1
|
Kumarapperuma H, Chia ZJ, Malapitan SM, Wight TN, Little PJ, Kamato D. Response to retention hypothesis as a source of targets for arterial wall-directed therapies to prevent atherosclerosis: A critical review. Atherosclerosis 2024; 397:118552. [PMID: 39180958 DOI: 10.1016/j.atherosclerosis.2024.118552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
The subendothelial retention of circulating lipoproteins on extracellular matrix proteins and proteoglycans is one of the earliest events in the development of atherosclerosis. Multiple factors, including the size, type, composition, surrounding pH, and chemical modifications to lipoproteins, influence the electrostatic interactions between relevant moieties of the apolipoproteins on lipoproteins and the glycosaminoglycans of proteoglycans. The length and chemical composition of glycosaminoglycan chains attached to proteoglycan core proteins determine the extent of initial lipoprotein binding and retention in the artery wall. The phenomena of hyperelongation of glycosaminoglycan chains is associated with initial lipid retention and later atherosclerotic plaque formation. This review includes a summary of the current literature surrounding cellular mechanisms leading to GAG chain modification and lipid retention and discusses potential therapeutic strategies to target lipoprotein:proteoglycan interactions to prevent the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Sanchia Marie Malapitan
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Tianhe District, Guangzhou, Guangdong Pr., 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, Queensland, 4102, Australia; Institute for Biomedicine and Glycomics, Griffith University, Nathan, Queensland, 4111, Australia; Discovery Biology, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
2
|
Soto Y, Hernández A, Sarduy R, Brito V, Marleau S, Vine DF, Vázquez AM, Proctor SD. Monoclonal Antibody chP3R99 Reduces Subendothelial Retention of Atherogenic Lipoproteins in Insulin-Resistant Rats: Acute Treatment Versus Long-Term Protection as an Idiotypic Vaccine for Atherosclerosis. J Am Heart Assoc 2024; 13:e032419. [PMID: 38934863 PMCID: PMC11255714 DOI: 10.1161/jaha.123.032419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Atherosclerosis is triggered by the retention of apolipoprotein B-containing lipoproteins by proteoglycans. In addition to low-density lipoprotein, remnant lipoproteins have emerged as pivotal contributors to this pathology, particularly in the context of insulin resistance and diabetes. We have previously reported antiatherogenic properties of a monoclonal antibody (chP3R99) that recognizes sulfated glycosaminoglycans on arterial proteoglycans. METHODS AND RESULTS Solid-phase assays demonstrated that chP3R99 effectively blocked >50% lipoprotein binding to chondroitin sulfate and vascular extracellular matrix in vitro. The preperfusion of chP3R99 (competitive effect) resulted in specific antibody-arterial accumulation and reduced fluorescent lipoprotein retention by ~60% in insulin resistant JCR:LA-cp rats. This competitive reduction was dose dependent (25-250 μg/mL), effectively decreasing deposition of cholesterol associated with lipoproteins. In a 5-week vaccination study in insulin resistant rats with (200 μg subcutaneously, once a week), chP3R99 reduced arterial lipoprotein retention, and was associated with the production of antichondroitin sulfate antibodies (Ab3) able to accumulate in the arteries (dot-blot). Neither the intravenous inoculation of chP3R99 (4.5 mg/kg), nor the immunization with this antibody displayed adverse effects on lipid or glucose metabolism, insulin resistance, liver function, blood cell indices, or inflammation pathways in JCR:LA-cp rats. CONCLUSIONS Both acute (passive) and long-term administration (idiotypic cascade) of chP3R99 antibody reduced low-density lipoprotein and remnant lipoprotein interaction with proteoglycans in an insulin-resistant setting. These findings support the innovative approach of targeting proatherogenic lipoprotein retention by chP3R99 as a passive therapy or as an idiotypic vaccine for atherosclerosis.
Collapse
Affiliation(s)
- Yosdel Soto
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| | - Arletty Hernández
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Roger Sarduy
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Victor Brito
- Department of ImmunobiologyDirection of Immunology and ImmunotherapyCentre for Molecular ImmunologyHavanaCuba
| | - Sylvie Marleau
- Faculté de PharmacieUniversité de MontréalMontréalQCCanada
| | - Donna F. Vine
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| | - Ana M. Vázquez
- Innovation and Managing DirectionCenter for Molecular ImmunologyHavanaCuba
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Disease LaboratoryGroup on Molecular and Cell Biology of LipidsAlberta Diabetes and Mazankowski Heart InstitutesUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
3
|
Rezaei M, Mehta JL, Zadeh GM, Khedri A, Rezaei HB. Myosin light chain phosphatase is a downstream target of Rho-kinase in endothelin-1-induced transactivation of the TGF-β receptor. Cell Biochem Biophys 2024; 82:1109-1120. [PMID: 38834831 DOI: 10.1007/s12013-024-01262-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Rho-kinase (ROCK) regulates actomyosin contraction, coronary vasospasm, and cytoskeleton dynamics. ROCK and of NADPH oxidase (NOX) play an essential role in cardiovascular disease and proteoglycan synthesis, which promotes atherosclerosis by trapping low density lipoprotein. ROCK is activated by endothelin-1 (ET1) and transactivates the transforming growth factor beta receptor (TGFβR1), intensifying Smad signaling and proteoglycan production. This study aimed to identify the role of myosin light chain phosphatase (MLCP) as a downstream target of ROCK in TβR1 transactivation. METHODS Vascular smooth muscle cells were treated with ET1 and inhibitors of ROCK and MLCP were added. The phosphorylation levels of Smad2C, myosin light chain (MLC), and MLCP were monitored by western blot, and the mRNA expression of chondroitin 4-O-sulfotransferase 1 (C4ST1) was assessed by quantitative real-time PCR. RESULTS We examined ROCK's role in ET1-induced TGFβR1 activation. ROCK phosphorylated MLCP at the MYPT1 T853 residue, blocked by the ROCK inhibitor Y27632. ROCK also increased MLC phosphorylation and actomyosin contraction in response to ET1, enhanced by the phosphatase inhibitor Calyculin A. Calyculin A also increased C4ST1 expression, GAG-chain synthesizing enzymes. CONCLUSIONS This work suggests that ROCK is involved in ET1-mediated TβR1 activation through increased MLCP phosphorylation, which leads to Smad2C phosphorylation and stimulates C4ST1 expression.
Collapse
Affiliation(s)
- Maryam Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jawahar Lal Mehta
- Division of Cardiology, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ghorban Mohammad Zadeh
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azam Khedri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Kumarapperuma H, Wang R, Little PJ, Kamato D. Mechanistic insight: Linking cardiovascular complications of inflammatory bowel disease. Trends Cardiovasc Med 2024; 34:203-211. [PMID: 36702388 DOI: 10.1016/j.tcm.2023.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality worldwide despite an aggressive reduction of traditional cardiovascular risk factors. Underlying inflammatory conditions such as inflammatory bowel disease (IBD) increase the risk of developing CVD. A broad understanding of the underlying pathophysiological processes between IBD and CVD is required to treat and prevent cardiovascular events in patients with IBD. This review highlights the commonality between IBD and CVD, including dysregulated immune response, genetics, environmental risk factors, altered gut microbiome, stress, endothelial dysfunction and abnormalities, to shed light on an essential area of modern medicine.
Collapse
Affiliation(s)
- Hirushi Kumarapperuma
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Ran Wang
- Mater Research Institute, The University of Queensland, Translational Research Institute, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia; Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia; School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
5
|
Elmarasi M, Elmakaty I, Elsayed B, Elsayed A, Zein JA, Boudaka A, Eid AH. Phenotypic switching of vascular smooth muscle cells in atherosclerosis, hypertension, and aortic dissection. J Cell Physiol 2024; 239:e31200. [PMID: 38291732 DOI: 10.1002/jcp.31200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Vascular smooth muscle cells (VSMCs) play a critical role in regulating vasotone, and their phenotypic plasticity is a key contributor to the pathogenesis of various vascular diseases. Two main VSMC phenotypes have been well described: contractile and synthetic. Contractile VSMCs are typically found in the tunica media of the vessel wall, and are responsible for regulating vascular tone and diameter. Synthetic VSMCs, on the other hand, are typically found in the tunica intima and adventitia, and are involved in vascular repair and remodeling. Switching between contractile and synthetic phenotypes occurs in response to various insults and stimuli, such as injury or inflammation, and this allows VSMCs to adapt to changing environmental cues and regulate vascular tone, growth, and repair. Furthermore, VSMCs can also switch to osteoblast-like and chondrocyte-like cell phenotypes, which may contribute to vascular calcification and other pathological processes like the formation of atherosclerotic plaques. This provides discusses the mechanisms that regulate VSMC phenotypic switching and its role in the development of vascular diseases. A better understanding of these processes is essential for the development of effective diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mohamed Elmarasi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim Elmakaty
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Basel Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Abdelrahman Elsayed
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
6
|
Margiana R, Alsaikhan F, Al-Awsi GRL, Patra I, Sivaraman R, Fadhil AA, Al-Baghdady HFA, Qasim MT, Hameed NM, Mustafa YF, Hosseini-Fard S. Functions and therapeutic interventions of non-coding RNAs associated with TLR signaling pathway in atherosclerosis. Cell Signal 2022; 100:110471. [PMID: 36122884 DOI: 10.1016/j.cellsig.2022.110471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Nowadays, emerging data demonstrate that the toll-like receptor (TLR) signaling pathway plays an important role in the progression of inflammatory atherosclerosis. Indeed, dysregulated TLR signaling pathway could be a cornerstone of inflammation and atherosclerosis, which contributes to the development of cardiovascular diseases. It is interesting to note that this pathway is heavily controlled by several mechanisms, such as epigenetic factors in which the role of non-coding RNAs (ncRNAs), particularly microRNAs and long noncoding RNAs as well as circular RNAs in the pathogenesis of atherosclerosis has been well studied. Recent years have seen a significant surge in the amount of research exploring the interplay between ncRNAs and TLR signaling pathway downstream targets in the development of atherosclerosis; however, there is still considerable room for improvement in this field. The current study was designed to review underlying mechanisms of TLR signaling pathway and ncRNA interactions to shed light on therapeutic implications in patients with atherosclerosis.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Jakarta, Indonesia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | - Indrajit Patra
- An Independent Researcher, PhD from NIT Durgapur, Durgapur, West Bengal, India
| | - Ramaswamy Sivaraman
- Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Arumbakkam, Chennai, India
| | | | | | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Baghdad, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Seyedreza Hosseini-Fard
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases. Polymers (Basel) 2022; 14:polym14225014. [PMID: 36433141 PMCID: PMC9694910 DOI: 10.3390/polym14225014] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosaminoglycans (GAGs) are a heterogeneous family of linear polysaccharides which are composed of a repeating disaccharide unit. They are also linked to core proteins to form proteoglycans (PGs). GAGs/PGs are major components of the cell surface and the extracellular matrix (ECM), and they display critical roles in development, normal function, and damage response in the body. Some properties (such as expression quantity, molecular weight, and sulfation pattern) of GAGs may be altered under pathological conditions. Due to the close connection between these properties and the function of GAGs/PGs, the alterations are often associated with enormous changes in the physiological/pathological status of cells and organs. Therefore, these GAGs/PGs may serve as marker molecules of disease. This review aimed to investigate the structural alterations and roles of GAGs/PGs in a range of diseases, such as atherosclerosis, cancer, diabetes, neurodegenerative disease, and virus infection. It is hoped to provide a reference for disease diagnosis, monitoring, prognosis, and drug development.
Collapse
|
8
|
Glise L, Rutberg M, Håversen L, Levin MC, Levin M, Jeppsson A, Borén J, Fogelstrand P. pH-Dependent Protonation of Histidine Residues Is Critical for Electrostatic LDL (Low-Density Lipoprotein) Binding to Human Coronary Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1037-1047. [PMID: 35652335 DOI: 10.1161/atvbaha.122.317868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. METHODS We developed an ex vivo model to investigate binding of human-labeled LDL to human coronary artery sections without the interference of cellular processes. RESULTS By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform in all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. CONCLUSIONS This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
Collapse
Affiliation(s)
- Lars Glise
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Mikael Rutberg
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Liliana Håversen
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Malin C Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Max Levin
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| | - Anders Jeppsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden (A.J.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.).,Sahlgrenska University Hospital/Wallenberg Laboratory, Gothenburg, Sweden (J.B.)
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden (L.G., M.R., L.H., M.C.L., M.L., A.J., J.B., P.F.)
| |
Collapse
|
9
|
Vlaicu SI, Tatomir A, Fosbrink M, Nguyen V, Boodhoo D, Cudrici C, Badea TC, Rus V, Rus H. RGC-32′ dual role in smooth muscle cells and atherogenesis. Clin Immunol 2022; 238:109020. [DOI: 10.1016/j.clim.2022.109020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
|
10
|
Afroz R, Kumarapperuma H, Nguyen QVN, Mohamed R, Little PJ, Kamato D. Lipopolysaccharide acting via toll-like receptor 4 transactivates the TGF-β receptor in vascular smooth muscle cells. Cell Mol Life Sci 2022; 79:121. [PMID: 35122536 PMCID: PMC8817999 DOI: 10.1007/s00018-022-04159-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) recognise pathogen‑associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial-derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-β receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4-mediated Smad2 carboxy terminal phosphorylation dependent on the transactivation of the TGFBR1. The in vitro model used human aortic vascular smooth muscle cells to assess the implications of TLR4 transactivation of the TGFBR1 in vascular pathophysiology. We show that LPS-mediated Smad2 carboxy terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor, SB431542. Treatment with MyD88 and TRIF pathway antagonists does not affect LPS-mediated phosphorylation of Smad2 carboxy terminal; however, LPS-mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001, and unaffected in the presence of ROCK inhibitor Y27632 or ROS/NOX inhibitor DPI. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, QLD, 4111, Australia
| | - Hirushi Kumarapperuma
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Quang V N Nguyen
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Peter J Little
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-Sen University, Tianhe District, Guangzhou, 510520, China.,Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Danielle Kamato
- School of Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
11
|
Mao L, Yin R, Yang L, Zhao D. Role of advanced glycation end products on vascular smooth muscle cells under diabetic atherosclerosis. Front Endocrinol (Lausanne) 2022; 13:983723. [PMID: 36120471 PMCID: PMC9470882 DOI: 10.3389/fendo.2022.983723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease and leading cause of cardiovascular diseases. The progression of AS is a multi-step process leading to high morbidity and mortality. Hyperglycemia, dyslipidemia, advanced glycation end products (AGEs), inflammation and insulin resistance which strictly involved in diabetes are closely related to the pathogenesis of AS. A growing number of studies have linked AGEs to AS. As one of the risk factors of cardiac metabolic diseases, dysfunction of VSMCs plays an important role in AS pathogenesis. AGEs are increased in diabetes, participate in the occurrence and progression of AS through multiple molecular mechanisms of vascular cell injury. As the main functional cells of vascular, vascular smooth muscle cells (VSMCs) play different roles in each stage of atherosclerotic lesions. The interaction between AGEs and receptor for AGEs (RAGE) accelerates AS by affecting the proliferation and migration of VSMCs. In addition, increasing researches have reported that AGEs promote osteogenic transformation and macrophage-like transformation of VSMCs, and affect the progression of AS through other aspects such as autophagy and cell cycle. In this review, we summarize the effect of AGEs on VSMCs in atherosclerotic plaque development and progression. We also discuss the AGEs that link AS and diabetes mellitus, including oxidative stress, inflammation, RAGE ligands, small noncoding RNAs.
Collapse
Affiliation(s)
| | | | | | - Dong Zhao
- *Correspondence: Longyan Yang, ; Dong Zhao,
| |
Collapse
|
12
|
Masbuchin AN, Rohman MS, Liu PY. Role of Glycosylation in Vascular Calcification. Int J Mol Sci 2021; 22:9829. [PMID: 34575990 PMCID: PMC8469761 DOI: 10.3390/ijms22189829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Glycosylation is an important step in post-translational protein modification. Altered glycosylation results in an abnormality that causes diseases such as malignancy and cardiovascular diseases. Recent emerging evidence highlights the importance of glycosylation in vascular calcification. Two major types of glycosylation, N-glycosylation and O-glycosylation, are involved in vascular calcification. Other glycosylation mechanisms, which polymerize the glycosaminoglycan (GAG) chain onto protein, resulting in proteoglycan (PG), also have an impact on vascular calcification. This paper discusses the role of glycosylation in vascular calcification.
Collapse
Affiliation(s)
- Ainun Nizar Masbuchin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Brawijaya, Malang 65111, Indonesia;
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan;
- Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
13
|
Little PJ, Askew CD, Xu S, Kamato D. Endothelial Dysfunction and Cardiovascular Disease: History and Analysis of the Clinical Utility of the Relationship. Biomedicines 2021; 9:biomedicines9060699. [PMID: 34203043 PMCID: PMC8234001 DOI: 10.3390/biomedicines9060699] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
The endothelium is the single-cell monolayer that lines the entire vasculature. The endothelium has a barrier function to separate blood from organs and tissues but also has an increasingly appreciated role in anti-coagulation, vascular senescence, endocrine secretion, suppression of inflammation and beyond. In modern times, endothelial cells have been identified as the source of major endocrine and vaso-regulatory factors principally the dissolved lipophilic vosodilating gas, nitric oxide and the potent vascular constricting G protein receptor agonists, the peptide endothelin. The role of the endothelium can be conveniently conceptualized. Continued investigations of the mechanism of endothelial dysfunction will lead to novel therapies for cardiovascular disease. In this review, we discuss the impact of endothelial dysfunction on cardiovascular disease and assess the clinical relevance of endothelial dysfunction.
Collapse
Affiliation(s)
- Peter J. Little
- Sunshine Coast Health Institute, School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia;
- Department of Pharmacy, Xinhua College, Sun Yat-sen University, Tianhe District, Guangzhou 510520, China;
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Correspondence:
| | - Christopher D. Askew
- Sunshine Coast Health Institute, School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia;
- VasoActive Research Group, School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology, Hefei 230037, China;
| | - Danielle Kamato
- Department of Pharmacy, Xinhua College, Sun Yat-sen University, Tianhe District, Guangzhou 510520, China;
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
14
|
c-Kit expression in smooth muscle cells reduces atherosclerosis burden in hyperlipidemic mice. Atherosclerosis 2021; 324:133-140. [PMID: 33781566 DOI: 10.1016/j.atherosclerosis.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS Increased receptor tyrosine kinase (RTK) activity has been historically linked to atherosclerosis. Paradoxically, we recently found that global deficiency in c-Kit function increased atherosclerosis in hyperlipidemic mice. This study aimed to investigate if such unusual atheroprotective phenotype depends upon c-Kit's function in smooth muscle cells (SMC). METHODS We studied atherosclerosis in a SMC-specific conditional knockout mice (KitSMC) and control littermate. Tamoxifen (TAM) and vehicle treated mice were fed high fat diet for 16 weeks before atherosclerosis assessment in the whole aorta using oil red staining. Smooth muscle cells were traced within the aortic sinus of conditional c-Kit tracing mice (KitSMC eYFP) and their control littermates (KitWT eYFP) by immunofluorescent confocal microscopy. We then performed RNA sequencing on primary SMC from c-Kit deficient and control mice, and identified significantly altered genes and pathways as a result of c-Kit deficiency in SMC. RESULTS Atherosclerosis significantly increased in KitSMC mice with respect to control groups. In addition, the loss of c-Kit in SMC increased plaque size and necrotic core area in the aortic sinus of hyperlipidemic mice. Smooth muscle cells from KitSMC eYFP mice were more prone to migrate and express foam cell markers (e.g., Mac2 and MCAM) than those from control littermate animals. RNAseq analysis showed a significant upregulation in genes associated with cell proliferation, migration, lipid metabolism, and inflammation secondary to the loss of Kit function in primary SMCs. CONCLUSIONS Loss of c-Kit increases SMC migration, proliferation, and expression of foam cell markers in atherosclerotic plaques from hyperlipidemic mice.
Collapse
|
15
|
Macrophages bind LDL using heparan sulfate and the perlecan protein core. J Biol Chem 2021; 296:100520. [PMID: 33684447 PMCID: PMC8027565 DOI: 10.1016/j.jbc.2021.100520] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022] Open
Abstract
The retention of low-density lipoprotein (LDL) is a key process in the pathogenesis of atherosclerosis and largely mediated via smooth-muscle cell-derived extracellular proteoglycans including the glycosaminoglycan chains. Macrophages can also internalize lipids via complexes with proteoglycans. However, the role of polarized macrophage-derived proteoglycans in binding LDL is unknown and important to advance our understanding of the pathogenesis of atherosclerosis. We therefore examined the identity of proteoglycans, including the pendent glycosaminoglycans, produced by polarized macrophages to gain insight into the molecular basis for LDL binding. Using the quartz crystal microbalance with dissipation monitoring technique, we established that classically activated macrophage (M1)- and alternatively activated macrophage (M2)-derived proteoglycans bind LDL via both the protein core and heparan sulfate (HS) in vitro. Among the proteoglycans secreted by macrophages, we found perlecan was the major protein core that bound LDL. In addition, we identified perlecan in the necrotic core as well as the fibrous cap of advanced human atherosclerotic lesions in the same regions as HS and colocalized with M2 macrophages, suggesting a functional role in lipid retention in vivo. These findings suggest that macrophages may contribute to LDL retention in the plaque by the production of proteoglycans; however, their contribution likely depends on both their phenotype within the plaque and the presence of enzymes, such as heparanase, that alter the secreted protein structure.
Collapse
|
16
|
Adhikara IM, Yagi K, Mayasari DS, Suzuki Y, Ikeda K, Ryanto GRT, Sasaki N, Rikitake Y, Nadanaka S, Kitagawa H, Miyata O, Igarashi M, Hirata KI, Emoto N. Chondroitin Sulfate N-acetylgalactosaminyltransferase-2 Impacts Foam Cell Formation and Atherosclerosis by Altering Macrophage Glycosaminoglycan Chain. Arterioscler Thromb Vasc Biol 2021; 41:1076-1091. [PMID: 33504177 DOI: 10.1161/atvbaha.120.315789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Chondroitin sulfate proteoglycans are the primary constituents of the macrophage glycosaminoglycan and extracellular microenvironment. To examine their potential role in atherogenesis, we investigated the biological importance of one of the chondroitin sulfate glycosaminoglycan biosynthesis gene, ChGn-2 (chondroitin sulfate N-acetylgalactosaminyltransferase-2), in macrophage foam cell formation. Approach and Results: ChGn-2-deficient mice showed decreased and shortened glycosaminoglycans. ChGn-2-/-/LDLr-/- (low-density lipoprotein receptor) mice generated less atherosclerotic plaque after being fed with Western diet despite exhibiting a metabolic phenotype similar to that of the ChGn-2+/+/LDLr-/- littermates. We demonstrated that in macrophages, ChGn-2 expression was upregulated in the presence of oxLDL (oxidized LDL), and glycosaminoglycan was substantially increased. Foam cell formation was significantly altered by ChGn-2 in both mouse peritoneal macrophages and the RAW264.7 macrophage cell line. Mechanistically, ChGn-2 enhanced oxLDL binding on the cell surface, and as a consequence, CD36-an important macrophage membrane scavenger receptor-was differentially regulated. CONCLUSIONS ChGn-2 alteration on macrophages conceivably influences LDL accumulation and subsequently accelerates plaque formation. These results collectively suggest that ChGn-2 is a novel therapeutic target amenable to clinical translation in the future. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Imam Manggalya Adhikara
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Keiko Yagi
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan
| | - Dyah Samti Mayasari
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Yoko Suzuki
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Koji Ikeda
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan
| | - Gusty Rizky Teguh Ryanto
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Naoto Sasaki
- Laboratory of Medical Pharmaceutics (N.S., Y.R.), Kobe Pharmaceutical University, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics (N.S., Y.R.), Kobe Pharmaceutical University, Japan
| | - Satomi Nadanaka
- Laboratory of Biochemistry (S.N., H.K.), Kobe Pharmaceutical University, Japan
| | - Hiroshi Kitagawa
- Laboratory of Biochemistry (S.N., H.K.), Kobe Pharmaceutical University, Japan
| | - Okiko Miyata
- Laboratory of Medicinal Chemistry (O.M.), Kobe Pharmaceutical University, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine and Graduate School of Medical/Dental Sciences, Niigata University, Japan (M.I.)
| | - Ken-Ichi Hirata
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| | - Noriaki Emoto
- Laboratory of Clinical Pharmaceutical Science (I.M.A., K.Y., D.S.M., Y.S., K.I., G.R.T.R., N.E.), Kobe Pharmaceutical University, Japan.,Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan (I.M.A., D.S.M., Y.S., G.R.T.R., K.-i.H., N.E.)
| |
Collapse
|
17
|
Wight TN, Kang I, Evanko SP, Harten IA, Chang MY, Pearce OMT, Allen CE, Frevert CW. Versican-A Critical Extracellular Matrix Regulator of Immunity and Inflammation. Front Immunol 2020; 11:512. [PMID: 32265939 PMCID: PMC7105702 DOI: 10.3389/fimmu.2020.00512] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM) proteoglycan, versican increases along with other ECM versican binding molecules such as hyaluronan, tumor necrosis factor stimulated gene-6 (TSG-6), and inter alpha trypsin inhibitor (IαI) during inflammation in a number of different diseases such as cardiovascular and lung disease, autoimmune diseases, and several different cancers. These interactions form stable scaffolds which can act as "landing strips" for inflammatory cells as they invade tissue from the circulation. The increase in versican is often coincident with the invasion of leukocytes early in the inflammatory process. Versican interacts with inflammatory cells either indirectly via hyaluronan or directly via receptors such as CD44, P-selectin glycoprotein ligand-1 (PSGL-1), and toll-like receptors (TLRs) present on the surface of immune and non-immune cells. These interactions activate signaling pathways that promote the synthesis and secretion of inflammatory cytokines such as TNFα, IL-6, and NFκB. Versican also influences inflammation by interacting with a variety of growth factors and cytokines involved in regulating inflammation thereby influencing their bioavailability and bioactivity. Versican is produced by multiple cell types involved in the inflammatory process. Conditional total knockout of versican in a mouse model of lung inflammation demonstrated significant reduction in leukocyte invasion into the lung and reduced inflammatory cytokine expression. While versican produced by stromal cells tends to be pro-inflammatory, versican expressed by myeloid cells can create anti-inflammatory and immunosuppressive microenvironments. Inflammation in the tumor microenvironment often contains elevated levels of versican. Perturbing the accumulation of versican in tumors can inhibit inflammation and tumor progression in some cancers. Thus versican, as a component of the ECM impacts immunity and inflammation through regulating immune cell trafficking and activation. Versican is emerging as a potential target in the control of inflammation in a number of different diseases.
Collapse
Affiliation(s)
- Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Stephen P. Evanko
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - Mary Y. Chang
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| | - Oliver M. T. Pearce
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Carys E. Allen
- Centre for the Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Charles W. Frevert
- Division of Pulmonary/Critical Care Medicine, Center for Lung Biology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
18
|
Afroz R, Zhou Y, Little PJ, Xu S, Mohamed R, Stow J, Kamato D. Toll-like Receptor 4 Stimulates Gene Expression via Smad2 Linker Region Phosphorylation in Vascular Smooth Muscle Cells. ACS Pharmacol Transl Sci 2020; 3:524-534. [PMID: 32566917 DOI: 10.1021/acsptsci.9b00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Atherosclerosis begins in the vessel wall with the retention of low density lipoproteins to modified proteoglycans with hyperelongated glycosaminoglycan (GAG) chains. Bacterial infections produce endotoxins such as lipopolysaccharide that exacerbate the outcome of atherosclerosis by generating a heightened state of inflammation. Lipopolysaccharide (LPS) via its toll-like receptor (TLR) is well-known for its role in mediating an inflammatory response in the body. Emerging evidence demonstrates that TLRs are involved in regulating vascular functions. In this study we sought to investigate the role of LPS in proteoglycan modification and GAG chain elongation, and we hypothesize that LPS will signal via Smad2 dependent pathways to regulate GAG chain elongation. The in vitro model used human aortic vascular smooth muscle cells. GAG gene expression was assessed by quantitative real-time polymerase chain reaction. Western blotting was performed using whole-cell protein lysates to assess the signaling pathway. LPS via TLR4 stimulates the expression of GAG synthesizing enzymes to an equal extent to traditional cardiovascular agonists. LPS phosphorylates the Smad2 linker region via TAK-1/MAPK dependent pathways which correlated with genes associated with GAG chain initiation and elongation. The well-characterized role of LPS in inflammation and our data on GAG gene expression demonstrates that GAG chain elongation is the earliest marker of the inflammatory cascade in atherosclerosis development.
Collapse
Affiliation(s)
- Rizwana Afroz
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Ying Zhou
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| | - Suowen Xu
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui China
| | - Raafat Mohamed
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Jennifer Stow
- Institute of Molecular Bioscience, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Danielle Kamato
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
19
|
Allahverdian S, Ortega C, Francis GA. Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handb Exp Pharmacol 2020; 270:335-358. [PMID: 33340050 DOI: 10.1007/164_2020_364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In humans, smooth muscle cells (SMCs) are the main cell type in the artery medial layer, in pre-atherosclerotic diffuse thickening of the intima, and in all stages of atherosclerotic lesion development. SMCs secrete the proteoglycans responsible for the initial binding and retention of atherogenic lipoproteins in the artery intima, with this retention driving foam cell formation and subsequent stages of atherosclerosis. In this chapter we review current knowledge of the extracellular matrix generated by SMCs in medial and intimal arterial layers, their relationship to atherosclerotic lesion development and stabilization, how these findings correlate with mouse models of atherosclerosis, and potential therapies aimed at targeting the SMC matrix-lipoprotein interaction for atherosclerosis prevention.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Carleena Ortega
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Atherosclerosis and the Capillary Network; Pathophysiology and Potential Therapeutic Strategies. Cells 2019; 9:cells9010050. [PMID: 31878229 PMCID: PMC7016600 DOI: 10.3390/cells9010050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis and associated ischemic organ dysfunction represent the number one cause of mortality worldwide. While the key drivers of atherosclerosis, arterial hypertension, hypercholesterolemia and diabetes mellitus, are well known disease entities and their contribution to the formation of atherosclerotic plaques are intensively studied and well understood, less effort is put on the effect of these disease states on microvascular structure an integrity. In this review we summarize the pathological changes occurring in the vascular system in response to prolonged exposure to these major risk factors, with a particular focus on the differences between these pathological alterations of the vessel wall in larger arteries as compared to the microcirculation. Furthermore, we intend to highlight potential therapeutic strategies to improve microvascular function during atherosclerotic vessel disease.
Collapse
|
21
|
Basatemur GL, Jørgensen HF, Clarke MCH, Bennett MR, Mallat Z. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol 2019; 16:727-744. [PMID: 31243391 DOI: 10.1038/s41569-019-0227-9] [Citation(s) in RCA: 606] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/23/2019] [Indexed: 02/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type present at all stages of an atherosclerotic plaque. According to the 'response to injury' and 'vulnerable plaque' hypotheses, contractile VSMCs recruited from the media undergo phenotypic conversion to proliferative synthetic cells that generate extracellular matrix to form the fibrous cap and hence stabilize plaques. However, lineage-tracing studies have highlighted flaws in the interpretation of former studies, revealing that these studies had underestimated both the content and functions of VSMCs in plaques and have thus challenged our view on the role of VSMCs in atherosclerosis. VSMCs are more plastic than previously recognized and can adopt alternative phenotypes, including phenotypes resembling foam cells, macrophages, mesenchymal stem cells and osteochondrogenic cells, which could contribute both positively and negatively to disease progression. In this Review, we present the evidence for VSMC plasticity and summarize the roles of VSMCs and VSMC-derived cells in atherosclerotic plaque development and progression. Correct attribution and spatiotemporal resolution of clinically beneficial and detrimental processes will underpin the success of any therapeutic intervention aimed at VSMCs and their derivatives.
Collapse
Affiliation(s)
- Gemma L Basatemur
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Helle F Jørgensen
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK.
- INSERM U970, Paris Cardiovascular Research Center, Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
22
|
Kamato D, Ta H, Afroz R, Xu S, Osman N, Little PJ. Mechanisms of PAR-1 mediated kinase receptor transactivation: Smad linker region phosphorylation. J Cell Commun Signal 2019; 13:539-548. [PMID: 31290007 DOI: 10.1007/s12079-019-00527-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Protease activated receptors (PARs) transactivate both epidermal growth factor receptors (EGFR) and transforming growth factor (TGF)-β receptors (TGFBR1) in vascular smooth muscle leading to the increased expression of genes (CHST11 and CHSY1) which are rate limiting for the enzymes that mediate hyperelongation of glycosaminoglycan (GAG) chains on the lipid-binding proteoglycan, biglycan. This is an excellent model to investigate mechanisms of transactivation as the processes are biochemically distinct. EGFR transactivation is dependent on the classical matrix metalloprotease (MMP) based triple membrane bypass mechanism and TGFBR1 transactivation is dependent on Rho/ROCK signalling and integrins. We have shown that all kinase receptor signalling is targeted towards phosphorylation of the linker region of the transcription factor, Smad2. We investigated the mechanisms of thrombin mediated kinase receptor transactivation signalling using anti-phospho antibodies and Western blotting and gene expression by RT-PCR. Thrombin stimulation of phospho-Smad2 (Ser 245/250/255) and of phospho-Smad2(Thr220) via EGFR transactivation commences quickly and extends out to at least 4 h whereas transactivation via TGFBR1 is delayed for 120 min but also persists for at least 4 h. Signalling of thrombin stimulated Smad linker region phosphorylation is approximately equally inhibited by the MMP inhibitor, GM6001 and the ROCK inhibitor, Y27632, and similarly expression of CHST11 and CHSY1 is approximately equally inhibited by GM6001 and Y27632. The data establishes Smad linker region phosphorylation as a central target of all transactivation signalling of GAG gene expression and thus an upstream kinase may be a target to prevent all transactivation signalling and its pathophysiological consequences.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia. .,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China.
| | - Hang Ta
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Rizwana Afroz
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, 3083, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, VIC, 3004, Australia
| | - Peter J Little
- School of Pharmacy, University of Queensland, The University of Queensland, 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, China
| |
Collapse
|
23
|
Barth M, Selig JI, Klose S, Schomakers A, Kiene LS, Raschke S, Boeken U, Akhyari P, Fischer JW, Lichtenberg A. Degenerative aortic valve disease and diabetes: Implications for a link between proteoglycans and diabetic disorders in the aortic valve. Diab Vasc Dis Res 2019; 16:254-269. [PMID: 30563371 DOI: 10.1177/1479164118817922] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Degenerative aortic valve disease in combination with diabetes is an increasing burden worldwide. There is growing evidence that particularly small leucine-rich proteoglycans are involved in the development of degenerative aortic valve disease. Nevertheless, the role of these molecules in this disease in the course of diabetes has not been elucidated in detail and previous studies remain controversial. Therefore, the aim of this study is to broaden the knowledge about small leucine-rich proteoglycans in degenerative aortic valve disease and the influence of diabetes and hyperglycaemia on aortic valves and valvular interstitial cells is examined. Analyses were performed using reverse-transcription polymerase chain reaction, Western blot, enzyme-linked immunosorbent assay, (immuno)histology and colorimetric assays. We could show that biglycan, but not decorin and lumican, is upregulated in degenerated human aortic valve cusps. Subgroup analysis reveals that upregulation of biglycan is stage-dependent. In vivo, loss of biglycan leads to stage-dependent calcification and also to migratory effects on interstitial cells within the extracellular matrix. In late stages of degenerative aortic valve disease, diabetes increases the expression of biglycan in aortic valves. In vitro, the combinations of hyperglycaemic with pro-degenerative conditions lead to an upregulation of biglycan. In conclusion, biglycan represents a potential link between degenerative aortic valve disease and diabetes.
Collapse
Affiliation(s)
- Mareike Barth
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jessica I Selig
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Svenja Klose
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Antje Schomakers
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Lena S Kiene
- 2 Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Silja Raschke
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Udo Boeken
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Payam Akhyari
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jens W Fischer
- 2 Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Artur Lichtenberg
- 1 Department of Cardiovascular Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
24
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
25
|
Mohamed R, Dayati P, Mehr RN, Kamato D, Seif F, Babaahmadi-Rezaei H, Little PJ. Transforming growth factor-β1 mediated CHST11 and CHSY1 mRNA expression is ROS dependent in vascular smooth muscle cells. J Cell Commun Signal 2018; 13:225-233. [PMID: 30417274 DOI: 10.1007/s12079-018-0495-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/01/2018] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor (TGF)-β1 mediates glycosaminoglycan (GAG) chain hyperelongation on secreted proteoglycans and these modifications are associated with increased lipid binding in the vessel wall and the development of atherosclerosis. In vascular smooth muscle cells (VSMCs), TGF-β1 regulated GAG elongation via extracellular signal-regulated kinase (ERK) and p38 as well as Smad2 linker region phosphorylation. In this study, our aim was to identify the TGF-β1 mediated signalling pathway involving reactive oxygen species (ROS) and Smad2 linker region phosphorylation that regulate the mRNA expression of GAG synthesizing enzymes, chondroitin 4-O-sulfotransferase 1 (CHST11) and chondroitin sulfate synthase 1 (CHSY1) which are the rate limiting enzymes involved in GAG chain elongation. Signalling molecules were assessed by western blotting, quantitative real-time PCR was used for analysis of gene expression and intracellular ROS level was measured by a fluorescence based assay. TGF-β1 induced ROS production in VSMCs. Nicotinamide adenine dinucleotide phosphate oxidase (Nox) inhibitors, diphenyleneiodonium (DPI) and apocynin blocked TGF-β1 mediated Smad2 linker region phosphorylation. TGF-β1 treatment increased the mRNA levels of CHST11 and CHSY1. Pharmacological inhibition of Nox blocked TGF-β1 mediated mitogen activated protein kinases (MAPKs) phosphorylation and TGF-β1 stimulated CHST11 and CHSY1 mRNA expression. These findings demonstrated that TGF-β1 mediated expression of CHST11 and CHSY1 can occur via Nox-dependent pathways and Smad2 linker region phosphorylation.
Collapse
Affiliation(s)
- Raafat Mohamed
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | - Parisa Dayati
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reyhaneh Niayesh Mehr
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Danielle Kamato
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, Guangdong Pr., China
| | - Faezeh Seif
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Peter J Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, QLD, 4102, Australia. .,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou, 510520, Guangdong Pr., China.
| |
Collapse
|
26
|
Kamato D, Burch M, Zhou Y, Mohamed R, Stow JL, Osman N, Zheng W, Little PJ. Individual Smad2 linker region phosphorylation sites determine the expression of proteoglycan and glycosaminoglycan synthesizing genes. Cell Signal 2018; 53:365-373. [PMID: 30423352 DOI: 10.1016/j.cellsig.2018.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
Growth factors such as thrombin and transforming growth factor (TGF)-β facilitate glycosaminoglycan (GAG) chain hyperelongation on proteoglycans, a phenomenon that increases lipoprotein binding in the vessel wall and the development of atherosclerosis. TGF-β signals via canonical carboxy terminal phosphorylation of R-Smads and also non-canonical linker region phosphorylation of R-Smads. The G protein coupled receptor agonist, thrombin, can transactivate the TGF-β receptor leading to both canonical and non-canonical Smad signalling. Linker region phosphorylation drives the expression of genes for the synthesis of the proteoglycan, biglycan. Proteoglycan synthesis involves core protein synthesis, the initiation of GAG chains and the subsequent elongation of GAG chains. We have explored the relationship between the thrombin stimulated phosphorylation of individual serine and threonine sites in the linker region of Smad2 and the expression of GAG initiation xylosyltransferase-1 (XT-1) and GAG elongation chondroitin 4-sulfotransferase-1 (C4ST-1) and chondroitin synthase-1 (CHSY-1) genes. Thrombin stimulated the phosphorylation of all four target residues (Thr220, Ser245, Ser250 and Ser255 residues) with a similar temporal pattern - phosphorylation was maximal at 15 min (the earliest time point studied) and the level of the phospho-proteins declined thereafter over the following 4 h. Jnk, p38 and PI3K, selectively mediated the phosphorylation of the Thr220 residue whereas the serine residues were variously phosphorylated by multiple kinases. Thrombin stimulated the expression of all three genes - XT-1, C4ST-1 and CHSY-1. The three pathways mediating Thr220 phosphorylation were also involved in the expression of XT-1. The target pathways (excluding Jnk) were involved in the expression of the GAG elongation genes (C4ST-1 and CHSY-1). These findings support the contention that individual Smad linker region phosphorylation sites are linked to the expression of genes for the initiation and elongation of GAG chains on proteoglycans. The context of this work is that a specific inhibitor of GAG elongation represents a potential therapeutic agent for preventing GAG elongation and lipid binding and the results indicate that the specificity of the pathways is such that it might be therapeutically feasible to specifically target GAG elongation without interfering with other physiological processes with which proteoglycans are involved.
Collapse
Affiliation(s)
- Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China.
| | - Micah Burch
- Department of Cardiovascular Medicine, Brigham and Harvard Medical School, Boston, MA 02115, USA
| | - Ying Zhou
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Raafat Mohamed
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia
| | - Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4067, Australia
| | - Narin Osman
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Wenhua Zheng
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Faculty of Health Sciences, University of Macau, Taipa, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China
| |
Collapse
|
27
|
Wight TN. A role for proteoglycans in vascular disease. Matrix Biol 2018; 71-72:396-420. [PMID: 29499356 PMCID: PMC6110991 DOI: 10.1016/j.matbio.2018.02.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 12/15/2022]
Abstract
The content of proteoglycans (PGs) is low in the extracellular matrix (ECM) of vascular tissue, but increases dramatically in all phases of vascular disease. Early studies demonstrated that glycosaminoglycans (GAGs) including chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS) and heparan sulfate (HS) accumulate in vascular lesions in both humans and in animal models in areas of the vasculature that are susceptible to disease initiation (such as at branch points) and are frequently coincident with lipid deposits. Later studies showed the GAGs were covalently attached to specific types of core proteins that accumulate in vascular lesions. These molecules include versican (CSPG), biglycan and decorin (DS/CSPGs), lumican and fibromodulin (KSPGs) and perlecan (HSPG), although other types of PGs are present, but in lesser quantities. While the overall molecular design of these macromolecules is similar, there is tremendous structural diversity among the different PG families creating multiple forms that have selective roles in critical events that form the basis of vascular disease. PGs interact with a variety of different molecules involved in disease pathogenesis. For example, PGs bind and trap serum components that accumulate in vascular lesions such as lipoproteins, amyloid, calcium, and clotting factors. PGs interact with other ECM components and regulate, in part, ECM assembly and turnover. PGs interact with cells within the lesion and alter the phenotypes of both resident cells and cells that invade the lesion from the circulation. A number of therapeutic strategies have been developed to target specific PGs involved in key pathways that promote vascular disease. This review will provide a historical perspective of this field of research and then highlight some of the evidence that defines the involvement of PGs and their roles in the pathogenesis of vascular disease.
Collapse
Affiliation(s)
- Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, United States.
| |
Collapse
|
28
|
Kijani S, Vázquez AM, Levin M, Borén J, Fogelstrand P. Intimal hyperplasia induced by vascular intervention causes lipoprotein retention and accelerated atherosclerosis. Physiol Rep 2018; 5:5/14/e13334. [PMID: 28716818 PMCID: PMC5532481 DOI: 10.14814/phy2.13334] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023] Open
Abstract
Accelerated atherosclerosis diminishes the long term patency of vascular interventions, such as percutaneous coronary intervention and implantation of saphenous vein grafts. However, the cause of this accelerated atherosclerosis is unclear. In this study, we tested the hypothesis that intimal hyperplasia formed following vascular intervention promotes retention of atherogenic lipoproteins. Intimal hyperplasia was surgically induced in the mouse common carotid artery. The surgery was combined with different mouse models of hypercholesterolemia to obtain different cholesterol levels and to control the onsets of hypercholesterolemia. Three weeks after surgery, samples were immunostained for apoB lipoproteins, smooth muscle cells and leukocytes. Already at mild hypercholesterolemia (193 mg/dL), pronounced apoB lipoprotein retention was found in the extracellular matrix in both intimal hyperplasia and the injured underlying media. In contrast, minimal retention was detected in the uninjured proximal region of the same vessel, or in vessels from mice with normal cholesterol levels (81 mg/dL). Induction of aggravated hypercholesterolemia 3 weeks after surgery, when a mature intimal hyperplasia had been formed, caused a very rapid development of atherosclerotic lesions. Mechanistically, we show that lipoprotein retention was almost exclusively dependent on electrostatic interactions to proteoglycan glycosaminoglycans, and the lipoprotein retention to intimal hyperplasia could be inhibited in vivo using glycosaminoglycan‐binding antibodies. Thus, formation of intimal hyperplasia following vascular intervention makes the vessel wall highly susceptible for lipoprotein retention and accelerated atherosclerosis. The increased lipoprotein retention in intimal hyperplasia can be targeted by blocking the interaction between apoB lipoproteins and glycosaminoglycans in the extracellular matrix.
Collapse
Affiliation(s)
- Siavash Kijani
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ana Maria Vázquez
- Innovation Managing Direction, Center of Molecular Immunology, Havana, Cuba
| | - Malin Levin
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
29
|
Rostam MA, Shajimoon A, Kamato D, Mitra P, Piva TJ, Getachew R, Cao Y, Zheng W, Osman N, Little PJ. Flavopiridol Inhibits TGF-β-Stimulated Biglycan Synthesis by Blocking Linker Region Phosphorylation and Nuclear Translocation of Smad2. J Pharmacol Exp Ther 2018; 365:156-164. [DOI: 10.1124/jpet.117.244483] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/03/2018] [Indexed: 01/18/2023] Open
|
30
|
Elevated circulating TGF-β is not the cause of increased atherosclerosis development in biglycan deficient mice. Atherosclerosis 2017; 268:68-75. [PMID: 29182988 DOI: 10.1016/j.atherosclerosis.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 10/14/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Vascular biglycan contributes to atherosclerosis development and increased biglycan expression correlates with increased atherosclerosis. However, mice deficient in biglycan have either no reduction in atherosclerosis or an unexpected increase in atherosclerosis. Biglycan deficient mice have systemically elevated TGF-β, likely due to lack of sequestration of TGF-β in the extracellular matrix. The purpose of this study was to determine if prevention of TGF-β elevations in biglycan deficient mice affected atherosclerosis development. METHODS Biglycan deficient mice were crossed to Ldlr deficient mice. Diabetes was induced via streptozotocin and all mice were fed a high cholesterol diet. Diabetic biglycan wild type and biglycan deficient Ldlr deficient mice were injected with the TGF-β neutralizing antibody 1D11 or the irrelevant control antibody 13C4. RESULTS Biglycan deficient mice had significantly elevated plasma TGF-β levels, which was further increased by diabetes, and significantly increased atherosclerosis. There was a significant correlation between TGF-β concentrations and atherosclerosis. However, despite nearly complete suppression of plasma TGF-β levels in mice treated with the TGF-β neutralizing antibody 1D11, there was no significant difference in atherosclerosis between mice with elevated TGF-β levels and mice with suppressed TGF-β levels. CONCLUSIONS The increased atherosclerosis in biglycan deficient mice does not appear to be due to elevations in TGF-β.
Collapse
|
31
|
Wilson PG, Thompson JC, Yoder MH, Charnigo R, Tannock LR. Prevention of renal apoB retention is protective against diabetic nephropathy: role of TGF-β inhibition. J Lipid Res 2017; 58:2264-2274. [PMID: 28912302 DOI: 10.1194/jlr.m078204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Animal studies demonstrate that hyperlipidemia and renal lipid accumulation contribute to the pathogenesis of diabetic nephropathy (DN). We previously demonstrated that renal lipoproteins colocalize with biglycan, a renal proteoglycan. The purpose of this study was to determine whether prevention of renal lipid (apoB) accumulation attenuates DN. Biglycan-deficient and biglycan wild-type Ldlr-/- mice were made diabetic via streptozotocin and fed a high cholesterol diet. As biglycan deficiency is associated with elevated transforming growth factor-β (TGF-β), in some experiments mice were injected with either the TGF-β-neutralizing antibody, 1D11, or with 13C4, an irrelevant control antibody. Biglycan deficiency had no significant effect on renal apoB accumulation, but led to modest attenuation of DN with ∼30% reduction in albuminuria; however, biglycan deficiency caused a striking elevation in TGF-β. Use of 1D11 led to sustained suppression of TGF-β for approximately 8 weeks at a time. The 1D11 treatment caused decreased renal apoB accumulation, decreased albuminuria, decreased renal hypertrophy, and improved survival, compared with the 13C4 treatment. Thus, prevention of renal apoB accumulation is protective against development of DN. Furthermore, this study demonstrates that prevention of renal apoB accumulation is a mechanism by which TGF-β inhibition is nephroprotective.
Collapse
Affiliation(s)
- Patricia G Wilson
- Department of Veterans Affairs, Lexington, KY 40502.,Division of Endocrinology and Molecular Medicine University of Kentucky, Lexington, KY 40536
| | - Joel C Thompson
- Department of Veterans Affairs, Lexington, KY 40502.,Division of Endocrinology and Molecular Medicine University of Kentucky, Lexington, KY 40536
| | - Meghan H Yoder
- Department of Veterans Affairs, Lexington, KY 40502.,Division of Endocrinology and Molecular Medicine University of Kentucky, Lexington, KY 40536
| | - Richard Charnigo
- Department of Statistics, University of Kentucky, Lexington, KY 40536
| | - Lisa R Tannock
- Department of Veterans Affairs, Lexington, KY 40502 .,Division of Endocrinology and Molecular Medicine University of Kentucky, Lexington, KY 40536
| |
Collapse
|
32
|
Entstehung und Progression der Aortenklappendegeneration. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2017. [DOI: 10.1007/s00398-016-0086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Degenerative Suspensory Ligament Desmitis (DSLD) in Peruvian Paso Horses Is Characterized by Altered Expression of TGFβ Signaling Components in Adipose-Derived Stromal Fibroblasts. PLoS One 2016; 11:e0167069. [PMID: 27902739 PMCID: PMC5130251 DOI: 10.1371/journal.pone.0167069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023] Open
Abstract
Equine degenerative suspensory ligament desmitis (DSLD) in Peruvian Paso horses typically presents at 7–15 years and is characterized by lameness, focal disorganization of collagen fibrils, and chondroid deposition in the body of the ligament. With the aim of developing a test for disease risk (that can be used to screen horses before breeding) we have quantified the expression of 76 TGFβ-signaling target genes in adipose-derived stromal fibroblasts (ADSCs) from six DSLD-affected and five unaffected Paso horses. Remarkably, 35 of the genes showed lower expression (p<0.05) in cells from DSLD-affected animals and this differential was largely eliminated by addition of exogenous TGFβ1. Moreover, TGFβ1-mediated effects on expression were prevented by the TGFβR1/2 inhibitor LY2109761, showing that the signaling was via a TGFβR1/2 complex. The genes affected by the pathology indicate that it is associated with a generalized metabolic disturbance, since some of those most markedly altered in DSLD cells (ATF3, MAPK14, ACVRL1 (ALK1), SMAD6, FOS, CREBBP, NFKBIA, and TGFBR2) represent master-regulators in a wide range of cellular metabolic responses.
Collapse
|
34
|
Cao XQ, Liu XX, Li MM, Zhang Y, Chen L, Wang L, Di MX, Zhang M. Overexpression of Prolyl-4-Hydroxylase- α1 Stabilizes but Increases Shear Stress-Induced Atherosclerotic Plaque in Apolipoprotein E-Deficient Mice. DISEASE MARKERS 2016; 2016:1701637. [PMID: 27818566 PMCID: PMC5080484 DOI: 10.1155/2016/1701637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 11/17/2022]
Abstract
The rupture and erosion of atherosclerotic plaque can induce coronary thrombosis. Prolyl-4-hydroxylase (P4H) plays a central role in the synthesis of all known types of collagens, which are the most abundant constituent of the extracellular matrix in atherosclerotic plaque. The pathogenesis of atherosclerosis is thought to be in part caused by shear stress. In this study, we aimed to investigate a relationship between P4Hα1 and shear stress-induced atherosclerotic plaque. Carotid arteries of ApoE-/- mice were exposed to low and oscillatory shear stress conditions by the placement of a shear stress cast for 2 weeks; we divided 60 male ApoE-/- mice into three groups for treatments with saline (mock) (n = 20), empty lentivirus (lenti-EGFP) (n = 20), and lentivirus-P4Hα1 (lenti-P4Hα1) (n = 20). Our results reveal that after 2 weeks of lenti-P4Hα1 treatment both low and oscillatory shear stress-induced plaques increased collagen and the thickness of fibrous cap and decreased macrophage accumulation but no change in lipid accumulation. We also observed that overexpression of P4Ha1 increased plaque size. Our study suggests that P4Hα1 overexpression might be a potential therapeutic target in stabilizing vulnerable plaques.
Collapse
Affiliation(s)
- Xiao-qing Cao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Xin-xin Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Meng-meng Li
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Yu Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Liang Chen
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Lin Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Ming-xue Di
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| | - Mei Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Ji'nan 250012, China
| |
Collapse
|
35
|
Diane A, Pierce WD, Kelly SE, Sokolik S, Borthwick F, Jacome-Sosa M, Mangat R, Pradillo JM, Allan SM, Ruth MR, Field CJ, Hutcheson R, Rocic P, Russell JC, Vine DF, Proctor SD. Mechanisms of Comorbidities Associated With the Metabolic Syndrome: Insights from the JCR:LA-cp Corpulent Rat Strain. Front Nutr 2016; 3:44. [PMID: 27777929 PMCID: PMC5056323 DOI: 10.3389/fnut.2016.00044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/23/2016] [Indexed: 01/08/2023] Open
Abstract
Obesity and its metabolic complications have emerged as the epidemic of the new millennia. The use of obese rodent models continues to be a productive component of efforts to understand the concomitant metabolic complications of this disease. In 1978, the JCR:LA-cp rat model was developed with an autosomal recessive corpulent (cp) trait resulting from a premature stop codon in the extracellular domain of the leptin receptor. Rats that are heterozygous for the cp trait are lean-prone, while those that are homozygous (cp/cp) spontaneously display the pathophysiology of obesity as well as a metabolic syndrome (MetS)-like phenotype. Over the years, there have been formidable scientific contributions that have originated from this rat model, much of which has been reviewed extensively up to 2008. The premise of these earlier studies focused on characterizing the pathophysiology of MetS-like phenotype that was spontaneously apparent in this model. The purpose of this review is to highlight areas of recent advancement made possible by this model including; emerging appreciation of the "thrifty gene" hypothesis in the context of obesity, the concept of how chronic inflammation may drive obesogenesis, the impact of acute forms of inflammation to the brain and periphery during chronic obesity, the role of dysfunctional insulin metabolism on lipid metabolism and vascular damage, and the mechanistic basis for altered vascular function as well as novel parallels between the human condition and the female JCR:LA-cp rat as a model for polycystic ovary disease (PCOS).
Collapse
Affiliation(s)
- Abdoulaye Diane
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - W. David Pierce
- Department of Sociology, University of Alberta, Edmonton, AB, Canada
| | - Sandra E. Kelly
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Sharon Sokolik
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Faye Borthwick
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Miriam Jacome-Sosa
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Rabban Mangat
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | | | - Stuart McRae Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Megan R. Ruth
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Catherine J. Field
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - James C. Russell
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Donna F. Vine
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Spencer D. Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Division of Human Nutrition, Alberta Diabetes and Mazakowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Gáspár R, Pipicz M, Hawchar F, Kovács D, Djirackor L, Görbe A, Varga ZV, Kiricsi M, Petrovski G, Gácser A, Csonka C, Csont T. The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol 2016; 99:138-150. [PMID: 27515282 DOI: 10.1016/j.yjmcc.2016.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/15/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023]
Abstract
AIMS Exogenously administered biglycan (core protein with high-molecular weight glycosaminoglycan chains) has been shown to protect neonatal cardiomyocytes against simulated ischemia/reperfusion injury (SI/R), however, the mechanism of action is not clear. In this study we aimed to investigate, which structural component of biglycan is responsible for its cardiocytoprotective effect and to further explore the molecular mechanisms involved in the cytoprotection. METHODS AND RESULTS A pilot study was conducted to demonstrate that both native (glycanated) and deglycanated biglycan can attenuate cell death induced by SI/R in a dose-dependent manner in primary neonatal cardiomyocytes isolated from Wistar rats. In separate experiments, we have shown that similarly to glycanated biglycan, recombinant human biglycan core protein (rhBGNc) protects cardiomyocytes against SI/R injury. In contrast, the glycosaminoglycan component dermatan sulfate had no significant effect on cell viability, while chondroitin sulfate further enhanced cell death induced by SI/R. Treatment of cardiomyocytes with rhBGNc reverses the effect of SI/R upon markers of necrosis, apoptosis, mitochondrial membrane potential, and autophagy. We have also shown that pharmacological blockade of Toll-like receptor 4 (TLR4) signaling or its downstream mediators (IRAK1/4, ERK, JNK and p38 MAP kinases) abolished the cytoprotective effect of rhBGNc against SI/R injury. Pretreatment of cardiomyocytes with rhBGNc for 20h resulted in increased Akt phosphorylation and NO production without having significant effect on phosphorylation of ERK1/2, STAT3, and on the production of superoxide. Treatment over 10min and 1h with rhBGNc increased ERK1 phosphorylation, while the SI/R-induced increase in superoxide production was attenuated by rhBGNc. Blockade of NO synthesis also prevented the cardiocytoprotective effect of rhBGNc. CONCLUSIONS The core protein of exogenous biglycan protects myocardial cells from SI/R injury via TLR4-mediated mechanisms involving activation of ERK, JNK and p38 MAP kinases and increased NO production. The cytoprotective effect of rhBGNc is due to modulation of SI/R-induced changes in necrosis, apoptosis and autophagy.
Collapse
Affiliation(s)
- Renáta Gáspár
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Márton Pipicz
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Fatime Hawchar
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Dávid Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Luna Djirackor
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Anikó Görbe
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zoltán V Varga
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Goran Petrovski
- Stem Cells and Eye Research Laboratory, Department of Ophthalmology, Faculty of Medicine, University of Szeged, Szeged, Hungary; Centre of Eye Research, Department of Ophthalmology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Attila Gácser
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Csonka
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| |
Collapse
|
37
|
Al Gwairi O, Osman N, Getachew R, Zheng W, Liang XL, Kamato D, Thach L, Little PJ. Multiple Growth Factors, But Not VEGF, Stimulate Glycosaminoglycan Hyperelongation in Retinal Choroidal Endothelial Cells. Int J Biol Sci 2016; 12:1041-51. [PMID: 27570478 PMCID: PMC4997048 DOI: 10.7150/ijbs.16134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/30/2016] [Indexed: 01/08/2023] Open
Abstract
A major feature of early age-related macular degeneration (AMD) is the thickening of Bruch's membrane in the retina and an alteration in its composition with increased lipid deposition. In certain pathological conditions proteoglycans are responsible for lipid retention in tissues. Growth factors are known to increase the length of glycosaminoglycan chains and this can lead to a large increase in the interaction between proteoglycans and lipids. Using choroidal endothelial cells, we investigated the effects of a number of AMD relevant growth factors TGFβ, thrombin, PDGF, IGF and VEGF on proteoglycan synthesis. Cells were characterized as of endothelial origin using the specific cell markers endothelial nitric oxide synthesis and von Willebrand factor and imaged using confocal microscopy. Cells were treated with growth factors in the presence and absence of the appropriate inhibitors and were radiolabeled with [35S]-SO4. Proteoglycans were isolated by ion exchange chromatography and sized using SDS-PAGE. Radiosulfate incorporation was determined by the cetylpyridinium chloride (CPC) precipitation technique. To measure cellular glycosaminoglycan synthesizing capacity we added xyloside and assessed the xyloside-GAGs by SDS-PAGE. TGFβ, thrombin, PDGF & IGF dose-dependently stimulated radiosulfate incorporation and GAG elongation as well as xyloside-GAG synthesis, however VEGF treatment did not stimulate any changes in proteoglycan synthesis. VEGF did not increase pAKT but caused a large increase in pERK relative to the response to PDGF. Thus, AMD relevant agonists cause glycosaminoglycan hyperelongation of proteoglycans synthesised and secreted by retinal choroidal endothelial cells. The absence of a response to VEGF is intriguing and identifies proteoglycans as a novel potential target in AMD. Future studies will examine the relevance of these changes to enhanced lipid binding and the development of AMD.
Collapse
Affiliation(s)
- Othman Al Gwairi
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Narin Osman
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; Department of Immunology, Monash University, Melbourne 3004 VIC, Australia
| | - Robel Getachew
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China;; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - X-L Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510006, China
| | - Danielle Kamato
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Lyna Thach
- School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| | - Peter J Little
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia;; School of Pharmacy. The University of Queensland, Wooloongabba, QLD 4102, Australia
| |
Collapse
|
38
|
The role of specific Smad linker region phosphorylation in TGF-β mediated expression of glycosaminoglycan synthesizing enzymes in vascular smooth muscle. Cell Signal 2016; 28:956-66. [PMID: 27153775 DOI: 10.1016/j.cellsig.2016.05.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/15/2023]
Abstract
Hyperelongation of glycosaminoglycan chains on proteoglycans facilitates increased lipoprotein binding in the blood vessel wall and the development of atherosclerosis. Increased mRNA expression of glycosaminoglycan chain synthesizing enzymes in vivo is associated with the development of atherosclerosis. In human vascular smooth muscle, transforming growth factor-β (TGF-β) regulates glycosaminoglycan chain hyperelongation via ERK and p38 as well as Smad2 linker region (Smad2L) phosphorylation. In this study, we identified the involvement of TGF-β receptor, intracellular serine/threonine kinases and specific residues on transcription factor Smad2L that regulate glycosaminoglycan synthesizing enzymes. Of six glycosaminoglycan synthesizing enzymes, xylosyltransferase-1, chondroitin sulfate synthase-1, and chondroitin sulfotransferase-1 were regulated by TGF-β. In addition ERK, p38, PI3K and CDK were found to differentially regulate mRNA expression of each enzyme. Four individual residues in the TGF-β receptor mediator Smad2L can be phosphorylated by these kinases and in turn regulate the synthesis and activity of glycosaminoglycan synthesizing enzymes. Smad2L Thr220 was phosphorylated by CDKs and Smad2L Ser250 by ERK. p38 selectively signalled via Smad2L Ser245. Phosphorylation of Smad2L serine residues induced glycosaminoglycan synthesizing enzymes associated with glycosaminoglycan chain elongation. Phosphorylation of Smad2L Thr220 was associated with XT-1 enzyme regulation, a critical enzyme in chain initiation. These findings provide a deeper understanding of the complex signalling pathways that contribute to glycosaminoglycan chain modification that could be targeted using pharmacological agents to inhibit the development of atherosclerosis.
Collapse
|
39
|
Dubland JA, Francis GA. So Much Cholesterol: the unrecognized importance of smooth muscle cells in atherosclerotic foam cell formation. Curr Opin Lipidol 2016; 27:155-61. [PMID: 26836481 DOI: 10.1097/mol.0000000000000279] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Smooth muscle cells (SMCs) form the thickened intimal layer in atherosclerosis-prone arteries in early life, and provide the initial site for retention and uptake of atherogenic lipoproteins. Here we review current knowledge regarding the importance of SMCs in the deposition of cholesterol in atherosclerotic plaque. RECENT FINDINGS SMCs were found to comprise at least 50% of total foam cells in human coronary artery atherosclerosis, and exhibit a selective loss of expression of the cholesterol efflux promoter ATP-binding cassette transporter A1. Cholesterol loading induced a loss of SMC gene expression and an increase in macrophage and proinflammatory marker expression by cultured mouse and human arterial SMCs, with reversal of these effects upon removal of the excess cholesterol. Mice engineered to track all cells of SMC lineage indicated that, at most, SMCs make up about one-third of total cells in atherosclerotic plaque in these animals. SUMMARY SMCs appear to be the origin of the majority of foam cells in human atherosclerotic plaque. Recent studies suggest a renaissance of research on the role of SMCs in atherosclerosis is needed to make the next leap forward in the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Joshua A Dubland
- Division of Endocrinology and Metabolism, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
40
|
Fujii M, Tanaka H, Nakamura A, Suzuki C, Harada Y, Takamatsu T, Hamaoka K. Histopathological Characteristics of Post-inflamed Coronary Arteries in Kawasaki Disease-like Vasculitis of Rabbits. Acta Histochem Cytochem 2016; 49:29-36. [PMID: 27006519 PMCID: PMC4794552 DOI: 10.1267/ahc.15028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/25/2015] [Indexed: 12/15/2022] Open
Abstract
Kawasaki disease (KD) is a systemic vasculitis in infants that develops predominantly in the coronary arteries. Despite the clinically transient nature of active inflammation in childhood albeit rare complications (e.g., coronary artery aneurysm), KD has recently been suggested to increase the incidence of ischemic heart diseases in young adulthood. However, little is known about the histopathology of the coronary artery long after development of the acute KD vasculitis. To address this, we conducted histological studies of rabbit coronary arteries in adolescent phase after induction of the KD-like vasculitis induced by horse serum administration. After a transmural infiltration of inflammatory cells in acute phase at day 7, the artery exhibited a gradual decrease in the number of inflammatory cells and thickening of the intima during the chronic phase up to day 90, where proteoglycans were distinctly accumulated in the intima with abundant involvement of α-smooth muscle actin (α-SMA)-positive cells, most of which accompanied expression of VCAM-1 and NF-κB. Distinct from classical atherosclerosis, inflammatory cells, e.g., macrophages, were barely detected during the chronic phase. These observations indicate that the KD-like coronary arteritis is followed by intimal thickening via accumulation of proteoglycans and proliferation of α-SMA-positive cells, reflecting aberrant coronary artery remodeling.
Collapse
Affiliation(s)
- Maiko Fujii
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Akihiro Nakamura
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Chinatsu Suzuki
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Yoshinori Harada
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Tetsuro Takamatsu
- Department of Pathology and Cell Regulation, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| | - Kenji Hamaoka
- Department of Pediatric Cardiology and Nephrology, Kyoto Prefectural University of Medicine Graduate School of Medical Science
| |
Collapse
|
41
|
Wilson P, Drennon K, Tannock LR. Regulation of Vascular Proteoglycan Synthesis by Metabolic Factors Associated with Diabetes. J Investig Med 2016; 55:18-25. [PMID: 17441408 DOI: 10.2310/6650.2007.05067] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Diabetes is associated with accelerated atherosclerosis, but the mechanisms responsible for this are not known. Proteoglycans have been shown to play a critical role in the initiation of atherosclerosis owing to their ability to bind and retain atherogenic lipoproteins in the artery wall. Proteoglycan structure and composition are altered in atherosclerotic lesions compared with adjacent normal regions of the artery wall, and this is exaggerated in diabetes. The purpose of this study was to determine if metabolic factors associated with diabetes lead to altered proteoglycan structure and composition. METHODS Vascular smooth muscle cells, endothelial cells, and macrophages were exposed to normal (5.6 mmol/L) or high (25 mmol/L) glucose levels, various insulin and free fatty acid levels, and the cytokines transforming growth factor beta (TGF-beta1) and platelet-derived growth factor, alone or in combination, and proteoglycan synthesis was determined. RESULTS Glucose concentrations, insulin, and free fatty acids did not alter proteoglycan synthesis, size, or relative distribution. The effect of TGF-beta to increase biglycan and versican synthesis, increase sulfate incorporation, and increase the size of the secreted proteoglycans was not altered by the ambient glucose level in the culture medium, nor did high glucose increase levels of active TGF-beta. CONCLUSION Vascular proteoglycan synthesis is not affected by metabolic factors associated with diabetes. We suggest that elevated TGF-beta levels in diabetes are responsible for the altered proteoglycan synthesis observed in diabetes.
Collapse
Affiliation(s)
- Patricia Wilson
- Division of Endocrinology and Molecular Medicine, Department of Medicine, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | |
Collapse
|
42
|
Rostam MA, Piva TJ, Rezaei HB, Kamato D, Little PJ, Zheng W, Osman N. Peptidyl-prolyl isomerases: functionality and potential therapeutic targets in cardiovascular disease. Clin Exp Pharmacol Physiol 2015; 42:117-24. [PMID: 25377120 DOI: 10.1111/1440-1681.12335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/26/2014] [Accepted: 10/30/2014] [Indexed: 02/06/2023]
Abstract
Peptidyl-prolyl cis/trans isomerases (PPIases) are a conserved group of enzymes that catalyse the conversion between cis and trans conformations of proline imidic peptide bonds. These enzymes play critical roles in regulatory mechanisms of cellular function and pathophysiology of disease. There are three different classes of PPIases and increasing interest in the development of specific PPIase inhibitors. Cyclosporine A, FK506, rapamycin and juglone are known PPIase inhibitors. Herein, we review recent advances in elucidating the role and regulation of the PPIase family in vascular disease. We focus on peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1), an important member of the PPIase family that plays a role in cell cycle progression, gene expression, cell signalling and cell proliferation. In addition, Pin1 may be involved in atherosclerosis. The unique role of Pin1 as a molecular switch that impacts on multiple downstream pathways necessitates the evaluation of a highly specific Pin1 inhibitor to aid in potential therapeutic drug discovery.
Collapse
Affiliation(s)
- Muhamad A Rostam
- Discipline of Pharmacy, RMIT University, Melbourne, Vic., Australia; Diabetes Complications Group, Metabolism, Exercise and Disease Program, Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia; International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Kamato D, Rostam MA, Bernard R, Piva TJ, Mantri N, Guidone D, Zheng W, Osman N, Little PJ. The expansion of GPCR transactivation-dependent signalling to include serine/threonine kinase receptors represents a new cell signalling frontier. Cell Mol Life Sci 2015; 72:799-808. [PMID: 25384733 PMCID: PMC11113717 DOI: 10.1007/s00018-014-1775-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 10/14/2014] [Accepted: 11/03/2014] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptor (GPCR) signalling is mediated through transactivation-independent signalling pathways or the transactivation of protein tyrosine kinase receptors and the recently reported activation of the serine/threonine kinase receptors, most notably the transforming growth factor-β receptor family. Since the original observation of GPCR transactivation of protein tyrosine kinase receptors, there has been considerable work on the mechanism of transactivation and several pathways are prominent. These pathways include the "triple membrane bypass" pathway and the generation of reactive oxygen species. The recent recognition of GPCR transactivation of serine/threonine kinase receptors enormously broadens the GPCR signalling paradigm. It may be predicted that the transactivation of serine/threonine kinase receptors would have mechanistic similarities with transactivation of tyrosine kinase pathways; however, initial studies suggest that these two transactivation pathways are mechanistically distinct. Important questions are the relative importance of tyrosine and serine/threonine transactivation pathways, the contribution of transactivation to overall GPCR signalling, mechanisms of transactivation and the range of cell types in which this phenomenon occurs. The ultimate significance of transactivation-dependent signalling remains to be defined but it appears to be prominent and if so will represent a new cell signalling frontier.
Collapse
Affiliation(s)
- Danielle Kamato
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Muhamad Ashraf Rostam
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Rebekah Bernard
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- Discipline of Cell Biology and Anatomy, School of Medical Sciences and Health Innovations Research Institute, Bundoora, VIC 3083 Australia
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Bundoora, VIC 3083 Australia
| | - Daniel Guidone
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
| | - Wenhua Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre and School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Narin Osman
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| | - Peter J. Little
- Diabetes Complications Laboratory, Discipline of Pharmacy, School of Medical Sciences and Diabetes Complications Group, RMIT University, Bundoora, VIC 3083 Australia
- Department of Medicine, Nursing and Health Sciences and Immunology, Monash University School of Medicine (Central and Eastern Clinical School, Alfred Health), Prahran, VIC 3004 Australia
| |
Collapse
|
45
|
Platelet-derived growth factor-stimulated versican synthesis but not glycosaminoglycan elongation in vascular smooth muscle is mediated via Akt phosphorylation. Cell Signal 2014; 26:912-6. [DOI: 10.1016/j.cellsig.2014.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 12/18/2013] [Accepted: 01/06/2014] [Indexed: 11/19/2022]
|
46
|
Versican and the regulation of cell phenotype in disease. Biochim Biophys Acta Gen Subj 2014; 1840:2441-51. [PMID: 24401530 DOI: 10.1016/j.bbagen.2013.12.028] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 12/23/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Versican is an extracellular matrix (ECM) proteoglycan that is present in the pericellular environment of most tissues and increases in many different diseases. Versican interacts with cells to influence the ability of cells to proliferate, migrate, adhere and assemble an ECM. SCOPE OF REVIEW The structure of the versican molecule is briefly reviewed and studies highlighting those factors that promote versican synthesis and degradation and their impact on cell phenotype in disease are discussed. Particular attention is given to vascular disease, but other diseases where versican is important are covered as well, most notably different forms of cancers. Attention is given to mechanisms(s) by which versican influences cell behaviors through either direct or indirect processes. Versican produced by either stromal cells or myeloid cells can have a major impact influencing immunity and inflammation. Finally, studies controlling versican accumulation that either delay or inhibit the progression of disease will be highlighted. MAJOR CONCLUSIONS Versican is one component of the ECM that can influence the ability of cells to proliferate, migrate, adhere, and remodel the ECM. Targeting versican as a way to control cell phenotype offers a novel approach in the treatment of disease. SIGNIFICANCE ECM molecules such as versican contribute to the structural integrity of tissues and interact with cells through direct and indirect means to regulate, in part, cellular events that form the basis of disease. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
47
|
Zhang B, Elmabsout AA, Khalaf H, Basic VT, Jayaprakash K, Kruse R, Bengtsson T, Sirsjö A. The periodontal pathogen Porphyromonas gingivalis changes the gene expression in vascular smooth muscle cells involving the TGFbeta/Notch signalling pathway and increased cell proliferation. BMC Genomics 2013; 14:770. [PMID: 24209892 PMCID: PMC3827841 DOI: 10.1186/1471-2164-14-770] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Porphyromonas gingivalis is a gram-negative bacterium that causes destructive chronic periodontitis. In addition, this bacterium is also involved in the development of cardiovascular disease. The aim of this study was to investigate the effects of P. gingivalis infection on gene and protein expression in human aortic smooth muscle cells (AoSMCs) and its relation to cellular function. RESULTS AoSMCs were exposed to viable P. gingivalis for 24 h, whereafter confocal fluorescence microscopy was used to study P. gingivalis invasion of AoSMCs. AoSMCs proliferation was evaluated by neutral red assay. Human genome microarray, western blot and ELISA were used to investigate how P. gingivalis changes the gene and protein expression of AoSMCs. We found that viable P. gingivalis invades AoSMCs, disrupts stress fiber structures and significantly increases cell proliferation. Microarray results showed that, a total of 982 genes were identified as differentially expressed with the threshold log2 fold change > |1| (adjust p-value <0.05). Using bioinformatic data mining, we demonstrated that up-regulated genes are enriched in gene ontology function of positive control of cell proliferation and down-regulated genes are enriched in the function of negative control of cell proliferation. The results from pathway analysis revealed that all the genes belonging to these two categories induced by P. gingivalis were enriched in 25 pathways, including genes of Notch and TGF-beta pathways. CONCLUSIONS This study demonstrates that P. gingivalis is able to invade AoSMCs and stimulate their proliferation. The activation of TGF-beta and Notch signaling pathways may be involved in the bacteria-mediated proliferation of AoSMCs. These findings further support the association between periodontitis and cardiovascular diseases.
Collapse
Affiliation(s)
- Boxi Zhang
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dugan LL, You YH, Ali SS, Diamond-Stanic M, Miyamoto S, DeCleves AE, Andreyev A, Quach T, Ly S, Shekhtman G, Nguyen W, Chepetan A, Le TP, Wang L, Xu M, Paik KP, Fogo A, Viollet B, Murphy A, Brosius F, Naviaux RK, Sharma K. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function. J Clin Invest 2013; 123:4888-99. [PMID: 24135141 DOI: 10.1172/jci66218] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/08/2013] [Indexed: 12/27/2022] Open
Abstract
Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.
Collapse
|
49
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
50
|
Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta Gen Subj 2013; 1830:4719-33. [DOI: 10.1016/j.bbagen.2013.06.006] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/03/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
|