1
|
Zhang S, Wang X, Dai T, Tong L, Chen G, Wang L, Ren Z, Liu H, Du D. miR-193b-3p and miR-346 Exert Antihypertensive Effects in the Rostral Ventrolateral Medulla. J Am Heart Assoc 2024; 13:e034965. [PMID: 38934856 PMCID: PMC11255704 DOI: 10.1161/jaha.124.034965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Rostral ventrolateral medulla (RVLM) neuron hyperactivity raises sympathetic outflow, causing hypertension. MicroRNAs (miRNAs) contribute to diverse biological processes, but their influence on RVLM neuronal excitability and blood pressure (BP) remains widely unexplored. METHODS AND RESULTS The RVLM miRNA profiles in spontaneously hypertensive rats were unveiled using RNA sequencing. Potential effects of these miRNAs in reducing neuronal excitability and BP and underlying mechanisms were investigated through various experiments. Six hundred thirty-seven miRNAs were identified, and reduced levels of miR-193b-3p and miR-346 were observed in the RVLM of spontaneously hypertensive rats. Increased miR-193b-3p and miR-346 expression in RVLM lowered neuronal excitability, sympathetic outflow, and BP in spontaneously hypertensive rats. In contrast, suppressing miR-193b-3p and miR-346 expression in RVLM increased neuronal excitability, sympathetic outflow, and BP in Wistar Kyoto and Sprague-Dawley rats. Cdc42 guanine nucleotide exchange factor (Arhgef9) was recognized as a target of miR-193b-3p. Overexpressing miR-193b-3p caused an evident decrease in Arhgef9 expression, resulting in the inhibition of neuronal apoptosis. By contrast, its downregulation produced the opposite effects. Importantly, the decrease in neuronal excitability, sympathetic outflow, and BP observed in spontaneously hypertensive rats due to miR-193b-3p overexpression was greatly counteracted by Arhgef9 upregulation. CONCLUSIONS miR-193b-3p and miR-346 are newly identified factors in RVLM that hinder hypertension progression, and the miR-193b-3p/Arhgef9/apoptosis pathway presents a potential mechanism, highlighting the potential of targeting miRNAs for hypertension prevention.
Collapse
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Xueping Wang
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Tengteng Dai
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Lei Tong
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Gaojun Chen
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Linping Wang
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Zhangyan Ren
- College of Life SciencesShanghai UniversityShanghaiChina
| | - Haisheng Liu
- College of Agriculture and BioengineeringHeze UniversityHezeShandongChina
| | - Dongshu Du
- College of Life SciencesShanghai UniversityShanghaiChina
- College of Agriculture and BioengineeringHeze UniversityHezeShandongChina
- Shaoxing Institute of Shanghai UniversityShaoxingZhejiangChina
| |
Collapse
|
2
|
Etebar N, Naderpour S, Akbari S, Zali A, Akhlaghdoust M, Daghighi SM, Baghani M, Sefat F, Hamidi SH, Rahimzadegan M. Impacts of SARS-CoV-2 on brain renin angiotensin system related signaling and its subsequent complications on brain: A theoretical perspective. J Chem Neuroanat 2024; 138:102423. [PMID: 38705215 DOI: 10.1016/j.jchemneu.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Cellular ACE2 (cACE2), a vital component of the renin-angiotensin system (RAS), possesses catalytic activity to maintain AngII and Ang 1-7 balance, which is necessary to prevent harmful effects of AngII/AT2R and promote protective pathways of Ang (1-7)/MasR and Ang (1-7)/AT2R. Hemostasis of the brain-RAS is essential for maintaining normal central nervous system (CNS) function. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a viral disease that causes multi-organ dysfunction. SARS-CoV-2 mainly uses cACE2 to enter the cells and cause its downregulation. This, in turn, prevents the conversion of Ang II to Ang (1-7) and disrupts the normal balance of brain-RAS. Brain-RAS disturbances give rise to one of the pathological pathways in which SARS-CoV-2 suppresses neuroprotective pathways and induces inflammatory cytokines and reactive oxygen species. Finally, these impairments lead to neuroinflammation, neuronal injury, and neurological complications. In conclusion, the influence of RAS on various processes within the brain has significant implications for the neurological manifestations associated with COVID-19. These effects include sensory disturbances, such as olfactory and gustatory dysfunctions, as well as cerebrovascular and brain stem-related disorders, all of which are intertwined with disruptions in the RAS homeostasis of the brain.
Collapse
Affiliation(s)
- Negar Etebar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Saghi Naderpour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy - Eastern Mediterranean University Famagusta, North Cyprus via Mersin 10, Turkey
| | - Setareh Akbari
- Neuroscience and Research Committee, School of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; USERN Office, Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Matin Baghani
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Seyed Hootan Hamidi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Acharya BM Reddy College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bangalore, India
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Patel M, Braun J, Lambert G, Kameneva T, Keatch C, Lambert E. Central mechanisms in sympathetic nervous dysregulation in obesity. J Neurophysiol 2023; 130:1414-1424. [PMID: 37910522 DOI: 10.1152/jn.00254.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023] Open
Abstract
Cardiovascular and metabolic complications associated with excess adiposity are linked to chronic activation of the sympathetic nervous system, resulting in a high risk of mortality among obese individuals. Obesity-related positive energy balance underlies the progression of hypertension, end-organ damage, and insulin resistance, driven by increased sympathetic tone throughout the body. It is, therefore, important to understand the central network that drives and maintains sustained activation of the sympathetic nervous system in the obese state. Experimental and clinical studies have identified structural changes and altered dynamics in both grey and white matter regions in obesity. Aberrant activation in certain brain regions has been associated with altered reward circuitry and metabolic pathways including leptin and insulin signaling along with adiposity-driven systemic and central inflammation. The impact of these pathways on the brain via overactivity of the sympathetic nervous system has gained interest in the past decade. Primarily, the brainstem, hypothalamus, amygdala, hippocampus, and cortical structures including the insular, orbitofrontal, temporal, cingulate, and prefrontal cortices have been identified in this context. Although the central network involving these structures is much more intricate, this review highlights recent evidence identifying these regions in sympathetic overactivity in obesity.
Collapse
Affiliation(s)
- Mariya Patel
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Joe Braun
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Gavin Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Tatiana Kameneva
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Charlotte Keatch
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Elisabeth Lambert
- School of Health Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Liu Y, Zhang H, Lu W, Jiang T. Integrating metabolomics, 16S rRNA sequencing, network pharmacology, and metorigin to explore the mechanism of Cinnamomi Cortex in treating chronic atrophic gastritis rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155084. [PMID: 37722245 DOI: 10.1016/j.phymed.2023.155084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Cinnamomi cortex called as Rougui (RG) in Chinese was a widely used food-medicine homology. RG has the potential to treat chronic atrophic gastritis (CAG), a disease with widespread impact in the Chinese population. PURPOSE This study aimed to explore its mechanism against CAG based on amalgamated strategies. METHODS Network pharmacology was used to predict the potential effective components and the core targets of RG against CAG based on the comprehensive chemical characterization using UHPLC-Q/TOF MS (ultra high performance liquid chromatogramphy-quadrupole/time-of-flight mass spectrometry). The CAG animals model were further used to validate its pharmacodynamics, of which gut microbiota of caecal contents were analyzed by integrating metabolomics, 16S rRNA sequencing, Metorigin metabolite traceability analysis and molecular docking to explore its action mechanism. RESULTS Network pharmacology firstly predicted the efficacy of RG was attributed to four effective components and seven targets. Metabolomics of caecal contents in CAG rats revealed primary bile acid biosynthesis was its targeted metabolic pathway associated with the metabolism of gut microbiota coupled with Metorigin traceability analysis. 16S rRNA sequencing showed that RG treated CAG by regulating the imbalance of gut microbiota. Molecular docking further confirmed that the effective components of RG could intervene with potential targets, metorigin analysis pathway, and key enzymes of gut microbiota metabolic pathways. CONCLUSION Our results proved that RG exerted favorable effect on CAG. The four active ingredients (quercetin, kaempferol, oleic acid, and (-)-epicatechin) of RG were the key to exert drug effect, which could targeted the core target of CAG, primary bile acid biosynthesis and intestinal flora metabolic pathways.
Collapse
Affiliation(s)
- Yuetao Liu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China.
| | - Hui Zhang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Wentian Lu
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | - Tao Jiang
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, Hebei, PR China.
| |
Collapse
|
5
|
Kishi T. Clarification of hypertension mechanisms provided by the research of central circulatory regulation. Hypertens Res 2023; 46:1908-1916. [PMID: 37277436 DOI: 10.1038/s41440-023-01335-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Sympathoexcitation, under the regulatory control of the brain, plays a pivotal role in the etiology of hypertension. Within the brainstem, significant structures involved in the modulation of sympathetic nerve activity include the rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and paraventricular nucleus (paraventricular). The RVLM, in particular, is recognized as the vasomotor center. Over the past five decades, fundamental investigations on central circulatory regulation have underscored the involvement of nitric oxide (NO), oxidative stress, the renin-angiotensin system, and brain inflammation in regulating the sympathetic nervous system. Notably, numerous significant findings have come to light through chronic experiments conducted in conscious subjects employing radio-telemetry systems, gene transfer techniques, and knockout methodologies. Our research has centered on elucidating the role of NO and angiotensin II type 1 (AT1) receptor-induced oxidative stress within the RVLM and NTS in regulating the sympathetic nervous system. Additionally, we have observed that various orally administered AT1 receptor blockers effectively induce sympathoinhibition by reducing oxidative stress via blockade of the AT1 receptor in the RVLM of hypertensive rats. Recent advances have witnessed the development of several clinical interventions targeting brain mechanisms. Nonetheless, Future and further basic and clinical research are needed.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Graduate School of Medicine (Cardiology), International University of Health and Welfare, Okawa, Japan.
| |
Collapse
|
6
|
Zhang S, Xing M, Chen G, Tong L, Zhang H, Du D. Upregulation of miR‐335 and miR‐674‐3p in the rostral ventrolateral medulla contributes to stress‐induced hypertension. J Neurochem 2022; 161:387-404. [DOI: 10.1111/jnc.15589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences Zhejiang Chinese Medical University Hangzhou Zhejiang China
| | - Mengyu Xing
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Gaojun Chen
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Lei Tong
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
| | - Haili Zhang
- School of Life Sciences Heze University Heze Shandong China
| | - Dongshu Du
- Shanghai Key Laboratory of Bio‐Energy Crops, School of Life Sciences Shanghai University Shanghai China
- School of Life Scicences Shanghai University Shanghai China
- Shaoxing institute of technology Zhejiang China
- School of Life Sciences Heze University Heze Shandong China
| |
Collapse
|
7
|
Zhang S, Hu L, Han C, Huang R, Ooi K, Qian X, Ren X, Chu D, Zhang H, Du D, Xia C. PLIN2 Mediates Neuroinflammation and Oxidative/Nitrosative Stress via Downregulating Phosphatidylethanolamine in the Rostral Ventrolateral Medulla of Stressed Hypertensive Rats. J Inflamm Res 2021; 14:6331-6348. [PMID: 34880641 PMCID: PMC8646230 DOI: 10.2147/jir.s329230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022] Open
Abstract
Purpose Oxidative/nitrosative stress, neuroinflammation and their intimate interactions mediate sympathetic overactivation in hypertension. An immoderate inflammatory response is characterized not only by elevated proinflammatory cytokines (PICs) but by increases in mitochondrial dysfunction, reactive oxygen species (ROS), and nitric oxide (NO). Recent data pinpoint that both the phospholipid and lipid droplets (LDs) are potent modulators of microglia physiology. Methods Stress rats underwent compound stressors for 15 days with PLIN2-siRNA or scrambled-siRNA (SC-siRNA) administrated into the rostral ventrolateral medulla (RVLM). Lipids were analyzed by mass spectroscopy-based quantitative lipidomics. The phenotypes and proliferation of microglia, LDs, in the RVLM of rats were detected; blood pressure (BP) and myocardial injury in rats were evaluated. The anti-oxidative/nitrosative stress effect of phosphatidylethanolamine (PE) was explored in cultured primary microglia. Results Lipidomics analysis showed that 75 individual lipids in RVLM were significantly dysregulated by stress [PE was the most one], demonstrating that lipid composition changed with stress. In vitro, prorenin stress induced the accumulation of LDs, increased PICs, which could be blocked by siRNA-PLIN2 in microglia. PLIN2 knockdown upregulated the PE synthesis in microglia. Anti-oxidative/nitrosative stress effect of PE delivery was confirmed by the decrease of ROS and decrease in 3-NT and MDA in prorenin-treated microglia. PLIN2 knockdown in the RVLM blocked the number of iNOS+ and PCNA+ microglia, decreased BP, alleviated cardiac fibrosis and hypertrophy in stressed rats. Conclusion PLIN2 mediates microglial polarization/proliferation via downregulating PE in the RVLM of stressed rats. Delivery of PE is a promising strategy for combating neuroinflammation and oxidative/nitrosative stress in stress-induced hypertension.
Collapse
Affiliation(s)
- Shutian Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Li Hu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200240, People's Republic of China
| | - Chengzhi Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Renhui Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Kokwin Ooi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xinyi Qian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaorong Ren
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, People's Republic of China
| | - Dongshu Du
- School of Life Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunmei Xia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
8
|
Hirooka Y. Sympathetic Activation in Hypertension: Importance of the Central Nervous System. Am J Hypertens 2020; 33:914-926. [PMID: 32374869 DOI: 10.1093/ajh/hpaa074] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022] Open
Abstract
The sympathetic nervous system plays a critical role in the pathogenesis of hypertension. The central nervous system (CNS) organizes the sympathetic outflow and various inputs from the periphery. The brain renin-angiotensin system has been studied in various regions involved in controlling sympathetic outflow. Recent progress in cardiovascular research, particularly in vascular biology and neuroscience, as well as in traditional physiological approaches, has advanced the field of the neural control of hypertension in which the CNS plays a vital role. Cardiovascular research relating to hypertension has focused on the roles of nitric oxide, oxidative stress, inflammation, and immunity, and the network among various organs, including the heart, kidney, spleen, gut, and vasculature. The CNS mechanisms are similarly networked with these factors and are widely studied in neuroscience. In this review, I describe the development of the conceptual flow of this network in the field of hypertension on the basis of several important original research articles and discuss potential future breakthroughs leading to clinical precision medicine.
Collapse
Affiliation(s)
- Yoshitaka Hirooka
- Department of Medical Technology and Sciences, School of Health Sciences at Fukuoka, International University of Health and Welfare, Okawa City, Fukuoka, Japan
- Department of Cardiovascular Medicine, Hypertension and Heart Failure Center, Takagi Hospital, Okawa City, Fukuoka, Japan
| |
Collapse
|
9
|
Odongoo B, Ohara H, Ngarashi D, Kaneko T, Kunihiro Y, Mashimo T, Nabika T. Pathophysiological significance of Stim1 mutation in sympathetic response to stress and cardiovascular phenotypes in SHRSP/Izm: In vivo evaluation by creation of a novel gene knock-in rat using CRISPR/Cas9. Clin Exp Hypertens 2020; 43:34-41. [PMID: 32700574 DOI: 10.1080/10641963.2020.1797085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Genetic approach using rat congenic lines between SHRSP/Izm and WKY/Izm identified stromal interaction molecule 1 (Stim1), an essential component of store-operated Ca2+ entry (SOCE), as a promising candidate gene responsible for the exaggerated sympathetic response to stress in SHRSP. Since SHRSP has a nonsense mutation in Stim1 resulting in the expression of a truncated form of STIM1 that caused reduction of SOCE activity in primary cultured cerebral astrocytes, we created SHRSP/Izm knocked-in with the wild-type Stim1 (KI SHRSP) by the CRISPR/Cas9 method to investigate whether the functional recovery of STIM1 would mitigate sympatho-excitation to stress in vivo in SHRSP. No potential off-target nucleotide substitutions/deletions/insertions were found in KI SHRSP. Western blotting and fluorescent Ca2+ imaging of astrocytes confirmed wild-type STIM1 expression and restored SOCE activity in astrocytes from KI SHRSP, respectively. Blood pressure (BP) measured by the tail-cuff method at 12, 16, and 20 weeks of age did not significantly differ between SHRSP and KI SHRSP, while the heart rate of KI SHRSP at 16 and 20 weeks of age was significantly lower than that of age-matched SHRSP. Unexpectedly, the sympathetic response to stress (evaluated with urinary excretion of norepinephrine under cold stress and BP elevation under cold/restraint stress) did not significantly differ between SHRSP and KI SHRSP. The present results indicated that the functional deficit of STIM1 was not a genetic determinant of the exaggerated sympathetic response to stress in SHRSP and that it would be necessary to explore other candidates within the congenic fragment on chromosome 1.
Collapse
Affiliation(s)
- Batbayar Odongoo
- Department of Functional Pathology, Faculty of Medicine, Shimane University , Izumo, Japan
| | - Hiroki Ohara
- Department of Functional Pathology, Faculty of Medicine, Shimane University , Izumo, Japan
| | - Davis Ngarashi
- Department of Functional Pathology, Faculty of Medicine, Shimane University , Izumo, Japan.,Department of Physiology, School of Medicine, Muhimbili University of Health and Allied Sciences , Dar Es Salaam, Tanzania
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University , Kyoto, Japan.,Laboratory of Animal Reproduction and Development, Faculty of Science and Engineering, Iwate University , Morioka, Japan
| | - Yayoi Kunihiro
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University , Kyoto, Japan.,Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University , Osaka, Japan
| | - Tomoji Mashimo
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University , Kyoto, Japan.,Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University , Osaka, Japan.,Laboratory Animal Research Center, the Institute of Medical Science, The University of Tokyo , Tokyo, Japan
| | - Toru Nabika
- Department of Functional Pathology, Faculty of Medicine, Shimane University , Izumo, Japan
| |
Collapse
|
10
|
Alves DS, Barbosa DFS, Nogueira VO, Tourneur Y, Fontes DAF, Brito-Alves JL, Costa-Silva JH. Maternal protein restriction affects cardiovascular, but not respiratory response to L-glutamate microinjection into the NTS of conscious rats. Nutr Neurosci 2019; 24:907-918. [DOI: 10.1080/1028415x.2019.1692508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. S. Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| | - D. F. S. Barbosa
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| | - V. O. Nogueira
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| | - Y. Tourneur
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| | - D. A. F. Fontes
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| | - J. L. Brito-Alves
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
- Department of Nutrition, Federal University of Paraíba, UFPB, Brazil
| | - J. H. Costa-Silva
- Laboratory of Nutrition, Physical Activity and Phenotypic Plasticity, Federal University of Pernambuco, UFPE, Vitória de Santo Antão, PE, Brazil
| |
Collapse
|
11
|
Shimada YJ, Hasegawa K, Kochav SM, Mohajer P, Jung J, Maurer MS, Reilly MP, Fifer MA. Application of Proteomics Profiling for Biomarker Discovery in Hypertrophic Cardiomyopathy. J Cardiovasc Transl Res 2019; 12:569-579. [PMID: 31278493 PMCID: PMC7102897 DOI: 10.1007/s12265-019-09896-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
High-throughput proteomics profiling has never been applied to discover biomarkers in patients with hypertrophic cardiomyopathy (HCM). The objective was to identify plasma protein biomarkers that can distinguish HCM from controls. We performed a case-control study of patients with HCM (n = 15) and controls (n = 22). We carried out plasma proteomics profiling of 1129 proteins using the SOMAscan assay. We used the sparse partial least squares discriminant analysis to identify 50 most discriminant proteins. We also determined the area under the curve (AUC) of the receiver operating characteristic curve using the Monte Carlo cross validation with balanced subsampling. The average AUC was 0.94 (95% confidence interval, 0.82-1.00) and the discriminative accuracy was 89%. In HCM, 13 out of the 50 proteins correlated with troponin I and 12 with New York Heart Association class. Proteomics profiling can be used to elucidate protein biomarkers that distinguish HCM from controls.
Collapse
Affiliation(s)
- Yuichi J Shimada
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA.
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie M Kochav
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Pouya Mohajer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeeyoun Jung
- Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Mathew S Maurer
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Muredach P Reilly
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA
| | - Michael A Fifer
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Chan JYH, Chan SHH. Differential impacts of brain stem oxidative stress and nitrosative stress on sympathetic vasomotor tone. Pharmacol Ther 2019; 201:120-136. [PMID: 31153955 DOI: 10.1016/j.pharmthera.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023]
Abstract
Based on work-done in the rostral ventrolateral medulla (RVLM), this review presents four lessons learnt from studying the differential impacts of oxidative stress and nitrosative stress on sympathetic vasomotor tone and their clinical and therapeutic implications. The first lesson is that an increase in sympathetic vasomotor tone because of augmented oxidative stress in the RVLM is responsible for the generation of neurogenic hypertension. On the other hand, a shift from oxidative stress to nitrosative stress in the RVLM underpins the succession of increase to decrease in sympathetic vasomotor tone during the progression towards brain stem death. The second lesson is that, by having different cellular sources, regulatory mechanisms on synthesis and degradation, kinetics of chemical reactions, and downstream signaling pathways, reactive oxygen species and reactive nitrogen species should not be regarded as a singular moiety. The third lesson is that well-defined differential roles of oxidative stress and nitrosative stress with distinct regulatory mechanisms in the RVLM during neurogenic hypertension and brain stem death clearly denote that they are not interchangeable phenomena with unified cellular actions. Special attention must be paid to their beneficial or detrimental roles under a specific disease or a particular time-window of that disease. The fourth lesson is that, to be successful, future antioxidant therapies against neurogenic hypertension must take into consideration the much more complicated picture than that presented in this review on the generation, maintenance, regulation or modulation of the sympathetic vasomotor tone. The identification that the progression towards brain stem death entails a shift from oxidative stress to nitrosative stress in the RVLM may open a new vista for therapeutic intervention to slow down this transition.
Collapse
Affiliation(s)
- Julie Y H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China
| | - Samuel H H Chan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan, Republic of China.
| |
Collapse
|
13
|
El-Mas MM, Abdel-Rahman AA. Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:1-33. [PMID: 31368095 PMCID: PMC8034813 DOI: 10.1007/978-981-13-6260-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
14
|
Kamada K, Saku K, Tohyama T, Kawada T, Mannoji H, Abe K, Nishikawa T, Sunagawa G, Kishi T, Sunagawa K, Tsutsui H. Diabetes mellitus attenuates the pressure response against hypotensive stress by impairing the sympathetic regulation of the baroreflex afferent arc. Am J Physiol Heart Circ Physiol 2018; 316:H35-H44. [PMID: 30339460 DOI: 10.1152/ajpheart.00515.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Patients with diabetes mellitus (DM) often show arterial pressure (AP) lability associated with cardiovascular autonomic neuropathy. Because the arterial baroreflex tightly regulates AP via sympathetic nerve activity (SNA), we investigated the systematic baroreflex function, considering the control theory in DM by open-loop analysis. We used Zucker diabetic fatty (ZDF) rats as a type 2 DM model. Under general anesthesia, we isolated the carotid sinuses from the systemic circulation, changed intracarotid sinus pressure (CSP), and recorded SNA and AP responses. We compared CSP-AP (total loop), CSP-SNA (afferent arc), and SNA-AP (efferent arc) relationships between ZDF lean ( n = 8) and ZDF fatty rats ( n = 6). Although the total loop gain of baroreflex (ΔAP/ΔCSP) at the operating point did not differ between the two groups, the average gain in the lower CSP range was markedly reduced in ZDF fatty rats (0.03 ± 0.01 vs. 0.87 ± 0.10 mmHg/mmHg, P < 0.001). The afferent arc showed the same trend as the total loop, with a response threshold of 139.8 ± 1.0 mmHg in ZDF fatty rats. There were no significant differences in the gain of efferent arc between the two groups. Simulation experiments indicated a markedly higher AP fall and lower total loop gain of baroreflex in ZDF fatty rats than in ZDF lean rats against hypotensive stress because the efferent arc intersected with the afferent arc in the SNA unresponsive range. Thus, we concluded that impaired baroreflex sympathetic regulation in the lower AP range attenuates the pressure response against hypotensive stress and may partially contribute to AP lability in DM. NEW & NOTEWORTHY In this study, we investigated the open-loop baroreflex function, considering the control theory in type 2 diabetes mellitus model rats to address the systematic mechanism of arterial pressure (AP) lability in diabetes mellitus. The unresponsiveness of baroreflex sympathetic regulation in the lower AP range was observed in type 2 diabetic rats. It may attenuate the baroreflex pressure-stabilizing function and induce greater AP fall against hypotensive stress.
Collapse
Affiliation(s)
- Kazuhiro Kamada
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Keita Saku
- Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute , Osaka , Japan
| | - Hiroshi Mannoji
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Kiyokazu Abe
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Genya Sunagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Disease, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University , Fukuoka , Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
15
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
16
|
Szczepanska-Sadowska E, Czarzasta K, Cudnoch-Jedrzejewska A. Dysregulation of the Renin-Angiotensin System and the Vasopressinergic System Interactions in Cardiovascular Disorders. Curr Hypertens Rep 2018; 20:19. [PMID: 29556787 PMCID: PMC5859051 DOI: 10.1007/s11906-018-0823-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review In many instances, the renin-angiotensin system (RAS) and the vasopressinergic system (VPS) are jointly activated by the same stimuli and engaged in the regulation of the same processes. Recent Findings Angiotensin II (Ang II) and arginine vasopressin (AVP), which are the main active compounds of the RAS and the VPS, interact at several levels. Firstly, Ang II, acting on AT1 receptors (AT1R), plays a significant role in the release of AVP from vasopressinergic neurons and AVP, stimulating V1a receptors (V1aR), regulates the release of renin in the kidney. Secondly, Ang II and AVP, acting on AT1R and V1aR, respectively, exert vasoconstriction, increase cardiac contractility, stimulate the sympathoadrenal system, and elevate blood pressure. At the same time, they act antagonistically in the regulation of blood pressure by baroreflex. Thirdly, the cooperative action of Ang II acting on AT1R and AVP stimulating both V1aR and V2 receptors in the kidney is necessary for the appropriate regulation of renal blood flow and the efficient resorption of sodium and water. Furthermore, both peptides enhance the release of aldosterone and potentiate its action in the renal tubules. Summary In this review, we (1) point attention to the role of the cooperative action of Ang II and AVP for the regulation of blood pressure and the water-electrolyte balance under physiological conditions, (2) present the subcellular mechanisms underlying interactions of these two peptides, and (3) provide evidence that dysregulation of the cooperative action of Ang II and AVP significantly contributes to the development of disturbances in the regulation of blood pressure and the water-electrolyte balance in cardiovascular diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
17
|
Gao XY, Zhang GH, Huang L. Modulation of human melanoma cell proliferation and apoptosis by hydatid cyst fluid of Echinococcus granulosus. Onco Targets Ther 2018; 11:1447-1456. [PMID: 29588599 PMCID: PMC5858823 DOI: 10.2147/ott.s146300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Objective The objective of this paper was to assess the effects of hydatid cyst fluid (HCF) of Echinococcus granulosus on melanoma A375 cell proliferation and apoptosis. Methods A375 cells were classified into five groups by in vitro culture: normal group, control group, 10% HCF group, 20% HCF group and 30% HCF group. Trypan blue staining method was employed to detect the toxicity of HCF. Effects of different concentrations of HCF on melanoma A375 cell proliferation at different time points were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Flow cytometry and propidium iodide (PI) staining were used to detect cell cycle, and Annexin-V/PI double staining method was used to determine A375 cell apoptotic rate. Western blotting was applied to detect the expression of phosphorylated extracellular regulated protein kinases, proliferating cell nuclear antigen (PCNA), cell-cycle-related proteins (cyclin A, cyclin B1, cyclin D1 and cyclin E) and apoptosis-related proteins (Bcl-2, Bax and caspase-3). Results HCF with a high concentration was considered as atoxic to A375 cells. HCF promoted A375 cell proliferation, and the effects got stronger with an increase in concentrations but was retarded after reaching a certain range of concentrations. HCF increased phosphorylation level and expression of extracellular regulated protein kinase, as well as PCNA expression. HCF also promoted the transferring progression of A375 cells from the G0/G1 phase to the S phase to increase the cell number in S phase and increased the expression of cyclin A, cyclin D1 and cyclin E. HCF increased the expression of procaspase-3 (the precursor of apoptosis-related protein caspase-3) and antiapoptotic protein-Bcl-2, and decreased the expression of proapoptotic factor Bax, thereby inhibiting cell apoptosis. Conclusion As a result, this study confirmed that HCF promotes proliferation and inhibits apoptosis of melanoma A375 cells.
Collapse
Affiliation(s)
- Xiang-Yang Gao
- Department of Laboratory Medicine, Pu'er People's Hospital, Pu'er
| | - Guang-Hui Zhang
- Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai
| | - Li Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai, China
| |
Collapse
|
18
|
Haspula D, Clark MA. Neuroinflammation and sympathetic overactivity: Mechanisms and implications in hypertension. Auton Neurosci 2018; 210:10-17. [DOI: 10.1016/j.autneu.2018.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
|
19
|
Kishi T. Disruption of Central Antioxidant Property of Nuclear Factor Erythroid 2-Related Factor 2 Worsens Circulatory Homeostasis with Baroreflex Dysfunction in Heart Failure. Int J Mol Sci 2018; 19:ijms19030646. [PMID: 29495326 PMCID: PMC5877507 DOI: 10.3390/ijms19030646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 01/01/2023] Open
Abstract
Heart failure is defined as a disruption of circulatory homeostasis. We have demonstrated that baroreflex dysfunction strikingly disrupts circulatory homeostasis. Moreover, previous many reports have suggested that central excess oxidative stress causes sympathoexcitation in heart failure. However, the central mechanisms of baroreflex dysfunction with oxidative stress has not been fully clarified. Our hypothesis was that the impairment of central antioxidant property would worsen circulatory homeostasis with baroreflex dysfunction in heart failure. As the major antioxidant property in the brain, we focused on nuclear factor erythroid 2-related factor 2 (Nrf2; cytoprotective transcription factor). Hemodynamic and baroreflex function in conscious state were assessed by the radio-telemetry system. In the heart failure treated with intracerebroventricular (ICV) infusion of angiotensin II type 1 receptor blocker (ARB), sympathetic activation and brain oxidative stress were significantly lower, and baroreflex sensitivity and volume tolerance were significantly higher than in heart failure treated with vehicle. ICV infusion of Nrf2 activator decreased sympathetic activation and brain oxidative stress, and increased baroreflex sensitivity and volume tolerance to a greater extent than ARB. In conclusion, the disruption of central antioxidant property of Nrf2 worsened circulatory homeostasis with baroreflex dysfunction in heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Risk Stratification for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
20
|
Monteiro LRN, Marangon PB, Elias LLK, Reis LC, Antunes-Rodrigues J, Mecawi AS. Sodium appetite elicited by low-sodium diet is dependent on p44/42 mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) activation in the brain. J Neuroendocrinol 2017; 29. [PMID: 28836382 DOI: 10.1111/jne.12530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/30/2022]
Abstract
Sodium appetite is regulated by several signalling molecules, among which angiotensin II (Ang II) serves as a key driver of robust salt intake by binding to Ang II type 1 receptors (AT1R) in several regions in the brain. The activation of these receptors recruits the mitogen-activated protein kinase (MAPK) pathway, which has previously been linked to Ang II-induced increases in sodium appetite. Thus, we addressed the involvement of MAPK signalling in the induction of sodium appetite after 4 days of low-sodium diet consumption. An increase in extracellular signal-regulated kinase (ERK) phosphorylation in the laminae terminalis and mediobasal hypothalamus was observed after low-sodium diet consumption. This response was reduced by i.c.v. microinjection of an AT1R antagonist into the laminae terminalis but not the hypothalamus. This result indicates that low-sodium diet consumption activates the MAPK pathway via Ang II/AT1R signalling on the laminae terminalis. On the other hand, activation of the MAPK pathway in the mediobasal hypothalamus after low-sodium diet consumption appears to involve another extracellular mediator. We also evaluated whether a low-sodium diet could increase the sensitivity for Ang II in the brain and activate the MAPK pathway. However, i.c.v. injection of Ang II increased ERK phosphorylation on the laminae terminalis and mediobasal hypothalamus; this increase achieved a response magnitude similar to those observed in both the normal and low-sodium diet groups. These data indicate that low-sodium diet consumption for 4 days is insufficient to change the ERK phosphorylation response to Ang II in the brain. To investigate whether the MAPK pathway is involved in sodium appetite after low-sodium diet consumption, we performed i.c.v. microinjections of a MAPK pathway inhibitor (PD98059). PD98059 inhibited both saline and water intake after low-sodium diet consumption. Thus, the MAPK pathway is involved in promoting the sodium appetite after low-sodium diet consumption.
Collapse
Affiliation(s)
- L R N Monteiro
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - P B Marangon
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L L K Elias
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - L C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, SP, Brazil
| | - A S Mecawi
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
21
|
Fujii K, Saku K, Kishi T, Oga Y, Tohyama T, Nishikawa T, Sakamoto T, Ikeda M, Ide T, Tsutsui H, Sunagawa K. Carotid Body Denervation Markedly Improves Survival in Rats With Hypertensive Heart Failure. Am J Hypertens 2017; 30:791-798. [PMID: 28430843 DOI: 10.1093/ajh/hpx062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/24/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Hypertension is a major cause of heart failure. Excessive sympathoexcitation in patients with heart failure leads to poor prognosis. Since carotid body denervation (CBD) has been shown to reduce sympathetic nerve activity in animal models of hypertension and heart failure, we examined if bilateral CBD attenuates the progression of hypertensive heart failure and improves survival. METHODS We randomly allocated Dahl salt-sensitive rats fed a high-salt diet from 6 weeks of age into CBD (n = 31) and sham-operation (SHAM; n = 50) groups, and conducted CBD or SHAM at 7 weeks of age. We examined the time course of 24-hour urinary norepinephrine (uNE) excretion, blood pressure (BP) and the percent fractional shortening assessed by echocardiography, and estimated the pressure-natriuresis relationship at 14 weeks of age. Finally, we assessed hemodynamics, histological findings, and survival at 16 weeks of age. RESULTS Compared to SHAM, CBD significantly reduced 24-hour uNE at 12, 14, and 16 weeks of age, shifted the pressure-natriuresis relationship leftward without changing its slope, and attenuated the increase in BP. CBD preserved percent fractional shortening (34.2 ± 1.2 vs. 29.1 ± 1.3%, P < 0.01) and lowered left ventricular end-diastolic pressure (5.0 ± 0.9 vs. 9.0 ± 1.4 mm Hg, P < 0.05). Furthermore, CBD significantly attenuated myocardial hypertrophy (P < 0.01) and fibrosis (P < 0.01). Consequently, CBD markedly improved survival (relative risk reduction: 64.8%). CONCLUSIONS CBD attenuated the progression of hypertension and worsening of heart failure possibly through sympathoinhibition, and markedly improved survival in a rat model of hypertensive heart failure.
Collapse
Affiliation(s)
- Kana Fujii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Keita Saku
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Maidashi Higashi-ku, Fukuoka, Japan
| | - Takuya Kishi
- Collaborative Research Institute of Innovative Therapeutics for Cardiovascular Diseases, Center for Disruptive Cardiovascular Medicine, Kyushu University, Maidashi Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Oga
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takeshi Tohyama
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takuya Nishikawa
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Takafumi Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Masataka Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University,Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Maidashi Higashi-ku, Fukuoka, Japan
| |
Collapse
|
22
|
Caspase-3-dependent cleavage of Akt modulates tau phosphorylation via GSK3β kinase: implications for Alzheimer's disease. Mol Psychiatry 2017; 22:1002-1008. [PMID: 28138159 DOI: 10.1038/mp.2016.214] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/26/2016] [Accepted: 09/14/2016] [Indexed: 01/23/2023]
Abstract
The pathological hallmark of Alzheimer's disease (AD) is accumulation of misfolded amyloid-β peptides and hyperphosphorylated tau protein in the brain. Increasing evidence suggests that serine-aspartyl proteases-caspases are activated in the AD brain. Previous studies identified a caspase-3 cleavage site within the amyloid-β precursor protein, and a caspase-3 cleavage of tau as the mechanisms involved in the development of Aβ and tau neuropathology, respectively. However, the potential role that caspase-3 could have on tau metabolism remains unknown. In the current studies, we provide experimental evidence that caspase-3 directly and specifically regulates tau phosphorylation, and demonstrate that this effect is mediated by the GSK3β kinase pathway via a caspase-3-dependent cleavage of the protein kinase B (also known as Akt). In addition, we confirm these results in vivo by using a transgenic mouse model of AD. Collectively, our findings demonstrate a new role for caspase-3 in the neurobiology of tau, and suggest that therapeutic strategies aimed at inhibiting this protease-dependent cleavage of Akt may prove beneficial in preventing tau hyperphosphorylation and subsequent neuropathology in AD and related tauopathies.
Collapse
|
23
|
Lin YC, Lin YC, Kuo WW, Shen CY, Chen YF, Lin YM, Ho TJ, Padma VV, Huang CY, Huang CY. Platycodin D (PD) attenuates myocardial apoptosis mediated by JNK-SIRT1-HSF1-IGF-IIR-Caspase-3 signaling in hypertensive conditions. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
24
|
Zhu H, Tan L, Li Y, Li J, Qiu M, Li L, Zhang M, Liang M, Li A. Increased Apoptosis in the Paraventricular Nucleus Mediated by AT1R/Ras/ERK1/2 Signaling Results in Sympathetic Hyperactivity and Renovascular Hypertension in Rats after Kidney Injury. Front Physiol 2017; 8:41. [PMID: 28210225 PMCID: PMC5288364 DOI: 10.3389/fphys.2017.00041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/16/2017] [Indexed: 11/15/2022] Open
Abstract
Background: The central nervous system plays a vital role in the development of hypertension, but the molecular regulatory mechanisms are not fully understood. This study aimed to explore signaling in the paraventricular nucleus (PVN) which might contribute to renal hypertension. Methods: Renal hypertension model was established by five-sixth nephrectomy operation (5/6Nx) in male Sprague Dawley rats. Ten weeks afterwards, they were random assigned to no treatment, or intracerebroventricular injection (ICV) with artificial cerebrospinal fluid, losartan [angiotensin II receptor type 1 (AT1R) antagonist], farnesylthiosalicylic acid (Ras inhibitor), PD98059 (MEK inhibitor), or SB203580 (p38 inhibitor) and Z-DEVD-FMK (caspase-3 inhibitor). Before and after treatment, physiological and biochemical indices were measured. Immunohistochemistry, western blot and RT-PCR were applied to quantify key components of renin-angiotensin system, apoptosis-related proteins, Ras-GTP, and MAPKs in the PVN samples. TUNEL assay was used to measure the situ apoptosis in PVN. Results: The 5/6Nx rats showed significantly elevated systolic blood pressure, urinary protein excretion, serum creatinine, and plasma norepinephrine (p < 0.05) compared to sham rats. The expression of angiotensinogen, Ang II, AT1R, p-ERK1/2, or apoptosis-promoting protein Bax were 1.08-, 2.10-, 0.74-, 0.82-, 0.83-fold higher in the PVN of 5/6Nx rats, than that of sham rats, as indicated by immunohistochemistry. Western blot confirmed the increased levels of AT1R, p-ERK1/2 and Bax; meanwhile, Ras-GTP and p-p38 were also found higher in the PVN of 5/6Nx rats, as well as the apoptosis marker cleaved caspase-3 and TUNEL staining. In 5/6Nx rats, ICV infusion of AT1R antagonist, Ras inhibitor, MEK inhibitor or caspase-3 inhibitor could lower systolic blood pressure (20.8-, 20.8-, 18.9-, 14.3%-fold) together with plasma norepinephrine (53.9-, 57.8-,63.3-, 52.3%-fold). Western blot revealed that blocking the signaling of AT1R, Ras, or MEK/ERK1/2 would significantly reduce PVN apoptosis as indicated by changes of apoptosis-related proteins (p < 0.05). AT1R inhibition would cause reduction in Ras-GTP and p-ERK1/2, but not vice versa; such intervention with corresponding inhibitors also suggested the unidirectional regulation of Ras to ERK1/2. Conclusion: These findings demonstrated that the activation of renin-angiotensin system in PVN could induce apoptosis through Ras/ERK1/2 pathway, which then led to increased sympathetic nerve activity and renal hypertension in 5/6Nx rats.
Collapse
Affiliation(s)
- Hongguo Zhu
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Lishan Tan
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Yumin Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Jiawen Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Minzi Qiu
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Lanying Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Mengbi Zhang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Min Liang
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| | - Aiqing Li
- Department of Nephrology, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease Guangzhou, China
| |
Collapse
|
25
|
Centrally acting drug moxonidine decreases reactive oxygen species via inactivation of the phosphoinositide-3 kinase signaling in the rostral ventrolateral medulla in hypertensive rats. J Hypertens 2016; 34:993-1004. [PMID: 26886567 DOI: 10.1097/hjh.0000000000000887] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Centrally acting antihypertensive action of moxonidine is a result of activation of Imidazoline-1 receptor (I1R) in the rostral ventrolateral medulla (RVLM). Hypertension shows an increase in reactive oxygen species (ROS) in the RVLM. The present objective was to determine the phosphoinositide-3 kinase (PI3K) signaling pathway involved in the effect of moxonidine on ROS generation in the RVLM of spontaneously hypertensive rat (SHR). METHODS Wistar-Kyoto rats and SHR received intracisternal infusion (2 weeks) of tested agents which were subjected to subsequent experiments. In-situ ROS in the RVLM was evaluated by the oxidative fluorescence dye. Western blot and PCR analysis were performed to detect the expression levels of PI3K signaling pathway. Lentivirus was injected bilaterally into the RVLM for silencing PI3K signaling. RESULTS ROS production in the RVLM was dose-dependently reduced in SHRs treated with infusion of moxonidine (20 nmol/day), which was prevented by the I1R antagonist efaroxan but not by the α2-adrenoceptor antagonist yohimbine. Moxonidine pretreatment significantly blunted cardiovascular sensitivity to injection of tempol (5 nmol) or angiotensin II (10 pmol) into the RVLM in SHR. Expression levels of PI3K/Akt, nuclear factor kappa-B (NFκB), NADPHase (NOX4), and angiotensin type I receptor (AT1R) in the RVLM were markedly decreased in SHR treated with moxonidine. Infection of lentivirus containing PI3K shRNA in the RVLM effectively prevented effects of moxonidine on cardiovascular activity and expression levels of Akt, NFκB, NOX4, and AT1R. CONCLUSION The centrally antihypertensive drug moxonidine decreases ROS production in the RVLM through inactivation of the PI3K/Akt signaling pathway in hypertension.
Collapse
|
26
|
Wu KLH, Wu CW, Tain YL, Chao YM, Hung CY, Tsai PC, Wang WS, Shih CD. Effects of high fructose intake on the development of hypertension in the spontaneously hypertensive rats: the role of AT 1R/gp91 PHOX signaling in the rostral ventrolateral medulla. J Nutr Biochem 2016; 41:73-83. [PMID: 28063367 DOI: 10.1016/j.jnutbio.2016.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/11/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
Both genetic and dietary factors determine the development of hypertension. Whether dietary factor impacts the development of hereditary hypertension is unknown. Here, we evaluated the effect of daily high-fructose diet (HFD) on the development of hypertension in adolescent spontaneously hypertensive rats (SHR). Six-week-old SHR were randomly divided into two groups to receive HFD or normal diet (ND) for 3 weeks. The temporal profile of systolic blood pressure, alongside the sympathetic vasomotor activity, in the SHR-HFD showed significantly greater increases at 9-12 weeks of age compared with the age-matched SHR-ND group. Immunofluorescence was used to identify the distribution of reactive oxygen species (ROS), oxidants and antioxidants in rostral ventrolateral medulla (RVLM) where sympathetic premotor neurons reside. In RVLM of SHR-HFD, the levels of ROS accumulation and lipid peroxidation were elevated. The changes in protein expression were measured by Western blot. NADPH oxidase subunit gp91phox and angiotensin II type I receptor were up-regulated in RVLM neuron. On the other hand, the expression of extracellular superoxide dismutase was suppressed. Both molecular and hemodynamic changes in the SHR-HFD were rescued by oral pioglitazone treatment from weeks 7 to 9. Furthermore, central infusion with tempol, a ROS scavenger, effectively ameliorated ROS accumulation in RVLM and diminished the heightened pressor response and enhanced sympathetic activity in the SHR-HFD. Together, these results suggest that HFD intake at adolescent SHR may impact the development of hypertension via increasing oxidative stress in RVLM which could be effectively attenuated by pioglitazone treatment.
Collapse
Affiliation(s)
- Kay L H Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China; Department of Senior Citizen Services, National Tainan Institute of Nursing, Tainan 700, Taiwan, Republic of China.
| | - Chih-Wei Wu
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - You-Lin Tain
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China; Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 833, Taiwan, Republic of China
| | - Yung-Mei Chao
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Chun-Ying Hung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Pei-Chia Tsai
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Wei-Sing Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, Republic of China
| | - Cheng-Dean Shih
- Department of Pharmacy, Graduate Institute of Pharmaceutical Technology, Tajen University, Pingtung County 90741, Taiwan, Republic of China.
| |
Collapse
|
27
|
Takesue K, Kishi T, Hirooka Y, Sunagawa K. Activation of microglia within paraventricular nucleus of hypothalamus is NOT involved in maintenance of established hypertension. J Cardiol 2016; 69:84-88. [PMID: 26874752 DOI: 10.1016/j.jjcc.2016.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Inflammation within paraventricular nucleus of the hypothalamus (PVN), a key circulatory control center in the hypothalamus, is an important pathology of sympathetic hyperactivity. Brain inflammation is mainly mediated by microglia, innate immune cells in the brain. Activated microglia produce inflammatory cytokines with alteration of their morphology. Increase in inflammatory cytokines synthesis coincides with activation of microglia within PVN of angiotensin II-induced hypertensive model and myocardial infarction-induced heart failure model. Although the increase in inflammatory cytokines and the microglial activation within PVN were also seen in spontaneously hypertensive rats (SHR), the model of essential hypertension, their involvement in blood pressure regulation has still be fully clarified. In the present study, we examined whether activated microglia within PVN were involved in maintenance of established severe hypertension with sympathoexcitation. METHODS Minocycline (25mg/kg/day), an inhibitor of microglial activation, or vehicle were orally administered to stroke-prone SHR (SHRSP) and normotensive Wistar-Kyoto (WKY) rats for 2 weeks from 15-weeks-old, the age of established hypertension. RESULTS Systolic blood pressure was comparable between minocycline treated-SHRSP and vehicle treated-SHRSP, whereas morphological analysis of microglia revealed smaller cell size in minocycline treated-SHRSP than vehicle treated-SHRSP, implying that minocycline deactivated microglia within PVN. CONCLUSIONS Activated microglia with morphological alteration within PVN are not involved in the maintenance of established severe hypertension, and inflammation within PVN could not be the therapeutic target of established hypertension.
Collapse
Affiliation(s)
- Ko Takesue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Collaborative Research Institute of Innovation for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan.
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics for Cardiovascular Diseases, Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| | - Kenji Sunagawa
- Kyushu University Center for Disruptive Cardiovascular Medicine, Fukuoka, Japan
| |
Collapse
|
28
|
Shinohara K, Kishi T, Hirooka Y, Sunagawa K. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor. Physiol Rep 2015; 3:3/8/e12514. [PMID: 26290529 PMCID: PMC4562594 DOI: 10.14814/phy2.12514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Departments of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
29
|
Brain Angiotensin II Type 1 Receptor Blockade Improves Dairy Blood Pressure Variability via Sympathoinhibition in Hypertensive Rats. Int J Hypertens 2015; 2015:759629. [PMID: 25918643 PMCID: PMC4396736 DOI: 10.1155/2015/759629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/17/2022] Open
Abstract
Abnormal blood pressure (BP) elevation in early morning is known to cause cardiovascular events. Previous studies have suggested that one of the reasons in abnormal dairy BP variability is sympathoexcitation. We have demonstrated that brain angiotensin II type 1 receptor (AT1R) causes sympathoexcitation. The aim of the present study was to investigate whether central AT1R blockade attenuates the excess BP elevation in rest-to-active phase in hypertensive rats or not. Stroke-prone spontaneously hypertensive rats (SHRSP) were treated with intracerebroventricular infusion (ICV) of AT1R receptor blocker (ARB), oral administration of hydralazine (HYD), or ICV of vehicle (VEH). Telemetric averaged mean BP (MBP) was measured at early morning (EM), after morning (AM), and night (NT). At EM, MBP was significantly lower in ARB to a greater extent than in HYD compared to VEH, though MBP at AM was the same in ARB and HYD. At NT, MBP was also significantly lower in ARB than in HYD. These results in MBP were compatible to those in sympathoexcitation and suggest that central AT1R blockade attenuates excess BP elevation in early active phase and continuous BP elevation during rest phase independent of depressor response in hypertensive rats.
Collapse
|
30
|
Chu J, Li JG, Joshi YB, Giannopoulos PF, Hoffman NE, Madesh M, Praticò D. Gamma secretase-activating protein is a substrate for caspase-3: implications for Alzheimer's disease. Biol Psychiatry 2015; 77:720-8. [PMID: 25052851 PMCID: PMC4268092 DOI: 10.1016/j.biopsych.2014.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/29/2014] [Accepted: 06/01/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND A major feature of Alzheimer's disease (AD) is the accumulation of amyloid-beta (Aβ), whose formation is regulated by the gamma-secretase complex and its activating protein (also known as GSAP). Because GSAP interacts with gamma-secretase without affecting the cleavage of Notch, it is an ideal target for a viable anti-Aβ therapy. However, despite much interest in this protein, the mechanisms involved in its neurobiology are unknown. METHODS Postmortem brain tissue samples from AD patients, transgenic mouse models of AD, and neuronal cells were used to investigate the molecular mechanism involved in GSAP formation and subsequent amyloidogenesis. RESULTS We identified a caspase-3 processing domain in the GSAP sequence and provide experimental evidence that this caspase is essential for GSAP activation and biogenesis of Aβ peptides. Furthermore, we demonstrated that caspase-3-dependent GSAP formation occurs in brains of individuals with AD and two different mouse models of AD and that the process is biologically relevant because its pharmacological blockade reduces Aβ pathology in vivo. CONCLUSIONS Our data, by identifying caspase-3 as the endogenous modulator of GSAP and Aβ production, establish caspase-3 as a novel, attractive and viable Aβ-lowering therapeutic target for AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Domenico Praticò
- Department of Pharmacology, Center for Translational Medicine, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
31
|
Zucker IH, Schultz HD, Patel KP, Wang H. Modulation of angiotensin II signaling following exercise training in heart failure. Am J Physiol Heart Circ Physiol 2015; 308:H781-91. [PMID: 25681422 PMCID: PMC4398865 DOI: 10.1152/ajpheart.00026.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023]
Abstract
Sympathetic activation is a consistent finding in the chronic heart failure (CHF) state. Current therapy for CHF targets the renin-angiotensin II (ANG II) and adrenergic systems. Angiotensin converting enzyme (ACE) inhibitors and ANG II receptor blockers are standard treatments along with β-adrenergic blockade. However, the mortality and morbidity of this disease is still extremely high, even with good medical management. Exercise training (ExT) is currently being used in many centers as an adjunctive therapy for CHF. Clinical studies have shown that ExT is a safe, effective, and inexpensive way to improve quality of life, work capacity, and longevity in patients with CHF. This review discusses the potential neural interactions between ANG II and sympatho-excitation in CHF and the modulation of this interaction by ExT. We briefly review the current understanding of the modulation of the angiotensin type 1 receptor in sympatho-excitatory areas of the brain and in the periphery (i.e., in the carotid body and skeletal muscle). We discuss possible cellular mechanisms by which ExT may impact the sympatho-excitatory process by reducing oxidative stress, increasing nitric oxide. and reducing ANG II. We also discuss the potential role of ACE2 and Ang 1-7 in the sympathetic response to ExT. Fruitful areas of further investigation are the role and mechanisms by which pre-sympathetic neuronal metabolic activity in response to individual bouts of exercise regulate redox mechanisms and discharge at rest in CHF and other sympatho-excitatory states.
Collapse
Affiliation(s)
- Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hanjun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
32
|
Decreased proportion of Foxp3+CD4+ regulatory T cells contributes to the development of hypertension in genetically hypertensive rats. J Hypertens 2015; 33:773-83; discussion 783. [DOI: 10.1097/hjh.0000000000000469] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Nagayama T, Hirooka Y, Kishi T, Mukai Y, Inoue S, Takase S, Takemoto M, Chishaki A, Sunagawa K. Blockade of brain angiotensin II type 1 receptor inhibits the development of atrial fibrillation in hypertensive rats. Am J Hypertens 2015; 28:444-51. [PMID: 25352232 DOI: 10.1093/ajh/hpu196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertension is a powerful risk factor of atrial fibrillation (AF). The pathophysiology of AF with hypertension is associated with sympathoexcitation or the renin-angiotensin system; however, current therapies cannot sufficiently prevent its development. We previously revealed that brain angiotensin II type 1 receptor (AT1R) blockade causes a depressor response via sympathoinhibition. Herein, we evaluated whether brain AT1R contributes to AF development in hypertensive rats. METHODS We divided the stroke-prone spontaneously hypertensive rats (SHRSP) treated with intracerebroventricular (ICV) infusion of vehicle, ICV infusion of losartan (S-LOS), or oral administration of hydralazine (S-HYD); and Wistar Kyoto rats treated with ICV S-VEH. RESULTS Two weeks later, systolic blood pressure was significantly lower in the S-LOS group than in the S-VEH group and was even lower in the S-HYD group. Urinary norepinephrine excretion for 24h, an indirect marker of sympathoexcitation, significantly reduced in the S-LOS group but increased in the S-HYD group despite depressor response. AF was induced by transesophageal burst pacing. AF duration was significantly shorter in the S-LOS group than in the S-VEH group (5.0±0.4 vs. 15.2±3.7 s; n = 8 each; P < 0.05). However, it was significantly longer in the S-HYD group than in the S-VEH group. Interstitial atrial fibrosis and echocardiographic parameters did not differ between the SHRSP groups. CONCLUSIONS Brain AT1R blockade suppresses AF inducibility and maintenance independent of depressor response in hypertensive rats.
Collapse
Affiliation(s)
- Tomomi Nagayama
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan;
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasushi Mukai
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shujiro Inoue
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Susumu Takase
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | - Akiko Chishaki
- Department of Health Sciences, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kenji Sunagawa
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
34
|
Kishi T. [Dynamic system for maintenance of homeostasis of blood pressure via interaction between brain, kidney, heart, and blood vessel]. Nihon Yakurigaku Zasshi 2015; 145:54-58. [PMID: 25747014 DOI: 10.1254/fpj.145.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
35
|
El-Mas MM, Abdel-Rahman AA. Ser/thr phosphatases tonically attenuate the ERK-dependent pressor effect of ethanol in the rostral ventrolateral medulla in normotensive rats. Brain Res 2014; 1577:21-8. [PMID: 24978604 DOI: 10.1016/j.brainres.2014.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/14/2014] [Accepted: 06/21/2014] [Indexed: 11/16/2022]
Abstract
We recently reported that microinjection of ethanol into the rostral ventrolateral medulla (RVLM) elicits modest increases in local extracellular signal-regulated kinase (ERK) and blood pressure (BP) in conscious normotensive rats. In this study, we tested the hypothesis that RVLM ser/thr phosphatases dampen the ERK-dependent pressor effect of ethanol in normotensive rats. We show that the pressor response elicited by intra-RVLM ethanol (10 μg) was (i) abolished following local ERK inhibition with PD98059 (1 μg) and (ii) associated with significant reduction in local phosphatase activity. Inhibition of the RVLM ser/thr phosphatase activity by okadaic acid (OKA, 0.4 μg) or fostriecin (15 pg) caused significant increases in blood pressure (BP) and potentiated the magnitude and duration of the pressor response as well as the phosphatase inhibition elicited by subsequent intra-RVLM administration of ethanol. Intra-RVLM acetaldehyde (2 μg), the main metabolic product of ethanol, caused no changes in BP or RVLM phosphatase activity but it produced significant increases in BP and inhibition of local phosphatase activity in rats treated with OKA or fostriecin. Together, the RVLM phosphatase activity acts tonically to attenuate the ERK-dependent pressor effect of ethanol or acetaldehyde in normotensive rats.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC, USA.
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
36
|
Role of exercise training on autonomic changes and inflammatory profile induced by myocardial infarction. Mediators Inflamm 2014; 2014:702473. [PMID: 25045212 PMCID: PMC4090432 DOI: 10.1155/2014/702473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/06/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023] Open
Abstract
The cardiovascular autonomic imbalance in patients after myocardial infarction (MI) provides a significant increase in mortality rate, and seems to precede metabolic, hormonal, and immunological changes. Moreover, the reduction in the parasympathetic function has been associated with inflammatory response in different pathological conditions. Over the years, most of the studies have indicated the exercise training (ET) as an important nonpharmacological tool in the management of autonomic dysfunction and reduction in inflammatory profile after a myocardial infarction. In this work, we reviewed the effects of ET on autonomic imbalance after MI, and its consequences, particularly, in the post-MI inflammatory profile. Clinical and experimental evidence regarding relationship between alterations in autonomic regulation and local or systemic inflammation response after MI were also discussed.
Collapse
|
37
|
Isegawa K, Hirooka Y, Kishi T, Yasukawa K, Utsumi H, Sunagawa K. Benefit of azilsartan on blood pressure elevation around rest-to-active phase in spontaneously hypertensive rats. Clin Exp Hypertens 2014; 37:45-50. [DOI: 10.3109/10641963.2014.897721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, and
| | - Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan,
| | - Keiji Yasukawa
- Department of Bio-Functional Science, Graduate School of Pharmaceutical Sciences, and
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
38
|
Kishi T, Hirooka Y, Sunagawa K. Telmisartan reduces mortality and left ventricular hypertrophy with sympathoinhibition in rats with hypertension and heart failure. Am J Hypertens 2014; 27:260-7. [PMID: 24096926 DOI: 10.1093/ajh/hpt188] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Angiotensin II type 1 receptor (AT1R) blockers have various benefits on hypertension and/or heart failure. We demonstrated that telmisartan (TLM), an AT1R blocker, causes sympathoinhibition by reduction of reactive oxygen species (ROS) in the rostral ventrolateral medulla (RVLM) of stroke-prone spontaneously hypertensive rats (SHRSPs). The aim of this study was to determine whether TLM improves survival in rats with hypertension and heart failure. METHODS Angiotensin II-infused and salt-loaded SHRSPs were divided into TLM-treated, candesartan cilexetil (CAN)-treated, and control groups. We determined the dose of TLM or CAN with similar depressor effects. We examined survival, urinary norepinephrine excretion (uNE) as a parameter of sympathoexcitation, ROS in the RVLM, and left ventricular (LV) end-diastolic pressure (LVEDP). LV hypertrophy (LVH) was assessed by echocardiography and heart/body weight. RESULTS Compared with the control group, TLM improved survival to a greater extent than CAN. At 4 weeks after treatment, ROS in the RVLM and uNE were significantly lower in the TLM-treated group than in the CAN-treated group, despite the similar depressor effects. At 8 weeks after the treatments, LVH and LVEDP were attenuated in the TLM-treated group compared with the CAN-treated group. CONCLUSIONS Our results suggest that TLM has the potential to reduce mortality, LVH, and LVEDP and that enhanced sympathoinhibition by reduction of ROS in the RVLM might be one of the mechanisms contributing to the beneficial actions of TLM in a model of rats with severe hypertension and heart failure.
Collapse
Affiliation(s)
- Takuya Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | | | | |
Collapse
|
39
|
Abstract
SIGNIFICANCE There is now compelling evidence to substantiate the notion that by depressing baroreflex regulation of blood pressure and augmenting central sympathetic outflow through their actions on the nucleus tractus solitarii (NTS) and rostral ventrolateral medulla (RVLM), brain stem nitric oxide synthase (NOS) and reactive oxygen species (ROS) are important contributing factors to neural mechanisms of hypertension. This review summarizes our contemporary views on the impact of NOS and ROS in the NTS and RVLM on neurogenic hypertension, and presents potential antihypertensive strategies that target brain stem NOS/ROS signaling. RECENT ADVANCES NO signaling in the brain stem may be pro- or antihypertensive depending on the NOS isoform that generates this gaseous moiety and the site of action. Elevation of the ROS level when its production overbalances its degradation in the NTS and RVLM underlies neurogenic hypertension. Interventional strategies with emphases on alleviating the adverse actions of these molecules on blood pressure regulation have been investigated. CRITICAL ISSUES The pathological roles of NOS in the RVLM and NTS in neural mechanisms of hypertension are highly complex. Likewise, multiple signaling pathways underlie the deleterious roles of brain-stem ROS in neurogenic hypertension. There are recent indications that interactions between brain stem ROS and NOS may play a contributory role. FUTURE DIRECTIONS Given the complicity of action mechanisms of brain-stem NOS and ROS in neural mechanisms of hypertension, additional studies are needed to identify the most crucial therapeutic target that is applicable not only in animal models but also in patients suffering from neurogenic hypertension.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
40
|
Hirooka Y, Kishi T, Ito K, Sunagawa K. Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension 2013; 62:995-1002. [PMID: 24101665 DOI: 10.1161/hypertensionaha.113.00801] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yoshitaka Hirooka
- Department of Advanced Cardiovascular Regulation and Therapeutics, Kyushu University Graduate School of Medical Sciences, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
41
|
Chan SHH, Chan JYH. Angiotensin-generated reactive oxygen species in brain and pathogenesis of cardiovascular diseases. Antioxid Redox Signal 2013; 19:1074-84. [PMID: 22429119 DOI: 10.1089/ars.2012.4585] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Overproduction of angiotensin II (Ang II) in brain contributes to the pathogenesis of cardiovascular diseases. One of the most promising theses that emerged during the last decade is that production of reactive oxygen species (ROS) and activation of redox-dependent signaling cascades underlie those Ang II actions. This review summarizes our status of understanding on the roles of ROS and redox-sensitive signaling in brain Ang II-dependent cardiovascular diseases, using hypertension and heart failure as illustrative examples. RECENT ADVANCES ROS generated by NADPH oxidase, mitochondrial electron transport chain, and proinflammatory cytokines activates mitogen-activated protein kinases and transcription factors, which in turn modulate ion channel functions and ultimately increase neuronal activity and sympathetic outflow in brain Ang II-dependent cardiovascular diseases. Antioxidants targeting ROS have been demonstrated to be beneficial to Ang II-induced hypertension and heart failure via protection from oxidative stress in brain regions that subserve cardiovascular regulation. CRITICAL ISSUES Intra-neuronal signaling and the downstream redox-sensitive proteins involved in controlling the neuronal discharge rate, the sympathetic outflow, and the pathogenesis of cardiovascular diseases need to be identified. The cross talk between Ang II-induced oxidative stress and neuroinflammation in neural mechanisms of cardiovascular diseases also warrants further elucidation. FUTURE DIRECTIONS Future studies are needed to identify new redox-based therapeutics that work not only in animal models, but also in patients suffering from the prevalent diseases. Upregulation of endogenous antioxidants in the regulation of ROS homeostasis is a potential therapeutic target, as are small molecule- or nanoformulated conjugate-based antioxidant therapy.
Collapse
Affiliation(s)
- Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
42
|
Kishi T, Sunagawa K. Exercise training plus calorie restriction causes synergistic protection against cognitive decline via up-regulation of BDNF in hippocampus of stroke-prone hypertensive rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:6764-7. [PMID: 23367482 DOI: 10.1109/embc.2012.6347547] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
One of the important organ damage of hypertension is cognitive decline. Cognitive function is determined by the function of hippocampus, and previous studies have suggested that the decrease in brain-derived neurotrophic factor (BDNF) in the hippocampus causes cognitive decline. Protection against cognitive decline is reported not only in pharmacological therapy but also in exercise training or calorie restriction. The aim of the present study was to determine whether exercise training plus calorie restriction cause synergistic protection against cognitive decline via BDNF in the hippocampus or not. Exercise training for 28 days improved cognitive decline determined by Morris water maze test via up-regulation of BDNF in the hippocampus of stroke-prone spontaneously hypertensive rats, whereas calorie restriction for 28 days did not. However, exercise training plus calorie restriction causes the protection against cognitive decline to a greater extent than exercise training alone. In conclusion, exercise training plus calorie restriction causes synergistic protection against cognitive decline via up-regulation of BDNF in the hippocampus of stroke-prone hypertensive rats.
Collapse
Affiliation(s)
- T Kishi
- Department of Advanced Therapeutics for Cardiovascular Diseases, Kyushu University Graduate School of Medical Sciences, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
43
|
El-Mas MM, Fan M, Abdel-Rahman AA. Role of rostral ventrolateral medullary ERK/JNK/p38 MAPK signaling in the pressor effects of ethanol and its oxidative product acetaldehyde. Alcohol Clin Exp Res 2013; 37:1827-37. [PMID: 23905689 DOI: 10.1111/acer.12179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/29/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND We tested the hypothesis that alterations of the phosphorylation/dephosphorylation profile of mitogen-activated protein kinases (MAPKs) in the rostral ventrolateral medulla (RVLM) underlie the pressor response elicited by ethanol (EtOH) microinjection into the RVLM of spontaneously hypertensive rats (SHRs). The studies were extended to determine whether acetaldehyde (ACA), the primary oxidative product of EtOH, replicates the molecular effects of EtOH within the RVLM and the consequent pressor response. METHODS Effects of EtOH or ACA on blood pressure (BP) were evaluated in the absence or presence of selective JNK (SP600125), ERK (PD98059), p38 (SB203580), or ser/thr phosphatases (okadaic acid [OKA]) inhibitor. RESULTS Intra-RVLM EtOH (10 μg/rat) or ACA (2 μg/rat) caused a similar ERK2-dependent pressor response because EtOH or ACA-evoked increases in BP and in RVLM p-ERK2 level were abolished after pharmacologic inhibition of ERK phosphorylation. SP600125 abrogated the pressor action of EtOH, but not ACA, thus implicating JNK in EtOH action on BP. Despite EtOH enhancement of p38 phosphorylation, pharmacological studies argued against a causal role for this kinase in EtOH-evoked pressor response. RVLM phosphatase catalytic activity was not influenced by EtOH or ACA. Interestingly, pharmacologic phosphatase inhibition (OKA), which increased RVLM p-ERK2 and BP, abrogated the pressor effect of subsequently administered EtOH or ACA. CONCLUSIONS Enhancement of RVLM ERK2 phosphorylation constitutes a major molecular mechanism for the pressor response elicited by intra-RVLM EtOH or its metabolite, ACA, in conscious SHRs. Further, RVLM kinases dephosphorylation does not contribute to intra-RVLM EtOH- or ACA-evoked pressor response.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, North Carolina
| | | | | |
Collapse
|
44
|
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 Academic Conference Award from the Japanese Society of Hypertension. Hypertens Res 2013; 36:845-51. [DOI: 10.1038/hr.2013.73] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/01/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
|
45
|
Chao YM, Lai MD, Chan JYH. Redox-sensitive endoplasmic reticulum stress and autophagy at rostral ventrolateral medulla contribute to hypertension in spontaneously hypertensive rats. Hypertension 2013; 61:1270-80. [PMID: 23608659 DOI: 10.1161/hypertensionaha.111.00469] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perturbations of proper functions of the endoplasmic reticulum (ER) cause accumulation of misfolded or unfolded proteins in the cell, creating a condition known as ER stress. Prolonged ER stress has been implicated in hypertension. Oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for the maintenance of vasomotor tone reside, plays a pivotal role in neurogenic hypertension. This study aimed to evaluate the contribution of ER stress in RVLM to oxidative stress-associated hypertension and delineate the underlying molecular mechanisms. The expression of glucose-regulated protein 78 kDa and the phosphorylation of protein kinase RNA-like ER kinase-translation initiation factor α, 2 major protein markers of ER stress, were augmented in RVLM and preceded the development of hypertensive phenotype in spontaneously hypertensive rats. In RVLM of spontaneously hypertensive rats, stabilizing ER stress by salubrinal promoted antihypertension, and scavenging the reactive oxygen species by tempol reduced the augmented ER stress. Furthermore, induction of oxidative stress by angiotensin II induced ER stress in RVLM, and induction of ER stress by tunicamycin in RVLM induced pressor response in normotensive Wistar-Kyoto rats. Autophagy, as reflected by the expression of lysosome-associated membrane protein-2 and microtubule-associated protein 1 light chain 3-II (LC3-II), was significantly increased in RVLM of spontaneously hypertensive rats and was abrogated by salubrinal. In addition, inhibition of autophagy or silencing LC3-II gene in RVLM resulted in antihypertension in spontaneously hypertensive rats. These results suggest that redox-sensitive induction of ER stress and activation of autophagy in RVLM contribute to oxidative stress-associated neurogenic hypertension.
Collapse
Affiliation(s)
- Yung-Mei Chao
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | | | | |
Collapse
|
46
|
Sympathoexcitation associated with Renin-Angiotensin system in metabolic syndrome. Int J Hypertens 2013; 2013:406897. [PMID: 23476747 PMCID: PMC3586511 DOI: 10.1155/2013/406897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/26/2012] [Accepted: 01/09/2013] [Indexed: 02/07/2023] Open
Abstract
Renin-angiotensin system (RAS) is activated in metabolic syndrome (MetS), and RAS inhibitors are preferred for the treatments of hypertension with MetS. Although RAS activation is important for the therapeutic target, underlying sympathetic nervous system (SNS) activation is critically involved and should not be neglected in the pathogenesis of hypertension with MetS. In fact, previous studies have suggested that SNS activation has the interaction with RAS activation and/or insulin resistance. As a novel aspect connecting the importance of SNS and RAS activation, we and other investigators have recently demonstrated that angiotensin II type 1 receptor (AT1R) blockers (ARBs) improve SNS activation in patients with MetS. In the animal studies, SNS activation is regulated by the AT1R-induced oxidative stress in the brain. We have also demonstrated that orally administered ARBs cause sympathoinhibition independent of the depressor effects in dietary-induced hypertensive rats. Interestingly, these benefits on SNS activation of ARBs in clinical and animal studies are not class effects of ARBs. In conclusion, SNS activation associated with RAS activation in the brain should be the target of the treatment, and ARBs could have the potential benefit on SNS activation in patients with MetS.
Collapse
|
47
|
Sympathoinhibitory effects of telmisartan through the reduction of oxidative stress in the rostral ventrolateral medulla of obesity-induced hypertensive rats. J Hypertens 2013; 30:1992-9. [PMID: 22902874 DOI: 10.1097/hjh.0b013e328357fa98] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Sympathetic nervous system (SNS) activity is critically involved in the development and progression of obesity-induced hypertension. Angiotensin II type 1 receptor (AT1R)-induced oxidative stress in the rostral ventrolateral medulla (RVLM), a vasomotor center in the brainstem, activates the SNS in hypertensive rats. The aim of the present study was to determine whether oral administration of an AT1R blocker (ARB) inhibits SNS activity via antioxidative effects in the RVLM of rats with dietary-induced obesity. METHODS AND RESULTS Obesity-prone rats fed a high-fat diet were divided into groups treated with either telmisartan obesity-prone (TLM-OP), or losartan obesity-prone (LOS-OP), or vehicle obesity-prone (VEH-OP). SBP, SNS activity, and oxidative stress in the RVLM were significantly higher in obesity-prone rats than in obesity-resistant rats. Body weight, visceral fat, blood glucose, serum insulin, and plasma adiponectin concentrations were significantly lower in TLM-OP and LOS-OP than in VEH-OP, and plasma adiponectin concentrations were significantly higher in TLM-OP than in LOS-OP. Although SBP was reduced to similar levels both in TLM-OP and LOS-OP, both oxidative stress in the RVLM and SNS activity were significantly lower in TLM-OP than in LOS-OP or VEH-OP. CONCLUSION Orally administered telmisartan inhibited SNS activity through antioxidative effects via AT1R blockade in the RVLM of obesity-prone rats. AT1R and oxidative stress in the RVLM might be novel treatment targets for obesity-induced hypertension through sympathoinhibition, and telmisartan might be preferable for obesity-induced hypertension.
Collapse
|
48
|
The brain Renin-Angiotensin system and mitochondrial function: influence on blood pressure and baroreflex in transgenic rat strains. Int J Hypertens 2013; 2013:136028. [PMID: 23401750 PMCID: PMC3564433 DOI: 10.1155/2013/136028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is implicated in many cardiovascular diseases, including hypertension, and may be associated with an overactive renin-angiotensin system (RAS). Angiotensin (Ang) II, a potent vasoconstrictor hormone of the RAS, also impairs baroreflex and mitochondrial function. Most deleterious cardiovascular actions of Ang II are thought to be mediated by NADPH-oxidase- (NOX-) derived reactive oxygen species (ROS) that may also stimulate mitochondrial oxidant release and alter redox-sensitive signaling pathways in the brain. Within the RAS, the actions of Ang II are counterbalanced by Ang-(1–7), a vasodilatory peptide known to mitigate against increased oxidant stress. A balance between Ang II and Ang-(1–7) within the brain dorsal medulla contributes to maintenance of normal blood pressure and proper functioning of the arterial baroreceptor reflex for control of heart rate. We propose that Ang-(1–7) may negatively regulate the redox signaling pathways activated by Ang II to maintain normal blood pressure, baroreflex, and mitochondrial function through attenuating ROS (NOX-generated and/or mitochondrial).
Collapse
|
49
|
Ye Y, Li Z, Xing D. Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. PLANT, CELL & ENVIRONMENT 2013; 36:1-15. [PMID: 22621159 DOI: 10.1111/j.1365-3040.2012.02543.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO), a vital cell-signalling molecule, has been reported to regulate toxic metal responses in plants. This work investigated the effects of NO and the relationship between NO and mitogen-activated protein kinase (MAPK) in Arabidopsis (Arabidopsis thaliana) programmed cell death (PCD) induced by cadmium (Cd(2+) ) exposure. With fluorescence resonance energy transfer (FRET) analysis, caspase-3-like protease activation was detected after Cd(2+) treatment. This was further confirmed with a caspase-3 substrate assay. Cd(2+) -induced caspase-3-like activity was inhibited in the presence of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), suggesting that NO mediated caspase-3-like protease activation under Cd(2+) stress conditions. Pretreatment with cPTIO effectively inhibited Cd(2+) -induced MAPK activation, indicating that NO also affected the MAPK pathway. Interestingly, Cd(2+) -induced caspase-3-like activity was significantly suppressed in the mpk6 mutant, suggesting that MPK6 was required for caspase-3-like protease activation. To our knowledge, this is the first demonstration that NO promotes Cd(2+) -induced Arabidopsis PCD by promoting MPK6-mediated caspase-3-like activation.
Collapse
Affiliation(s)
- Yun Ye
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | |
Collapse
|
50
|
Wu KLH, Wu CA, Wu CW, Chan SHH, Chang AYW, Chan JYH. Redox-sensitive oxidation and phosphorylation of PTEN contribute to enhanced activation of PI3K/Akt signaling in rostral ventrolateral medulla and neurogenic hypertension in spontaneously hypertensive rats. Antioxid Redox Signal 2013; 18:36-50. [PMID: 22746319 PMCID: PMC3503464 DOI: 10.1089/ars.2011.4457] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS The activity of phosphoinositide 3-kinase (PI3K)/serine/threonine protein kinase (Akt) is enhanced under hypertension. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a negative regulator of PI3K signaling, and its activity is redox-sensitive. In the rostral ventrolateral medulla (RVLM), which is responsible for the maintenance of blood pressure, oxidative stress plays a pivotal role in neurogenic hypertension. The present study evaluated the hypothesis that redox-sensitive inactivation of PTEN results in enhanced PI3K/Akt signaling in RVLM, leading to neurogenic hypertension. RESULTS Compared to age-matched normotensive Wistar-Kyoto (WKY) rats, PTEN inactivation in the form of oxidation and phosphorylation were greater in RVLM of spontaneously hypertensive rats (SHR). PTEN inactivation was accompanied by augmented PI3K activity and PI3K/Akt signaling, as reflected by the increase in phosphorylation of Akt and mammalian target of rapamycin. Intracisternal infusion of tempol or microinjection into the bilateral RVLM of adenovirus encoding superoxide dismutase significantly antagonized the PTEN inactivation and blunted the enhanced PI3K/Akt signaling in SHR. Gene transfer of PTEN to RVLM in SHR also abrogated the enhanced Akt activation and promoted antihypertension. Silencing PTEN expression in RVLM with small-interfering RNA, on the other hand, augmented PI3K/Akt signaling and promoted long-term pressor response in normotensive WKY rats. INNOVATION The present study demonstrated for the first time that the redox-sensitive check-and-balance process between PTEN and PI3K/Akt signaling is engaged in the pathogenesis of hypertension. CONCLUSION We conclude that an aberrant interplay between the redox-sensitive PTEN and PI3k/Akt signaling in RVLM underpins neural mechanism of hypertension.
Collapse
Affiliation(s)
- Kay L H Wu
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|