1
|
Ge J, Zhou Y, Li H, Zeng R, Xie K, Leng J, Chen X, Yu G, Shi X, Xu Y, He D, Guo P, Zhou Y, Luo H, Luo W, Liu B. Prostacyclin Synthase Deficiency Leads to Exacerbation or Occurrence of Endothelium-Dependent Contraction and Causes Cardiovascular Disorders Mainly via the Non-TxA 2 Prostanoids/TP Axis. Circ Res 2024; 135:e133-e149. [PMID: 39082135 DOI: 10.1161/circresaha.124.324924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.
Collapse
Affiliation(s)
- Jiahui Ge
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Yingbi Zhou
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Hui Li
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Ruhui Zeng
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, China (R.Z.)
| | - Kaiqi Xie
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Jing Leng
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Xijian Chen
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Gang Yu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Xinya Shi
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Yineng Xu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Dong He
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| | - Pi Guo
- Department of Preventive Medicine (P.G.), Shantou University Medical College, China
| | - Yongyin Zhou
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Hongjun Luo
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Wenhong Luo
- Bio-Analytical Laboratory (H. Li, Yongyin Zhou, H. Luo, W.L.), Shantou University Medical College, China
| | - Bin Liu
- Cardiovascular Research Center (J.G., Yingbi Zhou, K.X., J.L., X.C., G.Y., X.S., Y.X., D.H., B.L.), Shantou University Medical College, China
| |
Collapse
|
2
|
Kek HP, Su YT, Lin KJ, Yang MC, Chang LC, Yang YN, Tsai CC. Investigating the Mechanisms Underlying U46619-Induced Contraction on Porcine Lower Esophageal Sphincter. J Pharmacol Exp Ther 2024; 390:188-195. [PMID: 38135510 DOI: 10.1124/jpet.123.001902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) is associated with an incompetent lower esophageal sphincter (LES), resulting in the reflux of gastric contents into the esophagus. U46619, a thromboxane A2 (TXA2) receptor agonist, induces contractions in various smooth muscles. Therefore, this study aimed to investigate the effects and mechanisms of action of U46619 on the porcine LES. To achieve this, contractions of the clasp and sling strips of the porcine LES, induced by U46619, were measured using isometric transducers. Furthermore, the contractile mechanism of U46619 in the porcine LES was investigated by pretreating the strips with atropine (a muscarinic receptor antagonist), tetrodotoxin (a neuronal sodium channel blocker), nifedipine (a calcium channel blocker), and Ca2+-free Krebs-Henseleit solution. Additionally, reverse transcription polymerase chain reaction (PCR) and immunohistochemistry (IHC) were performed to determine the presence of the TXA2 receptor in porcine LES. The results of this study demonstrated that U46619 caused marked concentration-dependent contractions in both porcine sling and clasp strips. The mechanism of U46619-induced contraction of the porcine LES was found to be related to calcium channels. Furthermore, the reverse transcription PCR analysis and IHC revealed that the TXA2 receptor was expressed in the clasp and sling fibers of porcine LES. Consequently, this study suggests that U46619 mediates the contraction of porcine LES through calcium channels and has potential as a therapeutic approach for treating GERD. SIGNIFICANCE STATEMENT: This study establishes that U46619 induces concentration-dependent contractions in porcine LES, primarily mediated by calcium channels. The presence of the TXA2 receptor in LES clasp and sling fibers is confirmed. These findings highlight U46619's potential as a GERD therapeutic by targeting calcium channels for LES contraction modulation.
Collapse
Affiliation(s)
- Ho-Poh Kek
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Yu-Tsun Su
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Kai-Jen Lin
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Ming-Chun Yang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Li-Ching Chang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Yung-Ning Yang
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| | - Ching-Chung Tsai
- Department of Pediatrics (H.-P.K., Y.-T.S., M.-C.Y., Y.-N.Y., C.-C.T.) and Department of Pathology (K.-J.L.), E-Da Hospital, I-Shou University, Taiwan, Republic of China and School of Medicine for International Students (Y.-T.S., K.-J.L., L.-C.C., C.-C.T.) and School of Medicine (H.-P.K., M.-C.Y., Y.-N.Y.), College of Medicine, I-Shou University, Taiwan, Republic of China
| |
Collapse
|
3
|
Classes of Lipid Mediators and Their Effects on Vascular Inflammation in Atherosclerosis. Int J Mol Sci 2023; 24:ijms24021637. [PMID: 36675152 PMCID: PMC9863938 DOI: 10.3390/ijms24021637] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023] Open
Abstract
It is commonly believed that the inactivation of inflammation is mainly due to the decay or cessation of inducers. In reality, in connection with the development of atherosclerosis, spontaneous decay of inducers is not observed. It is now known that lipid mediators originating from polyunsaturated fatty acids (PUFAs), which are important constituents of all cell membranes, can act in the inflamed tissue and bring it to resolution. In fact, PUFAs, such as arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are precursors to both pro-inflammatory and anti-inflammatory compounds. In this review, we describe the lipid mediators of vascular inflammation and resolution, and their biochemical activity. In addition, we highlight data from the literature that often show a worsening of atherosclerotic disease in subjects deficient in lipid mediators of inflammation resolution, and we also report on the anti-proteasic and anti-thrombotic properties of these same lipid mediators. It should be noted that despite promising data observed in both animal and in vitro studies, contradictory clinical results have been observed for omega-3 PUFAs. Many further studies will be required in order to clarify the observed conflicts, although lifestyle habits such as smoking or other biochemical factors may often influence the normal synthesis of lipid mediators of inflammation resolution.
Collapse
|
4
|
Protective effect of berberine in diabetic nephropathy: A systematic review and meta-analysis revealing the mechanism of action. Pharmacol Res 2022; 185:106481. [DOI: 10.1016/j.phrs.2022.106481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 12/09/2022]
|
5
|
The complex genetic basis of fibromuscular dysplasia, a systemic arteriopathy associated with multiple forms of cardiovascular disease. Clin Sci (Lond) 2022; 136:1241-1255. [PMID: 36043395 PMCID: PMC9434409 DOI: 10.1042/cs20210990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/28/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022]
Abstract
Artery stenosis is a common cause of hypertension and stroke and can be due to atherosclerosis accumulation in the majority of cases and in a small fraction of patients to arterial fibromuscular dysplasia (FMD). Artery stenosis due to atherosclerosis is widely studied with known risk factors (e.g. increasing age, male gender, and dyslipidemia) to influence its etiology, including genetic factors. However, the causes of noninflammatory and nonatherosclerotic stenosis in FMD are less understood. FMD occurs predominantly in early middle-age women, a fraction of the population where cardiovascular risk is different and understudied. FMD arteriopathies are often diagnosed in the context of hypertension and stroke and co-occur mainly with spontaneous coronary artery dissection, an atypical cause of acute myocardial infarction. In this review, we provide a comprehensive overview of the recent advances in the understanding of molecular origins of FMD. Data were obtained from genetic studies using complementary methodological approaches applied to familial, syndromic, and sporadic forms of this intriguing arteriopathy. Rare variation analyses point toward mechanisms related to impaired prostacyclin signaling and defaults in fibrillar collagens. The study of common variation, mainly through a recent genome-wide association study, describes a shared genetic link with blood pressure, in addition to point at potential risk genes involved in actin cytoskeleton and intracellular calcium homeostasis supporting impaired vascular contraction as a key mechanism. We conclude this review with future strategies and approaches needed to fully understand the genetic and molecular mechanisms related to FMD.
Collapse
|
6
|
Lei J, Zhao M, Li L, Ji B, Xu T, Sun M, Chen J, Qiu J, Gao Q. Research progress of placental vascular pathophysiological changes in pregnancy-induced hypertension and gestational diabetes mellitus. Front Physiol 2022; 13:954636. [PMID: 35928561 PMCID: PMC9343869 DOI: 10.3389/fphys.2022.954636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023] Open
Abstract
The placenta is a vital organ for fetal development, providing the fetus with nutrients, oxygen, and other important factors. Placenta is rich in blood vessels. Abnormal placental vascular function and blood circulation may lead to insufficient blood supply to the fetus in the uterus, leading to serious consequences such as pregnancy complications, fetal distress and even stillbirth. Pregnancy-induced hypertension (PIH) and gestational diabetes mellitus (GDM) are common complications of pregnancy. Recent studies report that pregnancy complications are often accompanied by changes in placental vascular structure and function. What are the physiological characteristics of human placental blood vessels? What are the pathological changes in the state of PIH and GDM? What are the relationships between these pathological changes and the occurrence of these pregnancy complications? Answers to these questions not only increase the understanding of placental vascular characteristics, but also provide important information for revealing the pathological mechanism of PIH and GDM. This article will summarize the research on the pathological changes of placental blood vessels in PIH and GDM, hoping to further unravel the physiological and pathological characteristics of placental blood vessels in the state of PIH and GDM, provide information for guiding clinical treatment for PIH and GDM.
Collapse
Affiliation(s)
- Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Junlan Qiu
- Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| |
Collapse
|
7
|
Bartikoski BJ, de Oliveira MS, do Espírito Santo RC, dos Santos LP, dos Santos NG, Xavier RM. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites 2022; 12:394. [PMID: 35629898 PMCID: PMC9146149 DOI: 10.3390/metabo12050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Metabolomic analysis provides a wealth of information that can be predictive of distinctive phenotypes of pathogenic processes and has been applied to better understand disease development. Rheumatoid arthritis (RA) is an autoimmune disease with the establishment of chronic synovial inflammation that affects joints and peripheral tissues such as skeletal muscle and bone. There is a lack of useful disease biomarkers to track disease activity, drug response and follow-up in RA. In this review, we describe potential metabolic biomarkers that might be helpful in the study of RA pathogenesis, drug response and risk of comorbidities. TMAO (choline and trimethylamine oxide) and TCA (tricarboxylic acid) cycle products have been suggested to modulate metabolic profiles during the early stages of RA and are present systemically, which is a relevant characteristic for biomarkers. Moreover, the analysis of lipids such as cholesterol, FFAs and PUFAs may provide important information before disease onset to predict disease activity and treatment response. Regarding therapeutics, TNF inhibitors may increase the levels of tryptophan, valine, lysine, creatinine and alanine, whereas JAK/STAT inhibitors may modulate exclusively fatty acids. These observations indicate that different disease modifying antirheumatic drugs have specific metabolic profiles and can reveal differences between responders and non-responders. In terms of comorbidities, physical impairment represented by higher fatigue scores and muscle wasting has been associated with an increase in urea cycle, FFAs, tocopherols and BCAAs. In conclusion, synovial fluid, blood and urine samples from RA patients seem to provide critical information about the metabolic profile related to drug response, disease activity and comorbidities.
Collapse
Affiliation(s)
- Bárbara Jonson Bartikoski
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Marianne Schrader de Oliveira
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Rafaela Cavalheiro do Espírito Santo
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Leonardo Peterson dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Natália Garcia dos Santos
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| | - Ricardo Machado Xavier
- Laboratório de Doenças Autoimunes, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre 90035-903, RS, Brazil; (B.J.B.); (M.S.d.O.); (R.C.d.E.S.); (L.P.d.S.); (N.G.d.S.)
- Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre 90035-903, RS, Brazil
- Postgraduate Program in Medical Science, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos 2400, Porto Alegre 90035-003, RS, Brazil
| |
Collapse
|
8
|
Eekhoudt CR, Bortoluzzi T, Varghese SS, Cheung DYC, Christie S, Eastman S, Mittal I, Austria JA, Aukema HM, Ravandi A, Thliveris J, Singal PK, Jassal DS. Comparing Flaxseed and Perindopril in the Prevention of Doxorubicin and Trastuzumab-Induced Cardiotoxicity in C57Bl/6 Mice. Curr Oncol 2022; 29:2941-2953. [PMID: 35621631 PMCID: PMC9139942 DOI: 10.3390/curroncol29050241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Two anti-cancer agents, doxorubicin (DOX) and trastuzumab (TRZ), are commonly used in the management of breast cancer in women. Despite their efficacy in reducing the morbidity and mortality of individuals with breast cancer, the use of these agents is limited by adverse cardiotoxic side effects. Both the nutraceutical agent flaxseed (FLX) and the pharmaceutical drug perindopril (PER) have been studied individually in the prevention of chemotherapy-mediated cardiac dysfunction. The objective of this study was to determine whether the prophylactic administration of FLX is comparable and/or synergistic with PER in preventing DOX + TRZ-induced cardiotoxicity. Methods: Over a six-week period, 81 wild-type C57Bl/6 female mice (8–12 weeks old) were randomized to receive regular chow (RC) or 10% FLX-supplemented diets with or without PER (3 mg/kg/week; oral gavage). Starting at week 4, mice were randomized to receive a weekly injection of saline or DOX (8 mg/kg) + TRZ (3 mg/kg). Serial echocardiography was conducted weekly and histological and biochemical analyses were performed at the end of the study. Results: In mice treated with RC + DOX + TRZ, left ventricular ejection (LVEF) decreased from 75 ± 2% at baseline to 37 ± 3% at week 6. However, prophylactic treatment with either FLX, PER, or FLX + PER partially preserved left ventricular systolic function with LVEF values of 61 ± 2%, 62 ± 2%, and 64 ± 2%, respectively. The administration of FLX, PER, or FLX + PER was also partially cardioprotective in preserving cardiomyocyte integrity and attenuating the expression of the inflammatory biomarker NF-κB due to DOX + TRZ administration. Conclusion: FLX was equivalent to PER at preventing DOX + TRZ-induced cardiotoxicity in a chronic in vivo murine model.
Collapse
Affiliation(s)
- Cameron R. Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Tessa Bortoluzzi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Sonu S. Varghese
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - David Y. C. Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Simon Christie
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - Skyler Eastman
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Ishika Mittal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - J. Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Harold M. Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, Department of Food and Human Nutritional Sciences, University of Manitoba, Room W573 Duff Roblin Building, Winnipeg, MB R3T 2N2, Canada;
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
| | - James Thliveris
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 130 Basic Medical Science Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada;
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
| | - Davinder S. Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 432 Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, MB R3E 0J9, Canada; (C.R.E.); (T.B.); (S.S.V.); (D.Y.C.C.); (S.E.); (I.M.); (J.A.A.); (A.R.); (P.K.S.)
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GC430, Health Sciences Centre 820 Sherbrook Street, Winnipeg, MB R3A 1R9, Canada;
- Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Room GA216, 820 Sherbrook Street, Winnipeg, MB R3T 2N2, Canada
- Correspondence: ; Tel.: +1-(204)-258-1290; Fax: +1-(204)-233-2157
| |
Collapse
|
9
|
Differential effects of cyclo-oxygenase 1 and 2 inhibition on angiogenesis inhibitor-induced hypertension and kidney damage. Clin Sci (Lond) 2022; 136:675-694. [PMID: 35441670 PMCID: PMC9093150 DOI: 10.1042/cs20220182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/17/2022]
Abstract
Vascular endothelial growth factor antagonism with angiogenesis inhibitors in cancer patients induces a ‘preeclampsia-like’ syndrome including hypertension, proteinuria and elevated endothelin (ET)-1. Cyclo-oxygenase (COX) inhibition with aspirin is known to prevent the onset of preeclampsia in high-risk patients. In the present study, we hypothesised that treatment with aspirin would prevent the development of angiogenesis inhibitor-induced hypertension and kidney damage. Our aims were to compare the effects of low-dose (COX-1 inhibition) and high-dose (dual COX-1 and COX-2 inhibition) aspirin on blood pressure, vascular function, oxidative stress, ET-1 and prostanoid levels and kidney damage during angiogenesis-inhibitor therapy in rodents. To this end, Wistar Kyoto rats were treated with vehicle, angiogenesis inhibitor (sunitinib) alone or in combination with low- or high-dose aspirin for 8 days (n=5–7/group). Our results demonstrated that prostacyclin (PGI2) and ET-1 were increased during angiogenesis-inhibitor therapy, while thromboxane (TXA2) was unchanged. Both low- and high-dose aspirin blunted angiogenesis inhibitor-induced hypertension and vascular superoxide production to a similar extent, whereas only high-dose aspirin prevented albuminuria. While circulating TXA2 and prostaglandin F2α levels were reduced by both low- and high-dose aspirin, circulating and urinary levels PGI2 were only reduced by high-dose aspirin. Lastly, treatment with aspirin did not significantly affect ET-1 or vascular function. Collectively our findings suggest that prostanoids contribute to the development of angiogenesis inhibitor-induced hypertension and renal damage and that targeting the prostanoid pathway could be an effective strategy to mitigate the unwanted cardiovascular and renal toxicities associated with angiogenesis inhibitors.
Collapse
|
10
|
Fuchs MAA, Schrankl J, Leupold C, Wagner C, Kurtz A, Broeker KAE. Intact prostaglandin signaling through EP2 and EP4 receptors in stromal progenitor cells is required for normal development of the renal cortex in mice. Am J Physiol Renal Physiol 2022; 322:F295-F307. [PMID: 35037469 DOI: 10.1152/ajprenal.00414.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2022] [Indexed: 01/20/2023] Open
Abstract
Cyclooxygenase (Cox) inhibitors are known to have severe side effects during renal development. These consist of reduced renal function, underdeveloped subcapsular glomeruli, interstitial fibrosis, and thinner cortical tissue. Global genetic deletion of Cox-2 mimics the phenotype observed after application of Cox inhibitors. This study aimed to investigate which cell types express Cox-2 and prostaglandin E2 receptors and what functions are mediated through this pathway during renal development. Expression of EP2 and EP4 mRNA was detected by RNAscope mainly in descendants of FoxD1+ stromal progenitors; EP1 and EP3, on the other hand, were expressed in tubules. Cox-2 mRNA was detected in medullary interstitial cells and macula densa cells. Functional investigations were performed with a cell-specific approach to delete Cox-2, EP2, and EP4 in FoxD1+ stromal progenitor cells. Our data show that Cox-2 expression in macula densa cells is sufficient to drive renal development. Deletion of EP2 or EP4 in FoxD1+ cells had no functional effect on renal development. Codeletion of EP2 and EP4 in FoxD1+ stromal cells, however, led to severe glomerular defects and a strong decline of glomerular filtration rate (1.316 ± 69.7 µL/min/100 g body wt in controls vs. 644.1 ± 64.58 µL/min/100 g body wt in FoxD1+/Cre EP2-/- EP4ff mice), similar to global deletion of Cox-2. Furthermore, EP2/EP4-deficient mice showed a significant increase in collagen production with a strong downregulation of renal renin expression. This study shows the distinct localization of EP receptors in mice. Functionally, we could identify EP2 and EP4 receptors in stromal FoxD1+ progenitor cells as essential receptor subtypes for normal renal development.NEW & NOTEWORTHY Cyclooxygenase-2 (Cox-2) produces prostaglandins that are essential for normal renal development. It is unclear in which cells Cox-2 and the receptors for prostaglandin E2 (EP receptors) are expressed during late nephrogenesis. This study identified the expression sites for EP subtypes and Cox-2 in neonatal mouse kidneys. Furthermore, it shows that stromal progenitor cells may require intact prostaglandin E2 signaling through EP2 and EP4 receptors for normal renal development.
Collapse
MESH Headings
- Animals
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/metabolism
- Gene Expression Regulation, Developmental
- Kidney Cortex/cytology
- Kidney Cortex/enzymology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Organogenesis
- Prostaglandins/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/genetics
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Signal Transduction
- Stem Cells/metabolism
- Stromal Cells/enzymology
- Mice
Collapse
Affiliation(s)
| | - Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christina Leupold
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
11
|
Kim BW, Kim HJ, Kim SH, Baik HJ, Kang MS, Kim DH, Markowitz SD, Kang SW, Bae KB. 15-Hydroxyprostaglandin dehydrogenase inhibitor prevents contrast-induced acute kidney injury. Ren Fail 2021; 43:168-179. [PMID: 33459127 PMCID: PMC7832987 DOI: 10.1080/0886022x.2020.1870139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
The two primary mechanisms by which iodinated contrast media (CM) causes contrast-induced acute kidney injury (CIAKI) are the hemodynamic effect causing intrarenal vasoconstriction and the tubular toxic effect causing acute tubular necrosis. Inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), which degrades prostaglandin E2 (PGE2), promotes tissue repair and regeneration in many organs. PGE2 causes intrarenal arterial vasodilation. In this study, we investigated whether a 15-PGDH inhibitor can act as a candidate for blocking these two major mechanisms of CIAKI. We established a CIAKI mouse model by injecting a 10 gram of iodine per body weight (gI/kg) dose of iodixanol into each mouse tail vein. A 15-PGDH inhibitor (SW033291), PGE1, or PGE2 were administered to compare the renal functional parameters, histologic injury, vasoconstriction, and renal blood flow changes. In addition, human renal proximal tubular epithelial cells were cultured in a CM-treated medium. SW033291, PGE1, or PGE2 were added to compare any changes in cell viability and apoptosis rate. CIAKI mice that received SW033291 had lower serum levels of creatinine, neutrophil gelatinase-associated lipocalin, and kidney injury molecule 1 (p < 0.001); lower histologic injury score and TUNEL positive rates (p < 0.001); and higher medullary arteriolar area (p < 0.05) and renal blood flow (p < 0.001) than CM + vehicle group. In cell culture experiments, Adding SW033291 increased the viability rate (p < 0.05) and decreased the apoptosis rate of the tubular epithelial cells (p < 0.001). This 15-PGDH inhibitor blocks the two primary mechanisms of CIAKI, intrarenal vasoconstriction and tubular cell toxicity, and thus has the potential to be a novel prophylaxis for CIAKI. Abbreviations: 15-PGDH: 15-hydroxyprostaglandin dehydrogenase; AMP: adenosine monophosphate; CIAKI: contrast-induced acute kidney injury; CM: contrast media; EP: prostaglandin E2 receptor; hRPTECs: human-derived renal proximal tubule epithelial cells; KIM-1: kidney injury molecule-1; MTT: 3-(4,5-Dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NGAL: neutrophil gelatinase-associated lipocalin; PBS: phosphate-buffered saline; PGE1: prostaglandin E1; PGE2: prostaglandin E2; RBF: renal blood flow; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; α-SMA: α-Smooth muscle actin.
Collapse
Affiliation(s)
- Byeong Woo Kim
- Department of Nephrology, Haeundae Bumin Hospital, Busan, Republic of Korea
| | - Hye Jung Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sun-Hee Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| | - Hyung Joo Baik
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Mi Seon Kang
- Department of Pathology, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, Inje University College of Medicine, Busan, Republic of Korea
| | - Sanford D. Markowitz
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA
| | - Sun Woo Kang
- Department of Nephrology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ki Beom Bae
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
12
|
Steinmetz-Späh J, Arefin S, Larsson K, Jahan J, Mudrovcic N, Wennberg L, Stenvinkel P, Korotkova M, Kublickiene K, Jakobsson PJ. Effects of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition on resistance artery tone in patients with end stage kidney disease. Br J Pharmacol 2021; 179:1433-1449. [PMID: 34766335 DOI: 10.1111/bph.15729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Inhibition of the microsomal prostaglandin (PG) E2 synthase (mPGES-1) introduces a promising anti-inflammatory treatment approach by specifically reducing PGE2 . The microvasculature is a central target organ for early manifestations of cardiovascular disease. Therefore, a better understanding of the prostaglandin system and characterising the effects of mPGES-1 inhibition in this vascular bed are of interest. EXPERIMENTAL APPROACH The effects of mPGES-1 inhibition on constriction and relaxation of resistance arteries (Ø100-400μm) from patients with end stage kidney disease (ESKD) and controls (Non-ESKD) were studied using wire-myography in combination with immunological and mass-spectrometry based analyses. KEY RESULTS Inhibition of mPGES-1 in arteries from ESKD patients and Non-ESKD controls significantly reduced adrenergic vasoconstriction, which was not affected by the COX-2 inhibitors NS-398 and Etoricoxib or the COX-1/COX-2 inhibitor Indomethacin, tested in Non-ESKD controls. Correspondingly, a significant increase of acetylcholine-induced dilatation was observed for mPGES-1 inhibition only. In IL-1β treated arteries, inhibition of mPGES-1 significantly reduced PGE2 levels while PGI2 levels remained unchanged. In contrast, COX-2 inhibition blocked the formation of both prostaglandins. Blockage of PGI2 signaling with an IP receptor antagonist did not restore the reduced constriction, neither did blocking of PGE2 -EP4 or signaling through PPARγ. A biphasic effect was observed for PGE2 , inducing dilatation at nmol and constriction at μmol concentrations. Immunohistochemistry demonstrated expression of mPGES-1, COX-1, PGIS, weak expression for COX-2 as well as receptor expression for PGE2 (EP1-4), thromboxane (TP) and PGI2 (IP) in ESKD and Non-ESKD. CONCLUSION Our study demonstrates vasodilating effects following mPGES-1 inhibition in human microvasculature and suggests that several pathways besides shunting to PGI2 may be involved.
Collapse
Affiliation(s)
- Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Samsul Arefin
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Karin Larsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Jabin Jahan
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Neja Mudrovcic
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Lars Wennberg
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| | - Karolina Kublickiene
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet & Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Liu B, Zhou Y. Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J 2021; 35:e21877. [PMID: 34449098 DOI: 10.1096/fj.202101077r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023]
Abstract
Although commonly thought to produce prostacyclin (prostaglandin I2 ; PGI2 ) that evokes vasodilatation and protects vessels from the development of diseases, the endothelial cyclooxygenase (COX)-mediated metabolism has also been found to release substance(s) called endothelium-derived contracting factor(s) (EDCF) that causes endothelium-dependent contraction and implicates in endothelial dysfunction of disease conditions. Various mechanisms have been proposed for the process; however, the major endothelial COX metabolite PGI2 , which has been classically considered to activate the I prostanoid receptor (IP) that mediates vasodilatation and opposes the effects of thromboxane (Tx) A2 produced by COX in platelets, emerges as a major EDCF in health and disease conditions. Our recent studies from genetically altered mice further suggest that vasomotor reactions to PGI2 are collectively modulated by IP, the vasoconstrictor Tx-prostanoid receptor (TP; the prototype receptor of TxA2 ) and E prostanoid receptor-3 (EP3; a vasoconstrictor receptor of PGE2 ) although with differences in potency and efficacy; a contraction to PGI2 reflects activities of TP and/or EP3 outweighing that of the concurrently activated IP. Here, we discuss the history of endothelium-dependent contraction, evidences that support the above hypothesis, proposed mechanisms for the varied reactions to endothelial PGI2 synthesis as well as the relation of its dilator activity to the effect of another NO-independent vasodilator mechanism, the endothelium-derived hyperpolarizing factor. Also, we address the possible pathological and therapeutic implications as well as questions remaining to be resolved or limitations of our above findings obtained from genetically altered mouse models.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
14
|
Liu B, Zeng R, Guo T, Zhang Y, Leng J, Ge J, Yu G, Xu Y, Zhou Y. Differential properties of E prostanoid receptor-3 and thromboxane prostanoid receptor in activation by prostacyclin to evoke vasoconstrictor response in the mouse renal vasculature. FASEB J 2020; 34:16105-16116. [PMID: 33047360 DOI: 10.1096/fj.202000845rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Vasomotor reactions of prostacyclin (prostaglandin I2 ; PGI2 ) can be collectively modulated by thromboxane prostanoid receptor (TP), E-prostanoid receptor-3 (EP3), and the vasodilator I prostanoid receptor (IP). This study aimed to determine the direct effect of PGI2 on renal arteries and/or the whole renal vasculature and how each of these receptors is involved. Experiments were performed on vessels or perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ) and/or EP3. Here we show that PGI2 did not evoke relaxation, but instead resulted in contraction of main renal arteries (from ~0.001-0.01 µM) or reduction of flow in perfused kidneys (from ~1 µM); either of them was reversed into a dilator response in TP-/- /EP3-/- counterparts. Also, we found that in renal arteries although it has a lesser effect than TP-/- on the maximal contraction to PGI2 (10 µM), EP3-/- but not TP-/- resulted in relaxation to the prostanoid at 0.01-1 µM. Meanwhile, TP-/- only significantly reduced the contractile activity evoked by PGI2 at ≥0.1 µM. These results demonstrate that PGI2 may evoke an overall vasoconstrictor response in the mouse renal vasculature, reflecting activities of TP and EP3 outweighing that of the vasodilator IP. Also, our results suggest that EP3, on which PGI2 can have a potency similar to that on IP, plays a major role in the vasoconstrictor effect of the prostanoid of low concentrations (≤1 µM), while TP, on which PGI2 has a lower potency but higher efficacy, accounts for a larger part of its maximal contractile activity.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- Department of Gynecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
15
|
Ou M, Zhang Q, Zhao H, Shu C. Polyunsaturated Fatty Acid Diet and Upregulation of Lipoxin A4 Reduce the Inflammatory Response of Preeclampsia. J Proteome Res 2020; 20:357-368. [PMID: 33131275 DOI: 10.1021/acs.jproteome.0c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the effects and mechanisms of polyunsaturated fatty acids (PUFAs) and lipoxin A4 (LXA4) on preeclampsia (PE). The LXA4 level was significantly reduced in PE rats. The PUFA diet upregulated the expressions of lipoxygenase 12 (LOX12) and lipoxygenase 15 (LOX15) and downregulated those of cyclooxygenase-2, tumor necrosis factor-α (TNF-α), and endoglin. Lipopolysaccharides could inhibit cell growth and cause inflammatory response, while the presence of PUFAs inhibited the inflammatory response and promoted the expressions of LOX12, LOX15, and LXA4. Nordihydroguaiaretic acid (NDGA) regulated LXA4 expression and inflammation levels by affecting LOX. Inhibition of lipoxygenase 5 activity by NDGA upregulated the expressions of LOX12 and LOX15, while LXA4 reversed LXA4, nitric oxide downregulation, and TNF-α upregulation by NDGA. A decrease in LXA4 levels played an important role in the development and progression of PE.
Collapse
Affiliation(s)
- Minghui Ou
- Department of Vascular Surgery, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Qian Zhang
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Huidong Zhao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Chang Shu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Jilin University, No.71 Xinmin Street, Changchun, Jilin Province 130021, China
| |
Collapse
|
16
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
17
|
Feng X, Zhang Y, Zhang Y, Yang X, Man D, Lu L, Xu T, Liu Y, Yang C, Li H, Qi L, Su H, Zhou X, Xu Z. Prostaglandin I2 mediates weak vasodilatation in human placental microvessels. Biol Reprod 2020; 103:1229-1237. [PMID: 32902654 DOI: 10.1093/biolre/ioaa156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/20/2020] [Accepted: 09/04/2020] [Indexed: 01/14/2023] Open
Abstract
Human placental vessels (HPVs) play important roles in the exchange of metabolites and oxygen in maternal-fetal circulation. Endothelial-derived prostacyclin (prostaglandin I2, PGI2) is a critical endothelial vasodilator in the body. However, the physiological and pharmacological functions of endothelial PGI2 in the human placenta are still unclear. Human, sheep, and rat blood vessels were used in this study. Unlike non-placental vessels (non-PVs), the PGI2 synthesis inhibitor tranylcypromine (TCP) did not modify 5-hydroxytryptamine (5-HT)-induced vascular contraction, indicating that endothelial-derived PGI2 was weak in PVs. Vascular responses to exogenous PGI2 showed slight relaxation followed by a significant contraction at a higher concentration in HPV, which was inhibited by the thromboxane-prostanoid (TP) receptors antagonist SQ-29,548. Testing PVs and non-PVs from sheep also showed similar functional results. More TP receptors than PGI2 (IP) receptors were observed in HPVs. The whole-cell K+ current density of HPVs was significantly weaker than that of non-PVs. This study demonstrated the specific characteristics of the placental endogenous endothelial PGI2 system and the patterns of placental vascular physiological/pharmacological response to exogenous PGI2, showing that placental endothelial PGI2 does not markedly contribute to vascular dilation in the human placenta, in notable contrast to non-PVs. The results provide crucial information for understanding the endothelial roles of HPVs, which may be helpful for further investigations of potential targets in the treatment of diseases such as preeclampsia.
Collapse
Affiliation(s)
- Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaojun Yang
- Department of Obstetrics and Gynecology, First Hospital of Soochow University, Suzhou, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Huan Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Hongyu Su
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Cai J, Liu B, Guo T, Zhang Y, Wu X, Leng J, Zhu N, Guo J, Zhou Y. Effects of thromboxane prostanoid receptor deficiency on diabetic nephropathy induced by high fat diet and streptozotocin in mice. Eur J Pharmacol 2020; 882:173254. [PMID: 32553735 DOI: 10.1016/j.ejphar.2020.173254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/14/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023]
Abstract
Diabetic nephropathy (DN), one of the main causes of end-stage renal disease, still remains as a challenge of clinical management. This study aimed to determine whether deficiency of the thromboxane (TX) prostanoid receptor (TP), which mediates the contractile activities of all prostanoids, alleviates the development of DN and if so, to examine the underlying mechanism(s). Diabetes was induced by high fat diet and streptozotocin injection in wild-type (WT) mice and those with TP deficiency (TP-/-). Here we show that WT and TP-/- mice developed diabetes with a similar blood glucose level; however, signs of renal functional impairments and pathologies occurred to a lesser extent in TP-/- than in WT mice. Also, the extent of an increase in the expression level of transforming growth factor-β1 (TGF-β1), a common pathological mediator of DN, in diabetic renal cortexes of TP-/- mice was lower than that of WT counterparts. Moreover, we noted that expression levels of cyclooxygenase (COX)-2 and calcium-dependent phospholipase A2 (cPLA2) as well as levels of prostaglandin E2 and TXA2 in diabetic renal cortexes were increased as compared to those of non-diabetic conditions. These results thus demonstrate that possibly due to up-regulated cPLA2 and COX-2 that lead to increased prostanoid syntheses in diabetic renal cortexes, TP-/- alleviates DN development. In addition, our results suggest that such an effect of TP-/- might be related to the suppression of TGF-β1 up-regulation that is commonly associated with the disease condition.
Collapse
Affiliation(s)
- Juyu Cai
- Department of Medicine, Medical College of Jiaying University, Meizhou, China; Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ningxia Zhu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
19
|
Du Y, Taylor CG, Aukema HM, Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent Fatty Acids 2020; 160:102160. [PMID: 32717531 DOI: 10.1016/j.plefa.2020.102160] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Oxylipins, which are circulating bioactive lipids generated from polyunsaturated fatty acids (PUFAs) by cyclooxygenase, lipooxygenase and cytochrome P450 enzymes, have diverse effects on endothelial cells. Although studies of the effects of oxylipins on endothelial cell function are accumulating, a review that provides a comprehensive compilation of current knowledge and recent advances in the context of vascular homeostasis is lacking. This is the first compilation of the various in vitro, ex vivo and in vivo reports to examine the effects and potential mechanisms of action of oxylipins on endothelial cells. The aggregate data indicate docosahexaenoic acid-derived oxylipins consistently show beneficial effects related to key endothelial cell functions, whereas oxylipins derived from other PUFAs exhibit both positive and negative effects. Furthermore, information is lacking for certain oxylipin classes, such as those derived from α-linolenic acid, which suggests additional studies are required to achieve a full understanding of how oxylipins affect endothelial cells.
Collapse
Affiliation(s)
- Youjia Du
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada
| | - Carla G Taylor
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Harold M Aukema
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada
| | - Peter Zahradka
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada; Department of Physiology and Pathophysiology, University of Manitoba, MB R3E 0J9, Canada; Department of Food and Human Nutritional Sciences, University of Manitoba, MB R3T 2N2, Canada.
| |
Collapse
|
20
|
Zhu L, Zhang Y, Guo Z, Wang M. Cardiovascular Biology of Prostanoids and Drug Discovery. Arterioscler Thromb Vasc Biol 2020; 40:1454-1463. [PMID: 32295420 DOI: 10.1161/atvbaha.119.313234] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Prostanoids are a group of bioactive lipids that are synthesized de novo from membrane phospholipid-released arachidonic acid and have diverse functions in normal physiology and disease. NSAIDs (non-steroidal anti-inflammatory drugs), which are among the most commonly used medications, ameliorate pain, fever, and inflammation by inhibiting COX (cyclooxygenase), which is the rate-limiting enzyme in the biosynthetic cascade of prostanoids. The use of NSAIDs selective for COX-2 inhibition increases the risk of a thrombotic event (eg, myocardial infarction and stroke). All NSAIDs are associated with an increased risk of heart failure. Substantial variation in clinical responses to aspirin exists and is associated with cardiovascular risk. Limited clinical studies suggest the involvement of prostanoids in vascular restenosis in patients who received angioplasty intervention. mPGES (microsomal PG [prostaglandin] E synthase)-1, an alternative target downstream of COX, has the potential to be therapeutically targeted for inflammatory disease, with diminished thrombotic risk relative to selective COX-2 inhibitors. mPGES-1-derived PGE2 critically regulates microcirculation via its receptor EP (receptor for prostanoid E) 4. This review summarizes the actions and associated mechanisms for modulating the biosynthesis of prostanoids in thrombosis, vascular remodeling, and ischemic heart disease as well as their therapeutic relevance.
Collapse
Affiliation(s)
- Liyuan Zhu
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Yuze Zhang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Ziyi Guo
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (L.Z., Y.Z., Z.G., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing
| |
Collapse
|
21
|
Liu B, Wu X, Zeng R, Yin Y, Guo T, Xu Y, Zhang Y, Leng J, Ge J, Yu G, Guo J, Zhou Y. Prostaglandin E 2 sequentially activates E-prostanoid receptor-3 and thromboxane prostanoid receptor to evoke contraction and increase in resistance of the mouse renal vasculature. FASEB J 2020; 34:2568-2578. [PMID: 31908041 DOI: 10.1096/fj.201901611r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 02/05/2023]
Abstract
Although recognized to have an in vivo vasodepressor effect blunted by the vasoconstrictor effect of E-prostanoid receptor-3 (EP3), prostaglandin E2 (PGE2 ) evokes contractions of many vascular beds that are sensitive to antagonizing the thromboxane prostanoid receptor (TP). This study aimed to determine the direct effect of PGE2 on renal arteries and/or the whole renal vasculature and how each of these two receptors is involved in the responses. Experiments were performed on isolated vessels and perfused kidneys of wild-type mice and/or mice with deficiency in TP (TP-/- ), EP3 (EP3-/- ), or both TP and EP3 (TP-/- /EP3-/- ). Here we show that PGE2 (0.001-30 μM) evoked not only contraction of main renal arteries, but also a decrease of flow in perfused kidneys. EP3-/- diminished the response to 0.001-0.3 μM PGE2 , while TP-/- reduced that to the prostanoid of higher concentrations. In TP-/- /EP3-/- vessels and perfused kidneys, PGE2 did not evoke contraction but instead resulted in vasodilator responses. These results demonstrate that PGE2 functions as an overall direct vasoconstrictor of the mouse renal vasculature with an effect reflecting the vasoconstrictor activities outweighing that of dilation. Also, our results suggest that EP3 dominates the vasoconstrictor effect of PGE2 of low concentrations (≤0.001-0.3 μM), but its effect is further added by that of TP, which has a higher efficacy, although activated by higher concentrations (from 0.01 μM) of the same prostanoid PGE2 .
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Xiangzhong Wu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Ruhui Zeng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
- Department of Gynaecology and Obstetrics, First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yehu Yin
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Tingting Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yineng Xu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jing Leng
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jiahui Ge
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Gang Yu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Jinwei Guo
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
22
|
Yao L, He J, Li B, Yan M, Wang H, Tan L, Liu M, Lv X, Lv H, Zhang X, Chen C, Wang D, Yu Y, Huang Y, Zhu Y, Ai D. Regulation of YAP by Mammalian Target of Rapamycin Complex 1 in Endothelial Cells Controls Blood Pressure Through COX-2/mPGES-1/PGE 2 Cascade. Hypertension 2019; 74:936-946. [PMID: 31378107 DOI: 10.1161/hypertensionaha.119.12834] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endothelial cells regulate vascular tone by producing both relaxing and contracting factors to control the local blood flow. Hypertension is a common side effect of mTORC1 (mammalian target of rapamycin complex 1) inhibitors. However, the role of endothelial mTORC1 in hypertension remains elusive. The present study aimed to determine the role of endothelial mTORC1 in Ang II (angiotensin II)-induced hypertension and the underlying mechanism. Endothelial mTORC1 activity was increased by Ang II both in vitro and in vivo. Blood pressure was higher in Tie-2-Cre-mediated regulatory associated protein of mTOR (mammalian target of rapamycin; Raptor) heterozygous-deficient (Tie2Cre-RaptorKD) mice than control mice both before and after Ang II infusion. Acetylcholine-evoked endothelium-dependent relaxation of mesenteric arteries was impaired in Tie2Cre-RaptorKD mice. Treatment with indomethacin or a specific COX (cyclooxygenase)-2 inhibitor, NS-398, but not L-NG-nitroarginine methyl ester reduced endothelium-dependent relaxation in Raptorflox/- mice to a similar extent as in Tie2Cre-RaptorKD mice. Metabolomic profiling revealed that the plasma content of prostaglandin E2 was reduced in Tie2Cre-RaptorKD mice with or without Ang II infusion. In endothelial cells, reduction of the protein level of YAP (yes-associated protein) with siRNA-mediated RPTOR deficiency was autophagy dependent and transcriptionally regulated the expression of COX-2 and mPGES-1 (microsomal prostaglandin E synthase-1). Hence, overexpression of YAP in endothelial cells enhanced the mRNA and protein levels of COX-2 and mPGES-1 and reversed the endothelial dysfunction and hypertension in Tie2Cre-RaptorKD mice. The present results demonstrate that suppression of mTORC1 activity in endothelial cells reduces prostaglandin E2 production and causes hypertension by reducing YAP-mediated COX-2/mPGES-1 expression.
Collapse
Affiliation(s)
- Liu Yao
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Jinlong He
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Bochuan Li
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Meng Yan
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Hui Wang
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Lu Tan
- Department of Laboratory Animal Science and Technology, Tianjin, Medical University, China (L.T.)
| | - Mingming Liu
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Xue Lv
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Huizhen Lv
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Xu Zhang
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (C.C., D.W.)
| | - Daowen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (C.C., D.W.)
| | - Ying Yu
- Department of Pharmacology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin, Medical University, China (Y.Y.)
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China (Y.H.)
| | - Yi Zhu
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| | - Ding Ai
- From the Tianjin Key Laboratory of Metabolic Diseases, Key Laboratory of Immune Microenvironment and Disease-Ministry of Education, Department of Physiology and Pathophysiology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin, Medical University, China (L.Y., J.H., B.L., M.Y., H.W., M.L., X.L., H.L., X.Z., Y.Z., D.A.)
| |
Collapse
|
23
|
Upchurch C, Leitinger N. Biologically Active Lipids in Vascular Biology. FUNDAMENTALS OF VASCULAR BIOLOGY 2019. [DOI: 10.1007/978-3-030-12270-6_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Meurer M, Ebert K, Schweda F, Höcherl K. The renal vasodilatory effect of prostaglandins is ameliorated in isolated-perfused kidneys of endotoxemic mice. Pflugers Arch 2018; 470:1691-1703. [DOI: 10.1007/s00424-018-2183-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
|
25
|
Role of oxylipins in cardiovascular diseases. Acta Pharmacol Sin 2018; 39:1142-1154. [PMID: 29877318 DOI: 10.1038/aps.2018.24] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 02/19/2018] [Indexed: 02/07/2023] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the number one cause of mortality. Approximately 18 million people died from CVDs in 2015, representing more than 30% of all global deaths. New diagnostic tools and therapies are eagerly required to decrease the prevalence of CVDs related to mortality and/or risk factors leading to CVDs. Oxylipins are a group of metabolites, generated via oxygenation of polyunsaturated fatty acids that are involved in inflammation, immunity, and vascular functions, etc. Thus far, over 100 oxylipins have been identified, and have overlapping and interconnected roles. Important CVD pathologies such as hyperlipidemia, hypertension, thrombosis, hemostasis and diabetes have been linked to abnormal oxylipin signaling. Oxylipins represent a new era of risk markers and/or therapeutic targets in several diseases including CVDs. The role of many oxylipins in the progression or regression in CVD, however, is still not fully understood. An increased knowledge of the role of these oxygenated polyunsaturated fatty acids in cardiovascular dysfunctions or CVDs including hypertension could possibly lead to the development of biomarkers for the detection and their treatment in the future.
Collapse
|
26
|
El-Yazbi AF, Eid AH, El-Mas MM. Cardiovascular and renal interactions between cyclosporine and NSAIDs: Underlying mechanisms and clinical relevance. Pharmacol Res 2018; 129:251-261. [DOI: 10.1016/j.phrs.2017.11.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
27
|
Gao Q, Tang J, Li N, Liu B, Zhang M, Sun M, Xu Z. What is precise pathophysiology in development of hypertension in pregnancy? Precision medicine requires precise physiology and pathophysiology. Drug Discov Today 2017; 23:286-299. [PMID: 29101000 DOI: 10.1016/j.drudis.2017.10.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023]
Abstract
It is widely accepted that placental ischemia is central in the evolution of hypertension in pregnancy. Many studies and reviews have targeted placental ischemia to explain mechanisms for initiating pregnancy hypertension. The placenta is rich in blood vessels, which are the basis for developing placental ischemia. However, is the physiology of placental vessels the same as that of nonplacental vessels? What is the pathophysiology of placental vessels in development of pregnancy hypertension? This review aims to provide a comprehensive summary of special features of placental vascular regulations and the pathophysiological changes linked to preeclamptic conditions. Interestingly, some popular theories or accepted concepts could be based on our limited knowledge and evidence regarding placental vascular physiology, pharmacology and pathophysiology. New views raised could offer interesting ideas for future investigation of mechanisms as well as targets for pregnancy hypertension.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Mengshu Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Loma Linda University, CA, USA.
| |
Collapse
|
28
|
Layne K, Goodman T, Ferro A, Passacquale G. The effect of aspirin on circulating netrin-1 levels in humans is dependent on the inflammatory status of the vascular endothelium. Oncotarget 2017; 8:86548-86555. [PMID: 29156815 PMCID: PMC5689705 DOI: 10.18632/oncotarget.21240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 01/19/2023] Open
Abstract
In atherosclerotic animal models, the cyclo-oxygenase (COX)-inhibitor aspirin counteracts downregulation of endothelial-derived netrin-1, thus reducing arterial inflammation. We here explored the effect of aspirin on netrin-1 in healthy subjects undergoing influenza immunisation, which is an established experimental model of inflammation-related endothelial dysfunction. Our data showed that netrin-1 undergoes reduction (-29.25% from baseline; p=0.0017) in the presence of endothelial activation (VCAM-1 rose by 9.98% 2-days post-vaccination; p=0.0022). Aspirin counteracted vaccine-induced endothelial activation and reduction of netrin-1 in a dose-dependent manner (-3.06% and -17.03% from baseline at a dose of 300mg and 75mg respectively; p=0.0465 and p>0.05 vs untreated). Clopidogrel, which was used as a comparator due to its similar anti-platelet activity, also reduced endothelial activation but, unlike aspirin, enhanced netrin-1 levels (+20.96% from baseline; p=0.0033 vs untreated). A correlation analysis incorporating cytokines, hs-CRP, VCAM-1, TXB2 and PGE2, showed that changes in netrin-1 were directly related to PGE2 variations only (r=0.6103; p=0.0002). In a separate population of 40 healthy unimmunised volunteers, 28-day treatment with aspirin 300mg reduced netrin-1 (-18.76% from baseline; p=0.0012) without affecting endothelial markers or hs-CRP; as expected, aspirin suppressed TXB2 and PGE2. Netrin-1 and PGE2 levels were directly related (r=0.358; p=0.0015), but other parameters including TXB2, hs-CRP and endothelial markers, were not. In conclusion, aspirin counteracts downregulation of netrin-1 following endothelial dysfunction due to its anti-inflammatory effect on the activated endothelium. However, inhibition of COX-dependent prostanoids negatively modulates netrin-1 synthesis in healthy subjects, and this could give rise to aspirin-dependent reduction in netrin-1 under steady state conditions.
Collapse
Affiliation(s)
- Kerry Layne
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Timothy Goodman
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Albert Ferro
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - Gabriella Passacquale
- Department of Clinical Pharmacology, BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|
29
|
Caligiuri SPB, Aukema HM, Ravandi A, Lavallée R, Guzman R, Pierce GN. Specific plasma oxylipins increase the odds of cardiovascular and cerebrovascular events in patients with peripheral artery disease. Can J Physiol Pharmacol 2017; 95:961-968. [PMID: 28714336 DOI: 10.1139/cjpp-2016-0615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Oxylipins and fatty acids may be novel therapeutic targets for cardiovascular disease. The objective was to determine if plasma oxylipins or fatty acids can influence the odds of cardiovascular/cerebrovascular events. In 98 patients (25 female, 73 male) with peripheral artery disease, the prevalence of transient ischemic attacks, cerebrovascular accidents, stable angina, and acute coronary syndrome was n = 16, 10, 16, and 24, respectively. Risk factors such as being male, diagnosed hypertension, diabetes mellitus, and hyperlipidemia were not associated with events. Plasma fatty acids and oxylipins were analyzed with gas chromatography and HPLC-MS/MS, respectively. None of 24 fatty acids quantified were associated with events. In contrast, 39 plasma oxylipins were quantified, and 8 were significantly associated with events. These 8 oxylipins are known regulators of vascular tone. For example, every 1 unit increase in Thromboxane B2/Prostaglandin F1α and every 1 nmol/L increase in plasma 16-hydroxyeicosatetraenoic acid, thromboxane B2, or 11,12-dihydroxyeicosatrienoic acid (DiHETrE) increased the odds of having had ≥2 events versus no event (p < 0.05). The greatest predictor was plasma 8,9-DiHETrE, which increased the odds of acute coronary syndrome by 92-fold. In conclusion, specific oxylipins were highly associated with clinical events and may represent specific biomarkers and (or) therapeutic targets of cardiovascular disease.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- a Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, MB R2H 2A6, Canada.,b The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Harold M Aukema
- a Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, MB R2H 2A6, Canada.,d Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amir Ravandi
- b The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada.,e Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Renée Lavallée
- a Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, MB R2H 2A6, Canada.,b The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Randy Guzman
- f Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| | - Grant N Pierce
- a Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Winnipeg, MB R2H 2A6, Canada.,b The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada.,c Department of Physiology, University of Manitoba, Winnipeg, MB R3E 0W3, Canada
| |
Collapse
|
30
|
Endothelial overexpression of endothelin-1 modulates aortic, carotid, iliac and renal arterial responses in obese mice. Acta Pharmacol Sin 2017; 38:498-512. [PMID: 28216625 DOI: 10.1038/aps.2016.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/13/2016] [Indexed: 11/08/2022] Open
Abstract
Endothelin-1 (ET-1) is essential for mammalian development and life, but it has also been implicated in increased cardiovascular risk under pathophysiological conditions. The aim of this study was to determine the impact of endothelial overexpression of the prepro-endothelin-1 gene on endothelium-dependent and endothelium-independent responses in the conduit and renal arteries of lean and obese mice. Obesity was induced by high-fat-diet (HFD) consumption in mice with Tie-1 promoter-driven, endothelium-specific overexpression of the prepro-endothelin-1 gene (TEThet) and in wild-type (WT) littermates on a C57BL/6N background. Isometric tension was measured in rings (with endothelium) of the aorta (A), carotid (CA) and iliac (IA) arteries as well as the main (MRA) and segmental renal (SRA) arteries; all experiments were conducted in the absence or presence of L-NAME and/or the COX inhibitor meclofenamate. The release of prostacyclin and thromboxane A2 was measured by ELISA. In the MRA, TEThet per se increased contractions to endothelin-1, but the response was decreased in SRA in response to serotonin; there were also improved relaxations to acetylcholine but not insulin in the SRA in the presence of L-NAME. HFD per se augmented the contractions to endothelin-1 (MRA) and to the thromboxane prostanoid (TP) receptor agonist U46619 (CA, MRA) as well as facilitated relaxations to isoproterenol (A). The combination of HFD and TEThet overexpression increased the contractions of MRA and SRA to vasoconstrictors but not in the presence of meclofenamate; this combination also augmented further relaxations to isoproterenol in the A. Contractions to endothelin-1 in the IA were prevented by endothelin-A receptor antagonist BQ-123 but only attenuated in obese mice by BQ-788. The COX-1 inhibitor FR122047 abolished the contractions of CA to acetylcholine. The release of prostacyclin during the latter condition was augmented in samples from obese TEThet mice and abolished by FR122047. These findings suggest that endothelial TEThet overexpression in lean animals has minimal effects on vascular responsiveness. However, if comorbid with obesity, endothelin-1-modulated, prostanoid-mediated renal arterial dysfunction becomes apparent.
Collapse
|
31
|
Thuesen AD, Lyngsø KS, Rasmussen L, Stubbe J, Skøtt O, Poulsen FR, Pedersen CB, Rasmussen LM, Hansen PBL. P/Q-type and T-type voltage-gated calcium channels are involved in the contraction of mammary and brain blood vessels from hypertensive patients. Acta Physiol (Oxf) 2017; 219:640-651. [PMID: 27273014 DOI: 10.1111/apha.12732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 03/21/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
AIM Calcium channel blockers are widely used in cardiovascular diseases. Besides L-type channels, T- and P/Q-type calcium channels are involved in the contraction of human renal blood vessels. It was hypothesized that T- and P/Q-type channels are involved in the contraction of human brain and mammary blood vessels. METHODS Internal mammary arteries from bypass surgery patients and cerebral arterioles from patients with brain tumours with and without hypertension were tested in a myograph and perfusion set-up. PCR and immunohistochemistry were performed on isolated blood vessels. RESULTS The P/Q-type antagonist ω-agatoxin IVA (10-8 mol L-1 ) and the T-type calcium blocker mibefradil (10-7 mol L-1 ) inhibited KCl depolarization-induced contraction in mammary arteries from hypertensive patients with no effect on blood vessels from normotensive patients. ω-Agatoxin IVA decreased contraction in cerebral arterioles from hypertensive patients. L-type blocker nifedipine abolished the contraction in mammary arteries. PCR analysis showed expression of P/Q-type (Cav 2.1), T-type (Cav 3.1 and Cav 3.2) and L-type (Cav 1.2) calcium channels in mammary and cerebral arteries. Immunohistochemical labelling of mammary and cerebral arteries revealed the presence of Cav 2.1 in endothelial and smooth muscle cells. Cav 3.1 was also detected in mammary arteries. CONCLUSION P/Q- and T-type Cav are present in human internal mammary arteries and in cerebral penetrating arterioles. P/Q- and T-type calcium channels are involved in the contraction of mammary arteries from hypertensive patients but not from normotensive patients. Furthermore, in cerebral arterioles P/Q-type channels importance was restricted to hypertensive patients might lead to that T- and P/Q-type channels could be a new target in hypertensive patients.
Collapse
Affiliation(s)
- A. D. Thuesen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - K. S. Lyngsø
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - L. Rasmussen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - J. Stubbe
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - O. Skøtt
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - F. R. Poulsen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
- Clinical Institute; University of Southern Denmark; Odense Denmark
| | - C. B. Pedersen
- Department of Neurosurgery; Odense University Hospital; Odense Denmark
| | - L. M. Rasmussen
- Clinical Institute; University of Southern Denmark; Odense Denmark
- Department of Clinical Biochemistry and Pharmacology; Centre for Individualized Medicine in Arterial Diseases; Odense University Hospital; Odense Denmark
| | - P. B. L. Hansen
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| |
Collapse
|
32
|
Li Z, Zhang Y, Liu B, Luo W, Li H, Zhou Y. Role of E-type prostaglandin receptor EP3 in the vasoconstrictor activity evoked by prostacyclin in thromboxane-prostanoid receptor deficient mice. Sci Rep 2017; 7:42167. [PMID: 28165064 PMCID: PMC5292700 DOI: 10.1038/srep42167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/06/2017] [Indexed: 02/05/2023] Open
Abstract
Prostacyclin, also termed as prostaglandin I2 (PGI2), evokes contraction in vessels with limited expression of the prostacyclin receptor. Although the thromboxane-prostanoid receptor (TP) is proposed to mediate such a response of PGI2, other unknown receptor(s) might also be involved. TP knockout (TP-/-) mice were thus designed and used to test the hypothesis. Vessels, which normally show contraction to PGI2, were isolated for functional and biochemical analyses. Here, we showed that the contractile response evoked by PGI2 was indeed only partially abolished in the abdominal aorta of TP-/- mice. Interestingly, further antagonizing the E-type prostaglandin receptor EP3 removed the remaining contractile activity, resulting in relaxation evoked by PGI2 in such vessels of TP-/- mice. These results suggest that EP3 along with TP contributes to vasoconstrictor responses evoked by PGI2, and hence imply a novel mechanism for endothelial cyclooxygenase metabolites (which consist mainly of PGI2) in regulating vascular functions.
Collapse
MESH Headings
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Base Sequence
- Blood Pressure/drug effects
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Epoprostenol/metabolism
- Epoprostenol/pharmacology
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Prostaglandin E, EP3 Subtype/genetics
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Thromboxane/deficiency
- Receptors, Thromboxane/genetics
- Renal Artery/drug effects
- Renal Artery/metabolism
- Signal Transduction
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Zhenhua Li
- Dept of Pathology, The 2nd Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
Luo W, Liu B, Zhou Y. The endothelial cyclooxygenase pathway: Insights from mouse arteries. Eur J Pharmacol 2016; 780:148-58. [PMID: 27020548 DOI: 10.1016/j.ejphar.2016.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 02/05/2023]
Abstract
To date, cyclooxygenase-2 (COX-2) is commonly believed to be the major mediator of endothelial prostacyclin (prostaglandin I2; PGI2) synthesis that balances the effect of thromboxane (Tx) A2 synthesis mediated by the other COX isoform, COX-1 in platelets. Accordingly, selective inhibition of COX-2 is considered to cause vasoconstriction, platelet aggregation, and hence increase the incidence of cardiovascular events. This idea has been claimed to be substantiated by experiments on mouse models, some of which are deficient in one of the two COX isoforms. However, results from our studies and those of others using similar mouse models suggest that COX-1 is the major functional isoform in vascular endothelium. Also, although PGI2 is recognized as a potent vasodilator, in some arteries endothelial COX activation causes vasoconstrictor response. This has again been recognized by studies, especially those performed on mouse arteries, to result largely from endothelial PGI2 synthesis. Therefore, evidence that supports a role for COX-1 as the major mediator of PGI2 synthesis in mouse vascular endothelium, reasons for the inconsistency, and results that elucidate underlying mechanisms for divergent vasomotor reactions to endothelial COX activation will be discussed in this review. In addition, we address the possible pathological implications and limitations of findings obtained from studies performed on mouse arteries.
Collapse
Affiliation(s)
- Wenhong Luo
- Central Lab, Shantou University Medical College, Shantou, China
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China.
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Ni WJ, Tang LQ, Zhou H, Ding HH, Qiu YY. Renoprotective effect of berberine via regulating the PGE2 -EP1-Gαq-Ca(2+) signalling pathway in glomerular mesangial cells of diabetic rats. J Cell Mol Med 2016; 20:1491-502. [PMID: 27098986 PMCID: PMC4956950 DOI: 10.1111/jcmm.12837] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/14/2016] [Indexed: 01/05/2023] Open
Abstract
G‐protein coupled receptor‐mediated pathogenesis is of great importance in the development of diabetic complications, but the detailed mechanisms have not yet been clarified. Therefore, we aimed to explore the roles of the prostaglandin E2 receptor 1 (EP1)‐mediated signalling pathway and develop a corresponding treatment for diabetic nephropathy (DN). To create the DN model, rats fed a high‐fat and high‐glucose diet were injected with a single dose of streptozotocin (35 mg/kg, i.p.). Then, rats were either treated or not with berberine (100 mg/kg per day, i.g., 8 weeks). Cells were isolated from the renal cortex and cultured in high‐sugar medium with 20% foetal bovine serum. Prostaglandin E2 (PGE2) levels were determined by ELISA, and cells were identified by fluorescence immunoassay. We measured the biochemical characteristics and observed morphological changes by periodic‐acid‐Schiff staining. The expression of the EP1 receptor and the roles of GRK2 and β‐arrestin2 were identified using western blotting and flow cytometry. Downstream proteins were detected by western blot, while molecular changes were assessed by ELISA and laser confocal scanning microscopy. Berberine not only improved the majority of biochemical and renal functional parameters but also improved the histopathological alterations. A significant increase in PGE2 level, EP1 membrane expression and Gαq expression, and concentration of Ca2+ were observed, accompanied by increased GRK2 and β‐arrestin2 levels soon afterwards. Berberine decreased the abnormal concentration of Ca2+, the increased levels of PGE2, the high expression of EP1 and Gαq and suppressed the proliferation of mesangial cells. The EP1 receptor, a critical therapeutic target of the signalling pathway, contributed to mesangial cell abnormalities, which are linked to renal injury in DN. The observed renoprotective effects of berberine via regulating the PGE2‐EP1‐Gαq‐Ca2+ signalling pathway indicating that berberine could be a promising anti‐DN medicine in the future.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Affiliated Anhui Provincial Hospital, Anhui Medical University, Anhui Province, China
| | - Li-Qin Tang
- Affiliated Anhui Provincial Hospital, Anhui Medical University, Anhui Province, China
| | - Hong Zhou
- West Branch of Anhui Provincial Hospital, Anhui Provincial Cancer Hospital, Anhui Province, China
| | - Hai-Hua Ding
- Affiliated Anhui Provincial Hospital, Anhui Medical University, Anhui Province, China
| | - Yuan-Ye Qiu
- Affiliated Anhui Provincial Hospital, Anhui Medical University, Anhui Province, China
| |
Collapse
|
36
|
Haque MM, Moghal MMR, Sarwar MS, Anonna SN, Akter M, Karmakar P, Ahmed S, Sattar MA, Islam MS. Low serum selenium concentration is associated with preeclampsia in pregnant women from Bangladesh. J Trace Elem Med Biol 2016; 33:21-5. [PMID: 26653739 DOI: 10.1016/j.jtemb.2015.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Preeclampsia is a hypertensive disorder of pregnancy which is one of the leading causes of maternal and perinatal mortality and pre-term delivery, especially in low and middle income countries. Selenium is an important constituent of selenoproteins that act as antioxidant and have several metabolic functions. The present study was conducted to determine serum selenium concentration in preeclampsia patients in order to find out the role of selenium in preeclampsia. METHODS This study was conducted as case-control study with 74 preeclampsia patients as cases whose gestation were ≥20 weeks (52 mild and 22 severe patients) and 118 normotensive pregnant women as controls from same gestational period. Detailed patient history was recorded during routine hospital visits. Serum selenium concentration was determined by using atomic absorption spectroscopy. Independent sample t-test and Pearson's correlation test were done for the statistical analysis using the statistical software package SPSS, version 16. RESULTS Our study found that mean serum concentration of selenium in preeclampsia patients was significantly lower than that of healthy pregnant women (p<0.05). Further analysis for selenium concentration with disease severity explored that selenium concentration was significantly lower in severe preeclampsia in comparison to mild preeclampsia (p<0.05). We found no significant difference for selenium concentration between rural and urban preeclampsia patients (p>0.05). Pearson's correlation analysis reveals significant negative correlation of selenium with systolic blood pressure (r=-0.419, p=0.001), diastolic blood pressure (r=-0.392, p=0.001), and gestational period (r=-0.218, p=0.001). CONCLUSION Our study found that preeclampsia patients have decreased serum selenium concentration than the healthy pregnant women.
Collapse
Affiliation(s)
- Md Mahmodul Haque
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | | | - Shamima Nasrin Anonna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Mariyam Akter
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Palash Karmakar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Salma Ahmed
- Department of Obstetrics and Gynecology, Noakhali Medical College, Noakhali, Bangladesh
| | - M A Sattar
- Department of Padiatrics, Central Medical College and Hospital, Comilla, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh.
| |
Collapse
|
37
|
Baretella O, Vanhoutte P. Endothelium-Dependent Contractions. ADVANCES IN PHARMACOLOGY 2016; 77:177-208. [DOI: 10.1016/bs.apha.2016.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Cavka A, Cosic A, Jukic I, Jelakovic B, Lombard JH, Phillips SA, Seric V, Mihaljevic I, Drenjancevic I. The role of cyclo-oxygenase-1 in high-salt diet-induced microvascular dysfunction in humans. J Physiol 2015; 593:5313-24. [PMID: 26498129 DOI: 10.1113/jp271631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Recent studies have shown that some of the deleterious effects of a high-salt (HS) diet are independent of elevated blood pressure and are associated with impaired endothelial function. Increased generation of cyclo-oxygenase (COX-1 and COX-2)-derived vasoconstrictor factors and endothelial activation may contribute to impaired vascular relaxation during HS loading. The present study aimed to assess the regulation of microvascular reactivity and to clarify the role of COX-1 and COX-2 in normotensive subjects on a short-term HS diet. The present study demonstrates the important role of COX-1 derived vasoconstrictor metabolites in regulation of microvascular blood flow during a HS diet. These results help to explain how even short-term HS diets may impact upon microvascular reactivity without changes in blood pressure and suggest that a vasoconstrictor metabolite of COX-1 could play a role in this impaired tissue blood flow. ABSTRACT The present study aimed to assess the effect of a 1-week high-salt (HS) diet on the role of cyclo-oxygenases (COX-1 and COX-2) and the vasoconstrictor prostaglandins, thromboxane A2 (TXA2 ) and prostaglandin F2α (PGF2α ), on skin microcirculatory blood flow, as well as to detect its effect on markers of endothelial activation such as soluble cell adhesion molecules. Young women (n = 54) were assigned to either the HS diet group (N = 30) (∼14 g day(-1) NaCl ) or low-salt (LS) diet group (N = 24) (<2.3 g day(-1) NaCl ) for 7 days. Post-occlusive reactive hyperaemia (PORH) in the skin microcirculation was assessed by laser Doppler flowmetry. Plasma renin activity, plasma aldosterone, plasma and 24 h urine sodium and potassium, plasma concentrations of TXB2 (stable TXA2 metabolite) and PGF2α , soluble cell adhesion molecules and blood pressure were measured before and after the diet protocols. One HS diet group subset received 100 mg of indomethacin (non-selective COX-1 and COX-2 inhibitor), and another HS group subset received 200 mg of celecoxib (selective COX-2 inhibitor) before repeating laser Doppler flowmetry measurements. Blood pressure was unchanged after the HS diet, although it significantly reduced after the LS diet. Twenty-four hour urinary sodium was increased, and plasma renin activity and plasma aldosterone levels were decreased after the HS diet. The HS diet significantly impaired PORH and increased TXA2 but did not change PGF2α levels. Indomethacin restored microcirculatory blood flow and reduced TXA2 . By contrast, celecoxib decreased TXA2 levels but had no significant effects on blood flow. Restoration of of PORH by indomethacin during a HS diet suggests an important role of COX-1 derived vasoconstrictor metabolites in the regulation of microvascular blood flow during HS intake.
Collapse
Affiliation(s)
- Ana Cavka
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Anita Cosic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ivana Jukic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Bojan Jelakovic
- School of Medicine University of Zagreb, Department of Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Julian H Lombard
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shane A Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois in Chicago, Chicago, IL, USA
| | - Vatroslav Seric
- Department of Clinical Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
| | - Ivan Mihaljevic
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, Osijek, Croatia
| | - Ines Drenjancevic
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
39
|
Liu D, Liu B, Luo W, Li H, Zhang Y, Zhou Y. A vasoconstrictor response to COX-1-mediated prostacyclin synthesis in young rat renal arteries that increases in prehypertensive conditions. Am J Physiol Heart Circ Physiol 2015; 309:H804-H811. [PMID: 26209052 DOI: 10.1152/ajpheart.00150.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/17/2015] [Indexed: 02/05/2023]
Abstract
This study aimed to determine whether prostacyclin (PGI2) functions as an endothelium-derived contracting factor (EDCF) in young rat renal arteries, and, if so, we wanted to examine the underlying mechanism(s) and how it changes in prehypertensive conditions. Vessels from Wistar-Kyoto (WKY) and prehypertensive spontaneously hypertensive rats (SHRs) of 25-28 days of age were isolated for functional and biochemical analyses. Result showed that following NO synthase (NOS) inhibition PGI2 and the thromboxane-prostanoid (TP) receptor agonist U-46619 evoked contractions in young WKY renal arteries that were similar to those in prehypertensive SHRs. Meanwhile, the endothelial muscarinic receptor agonist ACh evoked an endothelium-dependent contraction under NOS-inhibited conditions and a production of the PGI2 metabolite 6-keto-PGF1α; both were sensitive to cyclooxygenase (COX) and/or COX-1 inhibition but higher in prehypertensive SHRs than in young WKYs. Interestingly, in WKY renal arteries PGI2 did not evoke relaxation even after TP receptor antagonism that diminished the contraction evoked by the agonist. Indeed, PGI2 (IP) receptors were not detected in the vessel with Western blot. Moreover, we noted that treatment with the nonselective COX inhibitor indomethacin, which was started at the prehypertensive stage, blunted the elevation of systolic blood pressure and reduced the heart-to-body ratio in SHR within 2 mo of treatment. These results demonstrate that due to scarcity of IP receptors, PGI2, which is derived mainly from COX-1-mediated metabolism, acts as an EDCF in young WKY renal arteries, and it increases in prehypertensive conditions. Also, our data revealed that COX inhibition starting from the prehypertensive stage has an antihypertensive effect in young SHRs.
Collapse
Affiliation(s)
- Dongling Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Wenhong Luo
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Hui Li
- The Central Lab, Shantou University Medical College, Shantou, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, China; and
| |
Collapse
|
40
|
Camacho M, Piñeiro Z, Alcolea S, García J, Balart J, Terra X, Avilés-Jurado FX, Soler M, Quer M, León X, Vila L. Prostacyclin-synthase expression in head and neck carcinoma patients and its prognostic value in the response to radiotherapy. J Pathol 2014; 235:125-35. [DOI: 10.1002/path.4453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/04/2014] [Accepted: 09/23/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Mercedes Camacho
- Laboratory of Angiology, Vascular Biology and Inflammation; Institute of Biomedical Research (IIB Sant Pau) and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Zenaida Piñeiro
- Laboratory of Angiology, Vascular Biology and Inflammation; Institute of Biomedical Research (IIB Sant Pau) and Universitat Autònoma de Barcelona; Barcelona Spain
- Otorhinolaryngology Department; Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Sonia Alcolea
- Laboratory of Angiology, Vascular Biology and Inflammation; Institute of Biomedical Research (IIB Sant Pau) and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Jacinto García
- Otorhinolaryngology Department; Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Josep Balart
- Radiation Oncology Department; Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Ximena Terra
- Otorhinolaryngology Department; Hospital Universitari de Tarragona Joan XXIII, ISPV, Universitat Rovira i Virgili; Tarragona Spain
| | - Francesc-Xavier Avilés-Jurado
- Otorhinolaryngology Department; Hospital Universitari de Tarragona Joan XXIII, ISPV, Universitat Rovira i Virgili; Tarragona Spain
| | - Marta Soler
- Scientific and Technical Services Platform of the Institute of Biomedical Research (II-B Sant Pau); Barcelona Spain
| | - Miquel Quer
- Otorhinolaryngology Department; Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Xavier León
- Otorhinolaryngology Department; Hospital de la Santa Creu i Sant Pau and Universitat Autònoma de Barcelona; Barcelona Spain
| | - Luis Vila
- Laboratory of Angiology, Vascular Biology and Inflammation; Institute of Biomedical Research (IIB Sant Pau) and Universitat Autònoma de Barcelona; Barcelona Spain
| |
Collapse
|