
Affiliation(s)
- David C Tong
- Department of Cardiology, St Vincent's Hospital, Fitzroy, Victoria, Australia Department of Cardiology, Peninsula Health, Frankston, Victoria, Australia
| | - Andrew M Wilson
- Department of Cardiology, St Vincent's Hospital, Fitzroy, Victoria, Australia Department of Cardiology, Peninsula Health, Frankston, Victoria, Australia Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Jamie Layland
- Department of Cardiology, St Vincent's Hospital, Fitzroy, Victoria, Australia Department of Cardiology, Peninsula Health, Frankston, Victoria, Australia Department of Medicine, Monash University, Frankston, Victoria, Australia
| |
Collapse
|
15
|
Lu YY, Chen YC, Kao YH, Lin YK, Yeh YH, Chen SA, Chen YJ. Colchicine modulates calcium homeostasis and electrical property of HL-1 cells. J Cell Mol Med 2016; 20:1182-90. [PMID: 26928894 PMCID: PMC4882974 DOI: 10.1111/jcmm.12818] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Colchicine is a microtubule disruptor that reduces the occurrence of atrial fibrillation (AF) after an operation or ablation. However, knowledge of the effects of colchicine on atrial myocytes is limited. The aim of this study was to determine if colchicine can regulate calcium (Ca2+) homeostasis and attenuate the electrical effects of the extracellular matrix on atrial myocytes. Whole‐cell clamp, confocal microscopy with fluorescence, and western blotting were used to evaluate the action potential and ionic currents of HL‐1 cells treated with and without (control) colchicine (3 nM) for 24 hrs. Compared with control cells, colchicine‐treated HL‐1 cells had a longer action potential duration with smaller intracellular Ca2+ transients and sarcoplasmic reticulum (SR) Ca2+ content by 10% and 47%, respectively. Colchicine‐treated HL‐1 cells showed a smaller L‐type Ca2+ current, reverse mode sodium–calcium exchanger (NCX) current and transient outward potassium current than control cells, but had a similar ultra‐rapid activating outward potassium current and apamin‐sensitive small‐conductance Ca2+‐activated potassium current compared with control cells. Colchicine‐treated HL‐1 cells expressed less SERCA2a, total, Thr17‐phosphorylated phospholamban, Cav1.2, CaMKII, NCX, Kv1.4 and Kv1.5, but they expressed similar levels of the ryanodine receptor, Ser16‐phosphorylated phospholamban and Kv4.2. Colchicine attenuated the shortening of the collagen‐induced action potential duration in HL‐1 cells. These findings suggest that colchicine modulates the atrial electrical activity and Ca2+ regulation and attenuates the electrical effects of collagen, which may contribute to its anti‐AF activity.
Collapse
Affiliation(s)
- Yen-Yu Lu
- Division of Cardiology, Sijhih Cathay General Hospital, New Taipei City, Taiwan.,School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kuo Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shih-Ann Chen
- School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology and Cardiovascular Research Center, Veterans General Hospital-Taipei, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Margolis G, Hertzberg-Bigelman E, Levy R, Ben-Shoshan J, Keren G, Entin-Meer M. Differential Effects of Colchicine on Cardiac Cell Viability in an in vitro Model Simulating Myocardial Infarction. Cardiology 2016; 134:57-64. [PMID: 26882242 DOI: 10.1159/000443369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES We aimed to examine the effects of colchicine, currently in clinical trials for acute myocardial infarction (AMI), on the viability of cardiac cells using a cell line model of AMI. METHODS HL-1, a murine cardiomyocyte cell line, and H9C2, a rat cardiomyoblast cell line, were incubated with TNFα or sera derived from rats that underwent AMI or sham operation followed by addition of colchicine. In another experiment, HL-1/H9C2 cells were exposed to anoxia with or without subsequent addition of colchicine. Cell morphology and viability were assessed by light microscopy, flow cytometry and Western blot analyses for apoptotic markers. RESULTS Cellular viability was similar in both sera; however, exposing both cell lines to anoxia reduced their viability. Adding colchicine to anoxic H9C2, but not to anoxic HL-1, further increased their mortality, at least in part via enhanced apoptosis. Under any condition, colchicine induced detachment of H9C2 cells from their culture plates. This phenomenon did not apply to HL-1 cells. CONCLUSIONS Colchicine enhanced cardiomyoblast mortality under in vitro conditions mimicking AMI and reduced their adherence capability. HL-1 was not affected by colchicine; nevertheless, no salvage effect was observed. We thus conclude that colchicine may not inhibit myocardial apoptosis following AMI.
Collapse
Affiliation(s)
- Gilad Margolis
- Department of Internal Medicine H, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats. Mol Cell Biochem 2014; 400:57-68. [PMID: 25351341 DOI: 10.1007/s11010-014-2262-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/23/2014] [Indexed: 01/11/2023]
Abstract
In the management of type 2 diabetes mellitus, Dapagliflozin (DAPA) is a newly introduced selective sodium-glucose co-transporter 2 inhibitor which promotes renal glucose excretion. Little is known about the effects of DAPA on the electromechanical function of the heart. This study investigated the effects of DAPA on ventricular myocyte shortening and intracellular Ca(2+) transport in streptozotocin (STZ)-induced diabetic rats. Shortening, Ca(2+) transients, myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+), and intracellular Ca(2+) current were measured in isolated rats ventricular myocytes by video edge detection, fluorescence photometry, and whole-cell patch-clamp techniques. Diabetes was characterized in STZ-treated rats by a fourfold increase in blood glucose (440 ± 25 mg/dl, n = 21) compared to Controls (98 ± 2 mg/dl, n = 19). DAPA reduced the amplitude of shortening in Control (76.68 ± 2.28 %, n = 37) and STZ (76.58 ± 1.89 %, n = 42) ventricular myocytes, and reduced the amplitude of the Ca(2+) transients in Control and STZ ventricular myocytes with greater effects in STZ (71.45 ± 5.35 %, n = 16) myocytes compared to Controls (92.01 ± 2.72 %, n = 17). Myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+) were not significantly altered by DAPA in either STZ or Control myocytes. L-type Ca(2+) current was reduced in STZ myocytes compared to Controls and was further reduced by DAPA. In conclusion, alterations in the mechanism(s) of Ca(2+) transport may partly underlie the negative inotropic effects of DAPA in ventricular myocytes from STZ-treated and Control rats.
Collapse
|
18
|
Etcheverrigaray F, Cholet J, Sauvaget A, Guerlais M, Jolliet P, Grall-Bronnec M, Victorri-Vigneau C. Thiocolchicoside and Alcohol Abstinence: A Case Report. Alcohol Alcohol 2014; 49:486-7. [DOI: 10.1093/alcalc/agu017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
|
20
|
Zhang C, Chen B, Guo A, Zhu Y, Miller JD, Gao S, Yuan C, Kutschke W, Zimmerman K, Weiss RM, Wehrens XHT, Hong J, Johnson FL, Santana LF, Anderson ME, Song LS. Microtubule-mediated defects in junctophilin-2 trafficking contribute to myocyte transverse-tubule remodeling and Ca2+ handling dysfunction in heart failure. Circulation 2014; 129:1742-50. [PMID: 24519927 DOI: 10.1161/circulationaha.113.008452] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cardiac dysfunction in failing hearts of human patients and animal models is associated with both microtubule densification and transverse-tubule (T-tubule) remodeling. Our objective was to investigate whether microtubule densification contributes to T-tubule remodeling and excitation-contraction coupling dysfunction in heart disease. METHODS AND RESULTS In a mouse model of pressure overload-induced cardiomyopathy by transaortic banding, colchicine, a microtubule depolymerizer, significantly ameliorated T-tubule remodeling and cardiac dysfunction. In cultured cardiomyocytes, microtubule depolymerization with nocodazole or colchicine profoundly attenuated T-tubule impairment, whereas microtubule polymerization/stabilization with taxol accelerated T-tubule remodeling. In situ immunofluorescence of heart tissue sections demonstrated significant disorganization of junctophilin-2 (JP2), a protein that bridges the T-tubule and sarcoplasmic reticulum membranes, in transaortic banded hearts as well as in human failing hearts, whereas colchicine injection significantly preserved the distribution of JP2 in transaortic banded hearts. In isolated mouse cardiomyocytes, prolonged culture or treatment with taxol resulted in pronounced redistribution of JP2 from T-tubules to the peripheral plasma membrane, without changing total JP2 expression. Nocodazole treatment antagonized JP2 redistribution. Moreover, overexpression of a dominant-negative mutant of kinesin 1, a microtubule motor protein responsible for anterograde trafficking of proteins, protected against JP2 redistribution and T-tubule remodeling in culture. Finally, nocodazole treatment improved Ca(2+) handling in cultured myocytes by increasing the amplitude of Ca(2+) transients and reducing the frequency of Ca(2+) sparks. CONCLUSION Our data identify a mechanistic link between microtubule densification and T-tubule remodeling and reveal microtubule-mediated JP2 redistribution as a novel mechanism for T-tubule disruption, loss of excitation-contraction coupling, and heart failure.
Collapse
Affiliation(s)
- Caimei Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine (C.Z., B.C., A.G., Y.Z., S.G., W.K., R.M.W., F.L.J., M.E.A., L.-S.S.) and Department of Molecular Physiology and Biophysics (M.E.A.), University of Iowa Carver College of Medicine, Iowa City, IA; Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China (Y.Z., J.H.); Division of Cardiovascular Surgery, Mayo Clinic, Rochester, MN (J.D.M.); Department of Pharmacology, College of Basic Medicine, Anhui Medical University, Hefei, China (S.G.); Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA (C.Y., L.F.S.); Department of Veterans Affairs Medical Center, Iowa City, IA (K.Z.); and Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX (X.H.T.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kumazawa A, Katoh H, Nonaka D, Watanabe T, Saotome M, Urushida T, Satoh H, Hayashi H. Microtubule Disorganization Affects the Mitochondrial Permeability Transition Pore in Cardiac Myocytes. Circ J 2014; 78:1206-15. [DOI: 10.1253/circj.cj-13-1298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Azumi Kumazawa
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Hideki Katoh
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Daishi Nonaka
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Tomoyuki Watanabe
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Masao Saotome
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Tsuyoshi Urushida
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Hiroshi Satoh
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| | - Hideharu Hayashi
- Division of Cardiology, Internal Medicine III, Hamamatsu University School of Medicine
| |
Collapse
|
22
|
Deftereos S, Giannopoulos G, Papoutsidakis N, Panagopoulou V, Kossyvakis C, Raisakis K, Cleman MW, Stefanadis C. Colchicine and the Heart. J Am Coll Cardiol 2013; 62:1817-25. [DOI: 10.1016/j.jacc.2013.08.726] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022]
|
23
|
Histopathological studies of microtubule disassembling agent-induced myocardial lesions in rats. ACTA ACUST UNITED AC 2013; 65:737-43. [DOI: 10.1016/j.etp.2012.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 07/10/2012] [Accepted: 09/19/2012] [Indexed: 11/22/2022]
|
24
|
Poloz Y, O'Day DH. Colchicine affects cell motility, pattern formation and stalk cell differentiation in Dictyostelium by altering calcium signaling. Differentiation 2012; 83:185-99. [PMID: 22381626 DOI: 10.1016/j.diff.2011.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/05/2011] [Accepted: 12/23/2011] [Indexed: 11/26/2022]
Abstract
Previous work, verified here, showed that colchicine affects Dictyostelium pattern formation, disrupts morphogenesis, inhibits spore differentiation and induces terminal stalk cell differentiation. Here we show that colchicine specifically induces ecmB expression and enhances accumulation of ecmB-expressing cells at the posterior end of multicellular structures. Colchicine did not induce a nuclear translocation of DimB, a DIF-1 responsive transcription factor in vitro. It also induced terminal stalk cell differentiation in a mutant strain that does not produce DIF-1 (dmtA-) and after the treatment of cells with DIF-1 synthesis inhibitor cerulenin (100 μM). This suggests that colchicine induces the differentiation of ecmB-expressing cells independent of DIF-1 production and likely through a signaling pathway that is distinct from the one that is utilized by DIF-1. Depending on concentration, colchicine enhanced random cell motility, but not chemotaxis, by 3-5 fold (10-50 mM colchicine, respectively) through a Ca(2+)-mediated signaling pathway involving phospholipase C, calmodulin and heterotrimeric G proteins. Colchicine's effects were not due to microtubule depolymerization as other microtubule-depolymerizing agents did not have these effects. Finally normal morphogenesis and stalk and spore cell differentiation of cells treated with 10 mM colchicine were rescued through chelation of Ca2+ by BAPTA-AM and EDTA and calmodulin antagonism by W-7 but not PLC inhibition by U-73122. Morphogenesis or spore cell differentiation of cells treated with 50 mM colchicine could not be rescued by the above treatments but terminal stalk cell differentiation was inhibited by BAPTA-AM, EDTA and W-7, but not U-73122. Thus colchicine disrupts morphogenesis and induces stalk cell differentiation through a Ca(2+)-mediated signaling pathway involving specific changes in gene expression and cell motility.
Collapse
Affiliation(s)
- Yekaterina Poloz
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| | | |
Collapse
|
25
|
Dynamic changes in sarcoplasmic reticulum structure in ventricular myocytes. J Biomed Biotechnol 2011; 2011:382586. [PMID: 22131804 PMCID: PMC3206393 DOI: 10.1155/2011/382586] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/09/2011] [Indexed: 11/23/2022] Open
Abstract
The fidelity of excitation-contraction (EC) coupling in ventricular myocytes is remarkable, with each action potential evoking a [Ca2+]i transient. The prevalent model is that the consistency in EC coupling in ventricular myocytes is due to the formation of fixed, tight junctions between the
sarcoplasmic reticulum (SR) and the sarcolemma where Ca2+ release is activated. Here, we tested the hypothesis that the SR is a structurally inert organelle in ventricular myocytes. Our data suggest that rather than being static, the SR undergoes frequent dynamic structural changes. SR boutons expressing functional ryanodine receptors moved throughout the cell, approaching or moving away from the sarcolemma of ventricular myocytes. These changes in SR structure occurred in the absence of changes in [Ca2+]i during EC coupling. Microtubules and the molecular motors dynein and kinesin 1(Kif5b) were important regulators of SR motility. These findings support a model in which the SR is a motile organelle capable of molecular motor protein-driven structural changes.
Collapse
|
26
|
Ke L, Meijering RAM, Hoogstra-Berends F, Mackovicova K, Vos MJ, Van Gelder IC, Henning RH, Kampinga HH, Brundel BJJM. HSPB1, HSPB6, HSPB7 and HSPB8 protect against RhoA GTPase-induced remodeling in tachypaced atrial myocytes. PLoS One 2011; 6:e20395. [PMID: 21731611 PMCID: PMC3123278 DOI: 10.1371/journal.pone.0020395] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/28/2011] [Indexed: 11/29/2022] Open
Abstract
Background We previously demonstrated the small heat shock protein, HSPB1, to prevent tachycardia remodeling in in vitro and in vivo models for Atrial Fibrillation (AF). To gain insight into its mechanism of action, we examined the protective effect of all 10 members of the HSPB family on tachycardia remodeling. Furthermore, modulating effects of HSPB on RhoA GTPase activity and F-actin stress fiber formation were examined, as this pathway was found of prime importance in tachycardia remodeling events and the initiation of AF. Methods and Results Tachypacing (4 Hz) of HL-1 atrial myocytes significantly and progressively reduced the amplitude of Ca2+ transients (CaT). In addition to HSPB1, also overexpression of HSPB6, HSPB7 and HSPB8 protected against tachypacing-induced CaT reduction. The protective effect was independent of HSPB1. Moreover, tachypacing induced RhoA GTPase activity and caused F-actin stress fiber formation. The ROCK inhibitor Y27632 significantly prevented tachypacing-induced F-actin formation and CaT reductions, showing that RhoA activation is required for remodeling. Although all protective HSPB members prevented the formation of F-actin stress fibers, their mode of action differs. Whilst HSPB1, HSPB6 and HSPB7 acted via direct prevention of F-actin formation, HSPB8-protection was mediated via inhibition of RhoA GTPase activity. Conclusion Overexpression of HSPB1, as well as HSPB6, HSPB7 and HSPB8 independently protect against tachycardia remodeling by attenuation of the RhoA GTPase pathway at different levels. The cardioprotective role for multiple HSPB members indicate a possible therapeutic benefit of compounds able to boost the expression of single or multiple members of the HSPB family.
Collapse
Affiliation(s)
- Lei Ke
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelien A. M. Meijering
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Nyken BV, Groningen, The Netherlands
| | - Katarina Mackovicova
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Michel J. Vos
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Isabelle C. Van Gelder
- Department of Cardiology, GUIDE, University of Groningen, University Medical Center Groningen, and the Interuniversity Cardiology Institute Netherlands, Utrecht, The Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Harm H. Kampinga
- Department of Radiation and Stress Cell Biology, University Institute for Drug Exploration (GUIDE), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bianca J. J. M. Brundel
- Department of Clinical Pharmacology, GUIDE, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Xiao J, Cao H, Liang D, Liu Y, Zhang H, Zhao H, Liu Y, Li J, Yan B, Peng L, Zhou Z, Chen YH. Taxol, a microtubule stabilizer, prevents ischemic ventricular arrhythmias in rats. J Cell Mol Med 2011; 15:1166-76. [PMID: 20561109 PMCID: PMC3822629 DOI: 10.1111/j.1582-4934.2010.01106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 04/08/2010] [Indexed: 01/20/2023] Open
Abstract
Microtubule integrity is important in cardio-protection, and microtubule disruption has been implicated in the response to ischemia in cardiac myocytes. However, the effects of Taxol, a common microtubule stabilizer, are still unknown in ischemic ventricular arrhythmias. The arrhythmia model was established in isolated rat hearts by regional ischemia, and myocardial infarction model by ischemia/reperfusion. Microtubule structure was immunohistochemically measured. The potential mechanisms were studied by measuring reactive oxygen species (ROS), activities of oxidative enzymes, intracellular calcium concentration ([Ca(2+) ](i) ) and Ca(2+) transients by using fluorometric determination, spectrophotometric assays and Fura-2-AM and Fluo-3-AM, respectively. The expression and activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) was also examined using real-time polymerase chain reaction, Western blot and pyruvate/Nicotinamide adenine dinucleotide-coupled reaction. Our data showed that Taxol (0.1, 0.3 and 1 μM) effectively reduced the number of ventricular premature beats and the incidence and duration of ventricular tachycardia. The infarct size was also significantly reduced by Taxol (1 μM). At the same time, Taxol preserved the microtubule structure, increased the activity of mitochondrial electron transport chain complexes I and III, reduced ROS levels, decreased the rise in [Ca(2+)](i) and preserved the amplitude and decay times of Ca(2+) transients during ischemia. In addition, SERCA2a activity was preserved by Taxol during ischemia. In summary, Taxol prevents ischemic ventricular arrhythmias likely through ameliorating abnormal calcium homeostasis and decreasing the level of ROS. This study presents evidence that Taxol may be a potential novel therapy for ischemic ventricular arrhythmias.
Collapse
Affiliation(s)
- Junjie Xiao
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Department of Cardiology, East Hospital, Tongji University School of MedicineShanghai, China
| | - Huaming Cao
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
| | - Dandan Liang
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Ying Liu
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Department of Cardiology, East Hospital, Tongji University School of MedicineShanghai, China
| | - Hong Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
| | - Hong Zhao
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
| | - Yi Liu
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Jun Li
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Biao Yan
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| | - Zhaonian Zhou
- Laboratory of Hypoxic Cardiovascular Physiology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias, Ministry of Education, China (East Hospital, Tongji University School of Medicine)Shanghai, China
- Department of Cardiology, East Hospital, Tongji University School of MedicineShanghai, China
- Institute of Medical Genetics, Tongji UniversityShanghai, China
| |
Collapse
|
28
|
White E. Mechanical modulation of cardiac microtubules. Pflugers Arch 2011; 462:177-84. [DOI: 10.1007/s00424-011-0963-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 11/25/2022]
|
29
|
Zhang Z, Meng T, Yang N, Wang W, Xiong B, Chen Y, Ma L, Shen J, Miao ZH, Ding J. MT119, a new planar-structured compound, targets the colchicine site of tubulin arresting mitosis and inhibiting tumor cell proliferation. Int J Cancer 2010; 129:214-24. [PMID: 20830720 DOI: 10.1002/ijc.25661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 08/23/2010] [Indexed: 01/30/2023]
Abstract
Microtubule-targeted drugs are now indispensable for the therapy of various cancer types worldwide. In this article, we report MT119 [6-[2-(4-methoxyphenyl) -ethyl]-9-[(pyridine-3-ylmethyl)amino]pyrido[2',1':2,3]imida-zo[4,5-c]isoquinolin-5(6H)-one] as a new microtubule-targeted agent. MT119 inhibited tubulin polymerization significantly both in tumor cells and in cell-free systems, which was followed by the disruption of mitotic spindle assembly. Surface plasmon resonance-based analyses showed that MT119 bound to purified tubulin directly, with the K(D) value of 10.6 μM. The binding of MT119 in turn caused tubulin conformational changes as evidenced by the quenched tryptophan fluorescence, the reduction of the bis-ANS reactivity and the decreased DTNB-sulfhydryl reaction rate. Competitive binding assays further revealed that MT119 bound to tubulin at its colchicine site. Consequently, by inhibiting tubulin polymerization, MT119 arrested different tumor cells at mitotic phase, which contributed to its potent antitumor activity in vitro. MT119 was also similarly cytotoxic to vincristine-, adriamycin- or mitoxantrone-resistant cancer cells and to their corresponding parental cells. Together, these data indicate that MT119 represents a new class of colchicine-site-targeted inhibitors against tubulin polymerization, which might be a promising starting point for future cancer therapeutics.
Collapse
Affiliation(s)
- Zhixiang Zhang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Giorgi C, Agnoletto C, Baldini C, Bononi A, Bonora M, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Zavan B, Pinton P. Redox control of protein kinase C: cell- and disease-specific aspects. Antioxid Redox Signal 2010; 13:1051-85. [PMID: 20136499 DOI: 10.1089/ars.2009.2825] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hormones, growth factors, electrical stimulation, and cell-cell interactions regulate numerous cellular processes by altering the levels of second messengers, thus influencing biochemical reactions inside the cells. The Protein Kinase C family (PKCs) is a group of serine/threonine kinases that are dependent on calcium (Ca(2+)), diacylglycerol, and phospholipids. Signaling pathways that induce variations on the levels of PKC activators have been implicated in the regulation of diverse cellular functions and, in turn, PKCs are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Importantly, PKCs contain regions, both in the N-terminal regulatory domain and in the C-terminal catalytic domain, that are susceptible to redox modifications. In several pathophysiological conditions when the balance between oxidants, antioxidants, and alkylants is compromised, cells undergo redox stress. PKCs are cell-signaling proteins that are particularly sensitive to redox stress because modification of their redox-sensitive regions interferes with their activity and, thus, with their biological effects. In this review, we summarize the involvement of PKCs in health and disease and the importance of redox signaling in the regulation of this family of kinases.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), BioPharmaNet, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide--mediated cytoprotection. Antioxid Redox Signal 2010; 12:1203-17. [PMID: 19769484 PMCID: PMC2864658 DOI: 10.1089/ars.2009.2882] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H(2)S) is a colorless, water soluble, flammable gas that has the characteristic smell of rotten eggs. Like other members of the gasotransmitter family (nitric oxide and carbon monoxide), H(2)S has traditionally been considered to be a highly toxic gas and environmental hazard. However, much like for nitric oxide and carbon monoxide, the initial negative perception of H(2)S has evolved with the discovery that H(2)S is produced enzymatically in mammals under normal conditions. As a result of this discovery, there has been a great deal of work to elucidate the physiological role of H(2)S. H(2)S is now recognized to be cytoprotective in various models of cellular injury. Specifically, it has been demonstrated that the acute administration of H(2)S, either prior to ischemia or at reperfusion, significantly ameliorates in vitro or in vivo myocardial and hepatic ischemia-reperfusion injury. These studies have also demonstrated a cardioprotective role for endogenous H(2)S. This review article summarizes the current body of evidence demonstrating the cytoprotective effects of H(2)S with an emphasis on the cardioprotective effects. This review also provides a detailed description of the current signaling mechanisms shown to be responsible for these cardioprotective actions.
Collapse
Affiliation(s)
- John W Calvert
- Department of Surgery, Division of Cardiothoracic Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | | |
Collapse
|
32
|
Benitah JP, Alvarez JL, Gómez AM. L-type Ca(2+) current in ventricular cardiomyocytes. J Mol Cell Cardiol 2009; 48:26-36. [PMID: 19660468 DOI: 10.1016/j.yjmcc.2009.07.026] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 07/09/2009] [Accepted: 07/27/2009] [Indexed: 12/24/2022]
Abstract
L-type Ca(2+) channels are mediators of Ca(2+) influx and the regulatory events accompanying it and are pivotal in the function and dysfunction of ventricular cardiac myocytes. L-type Ca(2+) channels are located in sarcolemma, including the T-tubules facing the sarcoplasmic reticulum junction, and are activated by membrane depolarization, but intracellular Ca(2+)-dependent inactivation limits Ca(2+) influx during action potential. I(CaL) is important in heart function because it triggers excitation-contraction coupling, modulates action potential shape and is involved in cardiac arrhythmia. L-type Ca(2+) channels are multi-subunit complexes that interact with several molecules involved in their regulations, notably by beta-adrenergic signaling. The present review highlights some of the recent findings on L-type Ca(2+) channel function, regulation, and alteration in acquired pathologies such as cardiac hypertrophy, heart failure and diabetic cardiomyopathy, as well as in inherited arrhythmic cardiac diseases such as Timothy and Brugada syndromes.
Collapse
|
33
|
Mansell JP, Farrar D, Jones S, Nowghani M. Cytoskeletal reorganisation, 1alpha,25-dihydroxy vitamin D3 and human MG63 osteoblast maturation. Mol Cell Endocrinol 2009; 305:38-46. [PMID: 19433260 DOI: 10.1016/j.mce.2009.02.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 01/11/2023]
Abstract
Bone tissue is especially receptive to physical stimulation and agents with the capacity to mimic the signalling incurred via mechanical loading on osteoblasts may find an application in a bone regenerative setting. Recently this laboratory revealed that the major serum lipid, lysophosphatidic acid (LPA), co-operated with 1alpha,25-dihydroxy vitamin D3 (D3) in stimulating human osteoblast maturation. Actin stress fiber accrual in LPA treated osteoblasts would have generated peripheral tension which in turn may have heightened the maturation response of these cells to D3. To test this hypothesis we examined if other agents known to trigger stress fiber accumulation co-operated with D3 in stimulating human osteoblast maturation. Colchicine, nocodazole and LPA all co-operated with D3 to promote MG63 maturation in a MEK dependent manner. In contrast, calpeptin, a direct activator of Rho kinase and stress fiber accumulation did not act with D3 to secure MG63 differentiation. Herein we describe how the signalling elicited via microtubule disruption cooperates with D3 in the development of mature osteoblasts.
Collapse
Affiliation(s)
- Jason Peter Mansell
- Department of Oral & Dental Science, University of Bristol Dental School, Lower Maudlin St., Bristol, BS1 2LY, UK.
| | | | | | | |
Collapse
|
34
|
Effect of taurine on protein kinase C isoforms: role in taurine's actions? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:3-11. [PMID: 19239131 DOI: 10.1007/978-0-387-75681-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Taurine is generally found to be cytoprotective, diminishing damage resulting from ischemia and from initiators of heart failure. Also linked to similar events in the heart is the protein kinase C (PKC) family, which consists of at least 12 different isoforms. Therefore, we proposed that PKC might contribute to the beneficial effects of taurine on cell viability and growth. One of the PKC isoforms that has been advanced as an important mediator of cytoprotection during ischemia is PKCepsilon. In this study, we found that incubation of isolated cardiomyocytes with medium containing 20 mM taurine led to the translocation of PKCepsilon into the membrane, an event commonly associated with the cardioprotective actions of the PKC isozyme. In addition, taurine promoted the upregulation of PKCalpha PKCbeta2 and PKCzeta. Because the effects of taurine and angiotensin II on PKC distribution were largely additive, PKC does not appear to contribute to the antagonism between taurine and angiotensin II. However, the upregulation of PKC by taurine is consistent with a role of taurine in normal cell growth. In the taurine deficient heart, cardiomyocyte size is reduced, an effect that is consistent with the effect of taurine on PKCepsilon. In conclusion, the cytoprotective and pro-growth actions of taurine appears to be mediated in part by the activation of PKCepsilon.
Collapse
|
35
|
Madias C, Maron BJ, Supron S, Estes NAM, Link MS. Cell membrane stretch and chest blow-induced ventricular fibrillation: commotio cordis. J Cardiovasc Electrophysiol 2008; 19:1304-9. [PMID: 18691236 DOI: 10.1111/j.1540-8167.2008.01267.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Commotio cordis, sudden cardiac death secondary to blunt nonpenetrating chest blows in sports, is reported with increasing frequency. In a swine model, ventricular fibrillation (VF) is induced by a baseball blow to the chest, and the initiation of VF is related to the peak left ventricular (LV) pressure produced by the blow. LV pressure changes likely result in cell membrane stretch and mechanical activation of ion channels. Disruption of cell cytoskeleton that anchors the cell membrane prior to precordial blows offers the opportunity to explore whether cell membrane deformation is critical to commotio cordis. METHODS AND RESULTS Twelve juvenile swine (mean 12.7 +/- 1.6 kg) were randomized to intravenous normal saline (control, n = 6) or 10 mg of intravenous colchicine (n = 6), which is known to depolymerize microtubules. Animals were given up to six blows timed to the vulnerable portion of the cardiac cycle with a 30 mph baseball on the chest directly over the cardiac silhouette. VF was initiated by 14 of the 29 (48%) impacts in the colchicine-treated animals compared with only 3 of 28 (11%) in the controls (P = 0.002). The peak generated LV pressure did not differ between colchicine animals (405 +/- 61 mmHg) and controls (387 +/- 115) (P = 0.47). However, animals administered colchicine were more likely to have VF generated by the chest blow at all pressures. CONCLUSION The initiation of VF by chest blows is significantly increased by selective disruption of the cytoskeleton, suggesting that mechanical deformation of the cell membrane is fundamental to the activation of ion channels and underlies the mechanism of VF in commotio cordis.
Collapse
Affiliation(s)
- Christopher Madias
- Cardiac Arrhythmia Center, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | | | |
Collapse
|
36
|
Shen JB, Pappano AJ. An Estrogen Metabolite, 2-Methoxyestradiol, Disrupts Cardiac Microtubules and Unmasks Muscarinic Inhibition of Calcium Current. J Pharmacol Exp Ther 2008; 325:507-12. [DOI: 10.1124/jpet.107.134932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Lu Z, Jiang YP, Xu XH, Ballou LM, Cohen IS, Lin RZ. Decreased L-type Ca2+ current in cardiac myocytes of type 1 diabetic Akita mice due to reduced phosphatidylinositol 3-kinase signaling. Diabetes 2007; 56:2780-9. [PMID: 17666471 DOI: 10.2337/db06-1629] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Contraction of cardiac myocytes is initiated by Ca(2+) entry through the voltage-dependent L-type Ca(2+) channel (LTCC). Previous studies have shown that phosphatidylinositol (PI) 3-kinase signaling modulates LTCC function. Because PI 3-kinases are key mediators of insulin action, we investigated whether LTCC function is affected in diabetic animals due to reduced PI 3-kinase signaling. RESEARCH DESIGN AND METHODS We used whole-cell patch clamping and biochemical assays to compare cardiac LTCC function and PI 3-kinase signaling in insulin-deficient diabetic mice heterozygous for the Ins2(Akita) mutation versus nondiabetic littermates. RESULTS Diabetic mice had a cardiac contractility defect, reduced PI 3-kinase signaling in the heart, and decreased L-type Ca(2+) current (I(Ca,L)) density in myocytes compared with control nondiabetic littermates. The lower I(Ca,L) density in myocytes from diabetic mice is due at least in part to reduced cell surface expression of the LTCC. I(Ca,L) density in myocytes from diabetic mice was increased to control levels by insulin treatment or intracellular infusion of PI 3,4,5-trisphosphate [PI(3,4,5)P(3)]. This stimulatory effect was blocked by taxol, suggesting that PI(3,4,5)P(3) stimulates microtubule-dependent trafficking of the LTCC to the cell surface. The voltage dependence of steady-state activation and inactivation of I(Ca,L) was also shifted to more positive potentials in myocytes from diabetic versus nondiabetic animals. PI(3,4,5)P(3) infusion eliminated only the difference in voltage dependence of steady-state inactivation of I(Ca,L). CONCLUSIONS Decreased PI 3-kinase signaling in myocytes from type 1 diabetic mice leads to reduced Ca(2+) entry through the LTCC, which might contribute to the negative effect of diabetes on cardiac contractility.
Collapse
Affiliation(s)
- Zhongju Lu
- Department of Physiology and Biophysics and the Institute of Molecular Cardiology, Stony Brook University, Stony Brook, New York 11794-8151, USA
| | | | | | | | | | | |
Collapse
|
38
|
Collis LP, Meyers MB, Zhang J, Phoon CKL, Sobie EA, Coetzee WA, Fishman GI. Expression of a sorcin missense mutation in the heart modulates excitation‐contraction coupling. FASEB J 2006; 21:475-87. [PMID: 17130302 DOI: 10.1096/fj.06-6292com] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sorcin is a Ca2+ binding protein implicated in the regulation of intracellular Ca2+ cycling and cardiac excitation-contraction coupling. Structural and human genetic studies suggest that a naturally occurring sequence variant encoding L112-sorcin disrupts an E-F hand Ca2+ binding domain and may be responsible for a heritable form of hypertension and hypertrophic heart disease. We generated transgenic mice overexpressing L112-sorcin in the heart and characterized the effects on Ca2+ regulation and cardiac function both in vivo and in dissociated cardiomyocytes. Hearts of sorcin(F112L) transgenic mice were mildly dilated but ventricular function was preserved and systemic blood pressure was normal. Sorcin(F112L) myocytes were smaller than control cells and displayed complex alterations in Ca2+ regulation and contractility, including a slowed inactivation of L-type Ca2+ current, enhanced Ca2+ spark width, duration, and frequency, and increased Na+-Ca2+ exchange activity. In contrast, mice with cardiac-specific overexpression of wild-type sorcin displayed directionally opposite effects on L-type Ca2+ channel function and Ca2+ spark behavior. These data further define the role of sorcin in cardiac excitation-contraction coupling and highlight its negative regulation of SR calcium release. Our results also suggest that additional factors may be responsible for the development of cardiac hypertrophy and hypertension in humans expressing the L112-sorcin sequence variant.
Collapse
Affiliation(s)
- Leon P Collis
- Division of Pediatric Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Gregorio CC, Perry CN, McElhinny AS. Functional properties of the titin/connectin-associated proteins, the muscle-specific RING finger proteins (MURFs), in striated muscle. J Muscle Res Cell Motil 2006; 26:389-400. [PMID: 16477476 DOI: 10.1007/s10974-005-9021-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient functioning of striated muscle is dependent upon the proper alignment and coordinated activities of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, the exact molecular mechanisms dictating their cooperation and contributions during muscle differentiation and maintenance remain unknown. Recently, the muscle specific RING finger (MURF) family members have established themselves as excellent candidates for linking myofibril components (including the giant, multi-functional protein, titin/connectin), with microtubules, intermediate filaments, and nuclear factors. MURF-1, the only family member expressed throughout development, has been implicated in several studies as an ubiquitin ligase that is upregulated in response to multiple stimuli during muscle atrophy. Cell culture studies suggest that MURF-1 specifically has a role in maintaining titin M-line integrity and yeast two-hybrid studies point toward its participation in muscle stress response pathways and gene expression. MURF-2 is developmentally down-regulated and is assembled at the M-line region of the sarcomere and with microtubules. Functionally, its expression is critical for maintenance of the sarcomeric M-line region, specific populations of stable microtubules, desmin and vimentin intermediate filaments, as well as for myoblast fusion and differentiation. A recent study also links MURF-2 to a titin kinase-based protein complex that is reportedly activated upon mechanical signaling. Finally, MURF-3 is developmentally upregulated, associates with microtubules, the sarcomeric M-line (this report) and Z-line, and is required for microtubule stability and myogenesis. Here, we focus on the biochemical and functional properties of this intriguing family of muscle proteins, and discuss how they may tie together titin-mediated myofibril signaling pathways (perhaps involving the titin kinase domain), biomechanical signaling, the muscle stress response, and gene expression.
Collapse
Affiliation(s)
- Carol C Gregorio
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA.
| | | | | |
Collapse
|
40
|
Zhang D, Sherwood J, Li L, Swartz DR. Unloaded shortening velocity in single permeabilized vascular smooth muscle cells is independent of microtubule status. J Muscle Res Cell Motil 2005; 25:167-75. [PMID: 15360132 DOI: 10.1023/b:jure.0000035898.10847.a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microtubules may influence smooth muscle contraction either via involvement in signal transduction processes or by serving as an internal load that opposes contraction. To test the latter hypothesis, microtubule distribution and the unloaded shortening velocity were investigated in freshly isolated single vascular smooth muscle cells (VSMCs) treated with microtubule modulating drugs. Immunocytochemical studies showed that microtubules run mainly longitudinally in relaxed VSMCs. They are oriented more obliquely, almost transversely to the long axis of the cells after contraction, suggesting that microtubules are compressed during shortening, and thus might impart an internal passive load. Quantitative immunocytochemical analysis revealed that, relative to the control group, colchicine (15 microM) decreased the microtubule density by 40% while taxol (10 microM) increased the microtubule density by 46%. However, alteration of microtubule polymerization status by these microtubule-modulating drugs did not have a significant effect on unloaded shortening velocity in alpha-toxin permeabilized VSMCs under maximal activating conditions or submaximal activating conditions (about 36% of maximal velocity). These results suggest that microtubules do not present an appreciable internal load to dampen single VSMCs shortening in the present experimental system, and that their influence on smooth muscle contraction is primarily via signal transduction mechanisms.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Calcium/pharmacology
- Cell Adhesion/physiology
- Cell Membrane Permeability
- Cell Shape/drug effects
- Cell Shape/physiology
- Colchicine/pharmacology
- Immunohistochemistry
- Kinetics
- Microscopy, Fluorescence
- Microtubules/drug effects
- Microtubules/metabolism
- Microtubules/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Nocodazole/pharmacology
- Paclitaxel/pharmacology
- Rabbits
Collapse
Affiliation(s)
- Dahua Zhang
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
41
|
Rueckschloss U, Isenberg G. Contraction augments L-type Ca2+ currents in adherent guinea-pig cardiomyocytes. J Physiol 2004; 560:403-11. [PMID: 15297568 PMCID: PMC1665268 DOI: 10.1113/jphysiol.2004.062604] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As integrins are thought to function as mechanoreceptors, we studied whether they could mediate mechanical modulation of the L-type Ca2+ channel current (ICa) in guinea-pig cardiac ventricular myocytes (CVMs). CVMs were voltage clamped with 280 ms pulses from -45 to 0 mV at 0.5 Hz (1.8 mM [Ca2+]o, 22 degrees C). Five minutes after whole-cell access (designated as 0 min) peak ICa was determined from a current-voltage (I-V) curve. Additional recordings were made after 5, 10 and 15 min. At control, ICa was not stable, but ran down during these periods. This run-down of ICa was attenuated by soluble fibronectin (FN) and was changed to an enhancement of ICa when CVMs were attached to FN-coated coverslips. Soluble peptide containing the integrin binding sequence of FN, Arg-Gly-Asp (RGD motif), did not modulate ICa; however, ICa increased in stimulated CVMs attached to RGD peptide-coated coverslips. The effect was not specific to integrins, because attachment to poly-D-lysine-coated coverslips also augmented ICa in stimulated CVMs. Augmentation of ICa by immobilized FN required rhythmical contraction of attached CVMs, because it was attenuated without electrical stimulation and after cell dialysis with the calcium chelator BAPTA. Furthermore, contraction-induced augmentation of ICa in FN-attached CVMs was sensitive to inhibition of protein kinase C (PKC; by Ro-31-8220), inhibition of tyrosine kinase activity (herbimycin A) and cytoskeletal depolymerization (cytochalasin D or colchicine). We attribute augmentation of ICa to the activation of signalling cascades by shear forces that are generated when CVMs contract against attachment; in vivo similar signals may occur when CVMs contract against attachment of integrins to the extracellular matrix.
Collapse
Affiliation(s)
- Uwe Rueckschloss
- Department of Physiology, Martin Luther University, 06097 Halle, Germany.
| | | |
Collapse
|
42
|
McElhinny AS, Perry CN, Witt CC, Labeit S, Gregorio CC. Muscle-specific RING finger-2 (MURF-2) is important for microtubule, intermediate filament and sarcomeric M-line maintenance in striated muscle development. J Cell Sci 2004; 117:3175-88. [PMID: 15199100 DOI: 10.1242/jcs.01158] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The efficient functioning of striated muscle is dependent upon the structure of several cytoskeletal networks including myofibrils, microtubules, and intermediate filaments. However, little is known about how these networks function together during muscle differentiation and maintenance. In vitro studies suggest that members of the muscle-specific RING finger protein family (MURF-1, 2, and 3) act as cytoskeletal adaptors and signaling molecules by associating with myofibril components (including the giant protein, titin), microtubules and/or nuclear factors. We investigated the role of MURF-2, the least-characterized family member, in primary cultures of embryonic chick skeletal and cardiac myocytes. MURF-2 is detected as two species (approximately 55 kDa and approximately 60 kDa) in embryonic muscle, which are down-regulated in adult muscle. Although predominantly located diffusely in the cytoplasm, MURF-2 also colocalizes with a sub-group of microtubules and the M-line region of titin. Reducing MURF-2 levels in cardiac myocytes using antisense oligonucleotides perturbed the structure of stable microtubule populations, the intermediate filament proteins desmin and vimentin, and the sarcomeric M-line region. In contrast, other sarcomeric regions and dynamic microtubules remained unaffected. MURF-2 knock-down studies in skeletal myoblasts also delayed myoblast fusion and myofibrillogenesis. Furthermore, contractile activity was also affected. We speculate that some of the roles of MURF-2 are modulated via titin-based mechanisms.
Collapse
Affiliation(s)
- Abigail S McElhinny
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Ischemic preconditioning (IPC) is a most powerful endogenous mechanism for myocardial protection against ischemia/reperfusion injury. It is now apparent that reactive oxygen species (ROS) generated in the mitochondrial respiratory chain act as a trigger of IPC. ROS mediate signal transduction in the early phase of IPC through the posttranslational modification of redox-sensitive proteins. ROS-mediated activation of Src tyrosine kinases serves a scaffold for interaction of proteins recruited by G protein-coupled receptors and growth factor receptors that is necessary for amplification of cardioprotective signal transduction. Protein kinase C (PKC) plays a central role in this signaling cascade. A crucial target of PKC is the mitochondrial ATP-sensitive potassium channel, which acts as a trigger and a mediator of IPC. Mitogen-activated protein (MAP) kinases (extracellular signal-regulated kinase, p38 MAP kinase, and c-Jun NH(2)-terminal kinase) are thought to exist downstream of the Src-PKC signaling module, although the role of MAP kinases in IPC remains undetermined. The late phase of IPC is mediated by cardioprotective gene expression. This mechanism involves redox-sensitive activation of transcription factors through PKC and tyrosine kinase signal transduction pathways that are in common with the early phase of IPC. The effector proteins then act against myocardial necrosis and stunning presumably through alleviation of oxidative stress and Ca(2+) overload. Elucidation of IPC-mediated complex signaling processes will help in the development of more effective pharmacological approaches for prevention of myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Hajime Otani
- Department of Thoracic and Cardiovascular Surgery, Kansai Medical University, Moriguchi City, Osaka 570, Japan.
| |
Collapse
|
44
|
Friedrich O, Both M, Gillis JM, Chamberlain JS, Fink RHA. Mini-dystrophin restores L-type calcium currents in skeletal muscle of transgenic mdx mice. J Physiol 2004; 555:251-65. [PMID: 14594987 PMCID: PMC1664821 DOI: 10.1113/jphysiol.2003.054213] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2003] [Accepted: 10/27/2003] [Indexed: 11/08/2022] Open
Abstract
L-type calcium currents (iCa) were recorded using the two-microelectrode voltage-clamp technique in single short toe muscle fibres of three different mouse strains: (i) C57/SV129 wild-type mice (wt); (ii) mdx mice (an animal model for Duchenne muscular dystrophy; and (iii) transgenically engineered mini-dystrophin (MinD)-expressing mdx mice. The activation and inactivation properties of iCa were examined in 2- to 18-month-old animals. Ca2+ current densities at 0 mV in mdx fibres increased with age, but were always significantly smaller compared to age-matched wild-type fibres. Time-to-peak (TTP) of iCa was prolonged in mdx fibres compared to wt fibres. MinD fibres always showed similar TTP and current amplitudes compared to age-matched wt fibres. In all three genotypes, the voltage-dependent inactivation and deactivation of iCa were similar. Intracellular resting calcium concentration ([Ca2+]i) and the distribution of dihydropyridine binding sites were also not different in young animals of all three genotypes, whereas iCa was markedly reduced in mdx fibres. We conclude, that dystrophin influences L-type Ca2+ channels via a direct or indirect linkage which may be disrupted in mdx mice and may be crucial for proper excitation-contraction coupling initiating Ca2+ release from the sarcoplasmic reticulum. This linkage seems to be fully restored in the presence of mini-dystrophin.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium/pharmacology
- Calcium Channels, L-Type/biosynthesis
- Calcium Channels, L-Type/genetics
- Dose-Response Relationship, Drug
- Dystrophin/biosynthesis
- Dystrophin/genetics
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Mice, Transgenic
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscular Dystrophies/genetics
- Muscular Dystrophies/metabolism
- Protein Binding/drug effects
- Protein Binding/physiology
Collapse
Affiliation(s)
- O Friedrich
- Medical Biophysics, Institute of Physiology and Pathophysiology, INF 326, Ruprecht-Karls-University, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
45
|
Calaghan SC, Le Guennec JY, White E. Cytoskeletal modulation of electrical and mechanical activity in cardiac myocytes. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 84:29-59. [PMID: 14642867 DOI: 10.1016/s0079-6107(03)00057-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cardiac myocyte has an intracellular scaffold, the cytoskeleton, which has been implicated in several cardiac pathologies including hypertrophy and failure. In this review we describe the role that the cytoskeleton plays in modulating both the electrical activity (through ion channels and exchangers) and mechanical (or contractile) activity of the adult heart. We focus on the 3 components of the cytoskeleton, actin microfilaments, microtubules, and desmin filaments. The limited visual data available suggest that the subsarcolemmal actin cytoskeleton is sparse in the adult myocyte. Selective disruption of cytoskeletal actin by pharmacological tools has yet to be verified in the adult cell, yet evidence exists for modulation of several ionic currents, including I(CaL), I(Na), I(KATP), I(SAC) by actin microfilaments. Microtubules exist as a dense network throughout the adult cardiac cell, and their structure, architecture, kinetics and pharmacological manipulation are well described. Both polymerised and free tubulin are functionally significant. Microtubule proliferation reduces contraction by impeding sarcomeric motion; modulation of sarcoplasmic reticulum Ca(2+) release may also be involved in this effect. The lack of effect of microtubule disruption on cardiac contractility in adult myocytes, and the concentration-dependent modulation of the rate of contraction by the disruptor nocodazole in neonatal myocytes, support the existence of functionally distinct microtubule populations. We address the controversy regarding the stimulation of the beta-adrenergic signalling pathway by free tubulin. Work with mice lacking desmin has demonstrated the importance of intermediate filaments to normal cardiac function, but the precise role that desmin plays in the electrical and mechanical activity of cardiac muscle has yet to be determined.
Collapse
Affiliation(s)
- S C Calaghan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
46
|
Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: an intricate web of form and function. Annu Rev Cell Dev Biol 2003; 18:637-706. [PMID: 12142273 DOI: 10.1146/annurev.cellbio.18.012502.105840] [Citation(s) in RCA: 423] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Striated muscle is an intricate, efficient, and precise machine that contains complex interconnected cytoskeletal networks critical for its contractile activity. The individual units of the sarcomere, the basic contractile unit of myofibrils, include the thin, thick, titin, and nebulin filaments. These filament systems have been investigated intensely for some time, but the details of their functions, as well as how they are connected to other cytoskeletal elements, are just beginning to be elucidated. These investigations have advanced significantly in recent years through the identification of novel sarcomeric and sarcomeric-associated proteins and their subsequent functional analyses in model systems. Mutations in these cytoskeletal components account for a large percentage of human myopathies, and thus insight into the normal functions of these proteins has provided a much needed mechanistic understanding of these disorders. In this review, we highlight the components of striated muscle cytoarchitecture with respect to their interactions, dynamics, links to signaling pathways, and functions. The exciting conclusion is that the striated muscle cytoskeleton, an exquisitely tuned, dynamic molecular machine, is capable of responding to subtle changes in cellular physiology.
Collapse
Affiliation(s)
- Kathleen A Clark
- Department of Cell Biology, University of Arizona, Tucson 85724, USA
| | | | | | | |
Collapse
|
47
|
Jäger D, Jungblut PR, Müller-Werdan U. Separation and identification of human heart proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 771:131-53. [PMID: 12015996 DOI: 10.1016/s1570-0232(02)00039-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heart failure is not a uniform disease entity, but a syndrome with various causes, including hypertension, ischemia and congenital heart disease, cardiomyopathy, myocarditis and intoxication. During the recent years a number of molecular and cellular alterations have been identified in the diseased heart, but a direct causative link between these changes and functional impairment, medical responsiveness, progression of the disease and the patients' outcome remains to be established. After an accumulation of large amounts of DNA sequence data in genomic projects, scientists have now turned their attention to the central executors of all programs of life, the proteins. In complementation of the genomic initiatives, proteomics based approaches have lined up not only for large-scale identification of proteins and their post-translational modifications, but also to study the function of protein complexes, protein-protein interactions and regulatory and signalling cascades in the cellular network. In concert with genomic data functional proteomics will hold the key for a better understanding and therapeutical management of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- D Jäger
- Department of Medicine III, Martin-Luther University, Halle-Wittenberg, Germany.
| | | | | |
Collapse
|
48
|
Motlagh D, Alden KJ, Russell B, García J. Sodium current modulation by a tubulin/GTP coupled process in rat neonatal cardiac myocytes. J Physiol 2002; 540:93-103. [PMID: 11927672 PMCID: PMC2290223 DOI: 10.1113/jphysiol.2001.013474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Microtubule disassembly by colchicine increases spontaneous beating of neonatal cardiac myocytes by an unknown mechanism. Here, we measure drug effects on spontaneous calcium transients and whole cell ionic currents to define the route between microtubule depolymerization and the increase in the rate of contraction. Colchicine treatment disassembles microtubules resulting in free tubulin dimers, thereby increasing the spontaneous beating frequency and changing both the rates of rise and decay of calcium transients. In addition, colchicine treatment produces an increase of the sodium current (I(Na)) while I(Ca) is not modified. The colchicine-enhanced I(Na) was blocked by the addition of 10 microM TTX. In addition, the colchicine-induced increase of I(Na) was prevented when GTP was omitted from the patch pipette. Vinblastine also depolymerizes microtubules but re-aggregates tubulin into paracrystalline structures. Free tubulin dimers are not increased with vinblastine treatment. We found no modification in calcium transients or I(Na) in the presence of vinblastine. Action potential durations measured at 50 % and 90 % repolarization were shorter, and the dV/dt was larger, in colchicine-treated cells compared to untreated cells. The resting membrane potential and overshoot of the action potentials were comparable in both kinds of cells. Our data suggest that release of free tubulin dimers may activate G proteins, which in turn modulate the sodium channel. An increase in whole cell I(Na) changes the spontaneous firing rate and this may be the underlying cause of the increase in the frequency of contraction in neonatal cardiac myocytes. We suggest a new role for dimeric tubulin in regulating membrane excitability.
Collapse
Affiliation(s)
- Delara Motlagh
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
49
|
Ping P, Song C, Zhang J, Guo Y, Cao X, Li RC, Wu W, Vondriska TM, Pass JM, Tang XL, Pierce WM, Bolli R. Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. J Clin Invest 2002. [DOI: 10.1172/jci0213200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|