1
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
2
|
Jo R, Itoh H, Shibata H. Mineralocorticoid receptor overactivation in diabetes mellitus: role of O-GlcNAc modification. Hypertens Res 2024; 47:2126-2132. [PMID: 38789539 DOI: 10.1038/s41440-024-01734-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Hypertension is a significant risk factor for microangiopathy and cardiovascular complications in diabetic patients. The efficacy of mineralocorticoid receptor (MR) antagonists in impeding the advancement of diabetic nephropathy, along with the reduction in active renin concentration observed in diabetic retinopathy, strongly implies the involvement of MR overactivation in diabetic complications. This review provides a comprehensive review of various mechanisms proposed for MR overactivation in diabetes mellitus. In particular, it focuses on post-translational MR modifications, including O-linked N-acetylglucosamine modification and phosphorylation, which have been implicated in MR protein stabilization and overactivation under conditions of high glucose. Given the role of MR overactivation in hyperglycemia, it emerges as a promising therapeutic target for preventing diabetic complications. Post-translational modifications (PTMs), such as O-GlcNAcylation and phosphorylation, are related to MR overactivation in diabetes and metabolic syndrome. Aldosterone binding promotes the proteasomal degradation of MR. Under conditions of high glucose, O-GlcNAcylation, and PKCβ-mediated MR phosphorylation are increased. Salt loading and oxidative stress also increase MR phosphorylation through the EGER/ERK pathway. PTMs inhibit ubiquitin attachment to the MR and interfere with the receptor's aldosterone-induced proteasomal degradation. Consequently, they increase the sensitivity of the MR to aldosterone and exacerbate aldosterone-associated complications.
Collapse
Affiliation(s)
- Rie Jo
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Keiyu Hospital, Kanagawa, Japan
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Center for Preventive Medicine, Keio University, Tokyo, Japan
| | - Hirotaka Shibata
- Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Oita, Japan.
| |
Collapse
|
3
|
Ikemoto M, Morimoto S, Ichihara A. Prediction of endogenous mineralocorticoid receptor activity by depressor effects of mineralocorticoid receptor antagonists in patients with primary aldosteronism. Hypertens Res 2024; 47:1707-1718. [PMID: 38548912 DOI: 10.1038/s41440-024-01651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 06/06/2024]
Abstract
Patients with primary aldosteronism have an increased risk of developing cardiovascular disease. The response to mineralocorticoid receptor antagonists varies among individuals, indicating diverse mineralocorticoid receptor activities in these patients. This study explored the factors linked to the efficacy of blood pressure reduction through mineralocorticoid receptor antagonists in patients with primary aldosteronism. We examined the relationship between the reduction in blood pressure and patient characteristics in a group of 41 patients with primary aldosteronism (24 males, mean age 55 ± 13 years, including 34 patients diagnosed with bilateral primary aldosteronism) before and after undergoing treatment with mineralocorticoid receptor antagonists. Significant reductions in office blood pressure were observed 3 and 6 months after treatment initiation. Single correlation analyses showed that the urinary chloride-to-potassium ratio displayed the strongest positive association with blood pressure reduction, surpassing plasma aldosterone concentration, plasma renin activity, and urinary sodium-to-potassium ratio, at 3 and 6 months. Multiple correlation analyses revealed a consistent and independent positive correlation between the urinary chloride-to-potassium ratio and blood pressure reduction at 3 and 6 months. The optimal threshold for the urinary chloride-to-potassium ratio with respect to its ability to lower blood pressure, was determined as 3.18. These results imply that the urinary chloride-to-potassium ratio may be independently associated with the effectiveness of blood pressure reduction facilitated by mineralocorticoid receptor antagonists. Moreover, it could potentially serve as a valuable predictor of the effectiveness of these agents and function as an indicator of endogenous mineralocorticoid receptor activity in patients with primary aldosteronism.
Collapse
Affiliation(s)
- Makiko Ikemoto
- Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Satoshi Morimoto
- Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Internal Medicine, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
4
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
5
|
Ibarrola J, Jaffe IZ. The Mineralocorticoid Receptor in the Vasculature: Friend or Foe? Annu Rev Physiol 2024; 86:49-70. [PMID: 37788489 DOI: 10.1146/annurev-physiol-042022-015223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Originally described as the renal aldosterone receptor that regulates sodium homeostasis, it is now clear that mineralocorticoid receptors (MRs) are widely expressed, including in vascular endothelial and smooth muscle cells. Ample data demonstrate that endothelial and smooth muscle cell MRs contribute to cardiovascular disease in response to risk factors (aging, obesity, hypertension, atherosclerosis) by inducing vasoconstriction, vascular remodeling, inflammation, and oxidative stress. Extrapolating from its role in disease, evidence supports beneficial roles of vascular MRs in the context of hypotension by promoting inflammation, wound healing, and vasoconstriction to enhance survival from bleeding or sepsis. Advances in understanding how vascular MRs become activated are also reviewed, describing transcriptional, ligand-dependent, and ligand-independent mechanisms. By synthesizing evidence describing how vascular MRs convert cardiovascular risk factors into disease (the vascular MR as a foe), we postulate that the teleological role of the MR is to coordinate responses to hypotension (the MR as a friend).
Collapse
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts, USA;
| |
Collapse
|
6
|
Xu C. Extra-adrenal aldosterone: a mini review focusing on the physiology and pathophysiology of intrarenal aldosterone. Endocrine 2024; 83:285-301. [PMID: 37847370 DOI: 10.1007/s12020-023-03566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023]
Abstract
PURPOSE Accumulating evidence has demonstrated the existence of extra-adrenal aldosterone in various tissues, including the brain, heart, vascular, adipocyte, and kidney, mainly based on the detection of the CYP11B2 (aldosterone synthase, cytochrome P450, family 11, subfamily B, polypeptide 2) expression using semi-quantitative methods including reverse transcription-polymerase chain reaction and antibody-based western blotting, as well as local tissue aldosterone levels by antibody-based immunosorbent assays. This mini-review highlights the current evidence and challenges in extra-adrenal aldosterone, focusing on intrarenal aldosterone. METHODS A narrative review. RESULTS Locally synthesized aldosterone may play a vital role in various physio-pathological processes, especially cardiovascular events. The site of local aldosterone synthesis in the kidney may include the mesangial cells, podocytes, proximal tubules, and collecting ducts. The synthesis of renal aldosterone may be regulated by (pro)renin receptor/(pro)renin, angiotensin II/Angiotensin II type 1 receptor, wnt/β-catenin, cyclooxygenase-2/prostaglandin E2, and klotho. Enhanced renal aldosterone release promotes Na+ reabsorption and K+ excretion in the distal nephron and may contribute to the progress of diabetic nephropathy and salt-related hypertension. CONCLUSIONS Inhibition of intrarenal aldosterone signaling by aldosterone synthase inhibitors or mineralocorticoid receptor antagonists may be a hopeful pharmacological technique for the therapy of diabetic nephropathy and saltrelated hypertension. Yet, current reports are often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone exists, or whether it is of any physiological and pathophysiological significance.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330002, Jiangxi, China.
| |
Collapse
|
7
|
Chen L, Adolf C, Reincke M, Schneider H. Salt and Aldosterone - Reciprocal and Combined Effects in Preclinical Models and Humans. Horm Metab Res 2024; 56:99-106. [PMID: 37683690 PMCID: PMC10781566 DOI: 10.1055/a-2172-7228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Primary aldosteronism is an endocrine disorder caused by excessive production of aldosterone by the adrenal glands, and is recognized as the most important cause of endocrine hypertension. With specific therapy, this type of hypertension is potentially curable. In the general population, high salt intake increases the risk for cardiovascular diseases like stroke. In populations with aldosterone excess, observational and experimental data suggest that aldosterone-induced organ damage requires a combination of high dietary salt intake and high plasma aldosterone, i.e., plasma aldosterone levels inappropriately high for salt status. Therefore, understanding the relationship between plasma aldosterone levels and dietary salt intake and the nature of their combined effects is crucial for developing effective prevention and treatment strategies. In this review, we present an update on findings about primary aldosteronism and salt intake and the underlying mechanisms governing their interaction.
Collapse
Affiliation(s)
- Li Chen
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU
München, München, Germany
| | - Christian Adolf
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU
München, München, Germany
| | - Martin Reincke
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU
München, München, Germany
| | - Holger Schneider
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU
München, München, Germany
| |
Collapse
|
8
|
Shi X, Zhang Y, Shi Y, Zhang Q, Duan H, Liu J, Yang B, Zhang Y. Analysis of the alleviating effect of modified Huangqi Chifeng decoction on rats with focal segmental glomerulosclerosis based on gut microbiota and fecal metabolomics. J Appl Microbiol 2023; 134:lxad205. [PMID: 37675978 DOI: 10.1093/jambio/lxad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
AIMS To investigate the reno-protective effects of modified Huangqi Chifeng decoction (MHCD) on focal segmental glomerulosclerosis (FSGS) rats, and the underlying mechanisms of systemic regulation of gut microbiota and metabolite profiles. METHODS AND RESULTS A rat FSGS model was established via unilateral nephrectomy plus doxorubicin injections. Rats were divided into sham, FSGS, and MHCD groups from which urine, blood, and histological tests were conducted. Fecal microbiotas were identified via 16S rRNA gene sequencing. Fecal metabolomics allowed for metabolic pathways analysis. Biochemical indices and pathological examination revealed that MHCD treatment improved the symptoms of FSGS, and corrected dysbiosis of gut microbiota, enriched the abundance of Bifidobacterium, Odoribacter, Christensella, Oscillospira, and reduced that of harmful bacteria such as Collinsella and Coprobacterilus at the genus level. Fecal metabolomic profiles revealed 152 different metabolites between the FSGS and sham groups, which are mainly enriched in signaling pathways like arachidonic acid, serotonergic synapse, and oxytocin. Besides, 93 differential metabolites between MHCD and FSGS groups were identified, which are mainly enriched in signaling pathways like steroid hormone biosynthesis, prostate cancer, and linoleic acid metabolism. Spearman's correlation analysis showed a correlation between differential fecal metabolites and enriched gut microbiota or serum biochemical parameters. CONCLUSIONS MHCD may exert a reno-protective effect by regulating the gut microbiome and metabolite profiles in FSGS rats.
Collapse
Affiliation(s)
- Xiujie Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yifan Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Shi
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qi Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hangyu Duan
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jing Liu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Yang
- Department of Pathology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou 510535, China
| |
Collapse
|
9
|
Fujii W, Shibata S. Mineralocorticoid Receptor Antagonists for Preventing Chronic Kidney Disease Progression: Current Evidence and Future Challenges. Int J Mol Sci 2023; 24:ijms24097719. [PMID: 37175424 PMCID: PMC10178637 DOI: 10.3390/ijms24097719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/05/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation and action of the mineralocorticoid receptor (MR) have been the focus of intensive research over the past 80 years. Genetic and physiological/biochemical analysis revealed how MR and the steroid hormone aldosterone integrate the responses of distinct tubular cells in the face of environmental perturbations and how their dysregulation compromises fluid homeostasis. In addition to these roles, the accumulation of data also provided unequivocal evidence that MR is involved in the pathophysiology of kidney diseases. Experimental studies delineated the diverse pathological consequences of MR overactivity and uncovered the multiple mechanisms that result in enhanced MR signaling. In parallel, clinical studies consistently demonstrated that MR blockade reduces albuminuria in patients with chronic kidney disease. Moreover, recent large-scale clinical studies using finerenone have provided evidence that the non-steroidal MR antagonist can retard the kidney disease progression in diabetic patients. In this article, we review experimental data demonstrating the critical importance of MR in mediating renal injury as well as clinical studies providing evidence on the renoprotective effects of MR blockade. We also discuss areas of future investigation, which include the benefit of non-steroidal MR antagonists in non-diabetic kidney disease patients, the identification of surrogate markers for MR signaling in the kidney, and the search for key downstream mediators whereby MR blockade confers renoprotection. Insights into these questions would help maximize the benefit of MR blockade in subjects with kidney diseases.
Collapse
Affiliation(s)
- Wataru Fujii
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Graduate School of Medicine, Teikyo University, Tokyo 173-8605, Japan
| |
Collapse
|
10
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Correspondence:
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
11
|
Cardiovascular Disease in Obstructive Sleep Apnea: Putative Contributions of Mineralocorticoid Receptors. Int J Mol Sci 2023; 24:ijms24032245. [PMID: 36768567 PMCID: PMC9916750 DOI: 10.3390/ijms24032245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition that is associated with oxidative stress, inflammation, and fibrosis, leading to endothelial dysfunction, arterial stiffness, and vascular insulin resistance, resulting in increased cardiovascular disease and overall mortality rates. To date, OSA remains vastly underdiagnosed and undertreated, with conventional treatments yielding relatively discouraging results for improving cardiovascular outcomes in OSA patients. As such, a better mechanistic understanding of OSA-associated cardiovascular disease (CVD) and the development of novel adjuvant therapeutic targets are critically needed. It is well-established that inappropriate mineralocorticoid receptor (MR) activation in cardiovascular tissues plays a causal role in a multitude of CVD states. Clinical studies and experimental models of OSA lead to increased secretion of the MR ligand aldosterone and excessive MR activation. Furthermore, MR activation has been associated with worsened OSA prognosis. Despite these documented relationships, there have been no studies exploring the causal involvement of MR signaling in OSA-associated CVD. Further, scarce clinical studies have exclusively assessed the beneficial role of MR antagonists for the treatment of systemic hypertension commonly associated with OSA. Here, we provide a comprehensive overview of overlapping mechanistic pathways recruited in the context of MR activation- and OSA-induced CVD and propose MR-targeted therapy as a potential avenue to abrogate the deleterious cardiovascular consequences of OSA.
Collapse
|
12
|
Potential Impact of Non-Steroidal Mineralocorticoid Receptor Antagonists in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24031922. [PMID: 36768246 PMCID: PMC9915890 DOI: 10.3390/ijms24031922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Inappropriate mineralocorticoid receptor (MR) activation in different cardiovascular cell types has deleterious effects on cardiac remodeling and function. Therefore, MR inhibition is a crucial pharmacological strategy to overcome cardiovascular dysfunction. Despite efficient blockade of MR with steroidal MR antagonists (MRAs), their clinical application is unsatisfactory due to the adverse effects. Newer non-steroidal MRAs with greater potency could be suitable for clinical application, especially in patients with type 2 diabetes mellitus and chronic kidney disease. Although clinical evidence has shown the beneficial effects of non-steroidal MRAs on cardiovascular outcomes in patients with heart failure with reduced ejection fraction, clinical trials are ongoing to evaluate the efficacy of heart failure with preserved ejection fraction. Therefore, comparative pharmacological characterization of non-steroidal MRAs over classic steroidal MRAs is crucial. Here, we summarize the pre-clinical evidence of non-steroidal MRAs, which suggests an improvement in cardiac dysfunction, as well as the underlying molecular mechanisms in animal models mimicking different clinical conditions. In addition, we discuss up-to-date information from clinical trials regarding the beneficial effects of non-steroidal MRAs on meaningful cardiovascular outcomes. Both pre-clinical and clinical evidence support treatment with non-steroidal MRAs in patients with cardiovascular disease.
Collapse
|
13
|
Zhou Z, Li T, Du R, Liu C, Huang S, Han L, Zhang P, Wang Y, Jiang M. Lamiophlomis rotata attenuates rheumatoid arthritis by regulating sphingolipid and steroid hormone metabolism. Mol Omics 2023; 19:72-83. [PMID: 36416788 DOI: 10.1039/d2mo00247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and progressive autoimmune disease. Lamiophlomis rotata (L. rotata) (Benth.) Kudo, an essential medicinal plant in traditional Tibetan medicine, is useful in treating RA. The purpose of this study was to evaluate L. rotata's anti-RA effect and to analyze its serum metabolites and lipids to predict the possible action pathways. Female and male rats were immunized with CFA to induce arthritis. Paw volumes were measured, and arthritis index analysis and histological analysis were performed to check the effects of L. rotata. ELISA was used to measure the levels of inflammatory cytokines (IL-1β, TNF-α, IL-6, and IL-10) and oxidative stress (MDA, SOD, GSH, and CAT). UPLC/Q-Orbitrap-MS was used to identify untargeted metabolites and lipids in serum. Metabolite validation was performed using UPLC/QQQ-MS. L. rotata application significantly reduced arthritis indices and paw swelling in AIA rats, and diminished inflammation and bone fractures in joint tissues. Sphingolipid (SP) and steroid hormone biosynthesis was found to be closely related to L. rotata's intervention in RA. In addition, our experiments also confirmed that females were more likely than males to develop RA. These findings provide clues and a scientific basis for the mechanism of L. rotata in treating RA.
Collapse
Affiliation(s)
- Zhirong Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Tong Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Ruijiao Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Chengjuan Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Shengjie Huang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China.
| | - Lifeng Han
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Peng Zhang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuefei Wang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Miaomiao Jiang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, P. R. China. .,Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
14
|
Wynne BM, Samson TK, Moyer HC, van Elst HJ, Moseley AS, Hecht G, Paul O, Al-Khalili O, Gomez-Sanchez C, Ko B, Eaton DC, Hoover RS. Interleukin 6 mediated activation of the mineralocorticoid receptor in the aldosterone-sensitive distal nephron. Am J Physiol Cell Physiol 2022; 323:C1512-C1523. [PMID: 35912993 PMCID: PMC9662807 DOI: 10.1152/ajpcell.00272.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Hypertension is characterized by increased sodium (Na+) reabsorption along the aldosterone-sensitive distal nephron (ASDN) as well as chronic systemic inflammation. Interleukin-6 (IL-6) is thought to be a mediator of this inflammatory process. Interestingly, increased Na+ reabsorption within the ASDN does not always correlate with increases in aldosterone (Aldo), the primary hormone that modulates Na+ reabsorption via the mineralocorticoid receptor (MR). Thus, understanding how increased ASDN Na+ reabsorption may occur independent of Aldo stimulation is critical. Here, we show that IL-6 can activate the MR by activating Rac1 and stimulating the generation of reactive oxygen species (ROS) with a consequent increase in thiazide-sensitive Na+ uptake. Using an in vitro model of the distal convoluted tubule (DCT2), mDCT15 cells, we observed nuclear translocation of eGFP-tagged MR after IL-6 treatment. To confirm the activation of downstream transcription factors, mDCT15 cells were transfected with mineralocorticoid response element (MRE)-luciferase reporter constructs; then treated with vehicle, Aldo, or IL-6. Aldosterone or IL-6 treatment increased luciferase activity that was reversed with MR antagonist cotreatment, but IL-6 treatment was reversed by Rac1 inhibition or ROS reduction. In both mDCT15 and mpkCCD cells, IL-6 increased amiloride-sensitive transepithelial Na+ current. ROS and IL-6 increased 22Na+ uptake via the thiazide-sensitive sodium chloride cotransporter (NCC). These results are the first to demonstrate that IL-6 can activate the MR resulting in MRE activation and that IL-6 increases NCC-mediated Na+ reabsorption, providing evidence for an alternative mechanism for stimulating ASDN Na+ uptake during conditions where Aldo-mediated MR stimulation may not occur.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Internal Medicine, Nephrology & Hypertension, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Immunology, Inflammation and Infectious Disease Initiative, University of Utah, Salt Lake City, Utah
| | - Trinity K Samson
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Hayley C Moyer
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Henrieke J van Elst
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Department of Physiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Auriel S Moseley
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Gillian Hecht
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Oishi Paul
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Celso Gomez-Sanchez
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, Mississippi
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Mississippi
| | - Benjamin Ko
- Department of Medicine, Nephrology, University of Chicago, Chicago, Illinois
| | - Douglas C Eaton
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
| | - Robert S Hoover
- Department of Medicine, Nephrology, Emory University, Atlanta, Georgia
- Research Service, Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
- Section of Nephrology and Hypertension, Deming Department of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
15
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
16
|
Mineralocorticoid Receptor Pathway Is a Key Mediator of Carfilzomib-induced Nephrotoxicity: Preventive Role of Eplerenone. Hemasphere 2022; 6:e791. [PMID: 36285072 PMCID: PMC9584194 DOI: 10.1097/hs9.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
Carfilzomib is an irreversible proteasome inhibitor indicated for relapsed/refractory multiple myeloma. Carfilzomib toxicity includes renal adverse effects (RAEs) of obscure pathobiology. Therefore, we investigated the mechanisms of nephrotoxicity developed by Carfilzomib. In a first experimental series, we used our previously established in vivo mouse models of Carfilzomib cardiotoxicity, that incorporated 2 and 4 doses of Carfilzomib, to identify whether Carfilzomib affects renal pathways. Hematology and biochemical analyses were performed, while kidneys underwent histological and molecular analyses. In a second and third experimental series, the 4 doses protocol was repeated for 24 hours urine collection and proteomic/metabolomic analyses. To test an experimental intervention, primary murine collecting duct tubular epithelial cells were treated with Carfilzomib and/or Eplerenone and Metformin. Finally, Eplerenone was orally co-administered with Carfilzomib daily (165 mg/kg) in the 4 doses protocol. We additionally used material from 7 patients to validate our findings and patients underwent biochemical analysis and assessment of renal mineralocorticoid receptor (MR) axis activation. In vivo screening showed that Carfilzomib-induced renal histological deficits and increased serum creatinine, urea, NGAL levels, and proteinuria only in the 4 doses protocol. Carfilzomib decreased diuresis, altered renal metabolism, and activated MR axis. This was consistent with the cytotoxicity found in primary murine collecting duct tubular epithelial cells, whereas Carfilzomib + Eplerenone co-administration abrogated Carfilzomib-related nephrotoxic effects in vitro and in vivo. Renal SGK-1, a marker of MR activation, increased in patients with Carfilzomib-related RAEs. Conclusively, Carfilzomib-induced renal MR/SGK-1 activation orchestrates RAEs and water retention both in vivo and in the clinical setting. MR blockade emerges as a potential therapeutic approach against Carfilzomib-related nephrotoxicity.
Collapse
|
17
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
18
|
Mineralocorticoid Receptor Antagonists Mitigate Mitral Regurgitation-Induced Myocardial Dysfunction. Cells 2022; 11:cells11172750. [PMID: 36078158 PMCID: PMC9455158 DOI: 10.3390/cells11172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitral regurgitation (MR), the disruption of the mitral valve, contributes to heart failure (HF). Under conditions of volume overload, excess mineralocorticoids promote cardiac fibrosis. The mineralocorticoid receptor antagonist spironolactone is a potassium-sparing diuretic and a guideline-recommended therapy for HF, but whether it can ameliorate degenerative MR remains unknown. Herein, we investigate the efficacy of spironolactone in improving cardiac remodeling in MR-induced HF compared with that of a loop diuretic, furosemide. Using a novel and mini-invasive technique, we established a rat model of MR. We treated the rats with spironolactone or furosemide for twelve weeks. The levels of cardiac fibrosis, apoptosis, and stress-associated proteins were then measured. In parallel, we compared the cardiac remodeling of 165 patients with degenerative MR receiving either spironolactone or furosemide. Echocardiography was performed at baseline and at six months. In MR rats treated with spironolactone, left ventricular function—especially when strained—and the pressure volume relationship significantly improved compared to those of rats treated with furosemide. Spironolactone treatment demonstrated significant attenuation of cardiac fibrosis and apoptosis in left ventricular tissue compared to furosemide. Further, spironolactone suppressed the expression of apoptosis-, NADPH oxidase 4 (NOX4)- and inducible nitric oxide synthase (iNOS)-associated proteins. Similarly, compared with MR patients receiving furosemide those prescribed spironolactone demonstrated a trend toward reduction in MR severity and showed improvement in left ventricular function. Collectively, MR-induced cardiovascular dysfunction, including fibrosis and apoptosis, was effectively attenuated by spironolactone treatment. Our findings suggest a potential therapeutic option for degenerative MR-induced HF.
Collapse
|
19
|
Kolkhof P, Lawatscheck R, Filippatos G, Bakris GL. Nonsteroidal Mineralocorticoid Receptor Antagonism by Finerenone-Translational Aspects and Clinical Perspectives across Multiple Organ Systems. Int J Mol Sci 2022; 23:9243. [PMID: 36012508 PMCID: PMC9408839 DOI: 10.3390/ijms23169243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Perception of the role of the aldosterone/mineralocorticoid receptor (MR) ensemble has been extended from a previously renal epithelial-centered focus on sodium and volume homeostasis to an understanding of their role as systemic modulators of reactive oxygen species, inflammation, and fibrosis. Steroidal MR antagonists (MRAs) are included in treatment paradigms for resistant hypertension and heart failure with reduced ejection fraction, while more recently, the nonsteroidal MRA finerenone was shown to reduce renal and cardiovascular outcomes in two large phase III trials (FIDELIO-DKD and FIGARO-DKD) in patients with chronic kidney disease and type 2 diabetes, respectively. Here, we provide an overview of the pathophysiologic role of MR overactivation and preclinical evidence with the nonsteroidal MRA finerenone in a range of different disease models with respect to major components of the aggregate mode of action, including interfering with reactive oxygen species generation, inflammation, fibrosis, and hypertrophy. We describe a time-dependent effect of these mechanistic components and the potential modification of major clinical parameters, as well as the impact on clinical renal and cardiovascular outcomes as observed in FIDELIO-DKD and FIGARO-DKD. Finally, we provide an outlook on potential future clinical indications and ongoing clinical studies with finerenone, including a combination study with a sodium-glucose cotransporter-2 inhibitor.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiology Precision Medicines, Research & Early Development, Bayer AG, Aprather Weg 18a, 42113 Wuppertal, Germany
| | - Robert Lawatscheck
- Clinical Development, Bayer AG, Müller Straße 178, Building P300, 13342 Berlin, Germany
| | - Gerasimos Filippatos
- Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, Mikras Asias 75, 115 27 Athina, Greece
| | - George L. Bakris
- Department of Medicine, University of Chicago Medicine, 5841 S. Maryland Ave., Chicago, IL 60637, USA
| |
Collapse
|
20
|
Mineralocorticoid Receptor Activation in Vascular Insulin Resistance and Dysfunction. Int J Mol Sci 2022; 23:ijms23168954. [PMID: 36012219 PMCID: PMC9409140 DOI: 10.3390/ijms23168954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Systemic insulin resistance is characterized by reduced insulin metabolic signaling and glucose intolerance. Mineralocorticoid receptors (MRs), the principal receptors for the hormone aldosterone, play an important role in regulating renal sodium handling and blood pressure. Recent studies suggest that MRs also exist in tissues outside the kidney, including vascular endothelial cells, smooth muscle cells, fibroblasts, perivascular adipose tissue, and immune cells. Risk factors, including excessive salt intake/salt sensitivity, hypertension, and obesity, can lead to the activation of vascular MRs to promote inflammation, oxidative stress, remodeling, and fibrosis, as well as cardiovascular stiffening and microcirculatory impairment. These pathophysiological changes are associated with a diminished ability of insulin to initiate appropriate intracellular signaling events, resulting in a reduced glucose uptake within the microcirculation and related vascular insulin resistance. Therefore, the pharmacological inhibition of MR activation provides a potential therapeutic option for improving vascular function, glucose uptake, and vascular insulin sensitivity. This review highlights recent experimental and clinical data that support the contribution of abnormal MR activation to the development of vascular insulin resistance and dysfunction.
Collapse
|
21
|
Alexandrou ME, Theodorakopoulou MP, Kanbay M, Sarafidis PA. Mineralocorticoid receptor antagonists for cardioprotection in chronic kidney disease: a step into the future. J Hum Hypertens 2022; 36:695-704. [PMID: 34980878 DOI: 10.1038/s41371-021-00641-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) share major risk factors and mechanistic pathways for progression. Furthermore, either decreased glomerular filtration rate or increased albuminuria are major risk factors for cardiovascular events. Evidence from previous renal outcome trials in patients with proteinuric CKD showed that angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin-II receptor blockers (ARBs) effectively slow CKD progression, establishing these agents as fundamental CKD pharmacologic treatments. However, in all these trials and subsequent meta-analyses, ACEIs and ARBs did not significantly reduce cardiovascular events or mortality, indicating a high residual risk for CVD progression in individuals with CKD. In contrast to the above, several outcome trials with old and novel mineralocorticoid receptor-antagonists (MRAs) clearly suggest that these agents, apart from nephroprotection, offer important cardioprotection in this population. This article is an overview of previous and recent evidence on the effects of MRAs on cardiovascular outcomes in patients with CKD attempting to highlight a pathway able to improve both cardiovascular and renal prognosis in this population.
Collapse
Affiliation(s)
- Maria-Eleni Alexandrou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
22
|
RGS3L allows for an M 2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Res Cardiol 2022; 117:8. [PMID: 35230541 PMCID: PMC8888479 DOI: 10.1007/s00395-022-00915-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/31/2023]
Abstract
The role and outcome of the muscarinic M2 acetylcholine receptor (M2R) signaling in healthy and diseased cardiomyocytes is still a matter of debate. Here, we report that the long isoform of the regulator of G protein signaling 3 (RGS3L) functions as a switch in the muscarinic signaling, most likely of the M2R, in primary cardiomyocytes. High levels of RGS3L, as found in heart failure, redirect the Gi-mediated Rac1 activation into a Gi-mediated RhoA/ROCK activation. Functionally, this switch resulted in a reduced production of reactive oxygen species (- 50%) in cardiomyocytes and an inotropic response (+ 18%) in transduced engineered heart tissues. Importantly, we could show that an adeno-associated virus 9-mediated overexpression of RGS3L in rats in vivo, increased the contractility of ventricular strips by maximally about twofold. Mechanistically, we demonstrate that this switch is mediated by a complex formation of RGS3L with the GTPase-activating protein p190RhoGAP, which balances the activity of RhoA and Rac1 by altering its substrate preference in cardiomyocytes. Enhancement of this complex formation could open new possibilities in the regulation of the contractility of the diseased heart.
Collapse
|
23
|
Kodama T, Kameshima S, Otani K, Okada M, Yamawaki H. Eukaryotic elongation factor 2 kinase inhibitor, A484954 induces diuretic effect via renal vasorelaxation in spontaneously hypertensive rats. Eur J Pharmacol 2021; 913:174637. [PMID: 34801528 DOI: 10.1016/j.ejphar.2021.174637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022]
Abstract
Eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), alternatively known as calmodulin-dependent protein kinase III, inhibits protein translation via phosphorylating its sole substrate, eEF2. We previously demonstrated that expression and activity of eEF2K change in mesenteric artery from spontaneously hypertensive rats (SHR) with aging and that eEF2K is involved in pathogenesis of essential hypertension. In addition, we have recently revealed that acute intravenous injection with A484954, a selective eEF2K inhibitor, lowers blood pressure specifically in SHR partly via inducing vasorelaxation. In this study, we examined whether A484954 induces diuretic effect. After male SHR and normotensive Wistar Kyoto rats (WKY) were given a single intraperitoneal injection of A484954 (2.5 mg/kg, 0.5-9 h), urine was collected using metabolic cage. Contraction of isolated renal arteries form SHR was isometrically measured. While A484954 did not induce diuretic effect in WKY, it increased urine output, water intake, and urinary sodium excretion in SHR. A484954 (10 μM) induced vasorelaxation in isolated renal arteries, which was inhibited by a β-adrenergic receptor antagonist, propranolol. It was confirmed that A484954 increased renal blood flow in SHR as measured by renal ultrasonography. In summary, it was for the first time revealed that A484954 induces diuretic effect in SHR at least partly via renal vasorelaxation through β-adrenergic receptor.
Collapse
Affiliation(s)
- Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Satoshi Kameshima
- Laboratory of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
24
|
Grossmann C, Almeida-Prieto B, Nolze A, Alvarez de la Rosa D. Structural and molecular determinants of mineralocorticoid receptor signalling. Br J Pharmacol 2021; 179:3103-3118. [PMID: 34811739 DOI: 10.1111/bph.15746] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022] Open
Abstract
During the past decades, the mineralocorticoid receptor (MR) has evolved from a much-overlooked member of the steroid hormone receptor family to an important player, not only in volume and electrolyte homeostasis but also in pathological changes occurring in an increasing number of tissues, especially the renal and cardiovascular systems. Simultaneously, a wealth of information about the structure, interaction partners and chromatin requirements for genomic signalling of steroid hormone receptors became available. However, much of the information for the MR has been deduced from studies of other family members and there is still a lack of knowledge about MR-specific features in ligand binding, chromatin remodelling, co-factor interactions and general MR specificity-conferring mechanisms that can completely explain the differences in pathophysiological function between MR and its closest relative, the glucocorticoid receptor. This review aims to give an overview of the current knowledge of MR structure, signalling and co-factors modulating its activity.
Collapse
Affiliation(s)
- Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Brian Almeida-Prieto
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Alexander Nolze
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Saale, Germany
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas and Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Tenerife, Spain
| |
Collapse
|
25
|
Kawanami D, Takashi Y, Muta Y, Oda N, Nagata D, Takahashi H, Tanabe M. Mineralocorticoid Receptor Antagonists in Diabetic Kidney Disease. Front Pharmacol 2021; 12:754239. [PMID: 34790127 PMCID: PMC8591525 DOI: 10.3389/fphar.2021.754239] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD) worldwide. Mineralocorticoid receptor (MR) plays an important role in the development of DKD. A series of preclinical studies revealed that MR is overactivated under diabetic conditions, resulting in promoting inflammatory and fibrotic process in the kidney. Clinical studies demonstrated the usefulness of MR antagonists (MRAs), such as spironolactone and eplerenone, on DKD. However, concerns regarding their selectivity for MR and hyperkalemia have remained for these steroidal MRAs. Recently, nonsteroidal MRAs, including finerenone, have been developed. These agents are highly selective and have potent anti-inflammatory and anti-fibrotic properties with a low risk of hyperkalemia. We herein review the current knowledge and future perspectives of MRAs in DKD treatment.
Collapse
Affiliation(s)
- Daiji Kawanami
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yuichi Takashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Yoshimi Muta
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Naoki Oda
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Dai Nagata
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hiroyuki Takahashi
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Makito Tanabe
- Department of Endocrinology and Diabetes Mellitus, Fukuoka University School of Medicine, Fukuoka, Japan
| |
Collapse
|
26
|
Hiramatsu A, Izumi Y, Eguchi K, Matsuo N, Deng Q, Inoue H, Nakayama Y, Nonoguchi H, Aramburu J, López-Rodríguez C, Kakizoe Y, Adachi M, Kuwabara T, Kim-Mitsuyama S, Mukoyama M. Salt-Sensitive Hypertension of the Renal Tubular Cell-Specific NFAT5 (Nuclear Factor of Activated T-Cells 5) Knockout Mice. Hypertension 2021; 78:1335-1346. [PMID: 34601973 DOI: 10.1161/hypertensionaha.121.17435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Akiko Hiramatsu
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yuichiro Izumi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Koji Eguchi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Naomi Matsuo
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Qinyuan Deng
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hideki Inoue
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Yushi Nakayama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, Kitamoto, Saitama, Japan (H.N.)
| | - Jose Aramburu
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Cristina López-Rodríguez
- Immunology Unit, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, and Barcelona Biomedical Research Park, Spain (J.A., C.L.-R.)
| | - Yutaka Kakizoe
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masataka Adachi
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Takashige Kuwabara
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Shokei Kim-Mitsuyama
- Department of Pharmacology and Molecular Therapeutics (S.K.-M.), Kumamoto University Graduate School of Medical Sciences, Japan
| | - Masashi Mukoyama
- Department of Nephrology (A.H., Y.I., K.E., N.M., Q.D., H.I., Y.N., Y.K., M.A., T.K., M.M.), Kumamoto University Graduate School of Medical Sciences, Japan
| |
Collapse
|
27
|
Kolkhof P, Joseph A, Kintscher U. Nonsteroidal mineralocorticoid receptor antagonism for cardiovascular and renal disorders - New perspectives for combination therapy. Pharmacol Res 2021; 172:105859. [PMID: 34461222 DOI: 10.1016/j.phrs.2021.105859] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023]
Abstract
During the recent 30 years, there has been a dramatic increase in knowledge about the role of aldosterone and the mineralocorticoid receptor (MR) in the pathophysiology of cardiovascular (CV) and kidney diseases. The scientific perspective on the aldosterone/MR ensemble extended from a previously renal epithelial-centered focus on sodium-potassium exchange to a broader view as systemic modulators of extracellular matrix, inflammation and fibrosis. Spironolactone was launched as the first antagonist of aldosterone 27 years before the MR was cloned. It was classified as a potassium-sparing diuretic, based on its initial clinical characterization as a diuretic and its preferred activity to compensate for the potassium loss induced by loop diuretics when used in combination. The second steroidal MR antagonist was eplerenone which was discovered at a time when the role of aldosterone and MR in cardiac fibrosis was rediscovered. The constraint of developing potentially life-threatening hyperkalaemia when used in combination with other inhibitors of the renin-angiotensin-system (RAS) in patients with reduced kidney function initiated extensive research and development activities with the goal to identify novel nonsteroidal MR antagonists with an improved benefit-risk ratio. Here we summarize major current clinical trials with MRAs in different CV and renal diseases. Addition of the nonsteroidal MRA finerenone to optimal RAS blockade recently reduced CV and kidney outcomes in two large phase III trials in patients with chronic kidney disease (CKD) and type 2 diabetes (T2D). We provide an outlook on further opportunities for combination therapy of nonsteroidal MRA finerenone with RAS inhibitors and sodium-glucose cotransporter-2 inhibitors (SGLT2i).
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany.
| | - Amer Joseph
- Cardiology and Nephrology, Clinical Development, R&D Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Ulrich Kintscher
- Charite - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Pharmacology, Cardiovascular-Metabolic-Renal Research Center, 10115 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| |
Collapse
|
28
|
Yang J, Chen Y, Li X, Xu D. New insights into the roles of glucocorticoid signaling dysregulation in pathological cardiac hypertrophy. Heart Fail Rev 2021; 27:1431-1441. [PMID: 34455516 DOI: 10.1007/s10741-021-10158-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Pathological cardiac hypertrophy is a process of abnormal remodeling of the myocardium in response to stress overload or ischemia that results in myocardial injury, which is an independent risk factor for the increased morbidity and mortality of heart failure. Elevated circulating glucocorticoids (GCs) levels are associated with an increased risk of pathological cardiac hypertrophy, but the exact role remains unclear. In the heart, GCs exerts physiological and pharmacological effects by binding the glucocorticoid receptor (GR, NR3C1). However, under the state of tissue damage or oxidative stress, GCs can also bind the closely related mineralocorticoid receptor (MR, NR3C2) to exert a detrimental effect on cardiac function. In addition, the bioavailability of GCs at the cellular level is mainly regulated by tissue-specific metabolic enzymes 11β-hydroxysteroid dehydrogenases (11β-HSDs), including 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and type 2 (11β-HSD2), which catalyze the interconversion of active GCs. In this paper, we provide an overview of GC signaling and its physiological roles in the heart and highlight the dynamic and diverse roles of GC signaling dysregulation, mediated by excessive ligand GCs levels, GR/MR deficiency or overexpression, and local GCs metabolic disorder by 11β-HSDs, in the pathology of cardiac hypertrophy. Our findings will provide new ideas and insights for the search for appropriate intervention targets for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
29
|
Kolkhof P, Hartmann E, Freyberger A, Pavkovic M, Mathar I, Sandner P, Droebner K, Joseph A, Hüser J, Eitner F. Effects of Finerenone Combined with Empagliflozin in a Model of Hypertension-Induced End-Organ Damage. Am J Nephrol 2021; 52:642-652. [PMID: 34111864 PMCID: PMC8619789 DOI: 10.1159/000516213] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/27/2021] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The nonsteroidal mineralocorticoid receptor (MR) antagonist finerenone and sodium-glucose cotransporter-2 (SGLT2) inhibitors have demonstrated clinical benefits in CKD patients with type 2 diabetes. Clinical data analyzing the potential value of a combination therapy are currently limited. We therefore investigated cardiorenal protection of respective mono- and combination therapy in a preclinical model of hypertension-induced end-organ damage. METHODS Cardiovascular (CV) morbidity and mortality were studied in hypertensive, N(ω)-nitro-L-arginine methyl ester-treated, renin-transgenic (mRen2)27 rats. Rats (10- to 11-week-old females, n = 13-17/group) were treated once daily orally for up to 7 weeks with placebo, finerenone (1 and 3 mg/kg), empagliflozin (3 and 10 mg/kg), or a combination of the respective low doses. Key outcome parameters included mortality, proteinuria, plasma creatinine and uric acid, blood pressure, and cardiac and renal histology. RESULTS Placebo-treated rats demonstrated a 50% survival rate over the course of 7 weeks. Drug treatment resulted in variable degrees of survival benefit, most prominently in the low-dose combination group with a survival benefit of 93%. Monotherapies of finerenone or empagliflozin dose-dependently reduced proteinuria, while low-dose combination revealed an early, sustained, and over-additive reduction in proteinuria. Empagliflozin induced a strong and dose-dependent increase in urinary glucose excretion which was not influenced by finerenone coadministration in the combination arm. Low-dose combination but not respective low-dose monotherapies significantly reduced plasma creatinine and plasma uric acid after 6 weeks. Treatment with finerenone and the low-dose combination significantly decreased systolic blood pressure after 5 weeks. There was a dose-dependent protection from cardiac and kidney fibrosis and vasculopathy with both agents, while low-dose combination therapy was more efficient than the respective monotherapy dosages on most cardiorenal histology parameters. DISCUSSION/CONCLUSIONS Nonsteroidal MR antagonism by finerenone and SGLT2 inhibition by empagliflozin confer CV protection in preclinical hypertension-induced cardiorenal disease. Combination of these 2 independent modes of action at low dosages revealed efficacious reduction in important functional parameters such as proteinuria and blood pressure, plasma markers including creatinine and uric acid, cardiac and renal lesions as determined by histopathology, and mortality indicating a strong potential for combined clinical use in cardiorenal patient populations.
Collapse
Affiliation(s)
- Peter Kolkhof
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Elke Hartmann
- Research Pathology, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Alexius Freyberger
- Clinical Pathology, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Mira Pavkovic
- Biomarker Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Ilka Mathar
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Peter Sandner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Karoline Droebner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Amer Joseph
- Clinical Development, R&D Pharmaceuticals, Bayer AG, Berlin, Germany
| | - Jörg Hüser
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - Frank Eitner
- Cardiovascular Research, Research and Early Development, R&D Pharmaceuticals, Bayer AG, Wuppertal, Germany
| |
Collapse
|
30
|
Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in K v channels. Basic Res Cardiol 2021; 116:35. [PMID: 34018061 DOI: 10.1007/s00395-021-00879-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.
Collapse
|
31
|
Erraez S, López-Mesa M, Gómez-Fernández P. Mineralcorticoid receptor blockers in chronic kidney disease. Nefrologia 2021; 41:258-275. [PMID: 36166243 DOI: 10.1016/j.nefroe.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/17/2020] [Indexed: 06/16/2023] Open
Abstract
There are many experimental data supporting the involvement of aldosterone and mineralcorticoid receptor (MR) activation in the genesis and progression of chronic kidney disease (CKD) and cardiovascular damage. Many studies have shown that in diabetic and non-diabetic CKD, blocking the renin-angiotensin-aldosterone (RAAS) system with conversion enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs) decreases proteinuria, progression of CKD and mortality, but there is still a significant residual risk of developing these events. In subjects treated with ACEi or ARBs there may be an aldosterone breakthrough whose prevalence in subjects with CKD can reach 50%. Several studies have shown that in CKD, the aldosterone antagonists (spironolactone, eplerenone) added to ACEi or ARBs, reduce proteinuria, but increase the risk of hyperkalemia. Other studies in subjects treated with dialysis suggest a possible beneficial effect of antialdosteronic drugs on CV events and mortality. Newer potassium binders drugs can prevent/decrease hyperkalemia induced by RAAS blockade, and may reduce the high discontinuation rates or dose reduction of RAAS-blockers. The nonsteroidal MR blockers, with more potency and selectivity than the classic ones, reduce proteinuria and have a lower risk of hyperkalemia. Several clinical trials, currently underway, will determine the effect of classic MR blockers on CV events and mortality in subjects with stage 3b CKD and in dialysis patients, and whether in patients with type 2 diabetes mellitus and CKD, optimally treated and with high risk of CV and kidney events, the addition of finerenone to their treatment produces cardiorenal benefits. Large randomized trials have shown that sodium glucose type 2 cotransporter inhibitors (SGLT2i) reduce mortality and the development and progression of diabetic and nondiabetic CKD. There are pathophysiological arguments, which raise the possibility that the triple combination ACEi or ARBs, SGLT2i and aldosterone antagonist provide additional renal and cardiovascular protection.
Collapse
Affiliation(s)
- Sara Erraez
- Unidad de Factores de Riesgo Vascular, Nefrología, Hospital Universitario de Jerez, Jerez de la Frontera, Cádiz, Spain
| | | | - Pablo Gómez-Fernández
- Unidad de Factores de Riesgo Vascular, Nefrología, Hospital Universitario de Jerez, Jerez de la Frontera, Cádiz, Spain.
| |
Collapse
|
32
|
Bortoluzzi VT, Dutra Filho CS, Wannmacher CMD. Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling. Metab Brain Dis 2021; 36:523-543. [PMID: 33580861 DOI: 10.1007/s11011-021-00676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023]
Abstract
Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Carlos Severo Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
33
|
Rahman A, Sawano T, Sen A, Hossain A, Jahan N, Kobara H, Masaki T, Kosaka S, Kitada K, Nakano D, Imamura T, Ohsaki H, Nishiyama A. Cardioprotective Effects of a Nonsteroidal Mineralocorticoid Receptor Blocker, Esaxerenone, in Dahl Salt-Sensitive Hypertensive Rats. Int J Mol Sci 2021; 22:2069. [PMID: 33669786 PMCID: PMC7922950 DOI: 10.3390/ijms22042069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 01/13/2023] Open
Abstract
We investigated the effects of esaxerenone, a novel, nonsteroidal, and selective mineralocorticoid receptor blocker, on cardiac function in Dahl salt-sensitive (DSS) rats. We provided 6-week-old DSS rats a high-salt diet (HSD, 8% NaCl). Following six weeks of HSD feeding (establishment of cardiac hypertrophy), we divided the animals into the following two groups: HSD or HSD + esaxerenone (0.001%, w/w). In survival study, all HSD-fed animals died by 24 weeks of age, whereas the esaxerenone-treated HSD-fed animals showed significantly improved survival. We used the same protocol with a separate set of animals to evaluate the cardiac function by echocardiography after four weeks of treatment. The results showed that HSD-fed animals developed cardiac dysfunction as evidenced by reduced stroke volume, ejection fraction, and cardiac output. Importantly, esaxerenone treatment decreased the worsening of cardiac dysfunction concomitant with a significantly reduced level of systolic blood pressure. In addition, treatment with esaxerenone in HSD-fed DSS rats caused a reduced level of cardiac remodeling as well as fibrosis. Furthermore, inflammation and oxidative stress were significantly reduced. These data indicate that esaxerenone has the potential to mitigate cardiac dysfunction in salt-induced myocardial injury in rats.
Collapse
Affiliation(s)
- Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; (T.S.); (T.I.)
| | - Anupoma Sen
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Akram Hossain
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Nourin Jahan
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Hideki Kobara
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (H.K.); (T.M.)
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (H.K.); (T.M.)
| | - Shinji Kosaka
- Department of Pharmacy, Kagawa University Hospital, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Daisuke Nakano
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan; (T.S.); (T.I.)
| | - Hiroyuki Ohsaki
- Department of Medical Biophysics, Kobe University Graduate School of Health Sciences, 7-10-2, Tomogaoka, Suma-ku, Kobe, Hyogo 654-0142, Japan;
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (A.R.); (A.S.); (A.H.); (N.J.); (K.K.); (D.N.)
| |
Collapse
|
34
|
Ayuzawa N, Fujita T. The Mineralocorticoid Receptor in Salt-Sensitive Hypertension and Renal Injury. J Am Soc Nephrol 2021; 32:279-289. [PMID: 33397690 PMCID: PMC8054893 DOI: 10.1681/asn.2020071041] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hypertension and its comorbidities pose a major public health problem associated with disease-associated factors related to a modern lifestyle, such high salt intake or obesity. Accumulating evidence has demonstrated that aldosterone and its receptor, the mineralocorticoid receptor (MR), have crucial roles in the development of salt-sensitive hypertension and coexisting cardiovascular and renal injuries. Accordingly, clinical trials have repetitively shown the promising effects of MR blockers in these diseases. We and other researchers have identified novel mechanisms of MR activation involved in salt-sensitive hypertension and renal injury, including the obesity-derived overproduction of aldosterone and ligand-independent signaling. Moreover, recent advances in the analysis of cell-specific and context-dependent mechanisms of MR activation in various tissues-including a classic target of aldosterone, aldosterone-sensitive distal nephrons-are now providing new insights. In this review, we summarize recent updates to our understanding of aldosterone-MR signaling, focusing on its role in salt-sensitive hypertension and renal injury.
Collapse
Affiliation(s)
- Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan,Shinshu University School of Medicine, Nagano, Japan,Research Center for Social Systems, Shinshu University, Nagano, Japan
| |
Collapse
|
35
|
Ennis IL, Pérez NG. Cardiac Mineralocorticoid Receptor and the Na +/H + Exchanger: Spilling the Beans. Front Cardiovasc Med 2021; 7:614279. [PMID: 33553262 PMCID: PMC7854694 DOI: 10.3389/fcvm.2020.614279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023] Open
Abstract
Current evidence reveals that cardiac mineralocorticoid receptor (MR) activation following myocardial stretch plays an important physiological role in adapting developed force to sudden changes in hemodynamic conditions. Its underlying mechanism involves a previously unknown nongenomic effect of the MR that triggers redox-mediated Na+/H+ exchanger (NHE1) activation, intracellular Na+ accumulation, and a consequent increase in Ca2+ transient amplitude through reverse Na+/Ca2+ exchange. However, clinical evidence assigns a detrimental role to MR activation in the pathogenesis of severe cardiac diseases such as congestive heart failure. This mini review is meant to present and briefly discuss some recent discoveries about locally triggered cardiac MR signals with the objective of shedding some light on its physiological but potentially pathological consequences in the heart.
Collapse
Affiliation(s)
- Irene Lucía Ennis
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas de la Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Néstor Gustavo Pérez
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", Facultad de Ciencias Médicas de la Plata, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
36
|
[Mineralcorticoid receptor blockers in chronic kidney disease]. Nefrologia 2020; 41:258-275. [PMID: 33358451 DOI: 10.1016/j.nefro.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/17/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022] Open
Abstract
There are many experimental data supporting the involvement of aldosterone and mineralcorticoid receptor (MR) activation in the genesis and progression of chronic kidney disease (CKD) and cardiovascular damage. Many studies have shown that in diabetic and non-diabetic CKD, blocking the renin- angiotensin-aldosterone (RAAS) system with conversion enzyme inhibitors (ACEi) or angiotensin II receptor blockers (ARBs) decreases proteinuria, progression of CKD and mortality, but there is still a significant residual risk of developing these events. In subjects treated with ACEi or ARBs there may be an aldosterone breakthrough whose prevalence in subjects with CKD can reach 50%. Several studies have shown that in CKD, the aldosterone antagonists (spironolactone, eplerenone) added to ACEi or ARBs, reduce proteinuria, but increase the risk of hyperkalemia. Other studies in subjects treated with dialysis suggest a possible beneficial effect of antialdosteronic drugs on CV events and mortality. Newer potassium binders drugs can prevent / decrease hyperkalemia induced by RAAS blockade, and may reduce the high discontinuation rates or dose reduction of RAAS-blockers. The nonsteroidal MR blockers, with more potency and selectivity than the classic ones, reduce proteinuria and have a lower risk of hyperkalemia. Several clinical trials, currently underway, will determine the effect of classic MR blockers on CV events and mortality in subjects with stage 3b CKD and in dialysis patients, and whether in patients with type 2 diabetes mellitus and CKD, optimally treated and with high risk of CV and kidney events, the addition of finerenone to their treatment produces cardiorenal benefits. Large randomized trials have shown that sodium glucose type 2 cotransporter inhibitors (SGLT2i) reduce mortality and the development and progression of diabetic and nondiabetic CKD. There are pathophysiological arguments, which raise the possibility that the triple combination ACEi or ARBs, SGLT2i and aldosterone antagonist provide additional renal and cardiovascular protection.
Collapse
|
37
|
Hirohama D, Kawarazaki W, Nishimoto M, Ayuzawa N, Marumo T, Shibata S, Fujita T. PGI 2 Analog Attenuates Salt-Induced Renal Injury through the Inhibition of Inflammation and Rac1-MR Activation. Int J Mol Sci 2020; 21:ijms21124433. [PMID: 32580367 PMCID: PMC7353033 DOI: 10.3390/ijms21124433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Renal inflammation is known to be involved in salt-induced renal damage, leading to end-stage renal disease. This study aims to evaluate the role of inflammation in anti-inflammatory and renoprotective effects of beraprost sodium (BPS), a prostaglandin I2 (PGI2) analog, in Dahl salt-sensitive (DS) rats. Five-week-old male DS rats were fed a normal-salt diet (0.5% NaCl), a high-salt diet (8% NaCl), or a high-salt diet plus BPS treatment for 3 weeks. BPS treatment could inhibit marked proteinuria and renal injury in salt-loaded DS rats with elevated blood pressure, accompanied by renal inflammation suppression. Notably, high salt increased renal expression of active Rac1, followed by increased Sgk1 expressions, a downstream molecule of mineralocorticoid receptor (MR) signal, indicating salt-induced activation of Rac1-MR pathway. However, BPS administration inhibited salt-induced Rac1-MR activation as well as renal inflammation and damage, suggesting that Rac1-MR pathway is involved in anti-inflammatory and renoprotective effects of PGI2. Based upon Rac1 activated by inflammation, moreover, BPS inhibited salt-induced activation of Rac1-MR pathway by renal inflammation suppression, resulting in the attenuation of renal damage in salt-loaded DS rats. Thus, BPS is efficacious for the treatment of salt-induced renal injury.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8606, Japan
- Correspondence: ; Tel.: +81-3-5452-5057
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Department of Internal Medicine, International University of Health and Welfare Mita Hospital, Tokyo 108-8329, Japan
| | - Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Center for Basic Medical Research at Narita Campus, International University of Health and Welfare, Chiba 286-8686, Japan
| | - Shigeru Shibata
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo 173-8606, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan; (W.K.); (M.N.); (N.A.); (T.M.); (S.S.); (T.F.)
- Shinshu University School of Medicine and Research Center for Social Systems, Nagano 389-0111, Japan
| |
Collapse
|
38
|
Morimoto S, Ichihara A. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension. Hypertens Res 2020; 43:744-753. [PMID: 32424201 DOI: 10.1038/s41440-020-0468-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/31/2022]
Abstract
Resistant hypertension is associated with a poor prognosis due to organ damage caused by prolonged suboptimal blood pressure control. The concomitant use of mineralocorticoid receptor (MR) antagonists with other antihypertensives has been shown to improve blood pressure control in some patients with resistant hypertension, and such patients are considered to have MR-associated hypertension. MR-associated hypertension is classified into two subtypes: one with a high plasma aldosterone level, which includes primary aldosteronism (PA), and the other with a normal aldosterone level. In patients with unilateral PA, adrenalectomy may be the first-choice procedure, while in patients with bilateral PA, MR antagonists are selected. In addition, in patients with other types of MR-associated hypertension with high aldosterone levels, MR antagonists may be selected as a first-line therapy. In patients with normal aldosterone levels, ARBs or ACE inhibitors are used as a first-line therapy, and MR antagonists may be used as an add-on agent. Since MR antagonist therapy may have efficacy as a first-line or add-on agent in these patients, it is important to recognize this type of hypertension. Further studies are needed to elucidate the pathogenesis and management of MR-associated hypertension in more detail to improve the clinical outcomes of patients with MR-associated hypertension.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuhiro Ichihara
- Department of Endocrinology and Hypertension, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
39
|
Treesaranuwattana T, Wong KYH, Brooks DL, Tay CS, Williams GH, Williams JS, Pojoga LH. Lysine-Specific Demethylase-1 Deficiency Increases Agonist Signaling Via the Mineralocorticoid Receptor. Hypertension 2020; 75:1045-1053. [PMID: 32160100 DOI: 10.1161/hypertensionaha.119.13821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
LSD1 (lysine-specific demethylase-1) is an epigenetic regulator of gene transcription. LSD1 risk allele in humans and LSD1 deficiency (LSD1+/-) in mice confer increasing salt-sensitivity of blood pressure with age, which evolves into salt-sensitive hypertension in older individuals. However, the mechanism underlying the relationship between LSD1 and salt-sensitivity of blood pressure remains elusive. Here, we show that LSD1 genotype (in humans) and LSD1 deficiency (in mice) lead to similar associations with increased blood pressure and urine potassium levels but with decreased aldosterone levels during a liberal salt diet. Thus, we hypothesized that LSD1 deficiency leads to an MR (mineralocorticoid receptor)-dependent hypertensive state. Yet, further studies in LSD1+/- mice treated with the MR antagonist eplerenone demonstrate that hypertension, kaliuria, and albuminuria are substantially improved, suggesting that the ligand-independent activation of the MR is the underlying cause of this LSD1 deficiency-mediated phenotype. Indeed, while MR and epithelial sodium channel expression levels were increased in LSD1+/- mouse kidney tissues, aldosterone secretion from LSD1+/- glomerulosa cells was significantly lower. Collectively, these data establish that LSD1 deficiency leads to an inappropriate activation and increased levels of the MR during a liberal salt regimen and suggest that inhibiting the MR pathway is a useful strategy for treatment of hypertension in human LSD1 risk allele carriers.
Collapse
Affiliation(s)
- Thitinan Treesaranuwattana
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Division of Endocrinology and Metabolism, Rajavithi Hospital, Rangsit University, Bangkok, Thailand (T.T.)
| | - Kelly Yin Han Wong
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Danielle L Brooks
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Chee Sin Tay
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.).,Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia (K.Y.H.W., C.S.T.)
| | - Gordon H Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Jonathan S Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| | - Luminita H Pojoga
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, MA (T.T., K.Y.H.W., D.L.B., C.S.T., G.H.W., J.S.W., L.H.P.)
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin-aldosterone system (RAAS) plays important roles in regulating blood pressure and body fluid, which contributes to the pathophysiology of hypertension and cardiovascular/renal diseases. However, accumulating evidence has further revealed the complexity of this signal transduction system, including direct interactions with other receptors and proteins. This review focuses on recent research advances in RAAS with an emphasis on its receptors. RECENT FINDINGS Both systemically and locally produced angiotensin II (Ang II) bind to Ang II type 1 receptor (AT1R) and elicit strong biological functions. Recent studies have shown that Ang II-induced activation of Ang II type 2 receptor (AT2R) elicits the opposite functions to those of AT1R. However, accumulating evidence has now expanded the components of RAAS, including (pro)renin receptor, angiotensin-converting enzyme 2, angiotensin 1-7, and Mas receptor. In addition, the signal transductions of AT1R and AT2R are regulated by not only Ang II but also its receptor-associated proteins such as AT1R-associated protein and AT2R-interacting protein. Recent studies have indicated that inappropriate activation of local mineralocorticoid receptor contributes to cardiovascular and renal tissue injuries through aldosterone-dependent and -independent mechanisms. Since the mechanisms of RAAS signal transduction still remain to be elucidated, further investigations are necessary to explore novel molecular mechanisms of the RAAS, which will provide alternative therapeutic agents other than existing RAAS blockers.
Collapse
|
41
|
Manou-Stathopoulou V, Korbonits M, Ackland GL. Redefining the perioperative stress response: a narrative review. Br J Anaesth 2019; 123:570-583. [PMID: 31547969 DOI: 10.1016/j.bja.2019.08.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/21/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
The systemic stress response triggered by surgical trauma is characterised by sterile inflammation preceding metabolic and neuroendocrine dysregulation. However, the relevance of the classically described 'stress response' is now highly questionable in an era where profound physiological deconditioning is common in older, frail surgical patients. Commonly used assessment techniques do not accurately reflect hypothalamic-pituitary-adrenal axis integrity after major surgery. Clinical interpretation of plasma concentrations of cortisol, the prototypical stress hormone, is rarely accurate, because of study heterogeneity, the inherently dynamic characteristics of cortisol production, and assay variability. Before surgery, chronic psychosocial stress and common cardiorespiratory co-morbidities are clinically relevant modifiers of neuroendocrine activation to acute stress/inflammation. The frequent development of multi-morbidity after major surgery further clouds the compartmentalised, discrete model of neuroendocrine activation after initial tissue injury. Starvation, impaired mobility, and sepsis after surgery generate distinct neuroendocrine profiles that challenge the conventional model of neuroendocrine activation. Basic science studies suggest that high circulating levels of cortisol may directly cause organ injury. Conversely, randomised controlled clinical trials investigating glucocorticoid supplementation have delivered contrasting results, with some suggesting a protective effect in the perioperative period. Here, we consider many of the confounding factors that have emerged to challenge the conventional model of the surgical stress response, and suggest that a more nuanced understanding of changes in hypothalamic-pituitary-adrenal axis physiology is warranted to advance perioperative medicine. Re-examining the perioperative stress response presents opportunities for improving outcomes through enhancing the understanding of the neuroendocrine aspects of preparation for and recovery from surgery.
Collapse
Affiliation(s)
- Vasiliki Manou-Stathopoulou
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
42
|
The non-steroidal mineralocorticoid receptor antagonist finerenone prevents cardiac fibrotic remodeling. Biochem Pharmacol 2019; 168:173-183. [PMID: 31283930 DOI: 10.1016/j.bcp.2019.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Mineralocorticoid receptor (MR) overactivation promotes cardiac fibrosis. We studied the ability of the non-steroidal MR antagonist finerenone to prevent fibrotic remodeling. In neonatal rat cardiac fibroblasts, finerenone prevented aldosterone-induced nuclear MR translocation. Treatment with finerenone decreased the expression of connective tissue growth factor (CTGF) (74 ± 15% of control, p = 0.005) and prevented aldosterone-induced upregulation of CTGF and lysyl oxidase (LOX) completely. Finerenone attenuated the upregulation of transforming growth factor ß (TGF-ß), which was induced by the Rac1 GTPase activator l-buthionine sulfoximine. Transgenic mice with cardiac-specific overexpression of Rac1 (RacET) showed increased left ventricular (LV) end-diastolic (63.7 ± 8.0 vs. 93.8 ± 25.6 µl, p = 0.027) and end-systolic (28.0 ± 4.0 vs. 49.5 ± 16.7 µl, p = 0.014) volumes compared to wild-type FVBN control mice. Treatment of RacET mice with 100 ppm finerenone over 5 months prevented LV dilatation. Systolic and diastolic LV function did not differ between the three groups. RacET mice exhibited overactivation of MR and 11ß hydroxysteroid dehydrogenase type 2. Both effects were reduced by finerenone (reduction about 36%, p = 0.030, and 40%, p = 0.032, respectively). RacET mice demonstrated overexpression of TGF-ß, CTGF, LOX, osteopontin as well as collagen and myocardial fibrosis in the left ventricle. In contrast, expression of these parameters did not differ between finerenone-treated RacET and control mice. Finerenone prevented left atrial dilatation (6.4 ± 1.5 vs. 4.7 ± 1.4 mg, p = 0.004) and left atrial fibrosis (17.8 ± 3.1 vs. 12.8 ± 3.1%, p = 0.046) compared to vehicle-treated RacET mice. In summary, finerenone prevented from MR-mediated structural remodeling in cardiac fibroblasts and in RacET mice. These data demonstrate anti-fibrotic myocardial effects of finerenone.
Collapse
|
43
|
Capelli I, Gasperoni L, Ruggeri M, Donati G, Baraldi O, Sorrenti G, Caletti MT, Aiello V, Cianciolo G, La Manna G. New mineralocorticoid receptor antagonists: update on their use in chronic kidney disease and heart failure. J Nephrol 2019; 33:37-48. [PMID: 30989614 DOI: 10.1007/s40620-019-00600-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/07/2019] [Indexed: 12/19/2022]
Abstract
Aldosterone is a mineralocorticoid hormone with a well-known effect on the renal tubule leading to water retention and potassium reabsorption. Other major effects of the hormone include the induction of proinflammatory activity that leads to progressive fibrotic damage of the target organs, heart and kidney. Blocking the aldosterone receptor therefore represents an important pharmacological strategy to avoid the clinical conditions deriving from heart failure (CHF) and chronic kidney disease (CKD). However, steroidal mineralocorticoid receptor antagonists (MRA) have a low safety profile, especially in CKD patients due to the high incidence of hyperkalemia. A new generation of nonsteroidal MRA has recently been developed to obtain a selective receptor block avoiding side-effects like hyperkalemia and thereby making the drugs suitable for administration to CKD patients. This review summarizes the results of published preclinical and clinical studies on the nonsteroidal MRA, apararenone esaxerenone and finerenone. The trials showed a better safety profile with maintained drug efficacy compared with steroidal MRA. For this reason, nonsteroidal MRA represent an interesting new therapeutic approach for the prevention of CHF and CKD progression. Some basic research findings also yielded interesting results in acute clinical settings such as myocardial infarction and acute kidney injury.
Collapse
Affiliation(s)
- Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Marco Ruggeri
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Gabriele Donati
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Olga Baraldi
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | | | - Maria Turchese Caletti
- Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, "Alma Mater Studiorum" University, Bologna, Italy
| | - Valeria Aiello
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Via Massarenti 9, 40100, Bologna, Italy.
| |
Collapse
|
44
|
Pathophysiological mechanisms of mineralocorticoid receptor-dependent cardiovascular and chronic kidney disease. Hypertens Res 2018; 42:293-300. [PMID: 30523293 DOI: 10.1038/s41440-018-0158-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 01/02/2023]
Abstract
Accumulating evidence has indicated the potential contributions of aldosterone and mineralocorticoid receptor (MR) to the pathophysiology of cardiovascular disease (CVD) and chronic kidney disease (CKD). Patients with primary aldosteronism have a higher risk of CVD and CKD than those with essential hypertension. MR is strongly expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages, glomerular mesangial cells, podocytes, and proximal tubular cells. In these cardiovascular and renal cells, aldosterone-induced cell injury is prevented by MR blockade. Interestingly, MR antagonists elicit beneficial effects on CVD and CKD in subjects with low or normal plasma aldosterone levels. Recent studies have shown that during development of CVD and CKD, cardiovascular and renal MR is activated by glucocorticoid and ligand-independent mechanisms, such as Rac1 signaling pathways. These data indicate that inappropriate activation of local MR contributes to cardiovascular and renal tissue injury through aldosterone-dependent and -independent mechanisms. In this review, recent findings on the specific role of cardiovascular and renal MR in the pathogenesis of CVD and CKD are summarized.
Collapse
|
45
|
Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid Receptor and Cardiovascular Disease. Am J Hypertens 2018; 31:1165-1174. [PMID: 30192914 DOI: 10.1093/ajh/hpy120] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) in the distal nephron by its ligand, aldosterone, plays an important role in sodium reabsorption and blood pressure regulation. However, expression of the MR goes beyond the kidney. It is expressed in a variety of other tissues in which its activation could lead to tissue injury. Indeed, MR activation in the cardiovascular (CV) system has been shown to promote hypertension, fibrosis, and inflammation. Pharmacological blockade of the MR has protective effects in several animal models of CV disease. Furthermore, the use of MR antagonists is beneficial for heart failure patients, preventing mortality and morbidity. A better understanding of the implications of the MR in the setting of CV diseases is critical for refining treatments and improving patient care. The mechanisms involved in the deleterious effects of MR activation are complex and include oxidative stress, inflammation, and fibrosis. This review will discuss the pathological role of the MR in the CV system and the major mechanisms underlying it.
Collapse
Affiliation(s)
- Mathieu Buonafine
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Benjamin Bonnard
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
| | - Frédéric Jaisser
- INSERM, UMRS, Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Paris Descartes University, Paris, France
- INSERM, Clinical Investigation Centre, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, RHU Fight-HF, Nancy, France
| |
Collapse
|
46
|
Gorini S, Marzolla V, Mammi C, Armani A, Caprio M. Mineralocorticoid Receptor and Aldosterone-Related Biomarkers of End-Organ Damage in Cardiometabolic Disease. Biomolecules 2018; 8:biom8030096. [PMID: 30231508 PMCID: PMC6165349 DOI: 10.3390/biom8030096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
The mineralocorticoid receptor (MR) was first identified as a blood pressure regulator, modulating renal sodium handling in response to its principal ligand aldosterone. The mineralocorticoid receptor is also expressed in many tissues other than the kidney, such as adipose tissue, heart and vasculature. Recent studies have shown that MR plays a relevant role in the control of cardiovascular and metabolic function, as well as in adipogenesis. Dysregulation of aldosterone/MR signaling represents an important cause of disease as high plasma levels of aldosterone are associated with hypertension, obesity and increased cardiovascular risk. Aldosterone displays powerful vascular effects and acts as a potent pro-fibrotic agent in cardiovascular remodeling. Mineralocorticoid receptor activation regulates genes involved in vascular and cardiac fibrosis, calcification and inflammation. This review focuses on the role of novel potential biomarkers related to aldosterone/MR system that could help identify cardiovascular and metabolic detrimental conditions, as a result of altered MR activation. Specifically, we discuss: (1) how MR signaling regulates the number and function of different subpopulations of circulating and intra-tissue immune cells; (2) the role of aldosterone/MR system in mediating cardiometabolic diseases induced by obesity; and (3) the role of several MR downstream molecules as novel potential biomarkers of cardiometabolic diseases, end-organ damage and rehabilitation outcome.
Collapse
Affiliation(s)
- Stefania Gorini
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
47
|
Hermidorff MM, de Assis LVM, Isoldi MC. Genomic and rapid effects of aldosterone: what we know and do not know thus far. Heart Fail Rev 2018; 22:65-89. [PMID: 27942913 DOI: 10.1007/s10741-016-9591-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aldosterone is the most known mineralocorticoid hormone synthesized by the adrenal cortex. The genomic pathway displayed by aldosterone is attributed to the mineralocorticoid receptor (MR) signaling. Even though the rapid effects displayed by aldosterone are long known, our knowledge regarding the receptor responsible for such event is still poor. It is intense that the debate whether the MR or another receptor-the "unknown receptor"-is the receptor responsible for the rapid effects of aldosterone. Recently, G protein-coupled estrogen receptor-1 (GPER-1) was elegantly shown to mediate some aldosterone-induced rapid effects in several tissues, a fact that strongly places GPER-1 as the unknown receptor. It has also been suggested that angiotensin receptor type 1 (AT1) also participates in the aldosterone-induced rapid effects. Despite this open question, the relevance of the beneficial effects of aldosterone is clear in the kidneys, colon, and CNS as aldosterone controls the important water reabsorption process; on the other hand, detrimental effects displayed by aldosterone have been reported in the cardiovascular system and in the kidneys. In this line, the MR antagonists are well-known drugs that display beneficial effects in patients with heart failure and hypertension; it has been proposed that MR antagonists could also play an important role in vascular disease, obesity, obesity-related hypertension, and metabolic syndrome. Taken altogether, our goal here was to (1) bring a historical perspective of both genomic and rapid effects of aldosterone in several tissues, and the receptors and signaling pathways involved in such processes; and (2) critically address the controversial points within the literature as regarding which receptor participates in the rapid pathway display by aldosterone.
Collapse
Affiliation(s)
- Milla Marques Hermidorff
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil
| | - Leonardo Vinícius Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mauro César Isoldi
- Laboratory of Hypertension, Research Center in Biological Science, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, 35400-000, Brazil.
| |
Collapse
|
48
|
Xu Q, Huff LP, Fujii M, Griendling KK. Redox regulation of the actin cytoskeleton and its role in the vascular system. Free Radic Biol Med 2017; 109:84-107. [PMID: 28285002 PMCID: PMC5497502 DOI: 10.1016/j.freeradbiomed.2017.03.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/17/2017] [Accepted: 03/06/2017] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton is critical for form and function of vascular cells, serving mechanical, organizational and signaling roles. Because many cytoskeletal proteins are sensitive to reactive oxygen species, redox regulation has emerged as a pivotal modulator of the actin cytoskeleton and its associated proteins. Here, we summarize work implicating oxidants in altering actin cytoskeletal proteins and focus on how these alterations affect cell migration, proliferation and contraction of vascular cells. Finally, we discuss the role of oxidative modification of the actin cytoskeleton in vivo and highlight its importance for vascular diseases.
Collapse
Affiliation(s)
- Qian Xu
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States; Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren P Huff
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States
| | - Masakazu Fujii
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Japan
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, 101 Woodruff Circle, 308a WMB, Atlanta, GA 30322, United States.
| |
Collapse
|
49
|
DuPont JJ, Jaffe IZ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The role of the mineralocorticoid receptor in the vasculature. J Endocrinol 2017; 234. [PMID: 28634267 PMCID: PMC5518626 DOI: 10.1530/joe-17-0009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the mineralocorticoid receptor (MR) was cloned 30 years ago, it has become clear that MR is expressed in extra-renal tissues, including the cardiovascular system, where it is expressed in all cells of the vasculature. Understanding the role of MR in the vasculature has been of particular interest as clinical trials show that MR antagonism improves cardiovascular outcomes out of proportion to changes in blood pressure. The last 30 years of research have demonstrated that MR is a functional hormone-activated transcription factor in vascular smooth muscle cells and endothelial cells. This review summarizes advances in our understanding of the role of vascular MR in regulating blood pressure and vascular function, and its contribution to vascular disease. Specifically, vascular MR contributes directly to blood pressure control and to vascular dysfunction and remodeling in response to hypertension, obesity and vascular injury. The literature is summarized with respect to the role of vascular MR in conditions including: pulmonary hypertension; cerebral vascular remodeling and stroke; vascular inflammation, atherosclerosis and myocardial infarction; acute kidney injury; and vascular pathology in the eye. Considerations regarding the impact of age and sex on the function of vascular MR are also described. Further investigation of the precise molecular mechanisms by which MR contributes to these processes will aid in the identification of novel therapeutic targets to reduce cardiovascular disease (CVD)-related morbidity and mortality.
Collapse
Affiliation(s)
- Jennifer J DuPont
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| | - Iris Z Jaffe
- Molecular Cardiology Research InstituteTufts Medical Center, Boston, MA, USA
| |
Collapse
|
50
|
Ball JP, Syed M, Marañon RO, Hall ME, KC R, Reckelhoff JF, Yanes Cardozo LL, Romero DG. Role and Regulation of MicroRNAs in Aldosterone-Mediated Cardiac Injury and Dysfunction in Male Rats. Endocrinology 2017; 158:1859-1874. [PMID: 28368454 PMCID: PMC5460923 DOI: 10.1210/en.2016-1707] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/15/2017] [Indexed: 12/21/2022]
Abstract
Primary aldosteronism is characterized by excess aldosterone (ALDO) secretion independent of the renin-angiotensin system and accounts for approximately 10% of hypertension cases. Excess ALDO that is inappropriate for salt intake status causes cardiac hypertrophy, inflammation, fibrosis, and hypertension. The molecular mechanisms that trigger the onset and progression of ALDO-mediated cardiac injury are poorly understood. MicroRNAs (miRNAs) are endogenous, small, noncoding RNAs that have been implicated in diverse cardiac abnormalities, yet very little is known about their regulation and role in ALDO-mediated cardiac injury. To elucidate the regulation of miRNAs in ALDO-mediated cardiac injury, we performed a time-series analysis of left ventricle (LV) miRNA expression. Uninephrectomized male Sprague-Dawley rats were treated with ALDO (0.75 µg/h) infusion and SALT (1.0% NaCl/0.3% KCl) in the drinking water for up to 8 weeks. ALDO/SALT time dependently modulated the expression of multiple miRNAs in the LV. miR-21 was the most upregulated miRNA after 2 weeks of treatment and remained elevated until the end of the study. To elucidate the role of miR-21 in ALDO/SALT-mediated cardiac injury, miR-21 was downregulated by using antagomirs in ALDO/SALT-treated rats. miR-21 downregulation exacerbated ALDO/SALT-mediated cardiac hypertrophy, expression of fibrosis marker genes, interstitial and perivascular fibrosis, OH-proline content, and cardiac dysfunction. These results suggest that ALDO/SALT-mediated cardiac miR-21 upregulation may be a compensatory mechanism that mitigates ALDO/SALT-mediated cardiac deleterious effects. We speculate that miR-21 supplementation would have beneficial effects in reverting or mitigating cardiac injury and dysfunction in patients with primary aldosteronism.
Collapse
Affiliation(s)
- Jana P. Ball
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Maryam Syed
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Rodrigo O. Marañon
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Cardio-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Michael E. Hall
- Cardio-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Roshan KC
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jane F. Reckelhoff
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Cardio-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Licy L. Yanes Cardozo
- Cardio-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Damian G. Romero
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Cardio-Renal Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
- Women’s Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|